Linux 5.1.15
[linux/fpc-iii.git] / drivers / clocksource / arc_timer.c
blobb28970ca4a7a985f7d8aec23c3c7049851b68eae
1 /*
2 * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
10 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
11 * programmed to go from @count to @limit and optionally interrupt.
12 * We've designated TIMER0 for clockevents and TIMER1 for clocksource
14 * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
15 * which are suitable for UP and SMP based clocksources respectively
18 #include <linux/interrupt.h>
19 #include <linux/clk.h>
20 #include <linux/clk-provider.h>
21 #include <linux/clocksource.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/of.h>
25 #include <linux/of_irq.h>
26 #include <linux/sched_clock.h>
28 #include <soc/arc/timers.h>
29 #include <soc/arc/mcip.h>
32 static unsigned long arc_timer_freq;
34 static int noinline arc_get_timer_clk(struct device_node *node)
36 struct clk *clk;
37 int ret;
39 clk = of_clk_get(node, 0);
40 if (IS_ERR(clk)) {
41 pr_err("timer missing clk\n");
42 return PTR_ERR(clk);
45 ret = clk_prepare_enable(clk);
46 if (ret) {
47 pr_err("Couldn't enable parent clk\n");
48 return ret;
51 arc_timer_freq = clk_get_rate(clk);
53 return 0;
56 /********** Clock Source Device *********/
58 #ifdef CONFIG_ARC_TIMERS_64BIT
60 static u64 arc_read_gfrc(struct clocksource *cs)
62 unsigned long flags;
63 u32 l, h;
66 * From a programming model pov, there seems to be just one instance of
67 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
68 * an instance PER ARC CORE (not per cluster), and there are dedicated
69 * hardware decode logic (per core) inside ARConnect to handle
70 * simultaneous read/write accesses from cores via those two registers.
71 * So several concurrent commands to ARConnect are OK if they are
72 * trying to access two different sub-components (like GFRC,
73 * inter-core interrupt, etc...). HW also supports simultaneously
74 * accessing GFRC by multiple cores.
75 * That's why it is safe to disable hard interrupts on the local CPU
76 * before access to GFRC instead of taking global MCIP spinlock
77 * defined in arch/arc/kernel/mcip.c
79 local_irq_save(flags);
81 __mcip_cmd(CMD_GFRC_READ_LO, 0);
82 l = read_aux_reg(ARC_REG_MCIP_READBACK);
84 __mcip_cmd(CMD_GFRC_READ_HI, 0);
85 h = read_aux_reg(ARC_REG_MCIP_READBACK);
87 local_irq_restore(flags);
89 return (((u64)h) << 32) | l;
92 static notrace u64 arc_gfrc_clock_read(void)
94 return arc_read_gfrc(NULL);
97 static struct clocksource arc_counter_gfrc = {
98 .name = "ARConnect GFRC",
99 .rating = 400,
100 .read = arc_read_gfrc,
101 .mask = CLOCKSOURCE_MASK(64),
102 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
105 static int __init arc_cs_setup_gfrc(struct device_node *node)
107 struct mcip_bcr mp;
108 int ret;
110 READ_BCR(ARC_REG_MCIP_BCR, mp);
111 if (!mp.gfrc) {
112 pr_warn("Global-64-bit-Ctr clocksource not detected\n");
113 return -ENXIO;
116 ret = arc_get_timer_clk(node);
117 if (ret)
118 return ret;
120 sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
122 return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
124 TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
126 #define AUX_RTC_CTRL 0x103
127 #define AUX_RTC_LOW 0x104
128 #define AUX_RTC_HIGH 0x105
130 static u64 arc_read_rtc(struct clocksource *cs)
132 unsigned long status;
133 u32 l, h;
136 * hardware has an internal state machine which tracks readout of
137 * low/high and updates the CTRL.status if
138 * - interrupt/exception taken between the two reads
139 * - high increments after low has been read
141 do {
142 l = read_aux_reg(AUX_RTC_LOW);
143 h = read_aux_reg(AUX_RTC_HIGH);
144 status = read_aux_reg(AUX_RTC_CTRL);
145 } while (!(status & _BITUL(31)));
147 return (((u64)h) << 32) | l;
150 static notrace u64 arc_rtc_clock_read(void)
152 return arc_read_rtc(NULL);
155 static struct clocksource arc_counter_rtc = {
156 .name = "ARCv2 RTC",
157 .rating = 350,
158 .read = arc_read_rtc,
159 .mask = CLOCKSOURCE_MASK(64),
160 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
163 static int __init arc_cs_setup_rtc(struct device_node *node)
165 struct bcr_timer timer;
166 int ret;
168 READ_BCR(ARC_REG_TIMERS_BCR, timer);
169 if (!timer.rtc) {
170 pr_warn("Local-64-bit-Ctr clocksource not detected\n");
171 return -ENXIO;
174 /* Local to CPU hence not usable in SMP */
175 if (IS_ENABLED(CONFIG_SMP)) {
176 pr_warn("Local-64-bit-Ctr not usable in SMP\n");
177 return -EINVAL;
180 ret = arc_get_timer_clk(node);
181 if (ret)
182 return ret;
184 write_aux_reg(AUX_RTC_CTRL, 1);
186 sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
188 return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
190 TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
192 #endif
195 * 32bit TIMER1 to keep counting monotonically and wraparound
198 static u64 arc_read_timer1(struct clocksource *cs)
200 return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
203 static notrace u64 arc_timer1_clock_read(void)
205 return arc_read_timer1(NULL);
208 static struct clocksource arc_counter_timer1 = {
209 .name = "ARC Timer1",
210 .rating = 300,
211 .read = arc_read_timer1,
212 .mask = CLOCKSOURCE_MASK(32),
213 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
216 static int __init arc_cs_setup_timer1(struct device_node *node)
218 int ret;
220 /* Local to CPU hence not usable in SMP */
221 if (IS_ENABLED(CONFIG_SMP))
222 return -EINVAL;
224 ret = arc_get_timer_clk(node);
225 if (ret)
226 return ret;
228 write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
229 write_aux_reg(ARC_REG_TIMER1_CNT, 0);
230 write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
232 sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
234 return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
237 /********** Clock Event Device *********/
239 static int arc_timer_irq;
242 * Arm the timer to interrupt after @cycles
243 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
245 static void arc_timer_event_setup(unsigned int cycles)
247 write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
248 write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
250 write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
254 static int arc_clkevent_set_next_event(unsigned long delta,
255 struct clock_event_device *dev)
257 arc_timer_event_setup(delta);
258 return 0;
261 static int arc_clkevent_set_periodic(struct clock_event_device *dev)
264 * At X Hz, 1 sec = 1000ms -> X cycles;
265 * 10ms -> X / 100 cycles
267 arc_timer_event_setup(arc_timer_freq / HZ);
268 return 0;
271 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
272 .name = "ARC Timer0",
273 .features = CLOCK_EVT_FEAT_ONESHOT |
274 CLOCK_EVT_FEAT_PERIODIC,
275 .rating = 300,
276 .set_next_event = arc_clkevent_set_next_event,
277 .set_state_periodic = arc_clkevent_set_periodic,
280 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
283 * Note that generic IRQ core could have passed @evt for @dev_id if
284 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
286 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
287 int irq_reenable = clockevent_state_periodic(evt);
290 * 1. ACK the interrupt
291 * - For ARC700, any write to CTRL reg ACKs it, so just rewrite
292 * Count when [N]ot [H]alted bit.
293 * - For HS3x, it is a bit subtle. On taken count-down interrupt,
294 * IP bit [3] is set, which needs to be cleared for ACK'ing.
295 * The write below can only update the other two bits, hence
296 * explicitly clears IP bit
297 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
299 write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
301 evt->event_handler(evt);
303 return IRQ_HANDLED;
307 static int arc_timer_starting_cpu(unsigned int cpu)
309 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
311 evt->cpumask = cpumask_of(smp_processor_id());
313 clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
314 enable_percpu_irq(arc_timer_irq, 0);
315 return 0;
318 static int arc_timer_dying_cpu(unsigned int cpu)
320 disable_percpu_irq(arc_timer_irq);
321 return 0;
325 * clockevent setup for boot CPU
327 static int __init arc_clockevent_setup(struct device_node *node)
329 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
330 int ret;
332 arc_timer_irq = irq_of_parse_and_map(node, 0);
333 if (arc_timer_irq <= 0) {
334 pr_err("clockevent: missing irq\n");
335 return -EINVAL;
338 ret = arc_get_timer_clk(node);
339 if (ret) {
340 pr_err("clockevent: missing clk\n");
341 return ret;
344 /* Needs apriori irq_set_percpu_devid() done in intc map function */
345 ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
346 "Timer0 (per-cpu-tick)", evt);
347 if (ret) {
348 pr_err("clockevent: unable to request irq\n");
349 return ret;
352 ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
353 "clockevents/arc/timer:starting",
354 arc_timer_starting_cpu,
355 arc_timer_dying_cpu);
356 if (ret) {
357 pr_err("Failed to setup hotplug state\n");
358 return ret;
360 return 0;
363 static int __init arc_of_timer_init(struct device_node *np)
365 static int init_count = 0;
366 int ret;
368 if (!init_count) {
369 init_count = 1;
370 ret = arc_clockevent_setup(np);
371 } else {
372 ret = arc_cs_setup_timer1(np);
375 return ret;
377 TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);