2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
41 static void blk_mq_poll_stats_start(struct request_queue
*q
);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx, dispatch list or elevator
63 * have pending work in this hardware queue.
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
67 return !list_empty_careful(&hctx
->dispatch
) ||
68 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
69 blk_mq_sched_has_work(hctx
);
73 * Mark this ctx as having pending work in this hardware queue
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
76 struct blk_mq_ctx
*ctx
)
78 const int bit
= ctx
->index_hw
[hctx
->type
];
80 if (!sbitmap_test_bit(&hctx
->ctx_map
, bit
))
81 sbitmap_set_bit(&hctx
->ctx_map
, bit
);
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
85 struct blk_mq_ctx
*ctx
)
87 const int bit
= ctx
->index_hw
[hctx
->type
];
89 sbitmap_clear_bit(&hctx
->ctx_map
, bit
);
93 struct hd_struct
*part
;
94 unsigned int *inflight
;
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
98 struct request
*rq
, void *priv
,
101 struct mq_inflight
*mi
= priv
;
104 * index[0] counts the specific partition that was asked for.
106 if (rq
->part
== mi
->part
)
112 unsigned int blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
)
114 unsigned inflight
[2];
115 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
117 inflight
[0] = inflight
[1] = 0;
118 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
124 struct request
*rq
, void *priv
,
127 struct mq_inflight
*mi
= priv
;
129 if (rq
->part
== mi
->part
)
130 mi
->inflight
[rq_data_dir(rq
)]++;
135 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
136 unsigned int inflight
[2])
138 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
140 inflight
[0] = inflight
[1] = 0;
141 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
144 void blk_freeze_queue_start(struct request_queue
*q
)
148 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
149 if (freeze_depth
== 1) {
150 percpu_ref_kill(&q
->q_usage_counter
);
152 blk_mq_run_hw_queues(q
, false);
155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
157 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
159 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
163 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
164 unsigned long timeout
)
166 return wait_event_timeout(q
->mq_freeze_wq
,
167 percpu_ref_is_zero(&q
->q_usage_counter
),
170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
173 * Guarantee no request is in use, so we can change any data structure of
174 * the queue afterward.
176 void blk_freeze_queue(struct request_queue
*q
)
179 * In the !blk_mq case we are only calling this to kill the
180 * q_usage_counter, otherwise this increases the freeze depth
181 * and waits for it to return to zero. For this reason there is
182 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
183 * exported to drivers as the only user for unfreeze is blk_mq.
185 blk_freeze_queue_start(q
);
186 blk_mq_freeze_queue_wait(q
);
189 void blk_mq_freeze_queue(struct request_queue
*q
)
192 * ...just an alias to keep freeze and unfreeze actions balanced
193 * in the blk_mq_* namespace
197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
199 void blk_mq_unfreeze_queue(struct request_queue
*q
)
203 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
204 WARN_ON_ONCE(freeze_depth
< 0);
206 percpu_ref_resurrect(&q
->q_usage_counter
);
207 wake_up_all(&q
->mq_freeze_wq
);
210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
213 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
214 * mpt3sas driver such that this function can be removed.
216 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
218 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
223 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226 * Note: this function does not prevent that the struct request end_io()
227 * callback function is invoked. Once this function is returned, we make
228 * sure no dispatch can happen until the queue is unquiesced via
229 * blk_mq_unquiesce_queue().
231 void blk_mq_quiesce_queue(struct request_queue
*q
)
233 struct blk_mq_hw_ctx
*hctx
;
237 blk_mq_quiesce_queue_nowait(q
);
239 queue_for_each_hw_ctx(q
, hctx
, i
) {
240 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
241 synchronize_srcu(hctx
->srcu
);
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
257 void blk_mq_unquiesce_queue(struct request_queue
*q
)
259 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
261 /* dispatch requests which are inserted during quiescing */
262 blk_mq_run_hw_queues(q
, true);
264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
266 void blk_mq_wake_waiters(struct request_queue
*q
)
268 struct blk_mq_hw_ctx
*hctx
;
271 queue_for_each_hw_ctx(q
, hctx
, i
)
272 if (blk_mq_hw_queue_mapped(hctx
))
273 blk_mq_tag_wakeup_all(hctx
->tags
, true);
276 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
278 return blk_mq_has_free_tags(hctx
->tags
);
280 EXPORT_SYMBOL(blk_mq_can_queue
);
283 * Only need start/end time stamping if we have stats enabled, or using
286 static inline bool blk_mq_need_time_stamp(struct request
*rq
)
288 return (rq
->rq_flags
& RQF_IO_STAT
) || rq
->q
->elevator
;
291 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
292 unsigned int tag
, unsigned int op
)
294 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
295 struct request
*rq
= tags
->static_rqs
[tag
];
296 req_flags_t rq_flags
= 0;
298 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
300 rq
->internal_tag
= tag
;
302 if (data
->hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
303 rq_flags
= RQF_MQ_INFLIGHT
;
304 atomic_inc(&data
->hctx
->nr_active
);
307 rq
->internal_tag
= -1;
308 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
311 /* csd/requeue_work/fifo_time is initialized before use */
313 rq
->mq_ctx
= data
->ctx
;
314 rq
->mq_hctx
= data
->hctx
;
315 rq
->rq_flags
= rq_flags
;
317 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
318 rq
->rq_flags
|= RQF_PREEMPT
;
319 if (blk_queue_io_stat(data
->q
))
320 rq
->rq_flags
|= RQF_IO_STAT
;
321 INIT_LIST_HEAD(&rq
->queuelist
);
322 INIT_HLIST_NODE(&rq
->hash
);
323 RB_CLEAR_NODE(&rq
->rb_node
);
326 if (blk_mq_need_time_stamp(rq
))
327 rq
->start_time_ns
= ktime_get_ns();
329 rq
->start_time_ns
= 0;
330 rq
->io_start_time_ns
= 0;
331 rq
->nr_phys_segments
= 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq
->nr_integrity_segments
= 0;
335 /* tag was already set */
337 WRITE_ONCE(rq
->deadline
, 0);
342 rq
->end_io_data
= NULL
;
344 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
345 refcount_set(&rq
->ref
, 1);
349 static struct request
*blk_mq_get_request(struct request_queue
*q
,
351 struct blk_mq_alloc_data
*data
)
353 struct elevator_queue
*e
= q
->elevator
;
356 bool put_ctx_on_error
= false;
358 blk_queue_enter_live(q
);
360 if (likely(!data
->ctx
)) {
361 data
->ctx
= blk_mq_get_ctx(q
);
362 put_ctx_on_error
= true;
364 if (likely(!data
->hctx
))
365 data
->hctx
= blk_mq_map_queue(q
, data
->cmd_flags
,
367 if (data
->cmd_flags
& REQ_NOWAIT
)
368 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
371 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
374 * Flush requests are special and go directly to the
375 * dispatch list. Don't include reserved tags in the
376 * limiting, as it isn't useful.
378 if (!op_is_flush(data
->cmd_flags
) &&
379 e
->type
->ops
.limit_depth
&&
380 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
381 e
->type
->ops
.limit_depth(data
->cmd_flags
, data
);
383 blk_mq_tag_busy(data
->hctx
);
386 tag
= blk_mq_get_tag(data
);
387 if (tag
== BLK_MQ_TAG_FAIL
) {
388 if (put_ctx_on_error
) {
389 blk_mq_put_ctx(data
->ctx
);
396 rq
= blk_mq_rq_ctx_init(data
, tag
, data
->cmd_flags
);
397 if (!op_is_flush(data
->cmd_flags
)) {
399 if (e
&& e
->type
->ops
.prepare_request
) {
400 if (e
->type
->icq_cache
)
401 blk_mq_sched_assign_ioc(rq
);
403 e
->type
->ops
.prepare_request(rq
, bio
);
404 rq
->rq_flags
|= RQF_ELVPRIV
;
407 data
->hctx
->queued
++;
411 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
412 blk_mq_req_flags_t flags
)
414 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
, .cmd_flags
= op
};
418 ret
= blk_queue_enter(q
, flags
);
422 rq
= blk_mq_get_request(q
, NULL
, &alloc_data
);
426 return ERR_PTR(-EWOULDBLOCK
);
428 blk_mq_put_ctx(alloc_data
.ctx
);
431 rq
->__sector
= (sector_t
) -1;
432 rq
->bio
= rq
->biotail
= NULL
;
435 EXPORT_SYMBOL(blk_mq_alloc_request
);
437 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
438 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
440 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
, .cmd_flags
= op
};
446 * If the tag allocator sleeps we could get an allocation for a
447 * different hardware context. No need to complicate the low level
448 * allocator for this for the rare use case of a command tied to
451 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
452 return ERR_PTR(-EINVAL
);
454 if (hctx_idx
>= q
->nr_hw_queues
)
455 return ERR_PTR(-EIO
);
457 ret
= blk_queue_enter(q
, flags
);
462 * Check if the hardware context is actually mapped to anything.
463 * If not tell the caller that it should skip this queue.
465 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
466 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
468 return ERR_PTR(-EXDEV
);
470 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
471 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
473 rq
= blk_mq_get_request(q
, NULL
, &alloc_data
);
477 return ERR_PTR(-EWOULDBLOCK
);
481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
483 static void __blk_mq_free_request(struct request
*rq
)
485 struct request_queue
*q
= rq
->q
;
486 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
487 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
488 const int sched_tag
= rq
->internal_tag
;
490 blk_pm_mark_last_busy(rq
);
493 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
495 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
496 blk_mq_sched_restart(hctx
);
500 void blk_mq_free_request(struct request
*rq
)
502 struct request_queue
*q
= rq
->q
;
503 struct elevator_queue
*e
= q
->elevator
;
504 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
505 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
507 if (rq
->rq_flags
& RQF_ELVPRIV
) {
508 if (e
&& e
->type
->ops
.finish_request
)
509 e
->type
->ops
.finish_request(rq
);
511 put_io_context(rq
->elv
.icq
->ioc
);
516 ctx
->rq_completed
[rq_is_sync(rq
)]++;
517 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
518 atomic_dec(&hctx
->nr_active
);
520 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
521 laptop_io_completion(q
->backing_dev_info
);
525 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
526 if (refcount_dec_and_test(&rq
->ref
))
527 __blk_mq_free_request(rq
);
529 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
531 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
535 if (blk_mq_need_time_stamp(rq
))
536 now
= ktime_get_ns();
538 if (rq
->rq_flags
& RQF_STATS
) {
539 blk_mq_poll_stats_start(rq
->q
);
540 blk_stat_add(rq
, now
);
543 if (rq
->internal_tag
!= -1)
544 blk_mq_sched_completed_request(rq
, now
);
546 blk_account_io_done(rq
, now
);
549 rq_qos_done(rq
->q
, rq
);
550 rq
->end_io(rq
, error
);
552 blk_mq_free_request(rq
);
555 EXPORT_SYMBOL(__blk_mq_end_request
);
557 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
559 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
561 __blk_mq_end_request(rq
, error
);
563 EXPORT_SYMBOL(blk_mq_end_request
);
565 static void __blk_mq_complete_request_remote(void *data
)
567 struct request
*rq
= data
;
568 struct request_queue
*q
= rq
->q
;
570 q
->mq_ops
->complete(rq
);
573 static void __blk_mq_complete_request(struct request
*rq
)
575 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
576 struct request_queue
*q
= rq
->q
;
580 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
582 * Most of single queue controllers, there is only one irq vector
583 * for handling IO completion, and the only irq's affinity is set
584 * as all possible CPUs. On most of ARCHs, this affinity means the
585 * irq is handled on one specific CPU.
587 * So complete IO reqeust in softirq context in case of single queue
588 * for not degrading IO performance by irqsoff latency.
590 if (q
->nr_hw_queues
== 1) {
591 __blk_complete_request(rq
);
596 * For a polled request, always complete locallly, it's pointless
597 * to redirect the completion.
599 if ((rq
->cmd_flags
& REQ_HIPRI
) ||
600 !test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
)) {
601 q
->mq_ops
->complete(rq
);
606 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &q
->queue_flags
))
607 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
609 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
610 rq
->csd
.func
= __blk_mq_complete_request_remote
;
613 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
615 q
->mq_ops
->complete(rq
);
620 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
621 __releases(hctx
->srcu
)
623 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
626 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
629 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
630 __acquires(hctx
->srcu
)
632 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
633 /* shut up gcc false positive */
637 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
641 * blk_mq_complete_request - end I/O on a request
642 * @rq: the request being processed
645 * Ends all I/O on a request. It does not handle partial completions.
646 * The actual completion happens out-of-order, through a IPI handler.
648 bool blk_mq_complete_request(struct request
*rq
)
650 if (unlikely(blk_should_fake_timeout(rq
->q
)))
652 __blk_mq_complete_request(rq
);
655 EXPORT_SYMBOL(blk_mq_complete_request
);
657 void blk_mq_complete_request_sync(struct request
*rq
)
659 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
660 rq
->q
->mq_ops
->complete(rq
);
662 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync
);
664 int blk_mq_request_started(struct request
*rq
)
666 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
668 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
670 void blk_mq_start_request(struct request
*rq
)
672 struct request_queue
*q
= rq
->q
;
674 blk_mq_sched_started_request(rq
);
676 trace_block_rq_issue(q
, rq
);
678 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
679 rq
->io_start_time_ns
= ktime_get_ns();
680 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
681 rq
->throtl_size
= blk_rq_sectors(rq
);
683 rq
->rq_flags
|= RQF_STATS
;
687 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
690 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
692 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
694 * Make sure space for the drain appears. We know we can do
695 * this because max_hw_segments has been adjusted to be one
696 * fewer than the device can handle.
698 rq
->nr_phys_segments
++;
701 EXPORT_SYMBOL(blk_mq_start_request
);
703 static void __blk_mq_requeue_request(struct request
*rq
)
705 struct request_queue
*q
= rq
->q
;
707 blk_mq_put_driver_tag(rq
);
709 trace_block_rq_requeue(q
, rq
);
710 rq_qos_requeue(q
, rq
);
712 if (blk_mq_request_started(rq
)) {
713 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
714 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
715 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
716 rq
->nr_phys_segments
--;
720 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
722 __blk_mq_requeue_request(rq
);
724 /* this request will be re-inserted to io scheduler queue */
725 blk_mq_sched_requeue_request(rq
);
727 BUG_ON(!list_empty(&rq
->queuelist
));
728 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
730 EXPORT_SYMBOL(blk_mq_requeue_request
);
732 static void blk_mq_requeue_work(struct work_struct
*work
)
734 struct request_queue
*q
=
735 container_of(work
, struct request_queue
, requeue_work
.work
);
737 struct request
*rq
, *next
;
739 spin_lock_irq(&q
->requeue_lock
);
740 list_splice_init(&q
->requeue_list
, &rq_list
);
741 spin_unlock_irq(&q
->requeue_lock
);
743 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
744 if (!(rq
->rq_flags
& (RQF_SOFTBARRIER
| RQF_DONTPREP
)))
747 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
748 list_del_init(&rq
->queuelist
);
750 * If RQF_DONTPREP, rq has contained some driver specific
751 * data, so insert it to hctx dispatch list to avoid any
754 if (rq
->rq_flags
& RQF_DONTPREP
)
755 blk_mq_request_bypass_insert(rq
, false);
757 blk_mq_sched_insert_request(rq
, true, false, false);
760 while (!list_empty(&rq_list
)) {
761 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
762 list_del_init(&rq
->queuelist
);
763 blk_mq_sched_insert_request(rq
, false, false, false);
766 blk_mq_run_hw_queues(q
, false);
769 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
770 bool kick_requeue_list
)
772 struct request_queue
*q
= rq
->q
;
776 * We abuse this flag that is otherwise used by the I/O scheduler to
777 * request head insertion from the workqueue.
779 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
781 spin_lock_irqsave(&q
->requeue_lock
, flags
);
783 rq
->rq_flags
|= RQF_SOFTBARRIER
;
784 list_add(&rq
->queuelist
, &q
->requeue_list
);
786 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
788 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
790 if (kick_requeue_list
)
791 blk_mq_kick_requeue_list(q
);
794 void blk_mq_kick_requeue_list(struct request_queue
*q
)
796 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
798 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
800 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
803 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
804 msecs_to_jiffies(msecs
));
806 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
808 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
810 if (tag
< tags
->nr_tags
) {
811 prefetch(tags
->rqs
[tag
]);
812 return tags
->rqs
[tag
];
817 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
819 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
820 void *priv
, bool reserved
)
823 * If we find a request that is inflight and the queue matches,
824 * we know the queue is busy. Return false to stop the iteration.
826 if (rq
->state
== MQ_RQ_IN_FLIGHT
&& rq
->q
== hctx
->queue
) {
836 bool blk_mq_queue_inflight(struct request_queue
*q
)
840 blk_mq_queue_tag_busy_iter(q
, blk_mq_rq_inflight
, &busy
);
843 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight
);
845 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
847 req
->rq_flags
|= RQF_TIMED_OUT
;
848 if (req
->q
->mq_ops
->timeout
) {
849 enum blk_eh_timer_return ret
;
851 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
852 if (ret
== BLK_EH_DONE
)
854 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
860 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
862 unsigned long deadline
;
864 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
866 if (rq
->rq_flags
& RQF_TIMED_OUT
)
869 deadline
= READ_ONCE(rq
->deadline
);
870 if (time_after_eq(jiffies
, deadline
))
875 else if (time_after(*next
, deadline
))
880 static bool blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
881 struct request
*rq
, void *priv
, bool reserved
)
883 unsigned long *next
= priv
;
886 * Just do a quick check if it is expired before locking the request in
887 * so we're not unnecessarilly synchronizing across CPUs.
889 if (!blk_mq_req_expired(rq
, next
))
893 * We have reason to believe the request may be expired. Take a
894 * reference on the request to lock this request lifetime into its
895 * currently allocated context to prevent it from being reallocated in
896 * the event the completion by-passes this timeout handler.
898 * If the reference was already released, then the driver beat the
899 * timeout handler to posting a natural completion.
901 if (!refcount_inc_not_zero(&rq
->ref
))
905 * The request is now locked and cannot be reallocated underneath the
906 * timeout handler's processing. Re-verify this exact request is truly
907 * expired; if it is not expired, then the request was completed and
908 * reallocated as a new request.
910 if (blk_mq_req_expired(rq
, next
))
911 blk_mq_rq_timed_out(rq
, reserved
);
912 if (refcount_dec_and_test(&rq
->ref
))
913 __blk_mq_free_request(rq
);
918 static void blk_mq_timeout_work(struct work_struct
*work
)
920 struct request_queue
*q
=
921 container_of(work
, struct request_queue
, timeout_work
);
922 unsigned long next
= 0;
923 struct blk_mq_hw_ctx
*hctx
;
926 /* A deadlock might occur if a request is stuck requiring a
927 * timeout at the same time a queue freeze is waiting
928 * completion, since the timeout code would not be able to
929 * acquire the queue reference here.
931 * That's why we don't use blk_queue_enter here; instead, we use
932 * percpu_ref_tryget directly, because we need to be able to
933 * obtain a reference even in the short window between the queue
934 * starting to freeze, by dropping the first reference in
935 * blk_freeze_queue_start, and the moment the last request is
936 * consumed, marked by the instant q_usage_counter reaches
939 if (!percpu_ref_tryget(&q
->q_usage_counter
))
942 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
945 mod_timer(&q
->timeout
, next
);
948 * Request timeouts are handled as a forward rolling timer. If
949 * we end up here it means that no requests are pending and
950 * also that no request has been pending for a while. Mark
953 queue_for_each_hw_ctx(q
, hctx
, i
) {
954 /* the hctx may be unmapped, so check it here */
955 if (blk_mq_hw_queue_mapped(hctx
))
956 blk_mq_tag_idle(hctx
);
962 struct flush_busy_ctx_data
{
963 struct blk_mq_hw_ctx
*hctx
;
964 struct list_head
*list
;
967 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
969 struct flush_busy_ctx_data
*flush_data
= data
;
970 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
971 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
972 enum hctx_type type
= hctx
->type
;
974 spin_lock(&ctx
->lock
);
975 list_splice_tail_init(&ctx
->rq_lists
[type
], flush_data
->list
);
976 sbitmap_clear_bit(sb
, bitnr
);
977 spin_unlock(&ctx
->lock
);
982 * Process software queues that have been marked busy, splicing them
983 * to the for-dispatch
985 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
987 struct flush_busy_ctx_data data
= {
992 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
994 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
996 struct dispatch_rq_data
{
997 struct blk_mq_hw_ctx
*hctx
;
1001 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1004 struct dispatch_rq_data
*dispatch_data
= data
;
1005 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1006 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1007 enum hctx_type type
= hctx
->type
;
1009 spin_lock(&ctx
->lock
);
1010 if (!list_empty(&ctx
->rq_lists
[type
])) {
1011 dispatch_data
->rq
= list_entry_rq(ctx
->rq_lists
[type
].next
);
1012 list_del_init(&dispatch_data
->rq
->queuelist
);
1013 if (list_empty(&ctx
->rq_lists
[type
]))
1014 sbitmap_clear_bit(sb
, bitnr
);
1016 spin_unlock(&ctx
->lock
);
1018 return !dispatch_data
->rq
;
1021 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1022 struct blk_mq_ctx
*start
)
1024 unsigned off
= start
? start
->index_hw
[hctx
->type
] : 0;
1025 struct dispatch_rq_data data
= {
1030 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1031 dispatch_rq_from_ctx
, &data
);
1036 static inline unsigned int queued_to_index(unsigned int queued
)
1041 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
1044 bool blk_mq_get_driver_tag(struct request
*rq
)
1046 struct blk_mq_alloc_data data
= {
1048 .hctx
= rq
->mq_hctx
,
1049 .flags
= BLK_MQ_REQ_NOWAIT
,
1050 .cmd_flags
= rq
->cmd_flags
,
1057 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
1058 data
.flags
|= BLK_MQ_REQ_RESERVED
;
1060 shared
= blk_mq_tag_busy(data
.hctx
);
1061 rq
->tag
= blk_mq_get_tag(&data
);
1064 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
1065 atomic_inc(&data
.hctx
->nr_active
);
1067 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
1071 return rq
->tag
!= -1;
1074 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1075 int flags
, void *key
)
1077 struct blk_mq_hw_ctx
*hctx
;
1079 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1081 spin_lock(&hctx
->dispatch_wait_lock
);
1082 if (!list_empty(&wait
->entry
)) {
1083 struct sbitmap_queue
*sbq
;
1085 list_del_init(&wait
->entry
);
1086 sbq
= &hctx
->tags
->bitmap_tags
;
1087 atomic_dec(&sbq
->ws_active
);
1089 spin_unlock(&hctx
->dispatch_wait_lock
);
1091 blk_mq_run_hw_queue(hctx
, true);
1096 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1097 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1098 * restart. For both cases, take care to check the condition again after
1099 * marking us as waiting.
1101 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1104 struct sbitmap_queue
*sbq
= &hctx
->tags
->bitmap_tags
;
1105 struct wait_queue_head
*wq
;
1106 wait_queue_entry_t
*wait
;
1109 if (!(hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1110 blk_mq_sched_mark_restart_hctx(hctx
);
1113 * It's possible that a tag was freed in the window between the
1114 * allocation failure and adding the hardware queue to the wait
1117 * Don't clear RESTART here, someone else could have set it.
1118 * At most this will cost an extra queue run.
1120 return blk_mq_get_driver_tag(rq
);
1123 wait
= &hctx
->dispatch_wait
;
1124 if (!list_empty_careful(&wait
->entry
))
1127 wq
= &bt_wait_ptr(sbq
, hctx
)->wait
;
1129 spin_lock_irq(&wq
->lock
);
1130 spin_lock(&hctx
->dispatch_wait_lock
);
1131 if (!list_empty(&wait
->entry
)) {
1132 spin_unlock(&hctx
->dispatch_wait_lock
);
1133 spin_unlock_irq(&wq
->lock
);
1137 atomic_inc(&sbq
->ws_active
);
1138 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1139 __add_wait_queue(wq
, wait
);
1142 * It's possible that a tag was freed in the window between the
1143 * allocation failure and adding the hardware queue to the wait
1146 ret
= blk_mq_get_driver_tag(rq
);
1148 spin_unlock(&hctx
->dispatch_wait_lock
);
1149 spin_unlock_irq(&wq
->lock
);
1154 * We got a tag, remove ourselves from the wait queue to ensure
1155 * someone else gets the wakeup.
1157 list_del_init(&wait
->entry
);
1158 atomic_dec(&sbq
->ws_active
);
1159 spin_unlock(&hctx
->dispatch_wait_lock
);
1160 spin_unlock_irq(&wq
->lock
);
1165 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1166 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1168 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1169 * - EWMA is one simple way to compute running average value
1170 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1171 * - take 4 as factor for avoiding to get too small(0) result, and this
1172 * factor doesn't matter because EWMA decreases exponentially
1174 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1178 if (hctx
->queue
->elevator
)
1181 ewma
= hctx
->dispatch_busy
;
1186 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1188 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1189 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1191 hctx
->dispatch_busy
= ewma
;
1194 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1197 * Returns true if we did some work AND can potentially do more.
1199 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1202 struct blk_mq_hw_ctx
*hctx
;
1203 struct request
*rq
, *nxt
;
1204 bool no_tag
= false;
1206 blk_status_t ret
= BLK_STS_OK
;
1208 if (list_empty(list
))
1211 WARN_ON(!list_is_singular(list
) && got_budget
);
1214 * Now process all the entries, sending them to the driver.
1216 errors
= queued
= 0;
1218 struct blk_mq_queue_data bd
;
1220 rq
= list_first_entry(list
, struct request
, queuelist
);
1223 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1226 if (!blk_mq_get_driver_tag(rq
)) {
1228 * The initial allocation attempt failed, so we need to
1229 * rerun the hardware queue when a tag is freed. The
1230 * waitqueue takes care of that. If the queue is run
1231 * before we add this entry back on the dispatch list,
1232 * we'll re-run it below.
1234 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1235 blk_mq_put_dispatch_budget(hctx
);
1237 * For non-shared tags, the RESTART check
1240 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1246 list_del_init(&rq
->queuelist
);
1251 * Flag last if we have no more requests, or if we have more
1252 * but can't assign a driver tag to it.
1254 if (list_empty(list
))
1257 nxt
= list_first_entry(list
, struct request
, queuelist
);
1258 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1261 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1262 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1264 * If an I/O scheduler has been configured and we got a
1265 * driver tag for the next request already, free it
1268 if (!list_empty(list
)) {
1269 nxt
= list_first_entry(list
, struct request
, queuelist
);
1270 blk_mq_put_driver_tag(nxt
);
1272 list_add(&rq
->queuelist
, list
);
1273 __blk_mq_requeue_request(rq
);
1277 if (unlikely(ret
!= BLK_STS_OK
)) {
1279 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1284 } while (!list_empty(list
));
1286 hctx
->dispatched
[queued_to_index(queued
)]++;
1289 * Any items that need requeuing? Stuff them into hctx->dispatch,
1290 * that is where we will continue on next queue run.
1292 if (!list_empty(list
)) {
1296 * If we didn't flush the entire list, we could have told
1297 * the driver there was more coming, but that turned out to
1300 if (q
->mq_ops
->commit_rqs
)
1301 q
->mq_ops
->commit_rqs(hctx
);
1303 spin_lock(&hctx
->lock
);
1304 list_splice_init(list
, &hctx
->dispatch
);
1305 spin_unlock(&hctx
->lock
);
1308 * If SCHED_RESTART was set by the caller of this function and
1309 * it is no longer set that means that it was cleared by another
1310 * thread and hence that a queue rerun is needed.
1312 * If 'no_tag' is set, that means that we failed getting
1313 * a driver tag with an I/O scheduler attached. If our dispatch
1314 * waitqueue is no longer active, ensure that we run the queue
1315 * AFTER adding our entries back to the list.
1317 * If no I/O scheduler has been configured it is possible that
1318 * the hardware queue got stopped and restarted before requests
1319 * were pushed back onto the dispatch list. Rerun the queue to
1320 * avoid starvation. Notes:
1321 * - blk_mq_run_hw_queue() checks whether or not a queue has
1322 * been stopped before rerunning a queue.
1323 * - Some but not all block drivers stop a queue before
1324 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1327 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1328 * bit is set, run queue after a delay to avoid IO stalls
1329 * that could otherwise occur if the queue is idle.
1331 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1332 if (!needs_restart
||
1333 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1334 blk_mq_run_hw_queue(hctx
, true);
1335 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1336 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1338 blk_mq_update_dispatch_busy(hctx
, true);
1341 blk_mq_update_dispatch_busy(hctx
, false);
1344 * If the host/device is unable to accept more work, inform the
1347 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1350 return (queued
+ errors
) != 0;
1353 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1358 * We should be running this queue from one of the CPUs that
1361 * There are at least two related races now between setting
1362 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1363 * __blk_mq_run_hw_queue():
1365 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1366 * but later it becomes online, then this warning is harmless
1369 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1370 * but later it becomes offline, then the warning can't be
1371 * triggered, and we depend on blk-mq timeout handler to
1372 * handle dispatched requests to this hctx
1374 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1375 cpu_online(hctx
->next_cpu
)) {
1376 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1377 raw_smp_processor_id(),
1378 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1383 * We can't run the queue inline with ints disabled. Ensure that
1384 * we catch bad users of this early.
1386 WARN_ON_ONCE(in_interrupt());
1388 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1390 hctx_lock(hctx
, &srcu_idx
);
1391 blk_mq_sched_dispatch_requests(hctx
);
1392 hctx_unlock(hctx
, srcu_idx
);
1395 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1397 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1399 if (cpu
>= nr_cpu_ids
)
1400 cpu
= cpumask_first(hctx
->cpumask
);
1405 * It'd be great if the workqueue API had a way to pass
1406 * in a mask and had some smarts for more clever placement.
1407 * For now we just round-robin here, switching for every
1408 * BLK_MQ_CPU_WORK_BATCH queued items.
1410 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1413 int next_cpu
= hctx
->next_cpu
;
1415 if (hctx
->queue
->nr_hw_queues
== 1)
1416 return WORK_CPU_UNBOUND
;
1418 if (--hctx
->next_cpu_batch
<= 0) {
1420 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1422 if (next_cpu
>= nr_cpu_ids
)
1423 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1424 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1428 * Do unbound schedule if we can't find a online CPU for this hctx,
1429 * and it should only happen in the path of handling CPU DEAD.
1431 if (!cpu_online(next_cpu
)) {
1438 * Make sure to re-select CPU next time once after CPUs
1439 * in hctx->cpumask become online again.
1441 hctx
->next_cpu
= next_cpu
;
1442 hctx
->next_cpu_batch
= 1;
1443 return WORK_CPU_UNBOUND
;
1446 hctx
->next_cpu
= next_cpu
;
1450 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1451 unsigned long msecs
)
1453 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1456 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1457 int cpu
= get_cpu();
1458 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1459 __blk_mq_run_hw_queue(hctx
);
1467 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1468 msecs_to_jiffies(msecs
));
1471 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1473 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1475 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1477 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1483 * When queue is quiesced, we may be switching io scheduler, or
1484 * updating nr_hw_queues, or other things, and we can't run queue
1485 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1487 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1490 hctx_lock(hctx
, &srcu_idx
);
1491 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1492 blk_mq_hctx_has_pending(hctx
);
1493 hctx_unlock(hctx
, srcu_idx
);
1496 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1502 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1504 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1506 struct blk_mq_hw_ctx
*hctx
;
1509 queue_for_each_hw_ctx(q
, hctx
, i
) {
1510 if (blk_mq_hctx_stopped(hctx
))
1513 blk_mq_run_hw_queue(hctx
, async
);
1516 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1519 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1520 * @q: request queue.
1522 * The caller is responsible for serializing this function against
1523 * blk_mq_{start,stop}_hw_queue().
1525 bool blk_mq_queue_stopped(struct request_queue
*q
)
1527 struct blk_mq_hw_ctx
*hctx
;
1530 queue_for_each_hw_ctx(q
, hctx
, i
)
1531 if (blk_mq_hctx_stopped(hctx
))
1536 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1539 * This function is often used for pausing .queue_rq() by driver when
1540 * there isn't enough resource or some conditions aren't satisfied, and
1541 * BLK_STS_RESOURCE is usually returned.
1543 * We do not guarantee that dispatch can be drained or blocked
1544 * after blk_mq_stop_hw_queue() returns. Please use
1545 * blk_mq_quiesce_queue() for that requirement.
1547 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1549 cancel_delayed_work(&hctx
->run_work
);
1551 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1556 * This function is often used for pausing .queue_rq() by driver when
1557 * there isn't enough resource or some conditions aren't satisfied, and
1558 * BLK_STS_RESOURCE is usually returned.
1560 * We do not guarantee that dispatch can be drained or blocked
1561 * after blk_mq_stop_hw_queues() returns. Please use
1562 * blk_mq_quiesce_queue() for that requirement.
1564 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1566 struct blk_mq_hw_ctx
*hctx
;
1569 queue_for_each_hw_ctx(q
, hctx
, i
)
1570 blk_mq_stop_hw_queue(hctx
);
1572 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1574 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1576 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1578 blk_mq_run_hw_queue(hctx
, false);
1580 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1582 void blk_mq_start_hw_queues(struct request_queue
*q
)
1584 struct blk_mq_hw_ctx
*hctx
;
1587 queue_for_each_hw_ctx(q
, hctx
, i
)
1588 blk_mq_start_hw_queue(hctx
);
1590 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1592 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1594 if (!blk_mq_hctx_stopped(hctx
))
1597 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1598 blk_mq_run_hw_queue(hctx
, async
);
1600 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1602 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1604 struct blk_mq_hw_ctx
*hctx
;
1607 queue_for_each_hw_ctx(q
, hctx
, i
)
1608 blk_mq_start_stopped_hw_queue(hctx
, async
);
1610 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1612 static void blk_mq_run_work_fn(struct work_struct
*work
)
1614 struct blk_mq_hw_ctx
*hctx
;
1616 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1619 * If we are stopped, don't run the queue.
1621 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1624 __blk_mq_run_hw_queue(hctx
);
1627 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1631 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1632 enum hctx_type type
= hctx
->type
;
1634 lockdep_assert_held(&ctx
->lock
);
1636 trace_block_rq_insert(hctx
->queue
, rq
);
1639 list_add(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1641 list_add_tail(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1644 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1647 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1649 lockdep_assert_held(&ctx
->lock
);
1651 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1652 blk_mq_hctx_mark_pending(hctx
, ctx
);
1656 * Should only be used carefully, when the caller knows we want to
1657 * bypass a potential IO scheduler on the target device.
1659 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1661 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1663 spin_lock(&hctx
->lock
);
1664 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1665 spin_unlock(&hctx
->lock
);
1668 blk_mq_run_hw_queue(hctx
, false);
1671 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1672 struct list_head
*list
)
1676 enum hctx_type type
= hctx
->type
;
1679 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1682 list_for_each_entry(rq
, list
, queuelist
) {
1683 BUG_ON(rq
->mq_ctx
!= ctx
);
1684 trace_block_rq_insert(hctx
->queue
, rq
);
1687 spin_lock(&ctx
->lock
);
1688 list_splice_tail_init(list
, &ctx
->rq_lists
[type
]);
1689 blk_mq_hctx_mark_pending(hctx
, ctx
);
1690 spin_unlock(&ctx
->lock
);
1693 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1695 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1696 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1698 if (rqa
->mq_ctx
< rqb
->mq_ctx
)
1700 else if (rqa
->mq_ctx
> rqb
->mq_ctx
)
1702 else if (rqa
->mq_hctx
< rqb
->mq_hctx
)
1704 else if (rqa
->mq_hctx
> rqb
->mq_hctx
)
1707 return blk_rq_pos(rqa
) > blk_rq_pos(rqb
);
1710 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1712 struct blk_mq_hw_ctx
*this_hctx
;
1713 struct blk_mq_ctx
*this_ctx
;
1714 struct request_queue
*this_q
;
1720 list_splice_init(&plug
->mq_list
, &list
);
1722 if (plug
->rq_count
> 2 && plug
->multiple_queues
)
1723 list_sort(NULL
, &list
, plug_rq_cmp
);
1732 while (!list_empty(&list
)) {
1733 rq
= list_entry_rq(list
.next
);
1734 list_del_init(&rq
->queuelist
);
1736 if (rq
->mq_hctx
!= this_hctx
|| rq
->mq_ctx
!= this_ctx
) {
1738 trace_block_unplug(this_q
, depth
, !from_schedule
);
1739 blk_mq_sched_insert_requests(this_hctx
, this_ctx
,
1745 this_ctx
= rq
->mq_ctx
;
1746 this_hctx
= rq
->mq_hctx
;
1751 list_add_tail(&rq
->queuelist
, &rq_list
);
1755 * If 'this_hctx' is set, we know we have entries to complete
1756 * on 'rq_list'. Do those.
1759 trace_block_unplug(this_q
, depth
, !from_schedule
);
1760 blk_mq_sched_insert_requests(this_hctx
, this_ctx
, &rq_list
,
1765 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1767 blk_init_request_from_bio(rq
, bio
);
1769 blk_account_io_start(rq
, true);
1772 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1774 blk_qc_t
*cookie
, bool last
)
1776 struct request_queue
*q
= rq
->q
;
1777 struct blk_mq_queue_data bd
= {
1781 blk_qc_t new_cookie
;
1784 new_cookie
= request_to_qc_t(hctx
, rq
);
1787 * For OK queue, we are done. For error, caller may kill it.
1788 * Any other error (busy), just add it to our list as we
1789 * previously would have done.
1791 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1794 blk_mq_update_dispatch_busy(hctx
, false);
1795 *cookie
= new_cookie
;
1797 case BLK_STS_RESOURCE
:
1798 case BLK_STS_DEV_RESOURCE
:
1799 blk_mq_update_dispatch_busy(hctx
, true);
1800 __blk_mq_requeue_request(rq
);
1803 blk_mq_update_dispatch_busy(hctx
, false);
1804 *cookie
= BLK_QC_T_NONE
;
1811 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1814 bool bypass_insert
, bool last
)
1816 struct request_queue
*q
= rq
->q
;
1817 bool run_queue
= true;
1820 * RCU or SRCU read lock is needed before checking quiesced flag.
1822 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1823 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1824 * and avoid driver to try to dispatch again.
1826 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1828 bypass_insert
= false;
1832 if (q
->elevator
&& !bypass_insert
)
1835 if (!blk_mq_get_dispatch_budget(hctx
))
1838 if (!blk_mq_get_driver_tag(rq
)) {
1839 blk_mq_put_dispatch_budget(hctx
);
1843 return __blk_mq_issue_directly(hctx
, rq
, cookie
, last
);
1846 return BLK_STS_RESOURCE
;
1848 blk_mq_request_bypass_insert(rq
, run_queue
);
1852 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1853 struct request
*rq
, blk_qc_t
*cookie
)
1858 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1860 hctx_lock(hctx
, &srcu_idx
);
1862 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false, true);
1863 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1864 blk_mq_request_bypass_insert(rq
, true);
1865 else if (ret
!= BLK_STS_OK
)
1866 blk_mq_end_request(rq
, ret
);
1868 hctx_unlock(hctx
, srcu_idx
);
1871 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
, bool last
)
1875 blk_qc_t unused_cookie
;
1876 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1878 hctx_lock(hctx
, &srcu_idx
);
1879 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true, last
);
1880 hctx_unlock(hctx
, srcu_idx
);
1885 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
1886 struct list_head
*list
)
1888 while (!list_empty(list
)) {
1890 struct request
*rq
= list_first_entry(list
, struct request
,
1893 list_del_init(&rq
->queuelist
);
1894 ret
= blk_mq_request_issue_directly(rq
, list_empty(list
));
1895 if (ret
!= BLK_STS_OK
) {
1896 if (ret
== BLK_STS_RESOURCE
||
1897 ret
== BLK_STS_DEV_RESOURCE
) {
1898 blk_mq_request_bypass_insert(rq
,
1902 blk_mq_end_request(rq
, ret
);
1907 * If we didn't flush the entire list, we could have told
1908 * the driver there was more coming, but that turned out to
1911 if (!list_empty(list
) && hctx
->queue
->mq_ops
->commit_rqs
)
1912 hctx
->queue
->mq_ops
->commit_rqs(hctx
);
1915 static void blk_add_rq_to_plug(struct blk_plug
*plug
, struct request
*rq
)
1917 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1919 if (!plug
->multiple_queues
&& !list_is_singular(&plug
->mq_list
)) {
1920 struct request
*tmp
;
1922 tmp
= list_first_entry(&plug
->mq_list
, struct request
,
1924 if (tmp
->q
!= rq
->q
)
1925 plug
->multiple_queues
= true;
1929 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1931 const int is_sync
= op_is_sync(bio
->bi_opf
);
1932 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1933 struct blk_mq_alloc_data data
= { .flags
= 0};
1935 struct blk_plug
*plug
;
1936 struct request
*same_queue_rq
= NULL
;
1939 blk_queue_bounce(q
, &bio
);
1941 blk_queue_split(q
, &bio
);
1943 if (!bio_integrity_prep(bio
))
1944 return BLK_QC_T_NONE
;
1946 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1947 blk_attempt_plug_merge(q
, bio
, &same_queue_rq
))
1948 return BLK_QC_T_NONE
;
1950 if (blk_mq_sched_bio_merge(q
, bio
))
1951 return BLK_QC_T_NONE
;
1953 rq_qos_throttle(q
, bio
);
1955 data
.cmd_flags
= bio
->bi_opf
;
1956 rq
= blk_mq_get_request(q
, bio
, &data
);
1957 if (unlikely(!rq
)) {
1958 rq_qos_cleanup(q
, bio
);
1959 if (bio
->bi_opf
& REQ_NOWAIT
)
1960 bio_wouldblock_error(bio
);
1961 return BLK_QC_T_NONE
;
1964 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1966 rq_qos_track(q
, rq
, bio
);
1968 cookie
= request_to_qc_t(data
.hctx
, rq
);
1970 plug
= current
->plug
;
1971 if (unlikely(is_flush_fua
)) {
1972 blk_mq_put_ctx(data
.ctx
);
1973 blk_mq_bio_to_request(rq
, bio
);
1975 /* bypass scheduler for flush rq */
1976 blk_insert_flush(rq
);
1977 blk_mq_run_hw_queue(data
.hctx
, true);
1978 } else if (plug
&& (q
->nr_hw_queues
== 1 || q
->mq_ops
->commit_rqs
)) {
1980 * Use plugging if we have a ->commit_rqs() hook as well, as
1981 * we know the driver uses bd->last in a smart fashion.
1983 unsigned int request_count
= plug
->rq_count
;
1984 struct request
*last
= NULL
;
1986 blk_mq_put_ctx(data
.ctx
);
1987 blk_mq_bio_to_request(rq
, bio
);
1990 trace_block_plug(q
);
1992 last
= list_entry_rq(plug
->mq_list
.prev
);
1994 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1995 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1996 blk_flush_plug_list(plug
, false);
1997 trace_block_plug(q
);
2000 blk_add_rq_to_plug(plug
, rq
);
2001 } else if (plug
&& !blk_queue_nomerges(q
)) {
2002 blk_mq_bio_to_request(rq
, bio
);
2005 * We do limited plugging. If the bio can be merged, do that.
2006 * Otherwise the existing request in the plug list will be
2007 * issued. So the plug list will have one request at most
2008 * The plug list might get flushed before this. If that happens,
2009 * the plug list is empty, and same_queue_rq is invalid.
2011 if (list_empty(&plug
->mq_list
))
2012 same_queue_rq
= NULL
;
2013 if (same_queue_rq
) {
2014 list_del_init(&same_queue_rq
->queuelist
);
2017 blk_add_rq_to_plug(plug
, rq
);
2018 trace_block_plug(q
);
2020 blk_mq_put_ctx(data
.ctx
);
2022 if (same_queue_rq
) {
2023 data
.hctx
= same_queue_rq
->mq_hctx
;
2024 trace_block_unplug(q
, 1, true);
2025 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
2028 } else if ((q
->nr_hw_queues
> 1 && is_sync
) || (!q
->elevator
&&
2029 !data
.hctx
->dispatch_busy
)) {
2030 blk_mq_put_ctx(data
.ctx
);
2031 blk_mq_bio_to_request(rq
, bio
);
2032 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
2034 blk_mq_put_ctx(data
.ctx
);
2035 blk_mq_bio_to_request(rq
, bio
);
2036 blk_mq_sched_insert_request(rq
, false, true, true);
2042 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2043 unsigned int hctx_idx
)
2047 if (tags
->rqs
&& set
->ops
->exit_request
) {
2050 for (i
= 0; i
< tags
->nr_tags
; i
++) {
2051 struct request
*rq
= tags
->static_rqs
[i
];
2055 set
->ops
->exit_request(set
, rq
, hctx_idx
);
2056 tags
->static_rqs
[i
] = NULL
;
2060 while (!list_empty(&tags
->page_list
)) {
2061 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
2062 list_del_init(&page
->lru
);
2064 * Remove kmemleak object previously allocated in
2065 * blk_mq_init_rq_map().
2067 kmemleak_free(page_address(page
));
2068 __free_pages(page
, page
->private);
2072 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
2076 kfree(tags
->static_rqs
);
2077 tags
->static_rqs
= NULL
;
2079 blk_mq_free_tags(tags
);
2082 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
2083 unsigned int hctx_idx
,
2084 unsigned int nr_tags
,
2085 unsigned int reserved_tags
)
2087 struct blk_mq_tags
*tags
;
2090 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2091 if (node
== NUMA_NO_NODE
)
2092 node
= set
->numa_node
;
2094 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
2095 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
2099 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2100 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2103 blk_mq_free_tags(tags
);
2107 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2108 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2110 if (!tags
->static_rqs
) {
2112 blk_mq_free_tags(tags
);
2119 static size_t order_to_size(unsigned int order
)
2121 return (size_t)PAGE_SIZE
<< order
;
2124 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2125 unsigned int hctx_idx
, int node
)
2129 if (set
->ops
->init_request
) {
2130 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2135 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2139 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2140 unsigned int hctx_idx
, unsigned int depth
)
2142 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2143 size_t rq_size
, left
;
2146 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2147 if (node
== NUMA_NO_NODE
)
2148 node
= set
->numa_node
;
2150 INIT_LIST_HEAD(&tags
->page_list
);
2153 * rq_size is the size of the request plus driver payload, rounded
2154 * to the cacheline size
2156 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2158 left
= rq_size
* depth
;
2160 for (i
= 0; i
< depth
; ) {
2161 int this_order
= max_order
;
2166 while (this_order
&& left
< order_to_size(this_order
- 1))
2170 page
= alloc_pages_node(node
,
2171 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2177 if (order_to_size(this_order
) < rq_size
)
2184 page
->private = this_order
;
2185 list_add_tail(&page
->lru
, &tags
->page_list
);
2187 p
= page_address(page
);
2189 * Allow kmemleak to scan these pages as they contain pointers
2190 * to additional allocations like via ops->init_request().
2192 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2193 entries_per_page
= order_to_size(this_order
) / rq_size
;
2194 to_do
= min(entries_per_page
, depth
- i
);
2195 left
-= to_do
* rq_size
;
2196 for (j
= 0; j
< to_do
; j
++) {
2197 struct request
*rq
= p
;
2199 tags
->static_rqs
[i
] = rq
;
2200 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2201 tags
->static_rqs
[i
] = NULL
;
2212 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2217 * 'cpu' is going away. splice any existing rq_list entries from this
2218 * software queue to the hw queue dispatch list, and ensure that it
2221 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2223 struct blk_mq_hw_ctx
*hctx
;
2224 struct blk_mq_ctx
*ctx
;
2226 enum hctx_type type
;
2228 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2229 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2232 spin_lock(&ctx
->lock
);
2233 if (!list_empty(&ctx
->rq_lists
[type
])) {
2234 list_splice_init(&ctx
->rq_lists
[type
], &tmp
);
2235 blk_mq_hctx_clear_pending(hctx
, ctx
);
2237 spin_unlock(&ctx
->lock
);
2239 if (list_empty(&tmp
))
2242 spin_lock(&hctx
->lock
);
2243 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2244 spin_unlock(&hctx
->lock
);
2246 blk_mq_run_hw_queue(hctx
, true);
2250 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2252 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2256 /* hctx->ctxs will be freed in queue's release handler */
2257 static void blk_mq_exit_hctx(struct request_queue
*q
,
2258 struct blk_mq_tag_set
*set
,
2259 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2261 if (blk_mq_hw_queue_mapped(hctx
))
2262 blk_mq_tag_idle(hctx
);
2264 if (set
->ops
->exit_request
)
2265 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2267 if (set
->ops
->exit_hctx
)
2268 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2270 blk_mq_remove_cpuhp(hctx
);
2273 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2274 struct blk_mq_tag_set
*set
, int nr_queue
)
2276 struct blk_mq_hw_ctx
*hctx
;
2279 queue_for_each_hw_ctx(q
, hctx
, i
) {
2282 blk_mq_debugfs_unregister_hctx(hctx
);
2283 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2287 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2289 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2291 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2292 __alignof__(struct blk_mq_hw_ctx
)) !=
2293 sizeof(struct blk_mq_hw_ctx
));
2295 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2296 hw_ctx_size
+= sizeof(struct srcu_struct
);
2301 static int blk_mq_init_hctx(struct request_queue
*q
,
2302 struct blk_mq_tag_set
*set
,
2303 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2305 hctx
->queue_num
= hctx_idx
;
2307 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2309 hctx
->tags
= set
->tags
[hctx_idx
];
2311 if (set
->ops
->init_hctx
&&
2312 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2313 goto unregister_cpu_notifier
;
2315 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
2321 if (set
->ops
->exit_hctx
)
2322 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2323 unregister_cpu_notifier
:
2324 blk_mq_remove_cpuhp(hctx
);
2328 static struct blk_mq_hw_ctx
*
2329 blk_mq_alloc_hctx(struct request_queue
*q
, struct blk_mq_tag_set
*set
,
2332 struct blk_mq_hw_ctx
*hctx
;
2333 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
;
2335 hctx
= kzalloc_node(blk_mq_hw_ctx_size(set
), gfp
, node
);
2337 goto fail_alloc_hctx
;
2339 if (!zalloc_cpumask_var_node(&hctx
->cpumask
, gfp
, node
))
2342 atomic_set(&hctx
->nr_active
, 0);
2343 if (node
== NUMA_NO_NODE
)
2344 node
= set
->numa_node
;
2345 hctx
->numa_node
= node
;
2347 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2348 spin_lock_init(&hctx
->lock
);
2349 INIT_LIST_HEAD(&hctx
->dispatch
);
2351 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2354 * Allocate space for all possible cpus to avoid allocation at
2357 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2362 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
2367 spin_lock_init(&hctx
->dispatch_wait_lock
);
2368 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2369 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2371 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
,
2376 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2377 init_srcu_struct(hctx
->srcu
);
2378 blk_mq_hctx_kobj_init(hctx
);
2383 sbitmap_free(&hctx
->ctx_map
);
2387 free_cpumask_var(hctx
->cpumask
);
2394 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2395 unsigned int nr_hw_queues
)
2397 struct blk_mq_tag_set
*set
= q
->tag_set
;
2400 for_each_possible_cpu(i
) {
2401 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2402 struct blk_mq_hw_ctx
*hctx
;
2406 spin_lock_init(&__ctx
->lock
);
2407 for (k
= HCTX_TYPE_DEFAULT
; k
< HCTX_MAX_TYPES
; k
++)
2408 INIT_LIST_HEAD(&__ctx
->rq_lists
[k
]);
2413 * Set local node, IFF we have more than one hw queue. If
2414 * not, we remain on the home node of the device
2416 for (j
= 0; j
< set
->nr_maps
; j
++) {
2417 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2418 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2419 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2424 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2428 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2429 set
->queue_depth
, set
->reserved_tags
);
2430 if (!set
->tags
[hctx_idx
])
2433 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2438 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2439 set
->tags
[hctx_idx
] = NULL
;
2443 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2444 unsigned int hctx_idx
)
2446 if (set
->tags
&& set
->tags
[hctx_idx
]) {
2447 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2448 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2449 set
->tags
[hctx_idx
] = NULL
;
2453 static void blk_mq_map_swqueue(struct request_queue
*q
)
2455 unsigned int i
, j
, hctx_idx
;
2456 struct blk_mq_hw_ctx
*hctx
;
2457 struct blk_mq_ctx
*ctx
;
2458 struct blk_mq_tag_set
*set
= q
->tag_set
;
2461 * Avoid others reading imcomplete hctx->cpumask through sysfs
2463 mutex_lock(&q
->sysfs_lock
);
2465 queue_for_each_hw_ctx(q
, hctx
, i
) {
2466 cpumask_clear(hctx
->cpumask
);
2468 hctx
->dispatch_from
= NULL
;
2472 * Map software to hardware queues.
2474 * If the cpu isn't present, the cpu is mapped to first hctx.
2476 for_each_possible_cpu(i
) {
2477 hctx_idx
= set
->map
[HCTX_TYPE_DEFAULT
].mq_map
[i
];
2478 /* unmapped hw queue can be remapped after CPU topo changed */
2479 if (!set
->tags
[hctx_idx
] &&
2480 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2482 * If tags initialization fail for some hctx,
2483 * that hctx won't be brought online. In this
2484 * case, remap the current ctx to hctx[0] which
2485 * is guaranteed to always have tags allocated
2487 set
->map
[HCTX_TYPE_DEFAULT
].mq_map
[i
] = 0;
2490 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2491 for (j
= 0; j
< set
->nr_maps
; j
++) {
2492 if (!set
->map
[j
].nr_queues
) {
2493 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2494 HCTX_TYPE_DEFAULT
, i
);
2498 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2499 ctx
->hctxs
[j
] = hctx
;
2501 * If the CPU is already set in the mask, then we've
2502 * mapped this one already. This can happen if
2503 * devices share queues across queue maps.
2505 if (cpumask_test_cpu(i
, hctx
->cpumask
))
2508 cpumask_set_cpu(i
, hctx
->cpumask
);
2510 ctx
->index_hw
[hctx
->type
] = hctx
->nr_ctx
;
2511 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2514 * If the nr_ctx type overflows, we have exceeded the
2515 * amount of sw queues we can support.
2517 BUG_ON(!hctx
->nr_ctx
);
2520 for (; j
< HCTX_MAX_TYPES
; j
++)
2521 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2522 HCTX_TYPE_DEFAULT
, i
);
2525 mutex_unlock(&q
->sysfs_lock
);
2527 queue_for_each_hw_ctx(q
, hctx
, i
) {
2529 * If no software queues are mapped to this hardware queue,
2530 * disable it and free the request entries.
2532 if (!hctx
->nr_ctx
) {
2533 /* Never unmap queue 0. We need it as a
2534 * fallback in case of a new remap fails
2537 if (i
&& set
->tags
[i
])
2538 blk_mq_free_map_and_requests(set
, i
);
2544 hctx
->tags
= set
->tags
[i
];
2545 WARN_ON(!hctx
->tags
);
2548 * Set the map size to the number of mapped software queues.
2549 * This is more accurate and more efficient than looping
2550 * over all possibly mapped software queues.
2552 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2555 * Initialize batch roundrobin counts
2557 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2558 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2563 * Caller needs to ensure that we're either frozen/quiesced, or that
2564 * the queue isn't live yet.
2566 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2568 struct blk_mq_hw_ctx
*hctx
;
2571 queue_for_each_hw_ctx(q
, hctx
, i
) {
2573 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2575 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2579 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2582 struct request_queue
*q
;
2584 lockdep_assert_held(&set
->tag_list_lock
);
2586 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2587 blk_mq_freeze_queue(q
);
2588 queue_set_hctx_shared(q
, shared
);
2589 blk_mq_unfreeze_queue(q
);
2593 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2595 struct blk_mq_tag_set
*set
= q
->tag_set
;
2597 mutex_lock(&set
->tag_list_lock
);
2598 list_del_rcu(&q
->tag_set_list
);
2599 if (list_is_singular(&set
->tag_list
)) {
2600 /* just transitioned to unshared */
2601 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2602 /* update existing queue */
2603 blk_mq_update_tag_set_depth(set
, false);
2605 mutex_unlock(&set
->tag_list_lock
);
2606 INIT_LIST_HEAD(&q
->tag_set_list
);
2609 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2610 struct request_queue
*q
)
2612 mutex_lock(&set
->tag_list_lock
);
2615 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2617 if (!list_empty(&set
->tag_list
) &&
2618 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2619 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2620 /* update existing queue */
2621 blk_mq_update_tag_set_depth(set
, true);
2623 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2624 queue_set_hctx_shared(q
, true);
2625 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2627 mutex_unlock(&set
->tag_list_lock
);
2630 /* All allocations will be freed in release handler of q->mq_kobj */
2631 static int blk_mq_alloc_ctxs(struct request_queue
*q
)
2633 struct blk_mq_ctxs
*ctxs
;
2636 ctxs
= kzalloc(sizeof(*ctxs
), GFP_KERNEL
);
2640 ctxs
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2641 if (!ctxs
->queue_ctx
)
2644 for_each_possible_cpu(cpu
) {
2645 struct blk_mq_ctx
*ctx
= per_cpu_ptr(ctxs
->queue_ctx
, cpu
);
2649 q
->mq_kobj
= &ctxs
->kobj
;
2650 q
->queue_ctx
= ctxs
->queue_ctx
;
2659 * It is the actual release handler for mq, but we do it from
2660 * request queue's release handler for avoiding use-after-free
2661 * and headache because q->mq_kobj shouldn't have been introduced,
2662 * but we can't group ctx/kctx kobj without it.
2664 void blk_mq_release(struct request_queue
*q
)
2666 struct blk_mq_hw_ctx
*hctx
;
2669 cancel_delayed_work_sync(&q
->requeue_work
);
2671 /* hctx kobj stays in hctx */
2672 queue_for_each_hw_ctx(q
, hctx
, i
) {
2675 kobject_put(&hctx
->kobj
);
2678 kfree(q
->queue_hw_ctx
);
2681 * release .mq_kobj and sw queue's kobject now because
2682 * both share lifetime with request queue.
2684 blk_mq_sysfs_deinit(q
);
2687 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2689 struct request_queue
*uninit_q
, *q
;
2691 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2693 return ERR_PTR(-ENOMEM
);
2695 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2697 blk_cleanup_queue(uninit_q
);
2701 EXPORT_SYMBOL(blk_mq_init_queue
);
2704 * Helper for setting up a queue with mq ops, given queue depth, and
2705 * the passed in mq ops flags.
2707 struct request_queue
*blk_mq_init_sq_queue(struct blk_mq_tag_set
*set
,
2708 const struct blk_mq_ops
*ops
,
2709 unsigned int queue_depth
,
2710 unsigned int set_flags
)
2712 struct request_queue
*q
;
2715 memset(set
, 0, sizeof(*set
));
2717 set
->nr_hw_queues
= 1;
2719 set
->queue_depth
= queue_depth
;
2720 set
->numa_node
= NUMA_NO_NODE
;
2721 set
->flags
= set_flags
;
2723 ret
= blk_mq_alloc_tag_set(set
);
2725 return ERR_PTR(ret
);
2727 q
= blk_mq_init_queue(set
);
2729 blk_mq_free_tag_set(set
);
2735 EXPORT_SYMBOL(blk_mq_init_sq_queue
);
2737 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
2738 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
2739 int hctx_idx
, int node
)
2741 struct blk_mq_hw_ctx
*hctx
;
2743 hctx
= blk_mq_alloc_hctx(q
, set
, node
);
2747 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
))
2753 kobject_put(&hctx
->kobj
);
2758 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2759 struct request_queue
*q
)
2762 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2764 /* protect against switching io scheduler */
2765 mutex_lock(&q
->sysfs_lock
);
2766 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2768 struct blk_mq_hw_ctx
*hctx
;
2770 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], i
);
2772 * If the hw queue has been mapped to another numa node,
2773 * we need to realloc the hctx. If allocation fails, fallback
2774 * to use the previous one.
2776 if (hctxs
[i
] && (hctxs
[i
]->numa_node
== node
))
2779 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, node
);
2782 blk_mq_exit_hctx(q
, set
, hctxs
[i
], i
);
2783 kobject_put(&hctxs
[i
]->kobj
);
2788 pr_warn("Allocate new hctx on node %d fails,\
2789 fallback to previous one on node %d\n",
2790 node
, hctxs
[i
]->numa_node
);
2796 * Increasing nr_hw_queues fails. Free the newly allocated
2797 * hctxs and keep the previous q->nr_hw_queues.
2799 if (i
!= set
->nr_hw_queues
) {
2800 j
= q
->nr_hw_queues
;
2804 end
= q
->nr_hw_queues
;
2805 q
->nr_hw_queues
= set
->nr_hw_queues
;
2808 for (; j
< end
; j
++) {
2809 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2813 blk_mq_free_map_and_requests(set
, j
);
2814 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2815 kobject_put(&hctx
->kobj
);
2820 mutex_unlock(&q
->sysfs_lock
);
2824 * Maximum number of hardware queues we support. For single sets, we'll never
2825 * have more than the CPUs (software queues). For multiple sets, the tag_set
2826 * user may have set ->nr_hw_queues larger.
2828 static unsigned int nr_hw_queues(struct blk_mq_tag_set
*set
)
2830 if (set
->nr_maps
== 1)
2833 return max(set
->nr_hw_queues
, nr_cpu_ids
);
2836 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2837 struct request_queue
*q
)
2839 /* mark the queue as mq asap */
2840 q
->mq_ops
= set
->ops
;
2842 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2843 blk_mq_poll_stats_bkt
,
2844 BLK_MQ_POLL_STATS_BKTS
, q
);
2848 if (blk_mq_alloc_ctxs(q
))
2851 /* init q->mq_kobj and sw queues' kobjects */
2852 blk_mq_sysfs_init(q
);
2854 q
->nr_queues
= nr_hw_queues(set
);
2855 q
->queue_hw_ctx
= kcalloc_node(q
->nr_queues
, sizeof(*(q
->queue_hw_ctx
)),
2856 GFP_KERNEL
, set
->numa_node
);
2857 if (!q
->queue_hw_ctx
)
2860 blk_mq_realloc_hw_ctxs(set
, q
);
2861 if (!q
->nr_hw_queues
)
2864 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2865 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2869 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2870 if (set
->nr_maps
> HCTX_TYPE_POLL
&&
2871 set
->map
[HCTX_TYPE_POLL
].nr_queues
)
2872 blk_queue_flag_set(QUEUE_FLAG_POLL
, q
);
2874 q
->sg_reserved_size
= INT_MAX
;
2876 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2877 INIT_LIST_HEAD(&q
->requeue_list
);
2878 spin_lock_init(&q
->requeue_lock
);
2880 blk_queue_make_request(q
, blk_mq_make_request
);
2883 * Do this after blk_queue_make_request() overrides it...
2885 q
->nr_requests
= set
->queue_depth
;
2888 * Default to classic polling
2890 q
->poll_nsec
= BLK_MQ_POLL_CLASSIC
;
2892 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2893 blk_mq_add_queue_tag_set(set
, q
);
2894 blk_mq_map_swqueue(q
);
2896 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2899 ret
= elevator_init_mq(q
);
2901 return ERR_PTR(ret
);
2907 kfree(q
->queue_hw_ctx
);
2909 blk_mq_sysfs_deinit(q
);
2911 blk_stat_free_callback(q
->poll_cb
);
2915 return ERR_PTR(-ENOMEM
);
2917 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2919 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2920 void blk_mq_exit_queue(struct request_queue
*q
)
2922 struct blk_mq_tag_set
*set
= q
->tag_set
;
2924 blk_mq_del_queue_tag_set(q
);
2925 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2928 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2932 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2933 if (!__blk_mq_alloc_rq_map(set
, i
))
2940 blk_mq_free_rq_map(set
->tags
[i
]);
2946 * Allocate the request maps associated with this tag_set. Note that this
2947 * may reduce the depth asked for, if memory is tight. set->queue_depth
2948 * will be updated to reflect the allocated depth.
2950 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2955 depth
= set
->queue_depth
;
2957 err
= __blk_mq_alloc_rq_maps(set
);
2961 set
->queue_depth
>>= 1;
2962 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2966 } while (set
->queue_depth
);
2968 if (!set
->queue_depth
|| err
) {
2969 pr_err("blk-mq: failed to allocate request map\n");
2973 if (depth
!= set
->queue_depth
)
2974 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2975 depth
, set
->queue_depth
);
2980 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2982 if (set
->ops
->map_queues
&& !is_kdump_kernel()) {
2986 * transport .map_queues is usually done in the following
2989 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2990 * mask = get_cpu_mask(queue)
2991 * for_each_cpu(cpu, mask)
2992 * set->map[x].mq_map[cpu] = queue;
2995 * When we need to remap, the table has to be cleared for
2996 * killing stale mapping since one CPU may not be mapped
2999 for (i
= 0; i
< set
->nr_maps
; i
++)
3000 blk_mq_clear_mq_map(&set
->map
[i
]);
3002 return set
->ops
->map_queues(set
);
3004 BUG_ON(set
->nr_maps
> 1);
3005 return blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3010 * Alloc a tag set to be associated with one or more request queues.
3011 * May fail with EINVAL for various error conditions. May adjust the
3012 * requested depth down, if it's too large. In that case, the set
3013 * value will be stored in set->queue_depth.
3015 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
3019 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
3021 if (!set
->nr_hw_queues
)
3023 if (!set
->queue_depth
)
3025 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
3028 if (!set
->ops
->queue_rq
)
3031 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
3034 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
3035 pr_info("blk-mq: reduced tag depth to %u\n",
3037 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
3042 else if (set
->nr_maps
> HCTX_MAX_TYPES
)
3046 * If a crashdump is active, then we are potentially in a very
3047 * memory constrained environment. Limit us to 1 queue and
3048 * 64 tags to prevent using too much memory.
3050 if (is_kdump_kernel()) {
3051 set
->nr_hw_queues
= 1;
3053 set
->queue_depth
= min(64U, set
->queue_depth
);
3056 * There is no use for more h/w queues than cpus if we just have
3059 if (set
->nr_maps
== 1 && set
->nr_hw_queues
> nr_cpu_ids
)
3060 set
->nr_hw_queues
= nr_cpu_ids
;
3062 set
->tags
= kcalloc_node(nr_hw_queues(set
), sizeof(struct blk_mq_tags
*),
3063 GFP_KERNEL
, set
->numa_node
);
3068 for (i
= 0; i
< set
->nr_maps
; i
++) {
3069 set
->map
[i
].mq_map
= kcalloc_node(nr_cpu_ids
,
3070 sizeof(set
->map
[i
].mq_map
[0]),
3071 GFP_KERNEL
, set
->numa_node
);
3072 if (!set
->map
[i
].mq_map
)
3073 goto out_free_mq_map
;
3074 set
->map
[i
].nr_queues
= is_kdump_kernel() ? 1 : set
->nr_hw_queues
;
3077 ret
= blk_mq_update_queue_map(set
);
3079 goto out_free_mq_map
;
3081 ret
= blk_mq_alloc_rq_maps(set
);
3083 goto out_free_mq_map
;
3085 mutex_init(&set
->tag_list_lock
);
3086 INIT_LIST_HEAD(&set
->tag_list
);
3091 for (i
= 0; i
< set
->nr_maps
; i
++) {
3092 kfree(set
->map
[i
].mq_map
);
3093 set
->map
[i
].mq_map
= NULL
;
3099 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
3101 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
3105 for (i
= 0; i
< nr_hw_queues(set
); i
++)
3106 blk_mq_free_map_and_requests(set
, i
);
3108 for (j
= 0; j
< set
->nr_maps
; j
++) {
3109 kfree(set
->map
[j
].mq_map
);
3110 set
->map
[j
].mq_map
= NULL
;
3116 EXPORT_SYMBOL(blk_mq_free_tag_set
);
3118 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
3120 struct blk_mq_tag_set
*set
= q
->tag_set
;
3121 struct blk_mq_hw_ctx
*hctx
;
3127 if (q
->nr_requests
== nr
)
3130 blk_mq_freeze_queue(q
);
3131 blk_mq_quiesce_queue(q
);
3134 queue_for_each_hw_ctx(q
, hctx
, i
) {
3138 * If we're using an MQ scheduler, just update the scheduler
3139 * queue depth. This is similar to what the old code would do.
3141 if (!hctx
->sched_tags
) {
3142 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
3145 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
3150 if (q
->elevator
&& q
->elevator
->type
->ops
.depth_updated
)
3151 q
->elevator
->type
->ops
.depth_updated(hctx
);
3155 q
->nr_requests
= nr
;
3157 blk_mq_unquiesce_queue(q
);
3158 blk_mq_unfreeze_queue(q
);
3164 * request_queue and elevator_type pair.
3165 * It is just used by __blk_mq_update_nr_hw_queues to cache
3166 * the elevator_type associated with a request_queue.
3168 struct blk_mq_qe_pair
{
3169 struct list_head node
;
3170 struct request_queue
*q
;
3171 struct elevator_type
*type
;
3175 * Cache the elevator_type in qe pair list and switch the
3176 * io scheduler to 'none'
3178 static bool blk_mq_elv_switch_none(struct list_head
*head
,
3179 struct request_queue
*q
)
3181 struct blk_mq_qe_pair
*qe
;
3186 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
3190 INIT_LIST_HEAD(&qe
->node
);
3192 qe
->type
= q
->elevator
->type
;
3193 list_add(&qe
->node
, head
);
3195 mutex_lock(&q
->sysfs_lock
);
3197 * After elevator_switch_mq, the previous elevator_queue will be
3198 * released by elevator_release. The reference of the io scheduler
3199 * module get by elevator_get will also be put. So we need to get
3200 * a reference of the io scheduler module here to prevent it to be
3203 __module_get(qe
->type
->elevator_owner
);
3204 elevator_switch_mq(q
, NULL
);
3205 mutex_unlock(&q
->sysfs_lock
);
3210 static void blk_mq_elv_switch_back(struct list_head
*head
,
3211 struct request_queue
*q
)
3213 struct blk_mq_qe_pair
*qe
;
3214 struct elevator_type
*t
= NULL
;
3216 list_for_each_entry(qe
, head
, node
)
3225 list_del(&qe
->node
);
3228 mutex_lock(&q
->sysfs_lock
);
3229 elevator_switch_mq(q
, t
);
3230 mutex_unlock(&q
->sysfs_lock
);
3233 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
3236 struct request_queue
*q
;
3238 int prev_nr_hw_queues
;
3240 lockdep_assert_held(&set
->tag_list_lock
);
3242 if (set
->nr_maps
== 1 && nr_hw_queues
> nr_cpu_ids
)
3243 nr_hw_queues
= nr_cpu_ids
;
3244 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
3247 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3248 blk_mq_freeze_queue(q
);
3250 * Sync with blk_mq_queue_tag_busy_iter.
3254 * Switch IO scheduler to 'none', cleaning up the data associated
3255 * with the previous scheduler. We will switch back once we are done
3256 * updating the new sw to hw queue mappings.
3258 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3259 if (!blk_mq_elv_switch_none(&head
, q
))
3262 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3263 blk_mq_debugfs_unregister_hctxs(q
);
3264 blk_mq_sysfs_unregister(q
);
3267 prev_nr_hw_queues
= set
->nr_hw_queues
;
3268 set
->nr_hw_queues
= nr_hw_queues
;
3269 blk_mq_update_queue_map(set
);
3271 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3272 blk_mq_realloc_hw_ctxs(set
, q
);
3273 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
3274 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3275 nr_hw_queues
, prev_nr_hw_queues
);
3276 set
->nr_hw_queues
= prev_nr_hw_queues
;
3277 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3280 blk_mq_map_swqueue(q
);
3283 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3284 blk_mq_sysfs_register(q
);
3285 blk_mq_debugfs_register_hctxs(q
);
3289 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3290 blk_mq_elv_switch_back(&head
, q
);
3292 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3293 blk_mq_unfreeze_queue(q
);
3296 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3298 mutex_lock(&set
->tag_list_lock
);
3299 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3300 mutex_unlock(&set
->tag_list_lock
);
3302 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3304 /* Enable polling stats and return whether they were already enabled. */
3305 static bool blk_poll_stats_enable(struct request_queue
*q
)
3307 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3308 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3310 blk_stat_add_callback(q
, q
->poll_cb
);
3314 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3317 * We don't arm the callback if polling stats are not enabled or the
3318 * callback is already active.
3320 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3321 blk_stat_is_active(q
->poll_cb
))
3324 blk_stat_activate_msecs(q
->poll_cb
, 100);
3327 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3329 struct request_queue
*q
= cb
->data
;
3332 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3333 if (cb
->stat
[bucket
].nr_samples
)
3334 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3338 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3339 struct blk_mq_hw_ctx
*hctx
,
3342 unsigned long ret
= 0;
3346 * If stats collection isn't on, don't sleep but turn it on for
3349 if (!blk_poll_stats_enable(q
))
3353 * As an optimistic guess, use half of the mean service time
3354 * for this type of request. We can (and should) make this smarter.
3355 * For instance, if the completion latencies are tight, we can
3356 * get closer than just half the mean. This is especially
3357 * important on devices where the completion latencies are longer
3358 * than ~10 usec. We do use the stats for the relevant IO size
3359 * if available which does lead to better estimates.
3361 bucket
= blk_mq_poll_stats_bkt(rq
);
3365 if (q
->poll_stat
[bucket
].nr_samples
)
3366 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3371 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3372 struct blk_mq_hw_ctx
*hctx
,
3375 struct hrtimer_sleeper hs
;
3376 enum hrtimer_mode mode
;
3380 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3384 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3386 * 0: use half of prev avg
3387 * >0: use this specific value
3389 if (q
->poll_nsec
> 0)
3390 nsecs
= q
->poll_nsec
;
3392 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3397 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3400 * This will be replaced with the stats tracking code, using
3401 * 'avg_completion_time / 2' as the pre-sleep target.
3405 mode
= HRTIMER_MODE_REL
;
3406 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
3407 hrtimer_set_expires(&hs
.timer
, kt
);
3409 hrtimer_init_sleeper(&hs
, current
);
3411 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3413 set_current_state(TASK_UNINTERRUPTIBLE
);
3414 hrtimer_start_expires(&hs
.timer
, mode
);
3417 hrtimer_cancel(&hs
.timer
);
3418 mode
= HRTIMER_MODE_ABS
;
3419 } while (hs
.task
&& !signal_pending(current
));
3421 __set_current_state(TASK_RUNNING
);
3422 destroy_hrtimer_on_stack(&hs
.timer
);
3426 static bool blk_mq_poll_hybrid(struct request_queue
*q
,
3427 struct blk_mq_hw_ctx
*hctx
, blk_qc_t cookie
)
3431 if (q
->poll_nsec
== BLK_MQ_POLL_CLASSIC
)
3434 if (!blk_qc_t_is_internal(cookie
))
3435 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3437 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3439 * With scheduling, if the request has completed, we'll
3440 * get a NULL return here, as we clear the sched tag when
3441 * that happens. The request still remains valid, like always,
3442 * so we should be safe with just the NULL check.
3448 return blk_mq_poll_hybrid_sleep(q
, hctx
, rq
);
3452 * blk_poll - poll for IO completions
3454 * @cookie: cookie passed back at IO submission time
3455 * @spin: whether to spin for completions
3458 * Poll for completions on the passed in queue. Returns number of
3459 * completed entries found. If @spin is true, then blk_poll will continue
3460 * looping until at least one completion is found, unless the task is
3461 * otherwise marked running (or we need to reschedule).
3463 int blk_poll(struct request_queue
*q
, blk_qc_t cookie
, bool spin
)
3465 struct blk_mq_hw_ctx
*hctx
;
3468 if (!blk_qc_t_valid(cookie
) ||
3469 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3473 blk_flush_plug_list(current
->plug
, false);
3475 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3478 * If we sleep, have the caller restart the poll loop to reset
3479 * the state. Like for the other success return cases, the
3480 * caller is responsible for checking if the IO completed. If
3481 * the IO isn't complete, we'll get called again and will go
3482 * straight to the busy poll loop.
3484 if (blk_mq_poll_hybrid(q
, hctx
, cookie
))
3487 hctx
->poll_considered
++;
3489 state
= current
->state
;
3493 hctx
->poll_invoked
++;
3495 ret
= q
->mq_ops
->poll(hctx
);
3497 hctx
->poll_success
++;
3498 __set_current_state(TASK_RUNNING
);
3502 if (signal_pending_state(state
, current
))
3503 __set_current_state(TASK_RUNNING
);
3505 if (current
->state
== TASK_RUNNING
)
3507 if (ret
< 0 || !spin
)
3510 } while (!need_resched());
3512 __set_current_state(TASK_RUNNING
);
3515 EXPORT_SYMBOL_GPL(blk_poll
);
3517 unsigned int blk_mq_rq_cpu(struct request
*rq
)
3519 return rq
->mq_ctx
->cpu
;
3521 EXPORT_SYMBOL(blk_mq_rq_cpu
);
3523 static int __init
blk_mq_init(void)
3525 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3526 blk_mq_hctx_notify_dead
);
3529 subsys_initcall(blk_mq_init
);