Linux 5.1.15
[linux/fpc-iii.git] / drivers / clocksource / timer-stm32.c
blob2717f88c79040a1ec26e2dd0d01f5d2dd25d9734
1 /*
2 * Copyright (C) Maxime Coquelin 2015
3 * Author: Maxime Coquelin <mcoquelin.stm32@gmail.com>
4 * License terms: GNU General Public License (GPL), version 2
6 * Inspired by time-efm32.c from Uwe Kleine-Koenig
7 */
9 #include <linux/kernel.h>
10 #include <linux/clocksource.h>
11 #include <linux/clockchips.h>
12 #include <linux/delay.h>
13 #include <linux/irq.h>
14 #include <linux/interrupt.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/clk.h>
19 #include <linux/reset.h>
20 #include <linux/sched_clock.h>
21 #include <linux/slab.h>
23 #include "timer-of.h"
25 #define TIM_CR1 0x00
26 #define TIM_DIER 0x0c
27 #define TIM_SR 0x10
28 #define TIM_EGR 0x14
29 #define TIM_CNT 0x24
30 #define TIM_PSC 0x28
31 #define TIM_ARR 0x2c
32 #define TIM_CCR1 0x34
34 #define TIM_CR1_CEN BIT(0)
35 #define TIM_CR1_UDIS BIT(1)
36 #define TIM_CR1_OPM BIT(3)
37 #define TIM_CR1_ARPE BIT(7)
39 #define TIM_DIER_UIE BIT(0)
40 #define TIM_DIER_CC1IE BIT(1)
42 #define TIM_SR_UIF BIT(0)
44 #define TIM_EGR_UG BIT(0)
46 #define TIM_PSC_MAX USHRT_MAX
47 #define TIM_PSC_CLKRATE 10000
49 struct stm32_timer_private {
50 int bits;
53 /**
54 * stm32_timer_of_bits_set - set accessor helper
55 * @to: a timer_of structure pointer
56 * @bits: the number of bits (16 or 32)
58 * Accessor helper to set the number of bits in the timer-of private
59 * structure.
62 static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
64 struct stm32_timer_private *pd = to->private_data;
66 pd->bits = bits;
69 /**
70 * stm32_timer_of_bits_get - get accessor helper
71 * @to: a timer_of structure pointer
73 * Accessor helper to get the number of bits in the timer-of private
74 * structure.
76 * Returns an integer corresponding to the number of bits.
78 static int stm32_timer_of_bits_get(struct timer_of *to)
80 struct stm32_timer_private *pd = to->private_data;
82 return pd->bits;
85 static void __iomem *stm32_timer_cnt __read_mostly;
87 static u64 notrace stm32_read_sched_clock(void)
89 return readl_relaxed(stm32_timer_cnt);
92 static struct delay_timer stm32_timer_delay;
94 static unsigned long stm32_read_delay(void)
96 return readl_relaxed(stm32_timer_cnt);
99 static void stm32_clock_event_disable(struct timer_of *to)
101 writel_relaxed(0, timer_of_base(to) + TIM_DIER);
105 * stm32_timer_start - Start the counter without event
106 * @to: a timer_of structure pointer
108 * Start the timer in order to have the counter reset and start
109 * incrementing but disable interrupt event when there is a counter
110 * overflow. By default, the counter direction is used as upcounter.
112 static void stm32_timer_start(struct timer_of *to)
114 writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
117 static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
119 struct timer_of *to = to_timer_of(clkevt);
121 stm32_clock_event_disable(to);
123 return 0;
126 static int stm32_clock_event_set_next_event(unsigned long evt,
127 struct clock_event_device *clkevt)
129 struct timer_of *to = to_timer_of(clkevt);
130 unsigned long now, next;
132 next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
133 writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
134 now = readl_relaxed(timer_of_base(to) + TIM_CNT);
136 if ((next - now) > evt)
137 return -ETIME;
139 writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
141 return 0;
144 static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
146 struct timer_of *to = to_timer_of(clkevt);
148 stm32_timer_start(to);
150 return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
153 static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
155 struct timer_of *to = to_timer_of(clkevt);
157 stm32_timer_start(to);
159 return 0;
162 static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
164 struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
165 struct timer_of *to = to_timer_of(clkevt);
167 writel_relaxed(0, timer_of_base(to) + TIM_SR);
169 if (clockevent_state_periodic(clkevt))
170 stm32_clock_event_set_periodic(clkevt);
171 else
172 stm32_clock_event_shutdown(clkevt);
174 clkevt->event_handler(clkevt);
176 return IRQ_HANDLED;
180 * stm32_timer_width - Sort out the timer width (32/16)
181 * @to: a pointer to a timer-of structure
183 * Write the 32-bit max value and read/return the result. If the timer
184 * is 32 bits wide, the result will be UINT_MAX, otherwise it will
185 * be truncated by the 16-bit register to USHRT_MAX.
188 static void __init stm32_timer_set_width(struct timer_of *to)
190 u32 width;
192 writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
194 width = readl_relaxed(timer_of_base(to) + TIM_ARR);
196 stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
200 * stm32_timer_set_prescaler - Compute and set the prescaler register
201 * @to: a pointer to a timer-of structure
203 * Depending on the timer width, compute the prescaler to always
204 * target a 10MHz timer rate for 16 bits. 32-bit timers are
205 * considered precise and long enough to not use the prescaler.
207 static void __init stm32_timer_set_prescaler(struct timer_of *to)
209 int prescaler = 1;
211 if (stm32_timer_of_bits_get(to) != 32) {
212 prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
213 TIM_PSC_CLKRATE);
215 * The prescaler register is an u16, the variable
216 * can't be greater than TIM_PSC_MAX, let's cap it in
217 * this case.
219 prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
222 writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
223 writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
224 writel_relaxed(0, timer_of_base(to) + TIM_SR);
226 /* Adjust rate and period given the prescaler value */
227 to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
228 to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
231 static int __init stm32_clocksource_init(struct timer_of *to)
233 u32 bits = stm32_timer_of_bits_get(to);
234 const char *name = to->np->full_name;
237 * This driver allows to register several timers and relies on
238 * the generic time framework to select the right one.
239 * However, nothing allows to do the same for the
240 * sched_clock. We are not interested in a sched_clock for the
241 * 16-bit timers but only for the 32-bit one, so if no 32-bit
242 * timer is registered yet, we select this 32-bit timer as a
243 * sched_clock.
245 if (bits == 32 && !stm32_timer_cnt) {
248 * Start immediately the counter as we will be using
249 * it right after.
251 stm32_timer_start(to);
253 stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
254 sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
255 pr_info("%s: STM32 sched_clock registered\n", name);
257 stm32_timer_delay.read_current_timer = stm32_read_delay;
258 stm32_timer_delay.freq = timer_of_rate(to);
259 register_current_timer_delay(&stm32_timer_delay);
260 pr_info("%s: STM32 delay timer registered\n", name);
263 return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
264 timer_of_rate(to), bits == 32 ? 250 : 100,
265 bits, clocksource_mmio_readl_up);
268 static void __init stm32_clockevent_init(struct timer_of *to)
270 u32 bits = stm32_timer_of_bits_get(to);
272 to->clkevt.name = to->np->full_name;
273 to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
274 to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
275 to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
276 to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
277 to->clkevt.tick_resume = stm32_clock_event_shutdown;
278 to->clkevt.set_next_event = stm32_clock_event_set_next_event;
279 to->clkevt.rating = bits == 32 ? 250 : 100;
281 clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
282 (1 << bits) - 1);
284 pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
285 to->np, bits);
288 static int __init stm32_timer_init(struct device_node *node)
290 struct reset_control *rstc;
291 struct timer_of *to;
292 int ret;
294 to = kzalloc(sizeof(*to), GFP_KERNEL);
295 if (!to)
296 return -ENOMEM;
298 to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
299 to->of_irq.handler = stm32_clock_event_handler;
301 ret = timer_of_init(node, to);
302 if (ret)
303 goto err;
305 to->private_data = kzalloc(sizeof(struct stm32_timer_private),
306 GFP_KERNEL);
307 if (!to->private_data) {
308 ret = -ENOMEM;
309 goto deinit;
312 rstc = of_reset_control_get(node, NULL);
313 if (!IS_ERR(rstc)) {
314 reset_control_assert(rstc);
315 reset_control_deassert(rstc);
318 stm32_timer_set_width(to);
320 stm32_timer_set_prescaler(to);
322 ret = stm32_clocksource_init(to);
323 if (ret)
324 goto deinit;
326 stm32_clockevent_init(to);
327 return 0;
329 deinit:
330 timer_of_cleanup(to);
331 err:
332 kfree(to);
333 return ret;
336 TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);