Linux 5.1.15
[linux/fpc-iii.git] / drivers / clocksource / timer-riscv.c
blob5e6038fbf115d10bc82cc77548b709c3145e4a43
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 * Copyright (C) 2017 SiFive
5 */
6 #include <linux/clocksource.h>
7 #include <linux/clockchips.h>
8 #include <linux/cpu.h>
9 #include <linux/delay.h>
10 #include <linux/irq.h>
11 #include <linux/sched_clock.h>
12 #include <asm/smp.h>
13 #include <asm/sbi.h>
16 * All RISC-V systems have a timer attached to every hart. These timers can be
17 * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup
18 * events. In order to abstract the architecture-specific timer reading and
19 * setting functions away from the clock event insertion code, we provide
20 * function pointers to the clockevent subsystem that perform two basic
21 * operations: rdtime() reads the timer on the current CPU, and
22 * next_event(delta) sets the next timer event to 'delta' cycles in the future.
23 * As the timers are inherently a per-cpu resource, these callbacks perform
24 * operations on the current hart. There is guaranteed to be exactly one timer
25 * per hart on all RISC-V systems.
28 static int riscv_clock_next_event(unsigned long delta,
29 struct clock_event_device *ce)
31 csr_set(sie, SIE_STIE);
32 sbi_set_timer(get_cycles64() + delta);
33 return 0;
36 static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
37 .name = "riscv_timer_clockevent",
38 .features = CLOCK_EVT_FEAT_ONESHOT,
39 .rating = 100,
40 .set_next_event = riscv_clock_next_event,
44 * It is guaranteed that all the timers across all the harts are synchronized
45 * within one tick of each other, so while this could technically go
46 * backwards when hopping between CPUs, practically it won't happen.
48 static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
50 return get_cycles64();
53 static u64 riscv_sched_clock(void)
55 return get_cycles64();
58 static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = {
59 .name = "riscv_clocksource",
60 .rating = 300,
61 .mask = CLOCKSOURCE_MASK(64),
62 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
63 .read = riscv_clocksource_rdtime,
66 static int riscv_timer_starting_cpu(unsigned int cpu)
68 struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
70 ce->cpumask = cpumask_of(cpu);
71 clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
73 csr_set(sie, SIE_STIE);
74 return 0;
77 static int riscv_timer_dying_cpu(unsigned int cpu)
79 csr_clear(sie, SIE_STIE);
80 return 0;
83 /* called directly from the low-level interrupt handler */
84 void riscv_timer_interrupt(void)
86 struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
88 csr_clear(sie, SIE_STIE);
89 evdev->event_handler(evdev);
92 static int __init riscv_timer_init_dt(struct device_node *n)
94 int cpuid, hartid, error;
95 struct clocksource *cs;
97 hartid = riscv_of_processor_hartid(n);
98 if (hartid < 0) {
99 pr_warn("Not valid hartid for node [%pOF] error = [%d]\n",
100 n, hartid);
101 return hartid;
104 cpuid = riscv_hartid_to_cpuid(hartid);
105 if (cpuid < 0) {
106 pr_warn("Invalid cpuid for hartid [%d]\n", hartid);
107 return cpuid;
110 if (cpuid != smp_processor_id())
111 return 0;
113 pr_info("%s: Registering clocksource cpuid [%d] hartid [%d]\n",
114 __func__, cpuid, hartid);
115 cs = per_cpu_ptr(&riscv_clocksource, cpuid);
116 error = clocksource_register_hz(cs, riscv_timebase);
117 if (error) {
118 pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
119 error, cpuid);
120 return error;
123 sched_clock_register(riscv_sched_clock, 64, riscv_timebase);
125 error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
126 "clockevents/riscv/timer:starting",
127 riscv_timer_starting_cpu, riscv_timer_dying_cpu);
128 if (error)
129 pr_err("cpu hp setup state failed for RISCV timer [%d]\n",
130 error);
131 return error;
134 TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);