2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
25 #define CREATE_TRACE_POINTS
31 * Sometimes for failures during very early init the trace
32 * infrastructure isn't available early enough to be used. For this
33 * sort of problem defining LOG_DEVICE will add printks for basic
34 * register I/O on a specific device.
39 static inline bool regmap_should_log(struct regmap
*map
)
41 return (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0);
44 static inline bool regmap_should_log(struct regmap
*map
) { return false; }
48 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
49 unsigned int mask
, unsigned int val
,
50 bool *change
, bool force_write
);
52 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
54 static int _regmap_bus_read(void *context
, unsigned int reg
,
56 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
58 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
60 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
63 bool regmap_reg_in_ranges(unsigned int reg
,
64 const struct regmap_range
*ranges
,
67 const struct regmap_range
*r
;
70 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
71 if (regmap_reg_in_range(reg
, r
))
75 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
77 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
78 const struct regmap_access_table
*table
)
80 /* Check "no ranges" first */
81 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
84 /* In case zero "yes ranges" are supplied, any reg is OK */
85 if (!table
->n_yes_ranges
)
88 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
91 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
93 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
95 if (map
->max_register
&& reg
> map
->max_register
)
98 if (map
->writeable_reg
)
99 return map
->writeable_reg(map
->dev
, reg
);
102 return regmap_check_range_table(map
, reg
, map
->wr_table
);
107 bool regmap_cached(struct regmap
*map
, unsigned int reg
)
112 if (map
->cache_type
== REGCACHE_NONE
)
118 if (map
->max_register
&& reg
> map
->max_register
)
121 map
->lock(map
->lock_arg
);
122 ret
= regcache_read(map
, reg
, &val
);
123 map
->unlock(map
->lock_arg
);
130 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
135 if (map
->max_register
&& reg
> map
->max_register
)
138 if (map
->format
.format_write
)
141 if (map
->readable_reg
)
142 return map
->readable_reg(map
->dev
, reg
);
145 return regmap_check_range_table(map
, reg
, map
->rd_table
);
150 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
152 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
155 if (map
->volatile_reg
)
156 return map
->volatile_reg(map
->dev
, reg
);
158 if (map
->volatile_table
)
159 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
167 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
169 if (!regmap_readable(map
, reg
))
172 if (map
->precious_reg
)
173 return map
->precious_reg(map
->dev
, reg
);
175 if (map
->precious_table
)
176 return regmap_check_range_table(map
, reg
, map
->precious_table
);
181 bool regmap_writeable_noinc(struct regmap
*map
, unsigned int reg
)
183 if (map
->writeable_noinc_reg
)
184 return map
->writeable_noinc_reg(map
->dev
, reg
);
186 if (map
->wr_noinc_table
)
187 return regmap_check_range_table(map
, reg
, map
->wr_noinc_table
);
192 bool regmap_readable_noinc(struct regmap
*map
, unsigned int reg
)
194 if (map
->readable_noinc_reg
)
195 return map
->readable_noinc_reg(map
->dev
, reg
);
197 if (map
->rd_noinc_table
)
198 return regmap_check_range_table(map
, reg
, map
->rd_noinc_table
);
203 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
208 for (i
= 0; i
< num
; i
++)
209 if (!regmap_volatile(map
, reg
+ regmap_get_offset(map
, i
)))
215 static void regmap_format_2_6_write(struct regmap
*map
,
216 unsigned int reg
, unsigned int val
)
218 u8
*out
= map
->work_buf
;
220 *out
= (reg
<< 6) | val
;
223 static void regmap_format_4_12_write(struct regmap
*map
,
224 unsigned int reg
, unsigned int val
)
226 __be16
*out
= map
->work_buf
;
227 *out
= cpu_to_be16((reg
<< 12) | val
);
230 static void regmap_format_7_9_write(struct regmap
*map
,
231 unsigned int reg
, unsigned int val
)
233 __be16
*out
= map
->work_buf
;
234 *out
= cpu_to_be16((reg
<< 9) | val
);
237 static void regmap_format_10_14_write(struct regmap
*map
,
238 unsigned int reg
, unsigned int val
)
240 u8
*out
= map
->work_buf
;
243 out
[1] = (val
>> 8) | (reg
<< 6);
247 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
254 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
258 b
[0] = cpu_to_be16(val
<< shift
);
261 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
265 b
[0] = cpu_to_le16(val
<< shift
);
268 static void regmap_format_16_native(void *buf
, unsigned int val
,
271 *(u16
*)buf
= val
<< shift
;
274 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
285 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
289 b
[0] = cpu_to_be32(val
<< shift
);
292 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
296 b
[0] = cpu_to_le32(val
<< shift
);
299 static void regmap_format_32_native(void *buf
, unsigned int val
,
302 *(u32
*)buf
= val
<< shift
;
306 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
310 b
[0] = cpu_to_be64((u64
)val
<< shift
);
313 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
317 b
[0] = cpu_to_le64((u64
)val
<< shift
);
320 static void regmap_format_64_native(void *buf
, unsigned int val
,
323 *(u64
*)buf
= (u64
)val
<< shift
;
327 static void regmap_parse_inplace_noop(void *buf
)
331 static unsigned int regmap_parse_8(const void *buf
)
338 static unsigned int regmap_parse_16_be(const void *buf
)
340 const __be16
*b
= buf
;
342 return be16_to_cpu(b
[0]);
345 static unsigned int regmap_parse_16_le(const void *buf
)
347 const __le16
*b
= buf
;
349 return le16_to_cpu(b
[0]);
352 static void regmap_parse_16_be_inplace(void *buf
)
356 b
[0] = be16_to_cpu(b
[0]);
359 static void regmap_parse_16_le_inplace(void *buf
)
363 b
[0] = le16_to_cpu(b
[0]);
366 static unsigned int regmap_parse_16_native(const void *buf
)
371 static unsigned int regmap_parse_24(const void *buf
)
374 unsigned int ret
= b
[2];
375 ret
|= ((unsigned int)b
[1]) << 8;
376 ret
|= ((unsigned int)b
[0]) << 16;
381 static unsigned int regmap_parse_32_be(const void *buf
)
383 const __be32
*b
= buf
;
385 return be32_to_cpu(b
[0]);
388 static unsigned int regmap_parse_32_le(const void *buf
)
390 const __le32
*b
= buf
;
392 return le32_to_cpu(b
[0]);
395 static void regmap_parse_32_be_inplace(void *buf
)
399 b
[0] = be32_to_cpu(b
[0]);
402 static void regmap_parse_32_le_inplace(void *buf
)
406 b
[0] = le32_to_cpu(b
[0]);
409 static unsigned int regmap_parse_32_native(const void *buf
)
415 static unsigned int regmap_parse_64_be(const void *buf
)
417 const __be64
*b
= buf
;
419 return be64_to_cpu(b
[0]);
422 static unsigned int regmap_parse_64_le(const void *buf
)
424 const __le64
*b
= buf
;
426 return le64_to_cpu(b
[0]);
429 static void regmap_parse_64_be_inplace(void *buf
)
433 b
[0] = be64_to_cpu(b
[0]);
436 static void regmap_parse_64_le_inplace(void *buf
)
440 b
[0] = le64_to_cpu(b
[0]);
443 static unsigned int regmap_parse_64_native(const void *buf
)
449 static void regmap_lock_hwlock(void *__map
)
451 struct regmap
*map
= __map
;
453 hwspin_lock_timeout(map
->hwlock
, UINT_MAX
);
456 static void regmap_lock_hwlock_irq(void *__map
)
458 struct regmap
*map
= __map
;
460 hwspin_lock_timeout_irq(map
->hwlock
, UINT_MAX
);
463 static void regmap_lock_hwlock_irqsave(void *__map
)
465 struct regmap
*map
= __map
;
467 hwspin_lock_timeout_irqsave(map
->hwlock
, UINT_MAX
,
468 &map
->spinlock_flags
);
471 static void regmap_unlock_hwlock(void *__map
)
473 struct regmap
*map
= __map
;
475 hwspin_unlock(map
->hwlock
);
478 static void regmap_unlock_hwlock_irq(void *__map
)
480 struct regmap
*map
= __map
;
482 hwspin_unlock_irq(map
->hwlock
);
485 static void regmap_unlock_hwlock_irqrestore(void *__map
)
487 struct regmap
*map
= __map
;
489 hwspin_unlock_irqrestore(map
->hwlock
, &map
->spinlock_flags
);
492 static void regmap_lock_unlock_none(void *__map
)
497 static void regmap_lock_mutex(void *__map
)
499 struct regmap
*map
= __map
;
500 mutex_lock(&map
->mutex
);
503 static void regmap_unlock_mutex(void *__map
)
505 struct regmap
*map
= __map
;
506 mutex_unlock(&map
->mutex
);
509 static void regmap_lock_spinlock(void *__map
)
510 __acquires(&map
->spinlock
)
512 struct regmap
*map
= __map
;
515 spin_lock_irqsave(&map
->spinlock
, flags
);
516 map
->spinlock_flags
= flags
;
519 static void regmap_unlock_spinlock(void *__map
)
520 __releases(&map
->spinlock
)
522 struct regmap
*map
= __map
;
523 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
526 static void dev_get_regmap_release(struct device
*dev
, void *res
)
529 * We don't actually have anything to do here; the goal here
530 * is not to manage the regmap but to provide a simple way to
531 * get the regmap back given a struct device.
535 static bool _regmap_range_add(struct regmap
*map
,
536 struct regmap_range_node
*data
)
538 struct rb_root
*root
= &map
->range_tree
;
539 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
542 struct regmap_range_node
*this =
543 rb_entry(*new, struct regmap_range_node
, node
);
546 if (data
->range_max
< this->range_min
)
547 new = &((*new)->rb_left
);
548 else if (data
->range_min
> this->range_max
)
549 new = &((*new)->rb_right
);
554 rb_link_node(&data
->node
, parent
, new);
555 rb_insert_color(&data
->node
, root
);
560 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
563 struct rb_node
*node
= map
->range_tree
.rb_node
;
566 struct regmap_range_node
*this =
567 rb_entry(node
, struct regmap_range_node
, node
);
569 if (reg
< this->range_min
)
570 node
= node
->rb_left
;
571 else if (reg
> this->range_max
)
572 node
= node
->rb_right
;
580 static void regmap_range_exit(struct regmap
*map
)
582 struct rb_node
*next
;
583 struct regmap_range_node
*range_node
;
585 next
= rb_first(&map
->range_tree
);
587 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
588 next
= rb_next(&range_node
->node
);
589 rb_erase(&range_node
->node
, &map
->range_tree
);
593 kfree(map
->selector_work_buf
);
596 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
597 const struct regmap_config
*config
)
603 regmap_debugfs_init(map
, config
->name
);
605 /* Add a devres resource for dev_get_regmap() */
606 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
608 regmap_debugfs_exit(map
);
616 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
618 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
619 const struct regmap_config
*config
)
621 enum regmap_endian endian
;
623 /* Retrieve the endianness specification from the regmap config */
624 endian
= config
->reg_format_endian
;
626 /* If the regmap config specified a non-default value, use that */
627 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
630 /* Retrieve the endianness specification from the bus config */
631 if (bus
&& bus
->reg_format_endian_default
)
632 endian
= bus
->reg_format_endian_default
;
634 /* If the bus specified a non-default value, use that */
635 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
638 /* Use this if no other value was found */
639 return REGMAP_ENDIAN_BIG
;
642 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
643 const struct regmap_bus
*bus
,
644 const struct regmap_config
*config
)
646 struct device_node
*np
;
647 enum regmap_endian endian
;
649 /* Retrieve the endianness specification from the regmap config */
650 endian
= config
->val_format_endian
;
652 /* If the regmap config specified a non-default value, use that */
653 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
656 /* If the dev and dev->of_node exist try to get endianness from DT */
657 if (dev
&& dev
->of_node
) {
660 /* Parse the device's DT node for an endianness specification */
661 if (of_property_read_bool(np
, "big-endian"))
662 endian
= REGMAP_ENDIAN_BIG
;
663 else if (of_property_read_bool(np
, "little-endian"))
664 endian
= REGMAP_ENDIAN_LITTLE
;
665 else if (of_property_read_bool(np
, "native-endian"))
666 endian
= REGMAP_ENDIAN_NATIVE
;
668 /* If the endianness was specified in DT, use that */
669 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
673 /* Retrieve the endianness specification from the bus config */
674 if (bus
&& bus
->val_format_endian_default
)
675 endian
= bus
->val_format_endian_default
;
677 /* If the bus specified a non-default value, use that */
678 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
681 /* Use this if no other value was found */
682 return REGMAP_ENDIAN_BIG
;
684 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
686 struct regmap
*__regmap_init(struct device
*dev
,
687 const struct regmap_bus
*bus
,
689 const struct regmap_config
*config
,
690 struct lock_class_key
*lock_key
,
691 const char *lock_name
)
695 enum regmap_endian reg_endian
, val_endian
;
701 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
708 map
->name
= kstrdup_const(config
->name
, GFP_KERNEL
);
715 if (config
->disable_locking
) {
716 map
->lock
= map
->unlock
= regmap_lock_unlock_none
;
717 regmap_debugfs_disable(map
);
718 } else if (config
->lock
&& config
->unlock
) {
719 map
->lock
= config
->lock
;
720 map
->unlock
= config
->unlock
;
721 map
->lock_arg
= config
->lock_arg
;
722 } else if (config
->use_hwlock
) {
723 map
->hwlock
= hwspin_lock_request_specific(config
->hwlock_id
);
729 switch (config
->hwlock_mode
) {
730 case HWLOCK_IRQSTATE
:
731 map
->lock
= regmap_lock_hwlock_irqsave
;
732 map
->unlock
= regmap_unlock_hwlock_irqrestore
;
735 map
->lock
= regmap_lock_hwlock_irq
;
736 map
->unlock
= regmap_unlock_hwlock_irq
;
739 map
->lock
= regmap_lock_hwlock
;
740 map
->unlock
= regmap_unlock_hwlock
;
746 if ((bus
&& bus
->fast_io
) ||
748 spin_lock_init(&map
->spinlock
);
749 map
->lock
= regmap_lock_spinlock
;
750 map
->unlock
= regmap_unlock_spinlock
;
751 lockdep_set_class_and_name(&map
->spinlock
,
752 lock_key
, lock_name
);
754 mutex_init(&map
->mutex
);
755 map
->lock
= regmap_lock_mutex
;
756 map
->unlock
= regmap_unlock_mutex
;
757 lockdep_set_class_and_name(&map
->mutex
,
758 lock_key
, lock_name
);
764 * When we write in fast-paths with regmap_bulk_write() don't allocate
765 * scratch buffers with sleeping allocations.
767 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
768 map
->alloc_flags
= GFP_ATOMIC
;
770 map
->alloc_flags
= GFP_KERNEL
;
772 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
773 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
774 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
775 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
776 config
->val_bits
+ config
->pad_bits
, 8);
777 map
->reg_shift
= config
->pad_bits
% 8;
778 if (config
->reg_stride
)
779 map
->reg_stride
= config
->reg_stride
;
782 if (is_power_of_2(map
->reg_stride
))
783 map
->reg_stride_order
= ilog2(map
->reg_stride
);
785 map
->reg_stride_order
= -1;
786 map
->use_single_read
= config
->use_single_read
|| !bus
|| !bus
->read
;
787 map
->use_single_write
= config
->use_single_write
|| !bus
|| !bus
->write
;
788 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
790 map
->max_raw_read
= bus
->max_raw_read
;
791 map
->max_raw_write
= bus
->max_raw_write
;
795 map
->bus_context
= bus_context
;
796 map
->max_register
= config
->max_register
;
797 map
->wr_table
= config
->wr_table
;
798 map
->rd_table
= config
->rd_table
;
799 map
->volatile_table
= config
->volatile_table
;
800 map
->precious_table
= config
->precious_table
;
801 map
->wr_noinc_table
= config
->wr_noinc_table
;
802 map
->rd_noinc_table
= config
->rd_noinc_table
;
803 map
->writeable_reg
= config
->writeable_reg
;
804 map
->readable_reg
= config
->readable_reg
;
805 map
->volatile_reg
= config
->volatile_reg
;
806 map
->precious_reg
= config
->precious_reg
;
807 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
808 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
809 map
->cache_type
= config
->cache_type
;
811 spin_lock_init(&map
->async_lock
);
812 INIT_LIST_HEAD(&map
->async_list
);
813 INIT_LIST_HEAD(&map
->async_free
);
814 init_waitqueue_head(&map
->async_waitq
);
816 if (config
->read_flag_mask
||
817 config
->write_flag_mask
||
818 config
->zero_flag_mask
) {
819 map
->read_flag_mask
= config
->read_flag_mask
;
820 map
->write_flag_mask
= config
->write_flag_mask
;
822 map
->read_flag_mask
= bus
->read_flag_mask
;
826 map
->reg_read
= config
->reg_read
;
827 map
->reg_write
= config
->reg_write
;
829 map
->defer_caching
= false;
830 goto skip_format_initialization
;
831 } else if (!bus
->read
|| !bus
->write
) {
832 map
->reg_read
= _regmap_bus_reg_read
;
833 map
->reg_write
= _regmap_bus_reg_write
;
835 map
->defer_caching
= false;
836 goto skip_format_initialization
;
838 map
->reg_read
= _regmap_bus_read
;
839 map
->reg_update_bits
= bus
->reg_update_bits
;
842 reg_endian
= regmap_get_reg_endian(bus
, config
);
843 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
845 switch (config
->reg_bits
+ map
->reg_shift
) {
847 switch (config
->val_bits
) {
849 map
->format
.format_write
= regmap_format_2_6_write
;
857 switch (config
->val_bits
) {
859 map
->format
.format_write
= regmap_format_4_12_write
;
867 switch (config
->val_bits
) {
869 map
->format
.format_write
= regmap_format_7_9_write
;
877 switch (config
->val_bits
) {
879 map
->format
.format_write
= regmap_format_10_14_write
;
887 map
->format
.format_reg
= regmap_format_8
;
891 switch (reg_endian
) {
892 case REGMAP_ENDIAN_BIG
:
893 map
->format
.format_reg
= regmap_format_16_be
;
895 case REGMAP_ENDIAN_LITTLE
:
896 map
->format
.format_reg
= regmap_format_16_le
;
898 case REGMAP_ENDIAN_NATIVE
:
899 map
->format
.format_reg
= regmap_format_16_native
;
907 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
909 map
->format
.format_reg
= regmap_format_24
;
913 switch (reg_endian
) {
914 case REGMAP_ENDIAN_BIG
:
915 map
->format
.format_reg
= regmap_format_32_be
;
917 case REGMAP_ENDIAN_LITTLE
:
918 map
->format
.format_reg
= regmap_format_32_le
;
920 case REGMAP_ENDIAN_NATIVE
:
921 map
->format
.format_reg
= regmap_format_32_native
;
930 switch (reg_endian
) {
931 case REGMAP_ENDIAN_BIG
:
932 map
->format
.format_reg
= regmap_format_64_be
;
934 case REGMAP_ENDIAN_LITTLE
:
935 map
->format
.format_reg
= regmap_format_64_le
;
937 case REGMAP_ENDIAN_NATIVE
:
938 map
->format
.format_reg
= regmap_format_64_native
;
950 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
951 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
953 switch (config
->val_bits
) {
955 map
->format
.format_val
= regmap_format_8
;
956 map
->format
.parse_val
= regmap_parse_8
;
957 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
960 switch (val_endian
) {
961 case REGMAP_ENDIAN_BIG
:
962 map
->format
.format_val
= regmap_format_16_be
;
963 map
->format
.parse_val
= regmap_parse_16_be
;
964 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
966 case REGMAP_ENDIAN_LITTLE
:
967 map
->format
.format_val
= regmap_format_16_le
;
968 map
->format
.parse_val
= regmap_parse_16_le
;
969 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
971 case REGMAP_ENDIAN_NATIVE
:
972 map
->format
.format_val
= regmap_format_16_native
;
973 map
->format
.parse_val
= regmap_parse_16_native
;
980 if (val_endian
!= REGMAP_ENDIAN_BIG
)
982 map
->format
.format_val
= regmap_format_24
;
983 map
->format
.parse_val
= regmap_parse_24
;
986 switch (val_endian
) {
987 case REGMAP_ENDIAN_BIG
:
988 map
->format
.format_val
= regmap_format_32_be
;
989 map
->format
.parse_val
= regmap_parse_32_be
;
990 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
992 case REGMAP_ENDIAN_LITTLE
:
993 map
->format
.format_val
= regmap_format_32_le
;
994 map
->format
.parse_val
= regmap_parse_32_le
;
995 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
997 case REGMAP_ENDIAN_NATIVE
:
998 map
->format
.format_val
= regmap_format_32_native
;
999 map
->format
.parse_val
= regmap_parse_32_native
;
1007 switch (val_endian
) {
1008 case REGMAP_ENDIAN_BIG
:
1009 map
->format
.format_val
= regmap_format_64_be
;
1010 map
->format
.parse_val
= regmap_parse_64_be
;
1011 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
1013 case REGMAP_ENDIAN_LITTLE
:
1014 map
->format
.format_val
= regmap_format_64_le
;
1015 map
->format
.parse_val
= regmap_parse_64_le
;
1016 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
1018 case REGMAP_ENDIAN_NATIVE
:
1019 map
->format
.format_val
= regmap_format_64_native
;
1020 map
->format
.parse_val
= regmap_parse_64_native
;
1029 if (map
->format
.format_write
) {
1030 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
1031 (val_endian
!= REGMAP_ENDIAN_BIG
))
1033 map
->use_single_write
= true;
1036 if (!map
->format
.format_write
&&
1037 !(map
->format
.format_reg
&& map
->format
.format_val
))
1040 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1041 if (map
->work_buf
== NULL
) {
1046 if (map
->format
.format_write
) {
1047 map
->defer_caching
= false;
1048 map
->reg_write
= _regmap_bus_formatted_write
;
1049 } else if (map
->format
.format_val
) {
1050 map
->defer_caching
= true;
1051 map
->reg_write
= _regmap_bus_raw_write
;
1054 skip_format_initialization
:
1056 map
->range_tree
= RB_ROOT
;
1057 for (i
= 0; i
< config
->num_ranges
; i
++) {
1058 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
1059 struct regmap_range_node
*new;
1062 if (range_cfg
->range_max
< range_cfg
->range_min
) {
1063 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
1064 range_cfg
->range_max
, range_cfg
->range_min
);
1068 if (range_cfg
->range_max
> map
->max_register
) {
1069 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
1070 range_cfg
->range_max
, map
->max_register
);
1074 if (range_cfg
->selector_reg
> map
->max_register
) {
1076 "Invalid range %d: selector out of map\n", i
);
1080 if (range_cfg
->window_len
== 0) {
1081 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
1086 /* Make sure, that this register range has no selector
1087 or data window within its boundary */
1088 for (j
= 0; j
< config
->num_ranges
; j
++) {
1089 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
1090 unsigned win_min
= config
->ranges
[j
].window_start
;
1091 unsigned win_max
= win_min
+
1092 config
->ranges
[j
].window_len
- 1;
1094 /* Allow data window inside its own virtual range */
1098 if (range_cfg
->range_min
<= sel_reg
&&
1099 sel_reg
<= range_cfg
->range_max
) {
1101 "Range %d: selector for %d in window\n",
1106 if (!(win_max
< range_cfg
->range_min
||
1107 win_min
> range_cfg
->range_max
)) {
1109 "Range %d: window for %d in window\n",
1115 new = kzalloc(sizeof(*new), GFP_KERNEL
);
1122 new->name
= range_cfg
->name
;
1123 new->range_min
= range_cfg
->range_min
;
1124 new->range_max
= range_cfg
->range_max
;
1125 new->selector_reg
= range_cfg
->selector_reg
;
1126 new->selector_mask
= range_cfg
->selector_mask
;
1127 new->selector_shift
= range_cfg
->selector_shift
;
1128 new->window_start
= range_cfg
->window_start
;
1129 new->window_len
= range_cfg
->window_len
;
1131 if (!_regmap_range_add(map
, new)) {
1132 dev_err(map
->dev
, "Failed to add range %d\n", i
);
1137 if (map
->selector_work_buf
== NULL
) {
1138 map
->selector_work_buf
=
1139 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1140 if (map
->selector_work_buf
== NULL
) {
1147 ret
= regcache_init(map
, config
);
1152 ret
= regmap_attach_dev(dev
, map
, config
);
1156 regmap_debugfs_init(map
, config
->name
);
1164 regmap_range_exit(map
);
1165 kfree(map
->work_buf
);
1168 hwspin_lock_free(map
->hwlock
);
1170 kfree_const(map
->name
);
1174 return ERR_PTR(ret
);
1176 EXPORT_SYMBOL_GPL(__regmap_init
);
1178 static void devm_regmap_release(struct device
*dev
, void *res
)
1180 regmap_exit(*(struct regmap
**)res
);
1183 struct regmap
*__devm_regmap_init(struct device
*dev
,
1184 const struct regmap_bus
*bus
,
1186 const struct regmap_config
*config
,
1187 struct lock_class_key
*lock_key
,
1188 const char *lock_name
)
1190 struct regmap
**ptr
, *regmap
;
1192 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1194 return ERR_PTR(-ENOMEM
);
1196 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1197 lock_key
, lock_name
);
1198 if (!IS_ERR(regmap
)) {
1200 devres_add(dev
, ptr
);
1207 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1209 static void regmap_field_init(struct regmap_field
*rm_field
,
1210 struct regmap
*regmap
, struct reg_field reg_field
)
1212 rm_field
->regmap
= regmap
;
1213 rm_field
->reg
= reg_field
.reg
;
1214 rm_field
->shift
= reg_field
.lsb
;
1215 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1216 rm_field
->id_size
= reg_field
.id_size
;
1217 rm_field
->id_offset
= reg_field
.id_offset
;
1221 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1223 * @dev: Device that will be interacted with
1224 * @regmap: regmap bank in which this register field is located.
1225 * @reg_field: Register field with in the bank.
1227 * The return value will be an ERR_PTR() on error or a valid pointer
1228 * to a struct regmap_field. The regmap_field will be automatically freed
1229 * by the device management code.
1231 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1232 struct regmap
*regmap
, struct reg_field reg_field
)
1234 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1235 sizeof(*rm_field
), GFP_KERNEL
);
1237 return ERR_PTR(-ENOMEM
);
1239 regmap_field_init(rm_field
, regmap
, reg_field
);
1244 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1247 * devm_regmap_field_free() - Free a register field allocated using
1248 * devm_regmap_field_alloc.
1250 * @dev: Device that will be interacted with
1251 * @field: regmap field which should be freed.
1253 * Free register field allocated using devm_regmap_field_alloc(). Usually
1254 * drivers need not call this function, as the memory allocated via devm
1255 * will be freed as per device-driver life-cyle.
1257 void devm_regmap_field_free(struct device
*dev
,
1258 struct regmap_field
*field
)
1260 devm_kfree(dev
, field
);
1262 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1265 * regmap_field_alloc() - Allocate and initialise a register field.
1267 * @regmap: regmap bank in which this register field is located.
1268 * @reg_field: Register field with in the bank.
1270 * The return value will be an ERR_PTR() on error or a valid pointer
1271 * to a struct regmap_field. The regmap_field should be freed by the
1272 * user once its finished working with it using regmap_field_free().
1274 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1275 struct reg_field reg_field
)
1277 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1280 return ERR_PTR(-ENOMEM
);
1282 regmap_field_init(rm_field
, regmap
, reg_field
);
1286 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1289 * regmap_field_free() - Free register field allocated using
1290 * regmap_field_alloc.
1292 * @field: regmap field which should be freed.
1294 void regmap_field_free(struct regmap_field
*field
)
1298 EXPORT_SYMBOL_GPL(regmap_field_free
);
1301 * regmap_reinit_cache() - Reinitialise the current register cache
1303 * @map: Register map to operate on.
1304 * @config: New configuration. Only the cache data will be used.
1306 * Discard any existing register cache for the map and initialize a
1307 * new cache. This can be used to restore the cache to defaults or to
1308 * update the cache configuration to reflect runtime discovery of the
1311 * No explicit locking is done here, the user needs to ensure that
1312 * this function will not race with other calls to regmap.
1314 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1317 regmap_debugfs_exit(map
);
1319 map
->max_register
= config
->max_register
;
1320 map
->writeable_reg
= config
->writeable_reg
;
1321 map
->readable_reg
= config
->readable_reg
;
1322 map
->volatile_reg
= config
->volatile_reg
;
1323 map
->precious_reg
= config
->precious_reg
;
1324 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
1325 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
1326 map
->cache_type
= config
->cache_type
;
1328 regmap_debugfs_init(map
, config
->name
);
1330 map
->cache_bypass
= false;
1331 map
->cache_only
= false;
1333 return regcache_init(map
, config
);
1335 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1338 * regmap_exit() - Free a previously allocated register map
1340 * @map: Register map to operate on.
1342 void regmap_exit(struct regmap
*map
)
1344 struct regmap_async
*async
;
1347 regmap_debugfs_exit(map
);
1348 regmap_range_exit(map
);
1349 if (map
->bus
&& map
->bus
->free_context
)
1350 map
->bus
->free_context(map
->bus_context
);
1351 kfree(map
->work_buf
);
1352 while (!list_empty(&map
->async_free
)) {
1353 async
= list_first_entry_or_null(&map
->async_free
,
1354 struct regmap_async
,
1356 list_del(&async
->list
);
1357 kfree(async
->work_buf
);
1361 hwspin_lock_free(map
->hwlock
);
1362 kfree_const(map
->name
);
1365 EXPORT_SYMBOL_GPL(regmap_exit
);
1367 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1369 struct regmap
**r
= res
;
1375 /* If the user didn't specify a name match any */
1377 return (*r
)->name
== data
;
1383 * dev_get_regmap() - Obtain the regmap (if any) for a device
1385 * @dev: Device to retrieve the map for
1386 * @name: Optional name for the register map, usually NULL.
1388 * Returns the regmap for the device if one is present, or NULL. If
1389 * name is specified then it must match the name specified when
1390 * registering the device, if it is NULL then the first regmap found
1391 * will be used. Devices with multiple register maps are very rare,
1392 * generic code should normally not need to specify a name.
1394 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1396 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1397 dev_get_regmap_match
, (void *)name
);
1403 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1406 * regmap_get_device() - Obtain the device from a regmap
1408 * @map: Register map to operate on.
1410 * Returns the underlying device that the regmap has been created for.
1412 struct device
*regmap_get_device(struct regmap
*map
)
1416 EXPORT_SYMBOL_GPL(regmap_get_device
);
1418 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1419 struct regmap_range_node
*range
,
1420 unsigned int val_num
)
1422 void *orig_work_buf
;
1423 unsigned int win_offset
;
1424 unsigned int win_page
;
1428 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1429 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1432 /* Bulk write shouldn't cross range boundary */
1433 if (*reg
+ val_num
- 1 > range
->range_max
)
1436 /* ... or single page boundary */
1437 if (val_num
> range
->window_len
- win_offset
)
1441 /* It is possible to have selector register inside data window.
1442 In that case, selector register is located on every page and
1443 it needs no page switching, when accessed alone. */
1445 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1446 /* Use separate work_buf during page switching */
1447 orig_work_buf
= map
->work_buf
;
1448 map
->work_buf
= map
->selector_work_buf
;
1450 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1451 range
->selector_mask
,
1452 win_page
<< range
->selector_shift
,
1455 map
->work_buf
= orig_work_buf
;
1461 *reg
= range
->window_start
+ win_offset
;
1466 static void regmap_set_work_buf_flag_mask(struct regmap
*map
, int max_bytes
,
1472 if (!mask
|| !map
->work_buf
)
1475 buf
= map
->work_buf
;
1477 for (i
= 0; i
< max_bytes
; i
++)
1478 buf
[i
] |= (mask
>> (8 * i
)) & 0xff;
1481 static int _regmap_raw_write_impl(struct regmap
*map
, unsigned int reg
,
1482 const void *val
, size_t val_len
)
1484 struct regmap_range_node
*range
;
1485 unsigned long flags
;
1486 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1487 map
->format
.pad_bytes
;
1489 int ret
= -ENOTSUPP
;
1495 /* Check for unwritable registers before we start */
1496 if (map
->writeable_reg
)
1497 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1498 if (!map
->writeable_reg(map
->dev
,
1499 reg
+ regmap_get_offset(map
, i
)))
1502 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1504 int val_bytes
= map
->format
.val_bytes
;
1505 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1506 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1507 ret
= regcache_write(map
,
1508 reg
+ regmap_get_offset(map
, i
),
1512 "Error in caching of register: %x ret: %d\n",
1517 if (map
->cache_only
) {
1518 map
->cache_dirty
= true;
1523 range
= _regmap_range_lookup(map
, reg
);
1525 int val_num
= val_len
/ map
->format
.val_bytes
;
1526 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1527 int win_residue
= range
->window_len
- win_offset
;
1529 /* If the write goes beyond the end of the window split it */
1530 while (val_num
> win_residue
) {
1531 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1532 win_residue
, val_len
/ map
->format
.val_bytes
);
1533 ret
= _regmap_raw_write_impl(map
, reg
, val
,
1535 map
->format
.val_bytes
);
1540 val_num
-= win_residue
;
1541 val
+= win_residue
* map
->format
.val_bytes
;
1542 val_len
-= win_residue
* map
->format
.val_bytes
;
1544 win_offset
= (reg
- range
->range_min
) %
1546 win_residue
= range
->window_len
- win_offset
;
1549 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1554 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1555 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
1556 map
->write_flag_mask
);
1559 * Essentially all I/O mechanisms will be faster with a single
1560 * buffer to write. Since register syncs often generate raw
1561 * writes of single registers optimise that case.
1563 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1564 memcpy(work_val
, val
, map
->format
.val_bytes
);
1568 if (map
->async
&& map
->bus
->async_write
) {
1569 struct regmap_async
*async
;
1571 trace_regmap_async_write_start(map
, reg
, val_len
);
1573 spin_lock_irqsave(&map
->async_lock
, flags
);
1574 async
= list_first_entry_or_null(&map
->async_free
,
1575 struct regmap_async
,
1578 list_del(&async
->list
);
1579 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1582 async
= map
->bus
->async_alloc();
1586 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1587 GFP_KERNEL
| GFP_DMA
);
1588 if (!async
->work_buf
) {
1596 /* If the caller supplied the value we can use it safely. */
1597 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1598 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1600 spin_lock_irqsave(&map
->async_lock
, flags
);
1601 list_add_tail(&async
->list
, &map
->async_list
);
1602 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1604 if (val
!= work_val
)
1605 ret
= map
->bus
->async_write(map
->bus_context
,
1607 map
->format
.reg_bytes
+
1608 map
->format
.pad_bytes
,
1609 val
, val_len
, async
);
1611 ret
= map
->bus
->async_write(map
->bus_context
,
1613 map
->format
.reg_bytes
+
1614 map
->format
.pad_bytes
+
1615 val_len
, NULL
, 0, async
);
1618 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1621 spin_lock_irqsave(&map
->async_lock
, flags
);
1622 list_move(&async
->list
, &map
->async_free
);
1623 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1629 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1631 /* If we're doing a single register write we can probably just
1632 * send the work_buf directly, otherwise try to do a gather
1635 if (val
== work_val
)
1636 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1637 map
->format
.reg_bytes
+
1638 map
->format
.pad_bytes
+
1640 else if (map
->bus
->gather_write
)
1641 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1642 map
->format
.reg_bytes
+
1643 map
->format
.pad_bytes
,
1646 /* If that didn't work fall back on linearising by hand. */
1647 if (ret
== -ENOTSUPP
) {
1648 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1649 buf
= kzalloc(len
, GFP_KERNEL
);
1653 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1654 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1656 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1659 } else if (ret
!= 0 && !map
->cache_bypass
&& map
->format
.parse_val
) {
1660 /* regcache_drop_region() takes lock that we already have,
1661 * thus call map->cache_ops->drop() directly
1663 if (map
->cache_ops
&& map
->cache_ops
->drop
)
1664 map
->cache_ops
->drop(map
, reg
, reg
+ 1);
1667 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1673 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1675 * @map: Map to check.
1677 bool regmap_can_raw_write(struct regmap
*map
)
1679 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1680 map
->format
.format_reg
;
1682 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1685 * regmap_get_raw_read_max - Get the maximum size we can read
1687 * @map: Map to check.
1689 size_t regmap_get_raw_read_max(struct regmap
*map
)
1691 return map
->max_raw_read
;
1693 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1696 * regmap_get_raw_write_max - Get the maximum size we can read
1698 * @map: Map to check.
1700 size_t regmap_get_raw_write_max(struct regmap
*map
)
1702 return map
->max_raw_write
;
1704 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1706 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1710 struct regmap_range_node
*range
;
1711 struct regmap
*map
= context
;
1713 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1715 range
= _regmap_range_lookup(map
, reg
);
1717 ret
= _regmap_select_page(map
, ®
, range
, 1);
1722 map
->format
.format_write(map
, reg
, val
);
1724 trace_regmap_hw_write_start(map
, reg
, 1);
1726 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1727 map
->format
.buf_size
);
1729 trace_regmap_hw_write_done(map
, reg
, 1);
1734 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1737 struct regmap
*map
= context
;
1739 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1742 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1745 struct regmap
*map
= context
;
1747 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1749 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1750 + map
->format
.pad_bytes
, val
, 0);
1751 return _regmap_raw_write_impl(map
, reg
,
1753 map
->format
.reg_bytes
+
1754 map
->format
.pad_bytes
,
1755 map
->format
.val_bytes
);
1758 static inline void *_regmap_map_get_context(struct regmap
*map
)
1760 return (map
->bus
) ? map
: map
->bus_context
;
1763 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1767 void *context
= _regmap_map_get_context(map
);
1769 if (!regmap_writeable(map
, reg
))
1772 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1773 ret
= regcache_write(map
, reg
, val
);
1776 if (map
->cache_only
) {
1777 map
->cache_dirty
= true;
1782 if (regmap_should_log(map
))
1783 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1785 trace_regmap_reg_write(map
, reg
, val
);
1787 return map
->reg_write(context
, reg
, val
);
1791 * regmap_write() - Write a value to a single register
1793 * @map: Register map to write to
1794 * @reg: Register to write to
1795 * @val: Value to be written
1797 * A value of zero will be returned on success, a negative errno will
1798 * be returned in error cases.
1800 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1804 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1807 map
->lock(map
->lock_arg
);
1809 ret
= _regmap_write(map
, reg
, val
);
1811 map
->unlock(map
->lock_arg
);
1815 EXPORT_SYMBOL_GPL(regmap_write
);
1818 * regmap_write_async() - Write a value to a single register asynchronously
1820 * @map: Register map to write to
1821 * @reg: Register to write to
1822 * @val: Value to be written
1824 * A value of zero will be returned on success, a negative errno will
1825 * be returned in error cases.
1827 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1831 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1834 map
->lock(map
->lock_arg
);
1838 ret
= _regmap_write(map
, reg
, val
);
1842 map
->unlock(map
->lock_arg
);
1846 EXPORT_SYMBOL_GPL(regmap_write_async
);
1848 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1849 const void *val
, size_t val_len
)
1851 size_t val_bytes
= map
->format
.val_bytes
;
1852 size_t val_count
= val_len
/ val_bytes
;
1853 size_t chunk_count
, chunk_bytes
;
1854 size_t chunk_regs
= val_count
;
1860 if (map
->use_single_write
)
1862 else if (map
->max_raw_write
&& val_len
> map
->max_raw_write
)
1863 chunk_regs
= map
->max_raw_write
/ val_bytes
;
1865 chunk_count
= val_count
/ chunk_regs
;
1866 chunk_bytes
= chunk_regs
* val_bytes
;
1868 /* Write as many bytes as possible with chunk_size */
1869 for (i
= 0; i
< chunk_count
; i
++) {
1870 ret
= _regmap_raw_write_impl(map
, reg
, val
, chunk_bytes
);
1874 reg
+= regmap_get_offset(map
, chunk_regs
);
1876 val_len
-= chunk_bytes
;
1879 /* Write remaining bytes */
1881 ret
= _regmap_raw_write_impl(map
, reg
, val
, val_len
);
1887 * regmap_raw_write() - Write raw values to one or more registers
1889 * @map: Register map to write to
1890 * @reg: Initial register to write to
1891 * @val: Block of data to be written, laid out for direct transmission to the
1893 * @val_len: Length of data pointed to by val.
1895 * This function is intended to be used for things like firmware
1896 * download where a large block of data needs to be transferred to the
1897 * device. No formatting will be done on the data provided.
1899 * A value of zero will be returned on success, a negative errno will
1900 * be returned in error cases.
1902 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1903 const void *val
, size_t val_len
)
1907 if (!regmap_can_raw_write(map
))
1909 if (val_len
% map
->format
.val_bytes
)
1912 map
->lock(map
->lock_arg
);
1914 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1916 map
->unlock(map
->lock_arg
);
1920 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1923 * regmap_noinc_write(): Write data from a register without incrementing the
1926 * @map: Register map to write to
1927 * @reg: Register to write to
1928 * @val: Pointer to data buffer
1929 * @val_len: Length of output buffer in bytes.
1931 * The regmap API usually assumes that bulk bus write operations will write a
1932 * range of registers. Some devices have certain registers for which a write
1933 * operation can write to an internal FIFO.
1935 * The target register must be volatile but registers after it can be
1936 * completely unrelated cacheable registers.
1938 * This will attempt multiple writes as required to write val_len bytes.
1940 * A value of zero will be returned on success, a negative errno will be
1941 * returned in error cases.
1943 int regmap_noinc_write(struct regmap
*map
, unsigned int reg
,
1944 const void *val
, size_t val_len
)
1951 if (!map
->bus
->write
)
1953 if (val_len
% map
->format
.val_bytes
)
1955 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1960 map
->lock(map
->lock_arg
);
1962 if (!regmap_volatile(map
, reg
) || !regmap_writeable_noinc(map
, reg
)) {
1968 if (map
->max_raw_write
&& map
->max_raw_write
< val_len
)
1969 write_len
= map
->max_raw_write
;
1971 write_len
= val_len
;
1972 ret
= _regmap_raw_write(map
, reg
, val
, write_len
);
1975 val
= ((u8
*)val
) + write_len
;
1976 val_len
-= write_len
;
1980 map
->unlock(map
->lock_arg
);
1983 EXPORT_SYMBOL_GPL(regmap_noinc_write
);
1986 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1989 * @field: Register field to write to
1990 * @mask: Bitmask to change
1991 * @val: Value to be written
1992 * @change: Boolean indicating if a write was done
1993 * @async: Boolean indicating asynchronously
1994 * @force: Boolean indicating use force update
1996 * Perform a read/modify/write cycle on the register field with change,
1997 * async, force option.
1999 * A value of zero will be returned on success, a negative errno will
2000 * be returned in error cases.
2002 int regmap_field_update_bits_base(struct regmap_field
*field
,
2003 unsigned int mask
, unsigned int val
,
2004 bool *change
, bool async
, bool force
)
2006 mask
= (mask
<< field
->shift
) & field
->mask
;
2008 return regmap_update_bits_base(field
->regmap
, field
->reg
,
2009 mask
, val
<< field
->shift
,
2010 change
, async
, force
);
2012 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
2015 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2016 * register field with port ID
2018 * @field: Register field to write to
2020 * @mask: Bitmask to change
2021 * @val: Value to be written
2022 * @change: Boolean indicating if a write was done
2023 * @async: Boolean indicating asynchronously
2024 * @force: Boolean indicating use force update
2026 * A value of zero will be returned on success, a negative errno will
2027 * be returned in error cases.
2029 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
2030 unsigned int mask
, unsigned int val
,
2031 bool *change
, bool async
, bool force
)
2033 if (id
>= field
->id_size
)
2036 mask
= (mask
<< field
->shift
) & field
->mask
;
2038 return regmap_update_bits_base(field
->regmap
,
2039 field
->reg
+ (field
->id_offset
* id
),
2040 mask
, val
<< field
->shift
,
2041 change
, async
, force
);
2043 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
2046 * regmap_bulk_write() - Write multiple registers to the device
2048 * @map: Register map to write to
2049 * @reg: First register to be write from
2050 * @val: Block of data to be written, in native register size for device
2051 * @val_count: Number of registers to write
2053 * This function is intended to be used for writing a large block of
2054 * data to the device either in single transfer or multiple transfer.
2056 * A value of zero will be returned on success, a negative errno will
2057 * be returned in error cases.
2059 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
2063 size_t val_bytes
= map
->format
.val_bytes
;
2065 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2069 * Some devices don't support bulk write, for them we have a series of
2070 * single write operations.
2072 if (!map
->bus
|| !map
->format
.parse_inplace
) {
2073 map
->lock(map
->lock_arg
);
2074 for (i
= 0; i
< val_count
; i
++) {
2077 switch (val_bytes
) {
2079 ival
= *(u8
*)(val
+ (i
* val_bytes
));
2082 ival
= *(u16
*)(val
+ (i
* val_bytes
));
2085 ival
= *(u32
*)(val
+ (i
* val_bytes
));
2089 ival
= *(u64
*)(val
+ (i
* val_bytes
));
2097 ret
= _regmap_write(map
,
2098 reg
+ regmap_get_offset(map
, i
),
2104 map
->unlock(map
->lock_arg
);
2108 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
2112 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2113 map
->format
.parse_inplace(wval
+ i
);
2115 ret
= regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
2121 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
2124 * _regmap_raw_multi_reg_write()
2126 * the (register,newvalue) pairs in regs have not been formatted, but
2127 * they are all in the same page and have been changed to being page
2128 * relative. The page register has been written if that was necessary.
2130 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
2131 const struct reg_sequence
*regs
,
2138 size_t val_bytes
= map
->format
.val_bytes
;
2139 size_t reg_bytes
= map
->format
.reg_bytes
;
2140 size_t pad_bytes
= map
->format
.pad_bytes
;
2141 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
2142 size_t len
= pair_size
* num_regs
;
2147 buf
= kzalloc(len
, GFP_KERNEL
);
2151 /* We have to linearise by hand. */
2155 for (i
= 0; i
< num_regs
; i
++) {
2156 unsigned int reg
= regs
[i
].reg
;
2157 unsigned int val
= regs
[i
].def
;
2158 trace_regmap_hw_write_start(map
, reg
, 1);
2159 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
2160 u8
+= reg_bytes
+ pad_bytes
;
2161 map
->format
.format_val(u8
, val
, 0);
2165 *u8
|= map
->write_flag_mask
;
2167 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
2171 for (i
= 0; i
< num_regs
; i
++) {
2172 int reg
= regs
[i
].reg
;
2173 trace_regmap_hw_write_done(map
, reg
, 1);
2178 static unsigned int _regmap_register_page(struct regmap
*map
,
2180 struct regmap_range_node
*range
)
2182 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
2187 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
2188 struct reg_sequence
*regs
,
2193 struct reg_sequence
*base
;
2194 unsigned int this_page
= 0;
2195 unsigned int page_change
= 0;
2197 * the set of registers are not neccessarily in order, but
2198 * since the order of write must be preserved this algorithm
2199 * chops the set each time the page changes. This also applies
2200 * if there is a delay required at any point in the sequence.
2203 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
2204 unsigned int reg
= regs
[i
].reg
;
2205 struct regmap_range_node
*range
;
2207 range
= _regmap_range_lookup(map
, reg
);
2209 unsigned int win_page
= _regmap_register_page(map
, reg
,
2213 this_page
= win_page
;
2214 if (win_page
!= this_page
) {
2215 this_page
= win_page
;
2220 /* If we have both a page change and a delay make sure to
2221 * write the regs and apply the delay before we change the
2225 if (page_change
|| regs
[i
].delay_us
) {
2227 /* For situations where the first write requires
2228 * a delay we need to make sure we don't call
2229 * raw_multi_reg_write with n=0
2230 * This can't occur with page breaks as we
2231 * never write on the first iteration
2233 if (regs
[i
].delay_us
&& i
== 0)
2236 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2240 if (regs
[i
].delay_us
)
2241 udelay(regs
[i
].delay_us
);
2247 ret
= _regmap_select_page(map
,
2260 return _regmap_raw_multi_reg_write(map
, base
, n
);
2264 static int _regmap_multi_reg_write(struct regmap
*map
,
2265 const struct reg_sequence
*regs
,
2271 if (!map
->can_multi_write
) {
2272 for (i
= 0; i
< num_regs
; i
++) {
2273 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2277 if (regs
[i
].delay_us
)
2278 udelay(regs
[i
].delay_us
);
2283 if (!map
->format
.parse_inplace
)
2286 if (map
->writeable_reg
)
2287 for (i
= 0; i
< num_regs
; i
++) {
2288 int reg
= regs
[i
].reg
;
2289 if (!map
->writeable_reg(map
->dev
, reg
))
2291 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2295 if (!map
->cache_bypass
) {
2296 for (i
= 0; i
< num_regs
; i
++) {
2297 unsigned int val
= regs
[i
].def
;
2298 unsigned int reg
= regs
[i
].reg
;
2299 ret
= regcache_write(map
, reg
, val
);
2302 "Error in caching of register: %x ret: %d\n",
2307 if (map
->cache_only
) {
2308 map
->cache_dirty
= true;
2315 for (i
= 0; i
< num_regs
; i
++) {
2316 unsigned int reg
= regs
[i
].reg
;
2317 struct regmap_range_node
*range
;
2319 /* Coalesce all the writes between a page break or a delay
2322 range
= _regmap_range_lookup(map
, reg
);
2323 if (range
|| regs
[i
].delay_us
) {
2324 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2325 struct reg_sequence
*base
= kmemdup(regs
, len
,
2329 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2336 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2340 * regmap_multi_reg_write() - Write multiple registers to the device
2342 * @map: Register map to write to
2343 * @regs: Array of structures containing register,value to be written
2344 * @num_regs: Number of registers to write
2346 * Write multiple registers to the device where the set of register, value
2347 * pairs are supplied in any order, possibly not all in a single range.
2349 * The 'normal' block write mode will send ultimately send data on the
2350 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2351 * addressed. However, this alternative block multi write mode will send
2352 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2353 * must of course support the mode.
2355 * A value of zero will be returned on success, a negative errno will be
2356 * returned in error cases.
2358 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2363 map
->lock(map
->lock_arg
);
2365 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2367 map
->unlock(map
->lock_arg
);
2371 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2374 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2375 * device but not the cache
2377 * @map: Register map to write to
2378 * @regs: Array of structures containing register,value to be written
2379 * @num_regs: Number of registers to write
2381 * Write multiple registers to the device but not the cache where the set
2382 * of register are supplied in any order.
2384 * This function is intended to be used for writing a large block of data
2385 * atomically to the device in single transfer for those I2C client devices
2386 * that implement this alternative block write mode.
2388 * A value of zero will be returned on success, a negative errno will
2389 * be returned in error cases.
2391 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2392 const struct reg_sequence
*regs
,
2398 map
->lock(map
->lock_arg
);
2400 bypass
= map
->cache_bypass
;
2401 map
->cache_bypass
= true;
2403 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2405 map
->cache_bypass
= bypass
;
2407 map
->unlock(map
->lock_arg
);
2411 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2414 * regmap_raw_write_async() - Write raw values to one or more registers
2417 * @map: Register map to write to
2418 * @reg: Initial register to write to
2419 * @val: Block of data to be written, laid out for direct transmission to the
2420 * device. Must be valid until regmap_async_complete() is called.
2421 * @val_len: Length of data pointed to by val.
2423 * This function is intended to be used for things like firmware
2424 * download where a large block of data needs to be transferred to the
2425 * device. No formatting will be done on the data provided.
2427 * If supported by the underlying bus the write will be scheduled
2428 * asynchronously, helping maximise I/O speed on higher speed buses
2429 * like SPI. regmap_async_complete() can be called to ensure that all
2430 * asynchrnous writes have been completed.
2432 * A value of zero will be returned on success, a negative errno will
2433 * be returned in error cases.
2435 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2436 const void *val
, size_t val_len
)
2440 if (val_len
% map
->format
.val_bytes
)
2442 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2445 map
->lock(map
->lock_arg
);
2449 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2453 map
->unlock(map
->lock_arg
);
2457 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2459 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2460 unsigned int val_len
)
2462 struct regmap_range_node
*range
;
2467 if (!map
->bus
|| !map
->bus
->read
)
2470 range
= _regmap_range_lookup(map
, reg
);
2472 ret
= _regmap_select_page(map
, ®
, range
,
2473 val_len
/ map
->format
.val_bytes
);
2478 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2479 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
2480 map
->read_flag_mask
);
2481 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2483 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2484 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2487 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2492 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2495 struct regmap
*map
= context
;
2497 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2500 static int _regmap_bus_read(void *context
, unsigned int reg
,
2504 struct regmap
*map
= context
;
2505 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
2506 map
->format
.pad_bytes
;
2508 if (!map
->format
.parse_val
)
2511 ret
= _regmap_raw_read(map
, reg
, work_val
, map
->format
.val_bytes
);
2513 *val
= map
->format
.parse_val(work_val
);
2518 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2522 void *context
= _regmap_map_get_context(map
);
2524 if (!map
->cache_bypass
) {
2525 ret
= regcache_read(map
, reg
, val
);
2530 if (map
->cache_only
)
2533 if (!regmap_readable(map
, reg
))
2536 ret
= map
->reg_read(context
, reg
, val
);
2538 if (regmap_should_log(map
))
2539 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2541 trace_regmap_reg_read(map
, reg
, *val
);
2543 if (!map
->cache_bypass
)
2544 regcache_write(map
, reg
, *val
);
2551 * regmap_read() - Read a value from a single register
2553 * @map: Register map to read from
2554 * @reg: Register to be read from
2555 * @val: Pointer to store read value
2557 * A value of zero will be returned on success, a negative errno will
2558 * be returned in error cases.
2560 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2564 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2567 map
->lock(map
->lock_arg
);
2569 ret
= _regmap_read(map
, reg
, val
);
2571 map
->unlock(map
->lock_arg
);
2575 EXPORT_SYMBOL_GPL(regmap_read
);
2578 * regmap_raw_read() - Read raw data from the device
2580 * @map: Register map to read from
2581 * @reg: First register to be read from
2582 * @val: Pointer to store read value
2583 * @val_len: Size of data to read
2585 * A value of zero will be returned on success, a negative errno will
2586 * be returned in error cases.
2588 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2591 size_t val_bytes
= map
->format
.val_bytes
;
2592 size_t val_count
= val_len
/ val_bytes
;
2598 if (val_len
% map
->format
.val_bytes
)
2600 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2605 map
->lock(map
->lock_arg
);
2607 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2608 map
->cache_type
== REGCACHE_NONE
) {
2609 size_t chunk_count
, chunk_bytes
;
2610 size_t chunk_regs
= val_count
;
2612 if (!map
->bus
->read
) {
2617 if (map
->use_single_read
)
2619 else if (map
->max_raw_read
&& val_len
> map
->max_raw_read
)
2620 chunk_regs
= map
->max_raw_read
/ val_bytes
;
2622 chunk_count
= val_count
/ chunk_regs
;
2623 chunk_bytes
= chunk_regs
* val_bytes
;
2625 /* Read bytes that fit into whole chunks */
2626 for (i
= 0; i
< chunk_count
; i
++) {
2627 ret
= _regmap_raw_read(map
, reg
, val
, chunk_bytes
);
2631 reg
+= regmap_get_offset(map
, chunk_regs
);
2633 val_len
-= chunk_bytes
;
2636 /* Read remaining bytes */
2638 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2643 /* Otherwise go word by word for the cache; should be low
2644 * cost as we expect to hit the cache.
2646 for (i
= 0; i
< val_count
; i
++) {
2647 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2652 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2657 map
->unlock(map
->lock_arg
);
2661 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2664 * regmap_noinc_read(): Read data from a register without incrementing the
2667 * @map: Register map to read from
2668 * @reg: Register to read from
2669 * @val: Pointer to data buffer
2670 * @val_len: Length of output buffer in bytes.
2672 * The regmap API usually assumes that bulk bus read operations will read a
2673 * range of registers. Some devices have certain registers for which a read
2674 * operation read will read from an internal FIFO.
2676 * The target register must be volatile but registers after it can be
2677 * completely unrelated cacheable registers.
2679 * This will attempt multiple reads as required to read val_len bytes.
2681 * A value of zero will be returned on success, a negative errno will be
2682 * returned in error cases.
2684 int regmap_noinc_read(struct regmap
*map
, unsigned int reg
,
2685 void *val
, size_t val_len
)
2692 if (!map
->bus
->read
)
2694 if (val_len
% map
->format
.val_bytes
)
2696 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2701 map
->lock(map
->lock_arg
);
2703 if (!regmap_volatile(map
, reg
) || !regmap_readable_noinc(map
, reg
)) {
2709 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
)
2710 read_len
= map
->max_raw_read
;
2713 ret
= _regmap_raw_read(map
, reg
, val
, read_len
);
2716 val
= ((u8
*)val
) + read_len
;
2717 val_len
-= read_len
;
2721 map
->unlock(map
->lock_arg
);
2724 EXPORT_SYMBOL_GPL(regmap_noinc_read
);
2727 * regmap_field_read(): Read a value to a single register field
2729 * @field: Register field to read from
2730 * @val: Pointer to store read value
2732 * A value of zero will be returned on success, a negative errno will
2733 * be returned in error cases.
2735 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2738 unsigned int reg_val
;
2739 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2743 reg_val
&= field
->mask
;
2744 reg_val
>>= field
->shift
;
2749 EXPORT_SYMBOL_GPL(regmap_field_read
);
2752 * regmap_fields_read() - Read a value to a single register field with port ID
2754 * @field: Register field to read from
2756 * @val: Pointer to store read value
2758 * A value of zero will be returned on success, a negative errno will
2759 * be returned in error cases.
2761 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2765 unsigned int reg_val
;
2767 if (id
>= field
->id_size
)
2770 ret
= regmap_read(field
->regmap
,
2771 field
->reg
+ (field
->id_offset
* id
),
2776 reg_val
&= field
->mask
;
2777 reg_val
>>= field
->shift
;
2782 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2785 * regmap_bulk_read() - Read multiple registers from the device
2787 * @map: Register map to read from
2788 * @reg: First register to be read from
2789 * @val: Pointer to store read value, in native register size for device
2790 * @val_count: Number of registers to read
2792 * A value of zero will be returned on success, a negative errno will
2793 * be returned in error cases.
2795 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2799 size_t val_bytes
= map
->format
.val_bytes
;
2800 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2802 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2807 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2808 ret
= regmap_raw_read(map
, reg
, val
, val_bytes
* val_count
);
2812 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2813 map
->format
.parse_inplace(val
+ i
);
2822 map
->lock(map
->lock_arg
);
2824 for (i
= 0; i
< val_count
; i
++) {
2827 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2832 switch (map
->format
.val_bytes
) {
2854 map
->unlock(map
->lock_arg
);
2859 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2861 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2862 unsigned int mask
, unsigned int val
,
2863 bool *change
, bool force_write
)
2866 unsigned int tmp
, orig
;
2871 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2872 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2873 if (ret
== 0 && change
)
2876 ret
= _regmap_read(map
, reg
, &orig
);
2883 if (force_write
|| (tmp
!= orig
)) {
2884 ret
= _regmap_write(map
, reg
, tmp
);
2885 if (ret
== 0 && change
)
2894 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2896 * @map: Register map to update
2897 * @reg: Register to update
2898 * @mask: Bitmask to change
2899 * @val: New value for bitmask
2900 * @change: Boolean indicating if a write was done
2901 * @async: Boolean indicating asynchronously
2902 * @force: Boolean indicating use force update
2904 * Perform a read/modify/write cycle on a register map with change, async, force
2909 * With most buses the read must be done synchronously so this is most useful
2910 * for devices with a cache which do not need to interact with the hardware to
2911 * determine the current register value.
2913 * Returns zero for success, a negative number on error.
2915 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2916 unsigned int mask
, unsigned int val
,
2917 bool *change
, bool async
, bool force
)
2921 map
->lock(map
->lock_arg
);
2925 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2929 map
->unlock(map
->lock_arg
);
2933 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2935 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2937 struct regmap
*map
= async
->map
;
2940 trace_regmap_async_io_complete(map
);
2942 spin_lock(&map
->async_lock
);
2943 list_move(&async
->list
, &map
->async_free
);
2944 wake
= list_empty(&map
->async_list
);
2947 map
->async_ret
= ret
;
2949 spin_unlock(&map
->async_lock
);
2952 wake_up(&map
->async_waitq
);
2954 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2956 static int regmap_async_is_done(struct regmap
*map
)
2958 unsigned long flags
;
2961 spin_lock_irqsave(&map
->async_lock
, flags
);
2962 ret
= list_empty(&map
->async_list
);
2963 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2969 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2971 * @map: Map to operate on.
2973 * Blocks until any pending asynchronous I/O has completed. Returns
2974 * an error code for any failed I/O operations.
2976 int regmap_async_complete(struct regmap
*map
)
2978 unsigned long flags
;
2981 /* Nothing to do with no async support */
2982 if (!map
->bus
|| !map
->bus
->async_write
)
2985 trace_regmap_async_complete_start(map
);
2987 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2989 spin_lock_irqsave(&map
->async_lock
, flags
);
2990 ret
= map
->async_ret
;
2992 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2994 trace_regmap_async_complete_done(map
);
2998 EXPORT_SYMBOL_GPL(regmap_async_complete
);
3001 * regmap_register_patch - Register and apply register updates to be applied
3002 * on device initialistion
3004 * @map: Register map to apply updates to.
3005 * @regs: Values to update.
3006 * @num_regs: Number of entries in regs.
3008 * Register a set of register updates to be applied to the device
3009 * whenever the device registers are synchronised with the cache and
3010 * apply them immediately. Typically this is used to apply
3011 * corrections to be applied to the device defaults on startup, such
3012 * as the updates some vendors provide to undocumented registers.
3014 * The caller must ensure that this function cannot be called
3015 * concurrently with either itself or regcache_sync().
3017 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
3020 struct reg_sequence
*p
;
3024 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
3028 p
= krealloc(map
->patch
,
3029 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
3032 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
3034 map
->patch_regs
+= num_regs
;
3039 map
->lock(map
->lock_arg
);
3041 bypass
= map
->cache_bypass
;
3043 map
->cache_bypass
= true;
3046 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
3049 map
->cache_bypass
= bypass
;
3051 map
->unlock(map
->lock_arg
);
3053 regmap_async_complete(map
);
3057 EXPORT_SYMBOL_GPL(regmap_register_patch
);
3060 * regmap_get_val_bytes() - Report the size of a register value
3062 * @map: Register map to operate on.
3064 * Report the size of a register value, mainly intended to for use by
3065 * generic infrastructure built on top of regmap.
3067 int regmap_get_val_bytes(struct regmap
*map
)
3069 if (map
->format
.format_write
)
3072 return map
->format
.val_bytes
;
3074 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
3077 * regmap_get_max_register() - Report the max register value
3079 * @map: Register map to operate on.
3081 * Report the max register value, mainly intended to for use by
3082 * generic infrastructure built on top of regmap.
3084 int regmap_get_max_register(struct regmap
*map
)
3086 return map
->max_register
? map
->max_register
: -EINVAL
;
3088 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
3091 * regmap_get_reg_stride() - Report the register address stride
3093 * @map: Register map to operate on.
3095 * Report the register address stride, mainly intended to for use by
3096 * generic infrastructure built on top of regmap.
3098 int regmap_get_reg_stride(struct regmap
*map
)
3100 return map
->reg_stride
;
3102 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
3104 int regmap_parse_val(struct regmap
*map
, const void *buf
,
3107 if (!map
->format
.parse_val
)
3110 *val
= map
->format
.parse_val(buf
);
3114 EXPORT_SYMBOL_GPL(regmap_parse_val
);
3116 static int __init
regmap_initcall(void)
3118 regmap_debugfs_initcall();
3122 postcore_initcall(regmap_initcall
);