Linux 5.1.15
[linux/fpc-iii.git] / block / blk-mq-sched.c
blobc59babca6857aac80ec33be185c3351fd204457c
1 /*
2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
22 struct blk_mq_hw_ctx *hctx;
23 int i;
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 void blk_mq_sched_assign_ioc(struct request *rq)
36 struct request_queue *q = rq->q;
37 struct io_context *ioc;
38 struct io_cq *icq;
41 * May not have an IO context if it's a passthrough request
43 ioc = current->io_context;
44 if (!ioc)
45 return;
47 spin_lock_irq(&q->queue_lock);
48 icq = ioc_lookup_icq(ioc, q);
49 spin_unlock_irq(&q->queue_lock);
51 if (!icq) {
52 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
53 if (!icq)
54 return;
56 get_io_context(icq->ioc);
57 rq->elv.icq = icq;
61 * Mark a hardware queue as needing a restart. For shared queues, maintain
62 * a count of how many hardware queues are marked for restart.
64 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
66 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
67 return;
69 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
73 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
75 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
76 return;
77 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
79 blk_mq_run_hw_queue(hctx, true);
83 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
84 * its queue by itself in its completion handler, so we don't need to
85 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
87 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
89 struct request_queue *q = hctx->queue;
90 struct elevator_queue *e = q->elevator;
91 LIST_HEAD(rq_list);
93 do {
94 struct request *rq;
96 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
97 break;
99 if (!blk_mq_get_dispatch_budget(hctx))
100 break;
102 rq = e->type->ops.dispatch_request(hctx);
103 if (!rq) {
104 blk_mq_put_dispatch_budget(hctx);
105 break;
109 * Now this rq owns the budget which has to be released
110 * if this rq won't be queued to driver via .queue_rq()
111 * in blk_mq_dispatch_rq_list().
113 list_add(&rq->queuelist, &rq_list);
114 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
117 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
118 struct blk_mq_ctx *ctx)
120 unsigned short idx = ctx->index_hw[hctx->type];
122 if (++idx == hctx->nr_ctx)
123 idx = 0;
125 return hctx->ctxs[idx];
129 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
130 * its queue by itself in its completion handler, so we don't need to
131 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
133 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
135 struct request_queue *q = hctx->queue;
136 LIST_HEAD(rq_list);
137 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
139 do {
140 struct request *rq;
142 if (!sbitmap_any_bit_set(&hctx->ctx_map))
143 break;
145 if (!blk_mq_get_dispatch_budget(hctx))
146 break;
148 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
149 if (!rq) {
150 blk_mq_put_dispatch_budget(hctx);
151 break;
155 * Now this rq owns the budget which has to be released
156 * if this rq won't be queued to driver via .queue_rq()
157 * in blk_mq_dispatch_rq_list().
159 list_add(&rq->queuelist, &rq_list);
161 /* round robin for fair dispatch */
162 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
164 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
166 WRITE_ONCE(hctx->dispatch_from, ctx);
169 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
171 struct request_queue *q = hctx->queue;
172 struct elevator_queue *e = q->elevator;
173 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
174 LIST_HEAD(rq_list);
176 /* RCU or SRCU read lock is needed before checking quiesced flag */
177 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
178 return;
180 hctx->run++;
183 * If we have previous entries on our dispatch list, grab them first for
184 * more fair dispatch.
186 if (!list_empty_careful(&hctx->dispatch)) {
187 spin_lock(&hctx->lock);
188 if (!list_empty(&hctx->dispatch))
189 list_splice_init(&hctx->dispatch, &rq_list);
190 spin_unlock(&hctx->lock);
194 * Only ask the scheduler for requests, if we didn't have residual
195 * requests from the dispatch list. This is to avoid the case where
196 * we only ever dispatch a fraction of the requests available because
197 * of low device queue depth. Once we pull requests out of the IO
198 * scheduler, we can no longer merge or sort them. So it's best to
199 * leave them there for as long as we can. Mark the hw queue as
200 * needing a restart in that case.
202 * We want to dispatch from the scheduler if there was nothing
203 * on the dispatch list or we were able to dispatch from the
204 * dispatch list.
206 if (!list_empty(&rq_list)) {
207 blk_mq_sched_mark_restart_hctx(hctx);
208 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
209 if (has_sched_dispatch)
210 blk_mq_do_dispatch_sched(hctx);
211 else
212 blk_mq_do_dispatch_ctx(hctx);
214 } else if (has_sched_dispatch) {
215 blk_mq_do_dispatch_sched(hctx);
216 } else if (hctx->dispatch_busy) {
217 /* dequeue request one by one from sw queue if queue is busy */
218 blk_mq_do_dispatch_ctx(hctx);
219 } else {
220 blk_mq_flush_busy_ctxs(hctx, &rq_list);
221 blk_mq_dispatch_rq_list(q, &rq_list, false);
225 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
226 struct request **merged_request)
228 struct request *rq;
230 switch (elv_merge(q, &rq, bio)) {
231 case ELEVATOR_BACK_MERGE:
232 if (!blk_mq_sched_allow_merge(q, rq, bio))
233 return false;
234 if (!bio_attempt_back_merge(q, rq, bio))
235 return false;
236 *merged_request = attempt_back_merge(q, rq);
237 if (!*merged_request)
238 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
239 return true;
240 case ELEVATOR_FRONT_MERGE:
241 if (!blk_mq_sched_allow_merge(q, rq, bio))
242 return false;
243 if (!bio_attempt_front_merge(q, rq, bio))
244 return false;
245 *merged_request = attempt_front_merge(q, rq);
246 if (!*merged_request)
247 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
248 return true;
249 case ELEVATOR_DISCARD_MERGE:
250 return bio_attempt_discard_merge(q, rq, bio);
251 default:
252 return false;
255 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
258 * Iterate list of requests and see if we can merge this bio with any
259 * of them.
261 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
262 struct bio *bio)
264 struct request *rq;
265 int checked = 8;
267 list_for_each_entry_reverse(rq, list, queuelist) {
268 bool merged = false;
270 if (!checked--)
271 break;
273 if (!blk_rq_merge_ok(rq, bio))
274 continue;
276 switch (blk_try_merge(rq, bio)) {
277 case ELEVATOR_BACK_MERGE:
278 if (blk_mq_sched_allow_merge(q, rq, bio))
279 merged = bio_attempt_back_merge(q, rq, bio);
280 break;
281 case ELEVATOR_FRONT_MERGE:
282 if (blk_mq_sched_allow_merge(q, rq, bio))
283 merged = bio_attempt_front_merge(q, rq, bio);
284 break;
285 case ELEVATOR_DISCARD_MERGE:
286 merged = bio_attempt_discard_merge(q, rq, bio);
287 break;
288 default:
289 continue;
292 return merged;
295 return false;
297 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
300 * Reverse check our software queue for entries that we could potentially
301 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
302 * too much time checking for merges.
304 static bool blk_mq_attempt_merge(struct request_queue *q,
305 struct blk_mq_hw_ctx *hctx,
306 struct blk_mq_ctx *ctx, struct bio *bio)
308 enum hctx_type type = hctx->type;
310 lockdep_assert_held(&ctx->lock);
312 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio)) {
313 ctx->rq_merged++;
314 return true;
317 return false;
320 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
322 struct elevator_queue *e = q->elevator;
323 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
324 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
325 bool ret = false;
326 enum hctx_type type;
328 if (e && e->type->ops.bio_merge) {
329 blk_mq_put_ctx(ctx);
330 return e->type->ops.bio_merge(hctx, bio);
333 type = hctx->type;
334 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
335 !list_empty_careful(&ctx->rq_lists[type])) {
336 /* default per sw-queue merge */
337 spin_lock(&ctx->lock);
338 ret = blk_mq_attempt_merge(q, hctx, ctx, bio);
339 spin_unlock(&ctx->lock);
342 blk_mq_put_ctx(ctx);
343 return ret;
346 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
348 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
350 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
352 void blk_mq_sched_request_inserted(struct request *rq)
354 trace_block_rq_insert(rq->q, rq);
356 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
358 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
359 bool has_sched,
360 struct request *rq)
362 /* dispatch flush rq directly */
363 if (rq->rq_flags & RQF_FLUSH_SEQ) {
364 spin_lock(&hctx->lock);
365 list_add(&rq->queuelist, &hctx->dispatch);
366 spin_unlock(&hctx->lock);
367 return true;
370 if (has_sched)
371 rq->rq_flags |= RQF_SORTED;
373 return false;
376 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
377 bool run_queue, bool async)
379 struct request_queue *q = rq->q;
380 struct elevator_queue *e = q->elevator;
381 struct blk_mq_ctx *ctx = rq->mq_ctx;
382 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
384 /* flush rq in flush machinery need to be dispatched directly */
385 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
386 blk_insert_flush(rq);
387 goto run;
390 WARN_ON(e && (rq->tag != -1));
392 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
393 goto run;
395 if (e && e->type->ops.insert_requests) {
396 LIST_HEAD(list);
398 list_add(&rq->queuelist, &list);
399 e->type->ops.insert_requests(hctx, &list, at_head);
400 } else {
401 spin_lock(&ctx->lock);
402 __blk_mq_insert_request(hctx, rq, at_head);
403 spin_unlock(&ctx->lock);
406 run:
407 if (run_queue)
408 blk_mq_run_hw_queue(hctx, async);
411 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
412 struct blk_mq_ctx *ctx,
413 struct list_head *list, bool run_queue_async)
415 struct elevator_queue *e;
416 struct request_queue *q = hctx->queue;
419 * blk_mq_sched_insert_requests() is called from flush plug
420 * context only, and hold one usage counter to prevent queue
421 * from being released.
423 percpu_ref_get(&q->q_usage_counter);
425 e = hctx->queue->elevator;
426 if (e && e->type->ops.insert_requests)
427 e->type->ops.insert_requests(hctx, list, false);
428 else {
430 * try to issue requests directly if the hw queue isn't
431 * busy in case of 'none' scheduler, and this way may save
432 * us one extra enqueue & dequeue to sw queue.
434 if (!hctx->dispatch_busy && !e && !run_queue_async) {
435 blk_mq_try_issue_list_directly(hctx, list);
436 if (list_empty(list))
437 goto out;
439 blk_mq_insert_requests(hctx, ctx, list);
442 blk_mq_run_hw_queue(hctx, run_queue_async);
443 out:
444 percpu_ref_put(&q->q_usage_counter);
447 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
448 struct blk_mq_hw_ctx *hctx,
449 unsigned int hctx_idx)
451 if (hctx->sched_tags) {
452 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
453 blk_mq_free_rq_map(hctx->sched_tags);
454 hctx->sched_tags = NULL;
458 static int blk_mq_sched_alloc_tags(struct request_queue *q,
459 struct blk_mq_hw_ctx *hctx,
460 unsigned int hctx_idx)
462 struct blk_mq_tag_set *set = q->tag_set;
463 int ret;
465 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
466 set->reserved_tags);
467 if (!hctx->sched_tags)
468 return -ENOMEM;
470 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
471 if (ret)
472 blk_mq_sched_free_tags(set, hctx, hctx_idx);
474 return ret;
477 static void blk_mq_sched_tags_teardown(struct request_queue *q)
479 struct blk_mq_tag_set *set = q->tag_set;
480 struct blk_mq_hw_ctx *hctx;
481 int i;
483 queue_for_each_hw_ctx(q, hctx, i)
484 blk_mq_sched_free_tags(set, hctx, i);
487 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
489 struct blk_mq_hw_ctx *hctx;
490 struct elevator_queue *eq;
491 unsigned int i;
492 int ret;
494 if (!e) {
495 q->elevator = NULL;
496 q->nr_requests = q->tag_set->queue_depth;
497 return 0;
501 * Default to double of smaller one between hw queue_depth and 128,
502 * since we don't split into sync/async like the old code did.
503 * Additionally, this is a per-hw queue depth.
505 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
506 BLKDEV_MAX_RQ);
508 queue_for_each_hw_ctx(q, hctx, i) {
509 ret = blk_mq_sched_alloc_tags(q, hctx, i);
510 if (ret)
511 goto err;
514 ret = e->ops.init_sched(q, e);
515 if (ret)
516 goto err;
518 blk_mq_debugfs_register_sched(q);
520 queue_for_each_hw_ctx(q, hctx, i) {
521 if (e->ops.init_hctx) {
522 ret = e->ops.init_hctx(hctx, i);
523 if (ret) {
524 eq = q->elevator;
525 blk_mq_exit_sched(q, eq);
526 kobject_put(&eq->kobj);
527 return ret;
530 blk_mq_debugfs_register_sched_hctx(q, hctx);
533 return 0;
535 err:
536 blk_mq_sched_tags_teardown(q);
537 q->elevator = NULL;
538 return ret;
541 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
543 struct blk_mq_hw_ctx *hctx;
544 unsigned int i;
546 queue_for_each_hw_ctx(q, hctx, i) {
547 blk_mq_debugfs_unregister_sched_hctx(hctx);
548 if (e->type->ops.exit_hctx && hctx->sched_data) {
549 e->type->ops.exit_hctx(hctx, i);
550 hctx->sched_data = NULL;
553 blk_mq_debugfs_unregister_sched(q);
554 if (e->type->ops.exit_sched)
555 e->type->ops.exit_sched(e);
556 blk_mq_sched_tags_teardown(q);
557 q->elevator = NULL;