2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
18 unsigned long blk_max_low_pfn
;
19 EXPORT_SYMBOL(blk_max_low_pfn
);
21 unsigned long blk_max_pfn
;
23 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
25 q
->rq_timeout
= timeout
;
27 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
30 * blk_set_default_limits - reset limits to default values
31 * @lim: the queue_limits structure to reset
34 * Returns a queue_limit struct to its default state.
36 void blk_set_default_limits(struct queue_limits
*lim
)
38 lim
->max_segments
= BLK_MAX_SEGMENTS
;
39 lim
->max_discard_segments
= 1;
40 lim
->max_integrity_segments
= 0;
41 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
42 lim
->virt_boundary_mask
= 0;
43 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
44 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
45 lim
->max_dev_sectors
= 0;
46 lim
->chunk_sectors
= 0;
47 lim
->max_write_same_sectors
= 0;
48 lim
->max_write_zeroes_sectors
= 0;
49 lim
->max_discard_sectors
= 0;
50 lim
->max_hw_discard_sectors
= 0;
51 lim
->discard_granularity
= 0;
52 lim
->discard_alignment
= 0;
53 lim
->discard_misaligned
= 0;
54 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
55 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
56 lim
->alignment_offset
= 0;
59 lim
->zoned
= BLK_ZONED_NONE
;
61 EXPORT_SYMBOL(blk_set_default_limits
);
64 * blk_set_stacking_limits - set default limits for stacking devices
65 * @lim: the queue_limits structure to reset
68 * Returns a queue_limit struct to its default state. Should be used
69 * by stacking drivers like DM that have no internal limits.
71 void blk_set_stacking_limits(struct queue_limits
*lim
)
73 blk_set_default_limits(lim
);
75 /* Inherit limits from component devices */
76 lim
->max_segments
= USHRT_MAX
;
77 lim
->max_discard_segments
= USHRT_MAX
;
78 lim
->max_hw_sectors
= UINT_MAX
;
79 lim
->max_segment_size
= UINT_MAX
;
80 lim
->max_sectors
= UINT_MAX
;
81 lim
->max_dev_sectors
= UINT_MAX
;
82 lim
->max_write_same_sectors
= UINT_MAX
;
83 lim
->max_write_zeroes_sectors
= UINT_MAX
;
85 EXPORT_SYMBOL(blk_set_stacking_limits
);
88 * blk_queue_make_request - define an alternate make_request function for a device
89 * @q: the request queue for the device to be affected
90 * @mfn: the alternate make_request function
93 * The normal way for &struct bios to be passed to a device
94 * driver is for them to be collected into requests on a request
95 * queue, and then to allow the device driver to select requests
96 * off that queue when it is ready. This works well for many block
97 * devices. However some block devices (typically virtual devices
98 * such as md or lvm) do not benefit from the processing on the
99 * request queue, and are served best by having the requests passed
100 * directly to them. This can be achieved by providing a function
101 * to blk_queue_make_request().
104 * The driver that does this *must* be able to deal appropriately
105 * with buffers in "highmemory". This can be accomplished by either calling
106 * kmap_atomic() to get a temporary kernel mapping, or by calling
107 * blk_queue_bounce() to create a buffer in normal memory.
109 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
114 q
->nr_requests
= BLKDEV_MAX_RQ
;
116 q
->make_request_fn
= mfn
;
117 blk_queue_dma_alignment(q
, 511);
119 blk_set_default_limits(&q
->limits
);
121 EXPORT_SYMBOL(blk_queue_make_request
);
124 * blk_queue_bounce_limit - set bounce buffer limit for queue
125 * @q: the request queue for the device
126 * @max_addr: the maximum address the device can handle
129 * Different hardware can have different requirements as to what pages
130 * it can do I/O directly to. A low level driver can call
131 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
132 * buffers for doing I/O to pages residing above @max_addr.
134 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
136 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
139 q
->bounce_gfp
= GFP_NOIO
;
140 #if BITS_PER_LONG == 64
142 * Assume anything <= 4GB can be handled by IOMMU. Actually
143 * some IOMMUs can handle everything, but I don't know of a
144 * way to test this here.
146 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
148 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
150 if (b_pfn
< blk_max_low_pfn
)
152 q
->limits
.bounce_pfn
= b_pfn
;
155 init_emergency_isa_pool();
156 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
157 q
->limits
.bounce_pfn
= b_pfn
;
160 EXPORT_SYMBOL(blk_queue_bounce_limit
);
163 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
164 * @q: the request queue for the device
165 * @max_hw_sectors: max hardware sectors in the usual 512b unit
168 * Enables a low level driver to set a hard upper limit,
169 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
170 * the device driver based upon the capabilities of the I/O
173 * max_dev_sectors is a hard limit imposed by the storage device for
174 * READ/WRITE requests. It is set by the disk driver.
176 * max_sectors is a soft limit imposed by the block layer for
177 * filesystem type requests. This value can be overridden on a
178 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
179 * The soft limit can not exceed max_hw_sectors.
181 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
183 struct queue_limits
*limits
= &q
->limits
;
184 unsigned int max_sectors
;
186 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
187 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
188 printk(KERN_INFO
"%s: set to minimum %d\n",
189 __func__
, max_hw_sectors
);
192 limits
->max_hw_sectors
= max_hw_sectors
;
193 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
194 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
195 limits
->max_sectors
= max_sectors
;
196 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
198 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
201 * blk_queue_chunk_sectors - set size of the chunk for this queue
202 * @q: the request queue for the device
203 * @chunk_sectors: chunk sectors in the usual 512b unit
206 * If a driver doesn't want IOs to cross a given chunk size, it can set
207 * this limit and prevent merging across chunks. Note that the chunk size
208 * must currently be a power-of-2 in sectors. Also note that the block
209 * layer must accept a page worth of data at any offset. So if the
210 * crossing of chunks is a hard limitation in the driver, it must still be
211 * prepared to split single page bios.
213 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
215 BUG_ON(!is_power_of_2(chunk_sectors
));
216 q
->limits
.chunk_sectors
= chunk_sectors
;
218 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
221 * blk_queue_max_discard_sectors - set max sectors for a single discard
222 * @q: the request queue for the device
223 * @max_discard_sectors: maximum number of sectors to discard
225 void blk_queue_max_discard_sectors(struct request_queue
*q
,
226 unsigned int max_discard_sectors
)
228 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
229 q
->limits
.max_discard_sectors
= max_discard_sectors
;
231 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
234 * blk_queue_max_write_same_sectors - set max sectors for a single write same
235 * @q: the request queue for the device
236 * @max_write_same_sectors: maximum number of sectors to write per command
238 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
239 unsigned int max_write_same_sectors
)
241 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
243 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
246 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
248 * @q: the request queue for the device
249 * @max_write_zeroes_sectors: maximum number of sectors to write per command
251 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
252 unsigned int max_write_zeroes_sectors
)
254 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
256 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
259 * blk_queue_max_segments - set max hw segments for a request for this queue
260 * @q: the request queue for the device
261 * @max_segments: max number of segments
264 * Enables a low level driver to set an upper limit on the number of
265 * hw data segments in a request.
267 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
271 printk(KERN_INFO
"%s: set to minimum %d\n",
272 __func__
, max_segments
);
275 q
->limits
.max_segments
= max_segments
;
277 EXPORT_SYMBOL(blk_queue_max_segments
);
280 * blk_queue_max_discard_segments - set max segments for discard requests
281 * @q: the request queue for the device
282 * @max_segments: max number of segments
285 * Enables a low level driver to set an upper limit on the number of
286 * segments in a discard request.
288 void blk_queue_max_discard_segments(struct request_queue
*q
,
289 unsigned short max_segments
)
291 q
->limits
.max_discard_segments
= max_segments
;
293 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
296 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
297 * @q: the request queue for the device
298 * @max_size: max size of segment in bytes
301 * Enables a low level driver to set an upper limit on the size of a
304 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
306 if (max_size
< PAGE_SIZE
) {
307 max_size
= PAGE_SIZE
;
308 printk(KERN_INFO
"%s: set to minimum %d\n",
312 q
->limits
.max_segment_size
= max_size
;
314 EXPORT_SYMBOL(blk_queue_max_segment_size
);
317 * blk_queue_logical_block_size - set logical block size for the queue
318 * @q: the request queue for the device
319 * @size: the logical block size, in bytes
322 * This should be set to the lowest possible block size that the
323 * storage device can address. The default of 512 covers most
326 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
328 q
->limits
.logical_block_size
= size
;
330 if (q
->limits
.physical_block_size
< size
)
331 q
->limits
.physical_block_size
= size
;
333 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
334 q
->limits
.io_min
= q
->limits
.physical_block_size
;
336 EXPORT_SYMBOL(blk_queue_logical_block_size
);
339 * blk_queue_physical_block_size - set physical block size for the queue
340 * @q: the request queue for the device
341 * @size: the physical block size, in bytes
344 * This should be set to the lowest possible sector size that the
345 * hardware can operate on without reverting to read-modify-write
348 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
350 q
->limits
.physical_block_size
= size
;
352 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
353 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
355 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
356 q
->limits
.io_min
= q
->limits
.physical_block_size
;
358 EXPORT_SYMBOL(blk_queue_physical_block_size
);
361 * blk_queue_alignment_offset - set physical block alignment offset
362 * @q: the request queue for the device
363 * @offset: alignment offset in bytes
366 * Some devices are naturally misaligned to compensate for things like
367 * the legacy DOS partition table 63-sector offset. Low-level drivers
368 * should call this function for devices whose first sector is not
371 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
373 q
->limits
.alignment_offset
=
374 offset
& (q
->limits
.physical_block_size
- 1);
375 q
->limits
.misaligned
= 0;
377 EXPORT_SYMBOL(blk_queue_alignment_offset
);
380 * blk_limits_io_min - set minimum request size for a device
381 * @limits: the queue limits
382 * @min: smallest I/O size in bytes
385 * Some devices have an internal block size bigger than the reported
386 * hardware sector size. This function can be used to signal the
387 * smallest I/O the device can perform without incurring a performance
390 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
392 limits
->io_min
= min
;
394 if (limits
->io_min
< limits
->logical_block_size
)
395 limits
->io_min
= limits
->logical_block_size
;
397 if (limits
->io_min
< limits
->physical_block_size
)
398 limits
->io_min
= limits
->physical_block_size
;
400 EXPORT_SYMBOL(blk_limits_io_min
);
403 * blk_queue_io_min - set minimum request size for the queue
404 * @q: the request queue for the device
405 * @min: smallest I/O size in bytes
408 * Storage devices may report a granularity or preferred minimum I/O
409 * size which is the smallest request the device can perform without
410 * incurring a performance penalty. For disk drives this is often the
411 * physical block size. For RAID arrays it is often the stripe chunk
412 * size. A properly aligned multiple of minimum_io_size is the
413 * preferred request size for workloads where a high number of I/O
414 * operations is desired.
416 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
418 blk_limits_io_min(&q
->limits
, min
);
420 EXPORT_SYMBOL(blk_queue_io_min
);
423 * blk_limits_io_opt - set optimal request size for a device
424 * @limits: the queue limits
425 * @opt: smallest I/O size in bytes
428 * Storage devices may report an optimal I/O size, which is the
429 * device's preferred unit for sustained I/O. This is rarely reported
430 * for disk drives. For RAID arrays it is usually the stripe width or
431 * the internal track size. A properly aligned multiple of
432 * optimal_io_size is the preferred request size for workloads where
433 * sustained throughput is desired.
435 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
437 limits
->io_opt
= opt
;
439 EXPORT_SYMBOL(blk_limits_io_opt
);
442 * blk_queue_io_opt - set optimal request size for the queue
443 * @q: the request queue for the device
444 * @opt: optimal request size in bytes
447 * Storage devices may report an optimal I/O size, which is the
448 * device's preferred unit for sustained I/O. This is rarely reported
449 * for disk drives. For RAID arrays it is usually the stripe width or
450 * the internal track size. A properly aligned multiple of
451 * optimal_io_size is the preferred request size for workloads where
452 * sustained throughput is desired.
454 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
456 blk_limits_io_opt(&q
->limits
, opt
);
458 EXPORT_SYMBOL(blk_queue_io_opt
);
461 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
462 * @t: the stacking driver (top)
463 * @b: the underlying device (bottom)
465 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
467 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
469 EXPORT_SYMBOL(blk_queue_stack_limits
);
472 * blk_stack_limits - adjust queue_limits for stacked devices
473 * @t: the stacking driver limits (top device)
474 * @b: the underlying queue limits (bottom, component device)
475 * @start: first data sector within component device
478 * This function is used by stacking drivers like MD and DM to ensure
479 * that all component devices have compatible block sizes and
480 * alignments. The stacking driver must provide a queue_limits
481 * struct (top) and then iteratively call the stacking function for
482 * all component (bottom) devices. The stacking function will
483 * attempt to combine the values and ensure proper alignment.
485 * Returns 0 if the top and bottom queue_limits are compatible. The
486 * top device's block sizes and alignment offsets may be adjusted to
487 * ensure alignment with the bottom device. If no compatible sizes
488 * and alignments exist, -1 is returned and the resulting top
489 * queue_limits will have the misaligned flag set to indicate that
490 * the alignment_offset is undefined.
492 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
495 unsigned int top
, bottom
, alignment
, ret
= 0;
497 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
498 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
499 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
500 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
501 b
->max_write_same_sectors
);
502 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
503 b
->max_write_zeroes_sectors
);
504 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
506 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
507 b
->seg_boundary_mask
);
508 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
509 b
->virt_boundary_mask
);
511 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
512 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
513 b
->max_discard_segments
);
514 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
515 b
->max_integrity_segments
);
517 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
518 b
->max_segment_size
);
520 t
->misaligned
|= b
->misaligned
;
522 alignment
= queue_limit_alignment_offset(b
, start
);
524 /* Bottom device has different alignment. Check that it is
525 * compatible with the current top alignment.
527 if (t
->alignment_offset
!= alignment
) {
529 top
= max(t
->physical_block_size
, t
->io_min
)
530 + t
->alignment_offset
;
531 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
533 /* Verify that top and bottom intervals line up */
534 if (max(top
, bottom
) % min(top
, bottom
)) {
540 t
->logical_block_size
= max(t
->logical_block_size
,
541 b
->logical_block_size
);
543 t
->physical_block_size
= max(t
->physical_block_size
,
544 b
->physical_block_size
);
546 t
->io_min
= max(t
->io_min
, b
->io_min
);
547 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
549 /* Physical block size a multiple of the logical block size? */
550 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
551 t
->physical_block_size
= t
->logical_block_size
;
556 /* Minimum I/O a multiple of the physical block size? */
557 if (t
->io_min
& (t
->physical_block_size
- 1)) {
558 t
->io_min
= t
->physical_block_size
;
563 /* Optimal I/O a multiple of the physical block size? */
564 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
570 t
->raid_partial_stripes_expensive
=
571 max(t
->raid_partial_stripes_expensive
,
572 b
->raid_partial_stripes_expensive
);
574 /* Find lowest common alignment_offset */
575 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
576 % max(t
->physical_block_size
, t
->io_min
);
578 /* Verify that new alignment_offset is on a logical block boundary */
579 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
584 /* Discard alignment and granularity */
585 if (b
->discard_granularity
) {
586 alignment
= queue_limit_discard_alignment(b
, start
);
588 if (t
->discard_granularity
!= 0 &&
589 t
->discard_alignment
!= alignment
) {
590 top
= t
->discard_granularity
+ t
->discard_alignment
;
591 bottom
= b
->discard_granularity
+ alignment
;
593 /* Verify that top and bottom intervals line up */
594 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
595 t
->discard_misaligned
= 1;
598 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
599 b
->max_discard_sectors
);
600 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
601 b
->max_hw_discard_sectors
);
602 t
->discard_granularity
= max(t
->discard_granularity
,
603 b
->discard_granularity
);
604 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
605 t
->discard_granularity
;
608 if (b
->chunk_sectors
)
609 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
614 EXPORT_SYMBOL(blk_stack_limits
);
617 * bdev_stack_limits - adjust queue limits for stacked drivers
618 * @t: the stacking driver limits (top device)
619 * @bdev: the component block_device (bottom)
620 * @start: first data sector within component device
623 * Merges queue limits for a top device and a block_device. Returns
624 * 0 if alignment didn't change. Returns -1 if adding the bottom
625 * device caused misalignment.
627 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
630 struct request_queue
*bq
= bdev_get_queue(bdev
);
632 start
+= get_start_sect(bdev
);
634 return blk_stack_limits(t
, &bq
->limits
, start
);
636 EXPORT_SYMBOL(bdev_stack_limits
);
639 * disk_stack_limits - adjust queue limits for stacked drivers
640 * @disk: MD/DM gendisk (top)
641 * @bdev: the underlying block device (bottom)
642 * @offset: offset to beginning of data within component device
645 * Merges the limits for a top level gendisk and a bottom level
648 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
651 struct request_queue
*t
= disk
->queue
;
653 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
654 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
656 disk_name(disk
, 0, top
);
657 bdevname(bdev
, bottom
);
659 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
663 EXPORT_SYMBOL(disk_stack_limits
);
666 * blk_queue_dma_pad - set pad mask
667 * @q: the request queue for the device
672 * Appending pad buffer to a request modifies the last entry of a
673 * scatter list such that it includes the pad buffer.
675 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
677 q
->dma_pad_mask
= mask
;
679 EXPORT_SYMBOL(blk_queue_dma_pad
);
682 * blk_queue_update_dma_pad - update pad mask
683 * @q: the request queue for the device
686 * Update dma pad mask.
688 * Appending pad buffer to a request modifies the last entry of a
689 * scatter list such that it includes the pad buffer.
691 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
693 if (mask
> q
->dma_pad_mask
)
694 q
->dma_pad_mask
= mask
;
696 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
699 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
700 * @q: the request queue for the device
701 * @dma_drain_needed: fn which returns non-zero if drain is necessary
702 * @buf: physically contiguous buffer
703 * @size: size of the buffer in bytes
705 * Some devices have excess DMA problems and can't simply discard (or
706 * zero fill) the unwanted piece of the transfer. They have to have a
707 * real area of memory to transfer it into. The use case for this is
708 * ATAPI devices in DMA mode. If the packet command causes a transfer
709 * bigger than the transfer size some HBAs will lock up if there
710 * aren't DMA elements to contain the excess transfer. What this API
711 * does is adjust the queue so that the buf is always appended
712 * silently to the scatterlist.
714 * Note: This routine adjusts max_hw_segments to make room for appending
715 * the drain buffer. If you call blk_queue_max_segments() after calling
716 * this routine, you must set the limit to one fewer than your device
717 * can support otherwise there won't be room for the drain buffer.
719 int blk_queue_dma_drain(struct request_queue
*q
,
720 dma_drain_needed_fn
*dma_drain_needed
,
721 void *buf
, unsigned int size
)
723 if (queue_max_segments(q
) < 2)
725 /* make room for appending the drain */
726 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
727 q
->dma_drain_needed
= dma_drain_needed
;
728 q
->dma_drain_buffer
= buf
;
729 q
->dma_drain_size
= size
;
733 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
736 * blk_queue_segment_boundary - set boundary rules for segment merging
737 * @q: the request queue for the device
738 * @mask: the memory boundary mask
740 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
742 if (mask
< PAGE_SIZE
- 1) {
743 mask
= PAGE_SIZE
- 1;
744 printk(KERN_INFO
"%s: set to minimum %lx\n",
748 q
->limits
.seg_boundary_mask
= mask
;
750 EXPORT_SYMBOL(blk_queue_segment_boundary
);
753 * blk_queue_virt_boundary - set boundary rules for bio merging
754 * @q: the request queue for the device
755 * @mask: the memory boundary mask
757 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
759 q
->limits
.virt_boundary_mask
= mask
;
761 EXPORT_SYMBOL(blk_queue_virt_boundary
);
764 * blk_queue_dma_alignment - set dma length and memory alignment
765 * @q: the request queue for the device
766 * @mask: alignment mask
769 * set required memory and length alignment for direct dma transactions.
770 * this is used when building direct io requests for the queue.
773 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
775 q
->dma_alignment
= mask
;
777 EXPORT_SYMBOL(blk_queue_dma_alignment
);
780 * blk_queue_update_dma_alignment - update dma length and memory alignment
781 * @q: the request queue for the device
782 * @mask: alignment mask
785 * update required memory and length alignment for direct dma transactions.
786 * If the requested alignment is larger than the current alignment, then
787 * the current queue alignment is updated to the new value, otherwise it
788 * is left alone. The design of this is to allow multiple objects
789 * (driver, device, transport etc) to set their respective
790 * alignments without having them interfere.
793 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
795 BUG_ON(mask
> PAGE_SIZE
);
797 if (mask
> q
->dma_alignment
)
798 q
->dma_alignment
= mask
;
800 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
803 * blk_set_queue_depth - tell the block layer about the device queue depth
804 * @q: the request queue for the device
805 * @depth: queue depth
808 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
810 q
->queue_depth
= depth
;
811 wbt_set_queue_depth(q
, depth
);
813 EXPORT_SYMBOL(blk_set_queue_depth
);
816 * blk_queue_write_cache - configure queue's write cache
817 * @q: the request queue for the device
818 * @wc: write back cache on or off
819 * @fua: device supports FUA writes, if true
821 * Tell the block layer about the write cache of @q.
823 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
826 blk_queue_flag_set(QUEUE_FLAG_WC
, q
);
828 blk_queue_flag_clear(QUEUE_FLAG_WC
, q
);
830 blk_queue_flag_set(QUEUE_FLAG_FUA
, q
);
832 blk_queue_flag_clear(QUEUE_FLAG_FUA
, q
);
834 wbt_set_write_cache(q
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
836 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
838 static int __init
blk_settings_init(void)
840 blk_max_low_pfn
= max_low_pfn
- 1;
841 blk_max_pfn
= max_pfn
- 1;
844 subsys_initcall(blk_settings_init
);