2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blk-mq.h>
92 #include <linux/mutex.h>
93 #include <linux/ata.h>
94 #include <linux/hdreg.h>
95 #include <linux/platform_device.h>
96 #if defined(CONFIG_OF)
97 #include <linux/of_address.h>
98 #include <linux/of_device.h>
99 #include <linux/of_platform.h>
102 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
103 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
104 MODULE_LICENSE("GPL");
106 /* SystemACE register definitions */
107 #define ACE_BUSMODE (0x00)
109 #define ACE_STATUS (0x04)
110 #define ACE_STATUS_CFGLOCK (0x00000001)
111 #define ACE_STATUS_MPULOCK (0x00000002)
112 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
113 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
114 #define ACE_STATUS_CFDETECT (0x00000010)
115 #define ACE_STATUS_DATABUFRDY (0x00000020)
116 #define ACE_STATUS_DATABUFMODE (0x00000040)
117 #define ACE_STATUS_CFGDONE (0x00000080)
118 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
119 #define ACE_STATUS_CFGMODEPIN (0x00000200)
120 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
121 #define ACE_STATUS_CFBSY (0x00020000)
122 #define ACE_STATUS_CFRDY (0x00040000)
123 #define ACE_STATUS_CFDWF (0x00080000)
124 #define ACE_STATUS_CFDSC (0x00100000)
125 #define ACE_STATUS_CFDRQ (0x00200000)
126 #define ACE_STATUS_CFCORR (0x00400000)
127 #define ACE_STATUS_CFERR (0x00800000)
129 #define ACE_ERROR (0x08)
130 #define ACE_CFGLBA (0x0c)
131 #define ACE_MPULBA (0x10)
133 #define ACE_SECCNTCMD (0x14)
134 #define ACE_SECCNTCMD_RESET (0x0100)
135 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
136 #define ACE_SECCNTCMD_READ_DATA (0x0300)
137 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
138 #define ACE_SECCNTCMD_ABORT (0x0600)
140 #define ACE_VERSION (0x16)
141 #define ACE_VERSION_REVISION_MASK (0x00FF)
142 #define ACE_VERSION_MINOR_MASK (0x0F00)
143 #define ACE_VERSION_MAJOR_MASK (0xF000)
145 #define ACE_CTRL (0x18)
146 #define ACE_CTRL_FORCELOCKREQ (0x0001)
147 #define ACE_CTRL_LOCKREQ (0x0002)
148 #define ACE_CTRL_FORCECFGADDR (0x0004)
149 #define ACE_CTRL_FORCECFGMODE (0x0008)
150 #define ACE_CTRL_CFGMODE (0x0010)
151 #define ACE_CTRL_CFGSTART (0x0020)
152 #define ACE_CTRL_CFGSEL (0x0040)
153 #define ACE_CTRL_CFGRESET (0x0080)
154 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
155 #define ACE_CTRL_ERRORIRQ (0x0200)
156 #define ACE_CTRL_CFGDONEIRQ (0x0400)
157 #define ACE_CTRL_RESETIRQ (0x0800)
158 #define ACE_CTRL_CFGPROG (0x1000)
159 #define ACE_CTRL_CFGADDR_MASK (0xe000)
161 #define ACE_FATSTAT (0x1c)
163 #define ACE_NUM_MINORS 16
164 #define ACE_SECTOR_SIZE (512)
165 #define ACE_FIFO_SIZE (32)
166 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
168 #define ACE_BUS_WIDTH_8 0
169 #define ACE_BUS_WIDTH_16 1
174 /* driver state data */
178 struct list_head list
;
180 /* finite state machine data */
181 struct tasklet_struct fsm_tasklet
;
182 uint fsm_task
; /* Current activity (ACE_TASK_*) */
183 uint fsm_state
; /* Current state (ACE_FSM_STATE_*) */
184 uint fsm_continue_flag
; /* cleared to exit FSM mainloop */
186 struct timer_list stall_timer
;
188 /* Transfer state/result, use for both id and block request */
189 struct request
*req
; /* request being processed */
190 void *data_ptr
; /* pointer to I/O buffer */
191 int data_count
; /* number of buffers remaining */
192 int data_result
; /* Result of transfer; 0 := success */
194 int id_req_count
; /* count of id requests */
196 struct completion id_completion
; /* used when id req finishes */
199 /* Details of hardware device */
200 resource_size_t physaddr
;
201 void __iomem
*baseaddr
;
203 int bus_width
; /* 0 := 8 bit; 1 := 16 bit */
204 struct ace_reg_ops
*reg_ops
;
207 /* Block device data structures */
210 struct request_queue
*queue
;
212 struct blk_mq_tag_set tag_set
;
213 struct list_head rq_list
;
215 /* Inserted CF card parameters */
216 u16 cf_id
[ATA_ID_WORDS
];
219 static DEFINE_MUTEX(xsysace_mutex
);
220 static int ace_major
;
222 /* ---------------------------------------------------------------------
223 * Low level register access
227 u16(*in
) (struct ace_device
* ace
, int reg
);
228 void (*out
) (struct ace_device
* ace
, int reg
, u16 val
);
229 void (*datain
) (struct ace_device
* ace
);
230 void (*dataout
) (struct ace_device
* ace
);
233 /* 8 Bit bus width */
234 static u16
ace_in_8(struct ace_device
*ace
, int reg
)
236 void __iomem
*r
= ace
->baseaddr
+ reg
;
237 return in_8(r
) | (in_8(r
+ 1) << 8);
240 static void ace_out_8(struct ace_device
*ace
, int reg
, u16 val
)
242 void __iomem
*r
= ace
->baseaddr
+ reg
;
244 out_8(r
+ 1, val
>> 8);
247 static void ace_datain_8(struct ace_device
*ace
)
249 void __iomem
*r
= ace
->baseaddr
+ 0x40;
250 u8
*dst
= ace
->data_ptr
;
251 int i
= ACE_FIFO_SIZE
;
257 static void ace_dataout_8(struct ace_device
*ace
)
259 void __iomem
*r
= ace
->baseaddr
+ 0x40;
260 u8
*src
= ace
->data_ptr
;
261 int i
= ACE_FIFO_SIZE
;
267 static struct ace_reg_ops ace_reg_8_ops
= {
270 .datain
= ace_datain_8
,
271 .dataout
= ace_dataout_8
,
274 /* 16 bit big endian bus attachment */
275 static u16
ace_in_be16(struct ace_device
*ace
, int reg
)
277 return in_be16(ace
->baseaddr
+ reg
);
280 static void ace_out_be16(struct ace_device
*ace
, int reg
, u16 val
)
282 out_be16(ace
->baseaddr
+ reg
, val
);
285 static void ace_datain_be16(struct ace_device
*ace
)
287 int i
= ACE_FIFO_SIZE
/ 2;
288 u16
*dst
= ace
->data_ptr
;
290 *dst
++ = in_le16(ace
->baseaddr
+ 0x40);
294 static void ace_dataout_be16(struct ace_device
*ace
)
296 int i
= ACE_FIFO_SIZE
/ 2;
297 u16
*src
= ace
->data_ptr
;
299 out_le16(ace
->baseaddr
+ 0x40, *src
++);
303 /* 16 bit little endian bus attachment */
304 static u16
ace_in_le16(struct ace_device
*ace
, int reg
)
306 return in_le16(ace
->baseaddr
+ reg
);
309 static void ace_out_le16(struct ace_device
*ace
, int reg
, u16 val
)
311 out_le16(ace
->baseaddr
+ reg
, val
);
314 static void ace_datain_le16(struct ace_device
*ace
)
316 int i
= ACE_FIFO_SIZE
/ 2;
317 u16
*dst
= ace
->data_ptr
;
319 *dst
++ = in_be16(ace
->baseaddr
+ 0x40);
323 static void ace_dataout_le16(struct ace_device
*ace
)
325 int i
= ACE_FIFO_SIZE
/ 2;
326 u16
*src
= ace
->data_ptr
;
328 out_be16(ace
->baseaddr
+ 0x40, *src
++);
332 static struct ace_reg_ops ace_reg_be16_ops
= {
335 .datain
= ace_datain_be16
,
336 .dataout
= ace_dataout_be16
,
339 static struct ace_reg_ops ace_reg_le16_ops
= {
342 .datain
= ace_datain_le16
,
343 .dataout
= ace_dataout_le16
,
346 static inline u16
ace_in(struct ace_device
*ace
, int reg
)
348 return ace
->reg_ops
->in(ace
, reg
);
351 static inline u32
ace_in32(struct ace_device
*ace
, int reg
)
353 return ace_in(ace
, reg
) | (ace_in(ace
, reg
+ 2) << 16);
356 static inline void ace_out(struct ace_device
*ace
, int reg
, u16 val
)
358 ace
->reg_ops
->out(ace
, reg
, val
);
361 static inline void ace_out32(struct ace_device
*ace
, int reg
, u32 val
)
363 ace_out(ace
, reg
, val
);
364 ace_out(ace
, reg
+ 2, val
>> 16);
367 /* ---------------------------------------------------------------------
368 * Debug support functions
372 static void ace_dump_mem(void *base
, int len
)
374 const char *ptr
= base
;
377 for (i
= 0; i
< len
; i
+= 16) {
378 printk(KERN_INFO
"%.8x:", i
);
379 for (j
= 0; j
< 16; j
++) {
382 printk("%.2x", ptr
[i
+ j
]);
385 for (j
= 0; j
< 16; j
++)
386 printk("%c", isprint(ptr
[i
+ j
]) ? ptr
[i
+ j
] : '.');
391 static inline void ace_dump_mem(void *base
, int len
)
396 static void ace_dump_regs(struct ace_device
*ace
)
399 " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
400 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
401 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
402 ace_in32(ace
, ACE_CTRL
),
403 ace_in(ace
, ACE_SECCNTCMD
),
404 ace_in(ace
, ACE_VERSION
),
405 ace_in32(ace
, ACE_STATUS
),
406 ace_in32(ace
, ACE_MPULBA
),
407 ace_in(ace
, ACE_BUSMODE
),
408 ace_in32(ace
, ACE_ERROR
),
409 ace_in32(ace
, ACE_CFGLBA
), ace_in(ace
, ACE_FATSTAT
));
412 static void ace_fix_driveid(u16
*id
)
414 #if defined(__BIG_ENDIAN)
417 /* All half words have wrong byte order; swap the bytes */
418 for (i
= 0; i
< ATA_ID_WORDS
; i
++, id
++)
419 *id
= le16_to_cpu(*id
);
423 /* ---------------------------------------------------------------------
424 * Finite State Machine (FSM) implementation
427 /* FSM tasks; used to direct state transitions */
428 #define ACE_TASK_IDLE 0
429 #define ACE_TASK_IDENTIFY 1
430 #define ACE_TASK_READ 2
431 #define ACE_TASK_WRITE 3
432 #define ACE_FSM_NUM_TASKS 4
434 /* FSM state definitions */
435 #define ACE_FSM_STATE_IDLE 0
436 #define ACE_FSM_STATE_REQ_LOCK 1
437 #define ACE_FSM_STATE_WAIT_LOCK 2
438 #define ACE_FSM_STATE_WAIT_CFREADY 3
439 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
440 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
441 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
442 #define ACE_FSM_STATE_REQ_PREPARE 7
443 #define ACE_FSM_STATE_REQ_TRANSFER 8
444 #define ACE_FSM_STATE_REQ_COMPLETE 9
445 #define ACE_FSM_STATE_ERROR 10
446 #define ACE_FSM_NUM_STATES 11
448 /* Set flag to exit FSM loop and reschedule tasklet */
449 static inline void ace_fsm_yield(struct ace_device
*ace
)
451 dev_dbg(ace
->dev
, "ace_fsm_yield()\n");
452 tasklet_schedule(&ace
->fsm_tasklet
);
453 ace
->fsm_continue_flag
= 0;
456 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
457 static inline void ace_fsm_yieldirq(struct ace_device
*ace
)
459 dev_dbg(ace
->dev
, "ace_fsm_yieldirq()\n");
462 /* No IRQ assigned, so need to poll */
463 tasklet_schedule(&ace
->fsm_tasklet
);
464 ace
->fsm_continue_flag
= 0;
467 static bool ace_has_next_request(struct request_queue
*q
)
469 struct ace_device
*ace
= q
->queuedata
;
471 return !list_empty(&ace
->rq_list
);
474 /* Get the next read/write request; ending requests that we don't handle */
475 static struct request
*ace_get_next_request(struct request_queue
*q
)
477 struct ace_device
*ace
= q
->queuedata
;
480 rq
= list_first_entry_or_null(&ace
->rq_list
, struct request
, queuelist
);
482 list_del_init(&rq
->queuelist
);
483 blk_mq_start_request(rq
);
489 static void ace_fsm_dostate(struct ace_device
*ace
)
497 dev_dbg(ace
->dev
, "fsm_state=%i, id_req_count=%i\n",
498 ace
->fsm_state
, ace
->id_req_count
);
501 /* Verify that there is actually a CF in the slot. If not, then
502 * bail out back to the idle state and wake up all the waiters */
503 status
= ace_in32(ace
, ACE_STATUS
);
504 if ((status
& ACE_STATUS_CFDETECT
) == 0) {
505 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
506 ace
->media_change
= 1;
507 set_capacity(ace
->gd
, 0);
508 dev_info(ace
->dev
, "No CF in slot\n");
510 /* Drop all in-flight and pending requests */
512 blk_mq_end_request(ace
->req
, BLK_STS_IOERR
);
515 while ((req
= ace_get_next_request(ace
->queue
)) != NULL
)
516 blk_mq_end_request(req
, BLK_STS_IOERR
);
518 /* Drop back to IDLE state and notify waiters */
519 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
520 ace
->id_result
= -EIO
;
521 while (ace
->id_req_count
) {
522 complete(&ace
->id_completion
);
527 switch (ace
->fsm_state
) {
528 case ACE_FSM_STATE_IDLE
:
529 /* See if there is anything to do */
530 if (ace
->id_req_count
|| ace_has_next_request(ace
->queue
)) {
532 ace
->fsm_state
= ACE_FSM_STATE_REQ_LOCK
;
533 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
534 if (!timer_pending(&ace
->stall_timer
))
535 add_timer(&ace
->stall_timer
);
538 del_timer(&ace
->stall_timer
);
539 ace
->fsm_continue_flag
= 0;
542 case ACE_FSM_STATE_REQ_LOCK
:
543 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
544 /* Already have the lock, jump to next state */
545 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
549 /* Request the lock */
550 val
= ace_in(ace
, ACE_CTRL
);
551 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_LOCKREQ
);
552 ace
->fsm_state
= ACE_FSM_STATE_WAIT_LOCK
;
555 case ACE_FSM_STATE_WAIT_LOCK
:
556 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
557 /* got the lock; move to next state */
558 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
562 /* wait a bit for the lock */
566 case ACE_FSM_STATE_WAIT_CFREADY
:
567 status
= ace_in32(ace
, ACE_STATUS
);
568 if (!(status
& ACE_STATUS_RDYFORCFCMD
) ||
569 (status
& ACE_STATUS_CFBSY
)) {
570 /* CF card isn't ready; it needs to be polled */
575 /* Device is ready for command; determine what to do next */
576 if (ace
->id_req_count
)
577 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_PREPARE
;
579 ace
->fsm_state
= ACE_FSM_STATE_REQ_PREPARE
;
582 case ACE_FSM_STATE_IDENTIFY_PREPARE
:
583 /* Send identify command */
584 ace
->fsm_task
= ACE_TASK_IDENTIFY
;
585 ace
->data_ptr
= ace
->cf_id
;
586 ace
->data_count
= ACE_BUF_PER_SECTOR
;
587 ace_out(ace
, ACE_SECCNTCMD
, ACE_SECCNTCMD_IDENTIFY
);
589 /* As per datasheet, put config controller in reset */
590 val
= ace_in(ace
, ACE_CTRL
);
591 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
593 /* irq handler takes over from this point; wait for the
594 * transfer to complete */
595 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_TRANSFER
;
596 ace_fsm_yieldirq(ace
);
599 case ACE_FSM_STATE_IDENTIFY_TRANSFER
:
600 /* Check that the sysace is ready to receive data */
601 status
= ace_in32(ace
, ACE_STATUS
);
602 if (status
& ACE_STATUS_CFBSY
) {
603 dev_dbg(ace
->dev
, "CFBSY set; t=%i iter=%i dc=%i\n",
604 ace
->fsm_task
, ace
->fsm_iter_num
,
609 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
614 /* Transfer the next buffer */
615 ace
->reg_ops
->datain(ace
);
618 /* If there are still buffers to be transfers; jump out here */
619 if (ace
->data_count
!= 0) {
620 ace_fsm_yieldirq(ace
);
624 /* transfer finished; kick state machine */
625 dev_dbg(ace
->dev
, "identify finished\n");
626 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_COMPLETE
;
629 case ACE_FSM_STATE_IDENTIFY_COMPLETE
:
630 ace_fix_driveid(ace
->cf_id
);
631 ace_dump_mem(ace
->cf_id
, 512); /* Debug: Dump out disk ID */
633 if (ace
->data_result
) {
634 /* Error occurred, disable the disk */
635 ace
->media_change
= 1;
636 set_capacity(ace
->gd
, 0);
637 dev_err(ace
->dev
, "error fetching CF id (%i)\n",
640 ace
->media_change
= 0;
642 /* Record disk parameters */
643 set_capacity(ace
->gd
,
644 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
645 dev_info(ace
->dev
, "capacity: %i sectors\n",
646 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
649 /* We're done, drop to IDLE state and notify waiters */
650 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
651 ace
->id_result
= ace
->data_result
;
652 while (ace
->id_req_count
) {
653 complete(&ace
->id_completion
);
658 case ACE_FSM_STATE_REQ_PREPARE
:
659 req
= ace_get_next_request(ace
->queue
);
661 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
665 /* Okay, it's a data request, set it up for transfer */
667 "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
668 (unsigned long long)blk_rq_pos(req
),
669 blk_rq_sectors(req
), blk_rq_cur_sectors(req
),
673 ace
->data_ptr
= bio_data(req
->bio
);
674 ace
->data_count
= blk_rq_cur_sectors(req
) * ACE_BUF_PER_SECTOR
;
675 ace_out32(ace
, ACE_MPULBA
, blk_rq_pos(req
) & 0x0FFFFFFF);
677 count
= blk_rq_sectors(req
);
678 if (rq_data_dir(req
)) {
679 /* Kick off write request */
680 dev_dbg(ace
->dev
, "write data\n");
681 ace
->fsm_task
= ACE_TASK_WRITE
;
682 ace_out(ace
, ACE_SECCNTCMD
,
683 count
| ACE_SECCNTCMD_WRITE_DATA
);
685 /* Kick off read request */
686 dev_dbg(ace
->dev
, "read data\n");
687 ace
->fsm_task
= ACE_TASK_READ
;
688 ace_out(ace
, ACE_SECCNTCMD
,
689 count
| ACE_SECCNTCMD_READ_DATA
);
692 /* As per datasheet, put config controller in reset */
693 val
= ace_in(ace
, ACE_CTRL
);
694 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
696 /* Move to the transfer state. The systemace will raise
697 * an interrupt once there is something to do
699 ace
->fsm_state
= ACE_FSM_STATE_REQ_TRANSFER
;
700 if (ace
->fsm_task
== ACE_TASK_READ
)
701 ace_fsm_yieldirq(ace
); /* wait for data ready */
704 case ACE_FSM_STATE_REQ_TRANSFER
:
705 /* Check that the sysace is ready to receive data */
706 status
= ace_in32(ace
, ACE_STATUS
);
707 if (status
& ACE_STATUS_CFBSY
) {
709 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
710 ace
->fsm_task
, ace
->fsm_iter_num
,
711 blk_rq_cur_sectors(ace
->req
) * 16,
712 ace
->data_count
, ace
->in_irq
);
713 ace_fsm_yield(ace
); /* need to poll CFBSY bit */
716 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
718 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
719 ace
->fsm_task
, ace
->fsm_iter_num
,
720 blk_rq_cur_sectors(ace
->req
) * 16,
721 ace
->data_count
, ace
->in_irq
);
722 ace_fsm_yieldirq(ace
);
726 /* Transfer the next buffer */
727 if (ace
->fsm_task
== ACE_TASK_WRITE
)
728 ace
->reg_ops
->dataout(ace
);
730 ace
->reg_ops
->datain(ace
);
733 /* If there are still buffers to be transfers; jump out here */
734 if (ace
->data_count
!= 0) {
735 ace_fsm_yieldirq(ace
);
739 /* bio finished; is there another one? */
740 if (blk_update_request(ace
->req
, BLK_STS_OK
,
741 blk_rq_cur_bytes(ace
->req
))) {
742 /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
743 * blk_rq_sectors(ace->req),
744 * blk_rq_cur_sectors(ace->req));
746 ace
->data_ptr
= bio_data(ace
->req
->bio
);
747 ace
->data_count
= blk_rq_cur_sectors(ace
->req
) * 16;
748 ace_fsm_yieldirq(ace
);
752 ace
->fsm_state
= ACE_FSM_STATE_REQ_COMPLETE
;
755 case ACE_FSM_STATE_REQ_COMPLETE
:
758 /* Finished request; go to idle state */
759 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
763 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
768 static void ace_fsm_tasklet(unsigned long data
)
770 struct ace_device
*ace
= (void *)data
;
773 spin_lock_irqsave(&ace
->lock
, flags
);
775 /* Loop over state machine until told to stop */
776 ace
->fsm_continue_flag
= 1;
777 while (ace
->fsm_continue_flag
)
778 ace_fsm_dostate(ace
);
780 spin_unlock_irqrestore(&ace
->lock
, flags
);
783 static void ace_stall_timer(struct timer_list
*t
)
785 struct ace_device
*ace
= from_timer(ace
, t
, stall_timer
);
789 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
790 ace
->fsm_state
, ace
->fsm_task
, ace
->fsm_iter_num
,
792 spin_lock_irqsave(&ace
->lock
, flags
);
794 /* Rearm the stall timer *before* entering FSM (which may then
795 * delete the timer) */
796 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
798 /* Loop over state machine until told to stop */
799 ace
->fsm_continue_flag
= 1;
800 while (ace
->fsm_continue_flag
)
801 ace_fsm_dostate(ace
);
803 spin_unlock_irqrestore(&ace
->lock
, flags
);
806 /* ---------------------------------------------------------------------
807 * Interrupt handling routines
809 static int ace_interrupt_checkstate(struct ace_device
*ace
)
811 u32 sreg
= ace_in32(ace
, ACE_STATUS
);
812 u16 creg
= ace_in(ace
, ACE_CTRL
);
814 /* Check for error occurrence */
815 if ((sreg
& (ACE_STATUS_CFGERROR
| ACE_STATUS_CFCERROR
)) &&
816 (creg
& ACE_CTRL_ERRORIRQ
)) {
817 dev_err(ace
->dev
, "transfer failure\n");
825 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
828 struct ace_device
*ace
= dev_id
;
830 /* be safe and get the lock */
831 spin_lock(&ace
->lock
);
834 /* clear the interrupt */
835 creg
= ace_in(ace
, ACE_CTRL
);
836 ace_out(ace
, ACE_CTRL
, creg
| ACE_CTRL_RESETIRQ
);
837 ace_out(ace
, ACE_CTRL
, creg
);
839 /* check for IO failures */
840 if (ace_interrupt_checkstate(ace
))
841 ace
->data_result
= -EIO
;
843 if (ace
->fsm_task
== 0) {
845 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
846 ace_in32(ace
, ACE_STATUS
), ace_in32(ace
, ACE_CTRL
),
847 ace_in(ace
, ACE_SECCNTCMD
));
848 dev_err(ace
->dev
, "fsm_task=%i fsm_state=%i data_count=%i\n",
849 ace
->fsm_task
, ace
->fsm_state
, ace
->data_count
);
852 /* Loop over state machine until told to stop */
853 ace
->fsm_continue_flag
= 1;
854 while (ace
->fsm_continue_flag
)
855 ace_fsm_dostate(ace
);
857 /* done with interrupt; drop the lock */
859 spin_unlock(&ace
->lock
);
864 /* ---------------------------------------------------------------------
867 static blk_status_t
ace_queue_rq(struct blk_mq_hw_ctx
*hctx
,
868 const struct blk_mq_queue_data
*bd
)
870 struct ace_device
*ace
= hctx
->queue
->queuedata
;
871 struct request
*req
= bd
->rq
;
873 if (blk_rq_is_passthrough(req
)) {
874 blk_mq_start_request(req
);
875 return BLK_STS_IOERR
;
878 spin_lock_irq(&ace
->lock
);
879 list_add_tail(&req
->queuelist
, &ace
->rq_list
);
880 spin_unlock_irq(&ace
->lock
);
882 tasklet_schedule(&ace
->fsm_tasklet
);
886 static unsigned int ace_check_events(struct gendisk
*gd
, unsigned int clearing
)
888 struct ace_device
*ace
= gd
->private_data
;
889 dev_dbg(ace
->dev
, "ace_check_events(): %i\n", ace
->media_change
);
891 return ace
->media_change
? DISK_EVENT_MEDIA_CHANGE
: 0;
894 static int ace_revalidate_disk(struct gendisk
*gd
)
896 struct ace_device
*ace
= gd
->private_data
;
899 dev_dbg(ace
->dev
, "ace_revalidate_disk()\n");
901 if (ace
->media_change
) {
902 dev_dbg(ace
->dev
, "requesting cf id and scheduling tasklet\n");
904 spin_lock_irqsave(&ace
->lock
, flags
);
906 spin_unlock_irqrestore(&ace
->lock
, flags
);
908 tasklet_schedule(&ace
->fsm_tasklet
);
909 wait_for_completion(&ace
->id_completion
);
912 dev_dbg(ace
->dev
, "revalidate complete\n");
913 return ace
->id_result
;
916 static int ace_open(struct block_device
*bdev
, fmode_t mode
)
918 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
921 dev_dbg(ace
->dev
, "ace_open() users=%i\n", ace
->users
+ 1);
923 mutex_lock(&xsysace_mutex
);
924 spin_lock_irqsave(&ace
->lock
, flags
);
926 spin_unlock_irqrestore(&ace
->lock
, flags
);
928 check_disk_change(bdev
);
929 mutex_unlock(&xsysace_mutex
);
934 static void ace_release(struct gendisk
*disk
, fmode_t mode
)
936 struct ace_device
*ace
= disk
->private_data
;
940 dev_dbg(ace
->dev
, "ace_release() users=%i\n", ace
->users
- 1);
942 mutex_lock(&xsysace_mutex
);
943 spin_lock_irqsave(&ace
->lock
, flags
);
945 if (ace
->users
== 0) {
946 val
= ace_in(ace
, ACE_CTRL
);
947 ace_out(ace
, ACE_CTRL
, val
& ~ACE_CTRL_LOCKREQ
);
949 spin_unlock_irqrestore(&ace
->lock
, flags
);
950 mutex_unlock(&xsysace_mutex
);
953 static int ace_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
955 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
956 u16
*cf_id
= ace
->cf_id
;
958 dev_dbg(ace
->dev
, "ace_getgeo()\n");
960 geo
->heads
= cf_id
[ATA_ID_HEADS
];
961 geo
->sectors
= cf_id
[ATA_ID_SECTORS
];
962 geo
->cylinders
= cf_id
[ATA_ID_CYLS
];
967 static const struct block_device_operations ace_fops
= {
968 .owner
= THIS_MODULE
,
970 .release
= ace_release
,
971 .check_events
= ace_check_events
,
972 .revalidate_disk
= ace_revalidate_disk
,
973 .getgeo
= ace_getgeo
,
976 static const struct blk_mq_ops ace_mq_ops
= {
977 .queue_rq
= ace_queue_rq
,
980 /* --------------------------------------------------------------------
981 * SystemACE device setup/teardown code
983 static int ace_setup(struct ace_device
*ace
)
989 dev_dbg(ace
->dev
, "ace_setup(ace=0x%p)\n", ace
);
990 dev_dbg(ace
->dev
, "physaddr=0x%llx irq=%i\n",
991 (unsigned long long)ace
->physaddr
, ace
->irq
);
993 spin_lock_init(&ace
->lock
);
994 init_completion(&ace
->id_completion
);
995 INIT_LIST_HEAD(&ace
->rq_list
);
1000 ace
->baseaddr
= ioremap(ace
->physaddr
, 0x80);
1005 * Initialize the state machine tasklet and stall timer
1007 tasklet_init(&ace
->fsm_tasklet
, ace_fsm_tasklet
, (unsigned long)ace
);
1008 timer_setup(&ace
->stall_timer
, ace_stall_timer
, 0);
1011 * Initialize the request queue
1013 ace
->queue
= blk_mq_init_sq_queue(&ace
->tag_set
, &ace_mq_ops
, 2,
1014 BLK_MQ_F_SHOULD_MERGE
);
1015 if (IS_ERR(ace
->queue
)) {
1016 rc
= PTR_ERR(ace
->queue
);
1020 ace
->queue
->queuedata
= ace
;
1022 blk_queue_logical_block_size(ace
->queue
, 512);
1023 blk_queue_bounce_limit(ace
->queue
, BLK_BOUNCE_HIGH
);
1026 * Allocate and initialize GD structure
1028 ace
->gd
= alloc_disk(ACE_NUM_MINORS
);
1030 goto err_alloc_disk
;
1032 ace
->gd
->major
= ace_major
;
1033 ace
->gd
->first_minor
= ace
->id
* ACE_NUM_MINORS
;
1034 ace
->gd
->fops
= &ace_fops
;
1035 ace
->gd
->queue
= ace
->queue
;
1036 ace
->gd
->private_data
= ace
;
1037 snprintf(ace
->gd
->disk_name
, 32, "xs%c", ace
->id
+ 'a');
1040 if (ace
->bus_width
== ACE_BUS_WIDTH_16
) {
1041 /* 0x0101 should work regardless of endianess */
1042 ace_out_le16(ace
, ACE_BUSMODE
, 0x0101);
1044 /* read it back to determine endianess */
1045 if (ace_in_le16(ace
, ACE_BUSMODE
) == 0x0001)
1046 ace
->reg_ops
= &ace_reg_le16_ops
;
1048 ace
->reg_ops
= &ace_reg_be16_ops
;
1050 ace_out_8(ace
, ACE_BUSMODE
, 0x00);
1051 ace
->reg_ops
= &ace_reg_8_ops
;
1054 /* Make sure version register is sane */
1055 version
= ace_in(ace
, ACE_VERSION
);
1056 if ((version
== 0) || (version
== 0xFFFF))
1059 /* Put sysace in a sane state by clearing most control reg bits */
1060 ace_out(ace
, ACE_CTRL
, ACE_CTRL_FORCECFGMODE
|
1061 ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
);
1063 /* Now we can hook up the irq handler */
1065 rc
= request_irq(ace
->irq
, ace_interrupt
, 0, "systemace", ace
);
1067 /* Failure - fall back to polled mode */
1068 dev_err(ace
->dev
, "request_irq failed\n");
1073 /* Enable interrupts */
1074 val
= ace_in(ace
, ACE_CTRL
);
1075 val
|= ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
;
1076 ace_out(ace
, ACE_CTRL
, val
);
1078 /* Print the identification */
1079 dev_info(ace
->dev
, "Xilinx SystemACE revision %i.%i.%i\n",
1080 (version
>> 12) & 0xf, (version
>> 8) & 0x0f, version
& 0xff);
1081 dev_dbg(ace
->dev
, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1082 (unsigned long long) ace
->physaddr
, ace
->baseaddr
, ace
->irq
);
1084 ace
->media_change
= 1;
1085 ace_revalidate_disk(ace
->gd
);
1087 /* Make the sysace device 'live' */
1093 /* prevent double queue cleanup */
1094 ace
->gd
->queue
= NULL
;
1097 blk_cleanup_queue(ace
->queue
);
1098 blk_mq_free_tag_set(&ace
->tag_set
);
1100 iounmap(ace
->baseaddr
);
1102 dev_info(ace
->dev
, "xsysace: error initializing device at 0x%llx\n",
1103 (unsigned long long) ace
->physaddr
);
1107 static void ace_teardown(struct ace_device
*ace
)
1110 del_gendisk(ace
->gd
);
1115 blk_cleanup_queue(ace
->queue
);
1116 blk_mq_free_tag_set(&ace
->tag_set
);
1119 tasklet_kill(&ace
->fsm_tasklet
);
1122 free_irq(ace
->irq
, ace
);
1124 iounmap(ace
->baseaddr
);
1127 static int ace_alloc(struct device
*dev
, int id
, resource_size_t physaddr
,
1128 int irq
, int bus_width
)
1130 struct ace_device
*ace
;
1132 dev_dbg(dev
, "ace_alloc(%p)\n", dev
);
1139 /* Allocate and initialize the ace device structure */
1140 ace
= kzalloc(sizeof(struct ace_device
), GFP_KERNEL
);
1148 ace
->physaddr
= physaddr
;
1150 ace
->bus_width
= bus_width
;
1152 /* Call the setup code */
1153 rc
= ace_setup(ace
);
1157 dev_set_drvdata(dev
, ace
);
1161 dev_set_drvdata(dev
, NULL
);
1165 dev_err(dev
, "could not initialize device, err=%i\n", rc
);
1169 static void ace_free(struct device
*dev
)
1171 struct ace_device
*ace
= dev_get_drvdata(dev
);
1172 dev_dbg(dev
, "ace_free(%p)\n", dev
);
1176 dev_set_drvdata(dev
, NULL
);
1181 /* ---------------------------------------------------------------------
1182 * Platform Bus Support
1185 static int ace_probe(struct platform_device
*dev
)
1187 resource_size_t physaddr
= 0;
1188 int bus_width
= ACE_BUS_WIDTH_16
; /* FIXME: should not be hard coded */
1193 dev_dbg(&dev
->dev
, "ace_probe(%p)\n", dev
);
1195 /* device id and bus width */
1196 if (of_property_read_u32(dev
->dev
.of_node
, "port-number", &id
))
1198 if (of_find_property(dev
->dev
.of_node
, "8-bit", NULL
))
1199 bus_width
= ACE_BUS_WIDTH_8
;
1201 for (i
= 0; i
< dev
->num_resources
; i
++) {
1202 if (dev
->resource
[i
].flags
& IORESOURCE_MEM
)
1203 physaddr
= dev
->resource
[i
].start
;
1204 if (dev
->resource
[i
].flags
& IORESOURCE_IRQ
)
1205 irq
= dev
->resource
[i
].start
;
1208 /* Call the bus-independent setup code */
1209 return ace_alloc(&dev
->dev
, id
, physaddr
, irq
, bus_width
);
1213 * Platform bus remove() method
1215 static int ace_remove(struct platform_device
*dev
)
1217 ace_free(&dev
->dev
);
1221 #if defined(CONFIG_OF)
1222 /* Match table for of_platform binding */
1223 static const struct of_device_id ace_of_match
[] = {
1224 { .compatible
= "xlnx,opb-sysace-1.00.b", },
1225 { .compatible
= "xlnx,opb-sysace-1.00.c", },
1226 { .compatible
= "xlnx,xps-sysace-1.00.a", },
1227 { .compatible
= "xlnx,sysace", },
1230 MODULE_DEVICE_TABLE(of
, ace_of_match
);
1231 #else /* CONFIG_OF */
1232 #define ace_of_match NULL
1233 #endif /* CONFIG_OF */
1235 static struct platform_driver ace_platform_driver
= {
1237 .remove
= ace_remove
,
1240 .of_match_table
= ace_of_match
,
1244 /* ---------------------------------------------------------------------
1245 * Module init/exit routines
1247 static int __init
ace_init(void)
1251 ace_major
= register_blkdev(ace_major
, "xsysace");
1252 if (ace_major
<= 0) {
1257 rc
= platform_driver_register(&ace_platform_driver
);
1261 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major
);
1265 unregister_blkdev(ace_major
, "xsysace");
1267 printk(KERN_ERR
"xsysace: registration failed; err=%i\n", rc
);
1270 module_init(ace_init
);
1272 static void __exit
ace_exit(void)
1274 pr_debug("Unregistering Xilinx SystemACE driver\n");
1275 platform_driver_unregister(&ace_platform_driver
);
1276 unregister_blkdev(ace_major
, "xsysace");
1278 module_exit(ace_exit
);