1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
10 #include <linux/ioport.h>
12 #include <linux/platform_device.h>
13 #include <linux/syscore_ops.h>
14 #include <linux/atmel_tc.h>
18 * We're configured to use a specific TC block, one that's not hooked
19 * up to external hardware, to provide a time solution:
21 * - Two channels combine to create a free-running 32 bit counter
22 * with a base rate of 5+ MHz, packaged as a clocksource (with
23 * resolution better than 200 nsec).
24 * - Some chips support 32 bit counter. A single channel is used for
25 * this 32 bit free-running counter. the second channel is not used.
27 * - The third channel may be used to provide a 16-bit clockevent
28 * source, used in either periodic or oneshot mode. This runs
29 * at 32 KiHZ, and can handle delays of up to two seconds.
31 * A boot clocksource and clockevent source are also currently needed,
32 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
33 * this code can be used when init_timers() is called, well before most
34 * devices are set up. (Some low end AT91 parts, which can run uClinux,
35 * have only the timers in one TC block... they currently don't support
36 * the tclib code, because of that initialization issue.)
38 * REVISIT behavior during system suspend states... we should disable
39 * all clocks and save the power. Easily done for clockevent devices,
40 * but clocksources won't necessarily get the needed notifications.
41 * For deeper system sleep states, this will be mandatory...
44 static void __iomem
*tcaddr
;
54 static u64
tc_get_cycles(struct clocksource
*cs
)
59 raw_local_irq_save(flags
);
61 upper
= readl_relaxed(tcaddr
+ ATMEL_TC_REG(1, CV
));
62 lower
= readl_relaxed(tcaddr
+ ATMEL_TC_REG(0, CV
));
63 } while (upper
!= readl_relaxed(tcaddr
+ ATMEL_TC_REG(1, CV
)));
65 raw_local_irq_restore(flags
);
66 return (upper
<< 16) | lower
;
69 static u64
tc_get_cycles32(struct clocksource
*cs
)
71 return readl_relaxed(tcaddr
+ ATMEL_TC_REG(0, CV
));
74 static void tc_clksrc_suspend(struct clocksource
*cs
)
78 for (i
= 0; i
< ARRAY_SIZE(tcb_cache
); i
++) {
79 tcb_cache
[i
].cmr
= readl(tcaddr
+ ATMEL_TC_REG(i
, CMR
));
80 tcb_cache
[i
].imr
= readl(tcaddr
+ ATMEL_TC_REG(i
, IMR
));
81 tcb_cache
[i
].rc
= readl(tcaddr
+ ATMEL_TC_REG(i
, RC
));
82 tcb_cache
[i
].clken
= !!(readl(tcaddr
+ ATMEL_TC_REG(i
, SR
)) &
86 bmr_cache
= readl(tcaddr
+ ATMEL_TC_BMR
);
89 static void tc_clksrc_resume(struct clocksource
*cs
)
93 for (i
= 0; i
< ARRAY_SIZE(tcb_cache
); i
++) {
94 /* Restore registers for the channel, RA and RB are not used */
95 writel(tcb_cache
[i
].cmr
, tcaddr
+ ATMEL_TC_REG(i
, CMR
));
96 writel(tcb_cache
[i
].rc
, tcaddr
+ ATMEL_TC_REG(i
, RC
));
97 writel(0, tcaddr
+ ATMEL_TC_REG(i
, RA
));
98 writel(0, tcaddr
+ ATMEL_TC_REG(i
, RB
));
99 /* Disable all the interrupts */
100 writel(0xff, tcaddr
+ ATMEL_TC_REG(i
, IDR
));
101 /* Reenable interrupts that were enabled before suspending */
102 writel(tcb_cache
[i
].imr
, tcaddr
+ ATMEL_TC_REG(i
, IER
));
103 /* Start the clock if it was used */
104 if (tcb_cache
[i
].clken
)
105 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(i
, CCR
));
108 /* Dual channel, chain channels */
109 writel(bmr_cache
, tcaddr
+ ATMEL_TC_BMR
);
110 /* Finally, trigger all the channels*/
111 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
114 static struct clocksource clksrc
= {
115 .name
= "tcb_clksrc",
117 .read
= tc_get_cycles
,
118 .mask
= CLOCKSOURCE_MASK(32),
119 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
120 .suspend
= tc_clksrc_suspend
,
121 .resume
= tc_clksrc_resume
,
124 #ifdef CONFIG_GENERIC_CLOCKEVENTS
126 struct tc_clkevt_device
{
127 struct clock_event_device clkevt
;
132 static struct tc_clkevt_device
*to_tc_clkevt(struct clock_event_device
*clkevt
)
134 return container_of(clkevt
, struct tc_clkevt_device
, clkevt
);
137 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
138 * because using one of the divided clocks would usually mean the
139 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
141 * A divided clock could be good for high resolution timers, since
142 * 30.5 usec resolution can seem "low".
144 static u32 timer_clock
;
146 static int tc_shutdown(struct clock_event_device
*d
)
148 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
149 void __iomem
*regs
= tcd
->regs
;
151 writel(0xff, regs
+ ATMEL_TC_REG(2, IDR
));
152 writel(ATMEL_TC_CLKDIS
, regs
+ ATMEL_TC_REG(2, CCR
));
153 if (!clockevent_state_detached(d
))
154 clk_disable(tcd
->clk
);
159 static int tc_set_oneshot(struct clock_event_device
*d
)
161 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
162 void __iomem
*regs
= tcd
->regs
;
164 if (clockevent_state_oneshot(d
) || clockevent_state_periodic(d
))
167 clk_enable(tcd
->clk
);
169 /* slow clock, count up to RC, then irq and stop */
170 writel(timer_clock
| ATMEL_TC_CPCSTOP
| ATMEL_TC_WAVE
|
171 ATMEL_TC_WAVESEL_UP_AUTO
, regs
+ ATMEL_TC_REG(2, CMR
));
172 writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
174 /* set_next_event() configures and starts the timer */
178 static int tc_set_periodic(struct clock_event_device
*d
)
180 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
181 void __iomem
*regs
= tcd
->regs
;
183 if (clockevent_state_oneshot(d
) || clockevent_state_periodic(d
))
186 /* By not making the gentime core emulate periodic mode on top
187 * of oneshot, we get lower overhead and improved accuracy.
189 clk_enable(tcd
->clk
);
191 /* slow clock, count up to RC, then irq and restart */
192 writel(timer_clock
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
193 regs
+ ATMEL_TC_REG(2, CMR
));
194 writel((32768 + HZ
/ 2) / HZ
, tcaddr
+ ATMEL_TC_REG(2, RC
));
196 /* Enable clock and interrupts on RC compare */
197 writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
200 writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
, regs
+
201 ATMEL_TC_REG(2, CCR
));
205 static int tc_next_event(unsigned long delta
, struct clock_event_device
*d
)
207 writel_relaxed(delta
, tcaddr
+ ATMEL_TC_REG(2, RC
));
210 writel_relaxed(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
211 tcaddr
+ ATMEL_TC_REG(2, CCR
));
215 static struct tc_clkevt_device clkevt
= {
218 .features
= CLOCK_EVT_FEAT_PERIODIC
|
219 CLOCK_EVT_FEAT_ONESHOT
,
220 /* Should be lower than at91rm9200's system timer */
222 .set_next_event
= tc_next_event
,
223 .set_state_shutdown
= tc_shutdown
,
224 .set_state_periodic
= tc_set_periodic
,
225 .set_state_oneshot
= tc_set_oneshot
,
229 static irqreturn_t
ch2_irq(int irq
, void *handle
)
231 struct tc_clkevt_device
*dev
= handle
;
234 sr
= readl_relaxed(dev
->regs
+ ATMEL_TC_REG(2, SR
));
235 if (sr
& ATMEL_TC_CPCS
) {
236 dev
->clkevt
.event_handler(&dev
->clkevt
);
243 static int __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
246 struct clk
*t2_clk
= tc
->clk
[2];
247 int irq
= tc
->irq
[2];
249 ret
= clk_prepare_enable(tc
->slow_clk
);
253 /* try to enable t2 clk to avoid future errors in mode change */
254 ret
= clk_prepare_enable(t2_clk
);
256 clk_disable_unprepare(tc
->slow_clk
);
262 clkevt
.regs
= tc
->regs
;
265 timer_clock
= clk32k_divisor_idx
;
267 clkevt
.clkevt
.cpumask
= cpumask_of(0);
269 ret
= request_irq(irq
, ch2_irq
, IRQF_TIMER
, "tc_clkevt", &clkevt
);
271 clk_unprepare(t2_clk
);
272 clk_disable_unprepare(tc
->slow_clk
);
276 clockevents_config_and_register(&clkevt
.clkevt
, 32768, 1, 0xffff);
281 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
283 static int __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
291 static void __init
tcb_setup_dual_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
293 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
294 writel(mck_divisor_idx
/* likely divide-by-8 */
296 | ATMEL_TC_WAVESEL_UP
/* free-run */
297 | ATMEL_TC_ACPA_SET
/* TIOA0 rises at 0 */
298 | ATMEL_TC_ACPC_CLEAR
, /* (duty cycle 50%) */
299 tcaddr
+ ATMEL_TC_REG(0, CMR
));
300 writel(0x0000, tcaddr
+ ATMEL_TC_REG(0, RA
));
301 writel(0x8000, tcaddr
+ ATMEL_TC_REG(0, RC
));
302 writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
303 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
305 /* channel 1: waveform mode, input TIOA0 */
306 writel(ATMEL_TC_XC1
/* input: TIOA0 */
308 | ATMEL_TC_WAVESEL_UP
, /* free-run */
309 tcaddr
+ ATMEL_TC_REG(1, CMR
));
310 writel(0xff, tcaddr
+ ATMEL_TC_REG(1, IDR
)); /* no irqs */
311 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(1, CCR
));
313 /* chain channel 0 to channel 1*/
314 writel(ATMEL_TC_TC1XC1S_TIOA0
, tcaddr
+ ATMEL_TC_BMR
);
315 /* then reset all the timers */
316 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
319 static void __init
tcb_setup_single_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
321 /* channel 0: waveform mode, input mclk/8 */
322 writel(mck_divisor_idx
/* likely divide-by-8 */
324 | ATMEL_TC_WAVESEL_UP
, /* free-run */
325 tcaddr
+ ATMEL_TC_REG(0, CMR
));
326 writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
327 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
329 /* then reset all the timers */
330 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
333 static int __init
tcb_clksrc_init(void)
335 static char bootinfo
[] __initdata
336 = KERN_DEBUG
"%s: tc%d at %d.%03d MHz\n";
338 struct platform_device
*pdev
;
341 u32 rate
, divided_rate
= 0;
342 int best_divisor_idx
= -1;
343 int clk32k_divisor_idx
= -1;
347 tc
= atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK
);
349 pr_debug("can't alloc TC for clocksource\n");
356 ret
= clk_prepare_enable(t0_clk
);
358 pr_debug("can't enable T0 clk\n");
362 /* How fast will we be counting? Pick something over 5 MHz. */
363 rate
= (u32
) clk_get_rate(t0_clk
);
364 for (i
= 0; i
< 5; i
++) {
365 unsigned divisor
= atmel_tc_divisors
[i
];
368 /* remember 32 KiHz clock for later */
370 clk32k_divisor_idx
= i
;
374 tmp
= rate
/ divisor
;
375 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate
, divisor
, i
, tmp
);
376 if (best_divisor_idx
> 0) {
377 if (tmp
< 5 * 1000 * 1000)
381 best_divisor_idx
= i
;
385 printk(bootinfo
, clksrc
.name
, CONFIG_ATMEL_TCB_CLKSRC_BLOCK
,
386 divided_rate
/ 1000000,
387 ((divided_rate
% 1000000) + 500) / 1000);
389 if (tc
->tcb_config
&& tc
->tcb_config
->counter_width
== 32) {
390 /* use apropriate function to read 32 bit counter */
391 clksrc
.read
= tc_get_cycles32
;
392 /* setup ony channel 0 */
393 tcb_setup_single_chan(tc
, best_divisor_idx
);
395 /* tclib will give us three clocks no matter what the
396 * underlying platform supports.
398 ret
= clk_prepare_enable(tc
->clk
[1]);
400 pr_debug("can't enable T1 clk\n");
403 /* setup both channel 0 & 1 */
404 tcb_setup_dual_chan(tc
, best_divisor_idx
);
407 /* and away we go! */
408 ret
= clocksource_register_hz(&clksrc
, divided_rate
);
412 /* channel 2: periodic and oneshot timer support */
413 ret
= setup_clkevents(tc
, clk32k_divisor_idx
);
415 goto err_unregister_clksrc
;
419 err_unregister_clksrc
:
420 clocksource_unregister(&clksrc
);
423 if (!tc
->tcb_config
|| tc
->tcb_config
->counter_width
!= 32)
424 clk_disable_unprepare(tc
->clk
[1]);
427 clk_disable_unprepare(t0_clk
);
433 arch_initcall(tcb_clksrc_init
);