1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <asm/byteorder.h>
6 #include <linux/types.h>
10 /* Maximum cores per cluster,
11 * varies based on partname
13 #define AE_CORES_PER_CLUSTER 20
14 #define SE_CORES_PER_CLUSTER 16
16 #define AE_MAX_CORES (AE_CORES_PER_CLUSTER * NR_CLUSTERS)
17 #define SE_MAX_CORES (SE_CORES_PER_CLUSTER * NR_CLUSTERS)
18 #define ZIP_MAX_CORES 5
21 #define EMU_BIST_STATUSX(_i) (0x1402700 + ((_i) * 0x40000))
22 #define UCD_BIST_STATUS 0x12C0070
23 #define NPS_CORE_BIST_REG 0x10000E8
24 #define NPS_CORE_NPC_BIST_REG 0x1000128
25 #define NPS_PKT_SLC_BIST_REG 0x1040088
26 #define NPS_PKT_IN_BIST_REG 0x1040100
27 #define POM_BIST_REG 0x11C0100
28 #define BMI_BIST_REG 0x1140080
29 #define EFL_CORE_BIST_REGX(_i) (0x1240100 + ((_i) * 0x400))
30 #define EFL_TOP_BIST_STAT 0x1241090
31 #define BMO_BIST_REG 0x1180080
32 #define LBC_BIST_STATUS 0x1200020
33 #define PEM_BIST_STATUSX(_i) (0x1080468 | ((_i) << 18))
36 #define EMU_SE_ENABLEX(_i) (0x1400000 + ((_i) * 0x40000))
37 #define EMU_AE_ENABLEX(_i) (0x1400008 + ((_i) * 0x40000))
38 #define EMU_WD_INT_ENA_W1SX(_i) (0x1402318 + ((_i) * 0x40000))
39 #define EMU_GE_INT_ENA_W1SX(_i) (0x1402518 + ((_i) * 0x40000))
40 #define EMU_FUSE_MAPX(_i) (0x1402708 + ((_i) * 0x40000))
43 #define UCD_UCODE_LOAD_BLOCK_NUM 0x12C0010
44 #define UCD_UCODE_LOAD_IDX_DATAX(_i) (0x12C0018 + ((_i) * 0x20))
45 #define UCD_SE_EID_UCODE_BLOCK_NUMX(_i) (0x12C0000 + ((_i) * 0x1000))
47 /* NPS core registers */
48 #define NPS_CORE_GBL_VFCFG 0x1000000
49 #define NPS_CORE_CONTROL 0x1000008
50 #define NPS_CORE_INT_ACTIVE 0x1000080
51 #define NPS_CORE_INT 0x10000A0
52 #define NPS_CORE_INT_ENA_W1S 0x10000B8
53 #define NPS_STATS_PKT_DMA_RD_CNT 0x1000180
54 #define NPS_STATS_PKT_DMA_WR_CNT 0x1000190
56 /* NPS packet registers */
57 #define NPS_PKT_INT 0x1040018
58 #define NPS_PKT_MBOX_INT_LO 0x1040020
59 #define NPS_PKT_MBOX_INT_LO_ENA_W1C 0x1040030
60 #define NPS_PKT_MBOX_INT_LO_ENA_W1S 0x1040038
61 #define NPS_PKT_MBOX_INT_HI 0x1040040
62 #define NPS_PKT_MBOX_INT_HI_ENA_W1C 0x1040050
63 #define NPS_PKT_MBOX_INT_HI_ENA_W1S 0x1040058
64 #define NPS_PKT_IN_RERR_HI 0x1040108
65 #define NPS_PKT_IN_RERR_HI_ENA_W1S 0x1040120
66 #define NPS_PKT_IN_RERR_LO 0x1040128
67 #define NPS_PKT_IN_RERR_LO_ENA_W1S 0x1040140
68 #define NPS_PKT_IN_ERR_TYPE 0x1040148
69 #define NPS_PKT_IN_ERR_TYPE_ENA_W1S 0x1040160
70 #define NPS_PKT_IN_INSTR_CTLX(_i) (0x10060 + ((_i) * 0x40000))
71 #define NPS_PKT_IN_INSTR_BADDRX(_i) (0x10068 + ((_i) * 0x40000))
72 #define NPS_PKT_IN_INSTR_RSIZEX(_i) (0x10070 + ((_i) * 0x40000))
73 #define NPS_PKT_IN_DONE_CNTSX(_i) (0x10080 + ((_i) * 0x40000))
74 #define NPS_PKT_IN_INSTR_BAOFF_DBELLX(_i) (0x10078 + ((_i) * 0x40000))
75 #define NPS_PKT_IN_INT_LEVELSX(_i) (0x10088 + ((_i) * 0x40000))
77 #define NPS_PKT_SLC_RERR_HI 0x1040208
78 #define NPS_PKT_SLC_RERR_HI_ENA_W1S 0x1040220
79 #define NPS_PKT_SLC_RERR_LO 0x1040228
80 #define NPS_PKT_SLC_RERR_LO_ENA_W1S 0x1040240
81 #define NPS_PKT_SLC_ERR_TYPE 0x1040248
82 #define NPS_PKT_SLC_ERR_TYPE_ENA_W1S 0x1040260
83 /* Mailbox PF->VF PF Accessible Data registers */
84 #define NPS_PKT_MBOX_PF_VF_PFDATAX(_i) (0x1040800 + ((_i) * 0x8))
85 #define NPS_PKT_MBOX_VF_PF_PFDATAX(_i) (0x1040C00 + ((_i) * 0x8))
87 #define NPS_PKT_SLC_CTLX(_i) (0x10000 + ((_i) * 0x40000))
88 #define NPS_PKT_SLC_CNTSX(_i) (0x10008 + ((_i) * 0x40000))
89 #define NPS_PKT_SLC_INT_LEVELSX(_i) (0x10010 + ((_i) * 0x40000))
92 #define POM_INT_ENA_W1S 0x11C0018
93 #define POM_GRP_EXECMASKX(_i) (0x11C1100 | ((_i) * 8))
94 #define POM_INT 0x11C0000
95 #define POM_PERF_CTL 0x11CC400
98 #define BMI_INT 0x1140000
99 #define BMI_CTL 0x1140020
100 #define BMI_INT_ENA_W1S 0x1140018
101 #define BMI_NPS_PKT_CNT 0x1140070
104 #define EFL_CORE_INT_ENA_W1SX(_i) (0x1240018 + ((_i) * 0x400))
105 #define EFL_CORE_VF_ERR_INT0X(_i) (0x1240050 + ((_i) * 0x400))
106 #define EFL_CORE_VF_ERR_INT0_ENA_W1SX(_i) (0x1240068 + ((_i) * 0x400))
107 #define EFL_CORE_VF_ERR_INT1X(_i) (0x1240070 + ((_i) * 0x400))
108 #define EFL_CORE_VF_ERR_INT1_ENA_W1SX(_i) (0x1240088 + ((_i) * 0x400))
109 #define EFL_CORE_SE_ERR_INTX(_i) (0x12400A0 + ((_i) * 0x400))
110 #define EFL_RNM_CTL_STATUS 0x1241800
111 #define EFL_CORE_INTX(_i) (0x1240000 + ((_i) * 0x400))
114 #define BMO_CTL2 0x1180028
115 #define BMO_NPS_SLC_PKT_CNT 0x1180078
118 #define LBC_INT 0x1200000
119 #define LBC_INVAL_CTL 0x1201010
120 #define LBC_PLM_VF1_64_INT 0x1202008
121 #define LBC_INVAL_STATUS 0x1202010
122 #define LBC_INT_ENA_W1S 0x1203000
123 #define LBC_PLM_VF1_64_INT_ENA_W1S 0x1205008
124 #define LBC_PLM_VF65_128_INT 0x1206008
125 #define LBC_ELM_VF1_64_INT 0x1208000
126 #define LBC_PLM_VF65_128_INT_ENA_W1S 0x1209008
127 #define LBC_ELM_VF1_64_INT_ENA_W1S 0x120B000
128 #define LBC_ELM_VF65_128_INT 0x120C000
129 #define LBC_ELM_VF65_128_INT_ENA_W1S 0x120F000
131 #define RST_BOOT 0x10C1600
132 #define FUS_DAT1 0x10C1408
135 #define PEM0_INT 0x1080428
138 * struct emu_fuse_map - EMU Fuse Map Registers
139 * @ae_fuse: Fuse settings for AE 19..0
140 * @se_fuse: Fuse settings for SE 15..0
142 * A set bit indicates the unit is fuse disabled.
147 #if (defined(__BIG_ENDIAN_BITFIELD))
164 * struct emu_se_enable - Symmetric Engine Enable Registers
165 * @enable: Individual enables for each of the clusters
166 * 16 symmetric engines.
168 union emu_se_enable
{
171 #if (defined(__BIG_ENDIAN_BITFIELD))
182 * struct emu_ae_enable - EMU Asymmetric engines.
183 * @enable: Individual enables for each of the cluster's
184 * 20 Asymmetric Engines.
186 union emu_ae_enable
{
189 #if (defined(__BIG_ENDIAN_BITFIELD))
200 * struct emu_wd_int_ena_w1s - EMU Interrupt Enable Registers
201 * @ae_wd: Reads or sets enable for EMU(0..3)_WD_INT[AE_WD]
202 * @se_wd: Reads or sets enable for EMU(0..3)_WD_INT[SE_WD]
204 union emu_wd_int_ena_w1s
{
207 #if (defined(__BIG_ENDIAN_BITFIELD))
222 * struct emu_ge_int_ena_w1s - EMU Interrupt Enable set registers
223 * @ae_ge: Reads or sets enable for EMU(0..3)_GE_INT[AE_GE]
224 * @se_ge: Reads or sets enable for EMU(0..3)_GE_INT[SE_GE]
226 union emu_ge_int_ena_w1s
{
229 #if (defined(__BIG_ENDIAN_BITFIELD))
244 * struct nps_pkt_slc_ctl - Solicited Packet Out Control Registers
245 * @rh: Indicates whether to remove or include the response header
246 * 1 = Include, 0 = Remove
247 * @z: If set, 8 trailing 0x00 bytes will be added to the end of the
249 * @enb: Enable for this port.
251 union nps_pkt_slc_ctl
{
254 #if defined(__BIG_ENDIAN_BITFIELD)
269 * struct nps_pkt_slc_cnts - Solicited Packet Out Count Registers
270 * @slc_int: Returns a 1 when:
271 * NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT], or
272 * NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SLC(i)_INT_LEVELS[TIMET].
273 * To clear the bit, the CNTS register must be written to clear.
274 * @in_int: Returns a 1 when:
275 * NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT].
276 * To clear the bit, the DONE_CNTS register must be written to clear.
277 * @mbox_int: Returns a 1 when:
278 * NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set. To clear the bit,
279 * write NPS_PKT_MBOX_PF_VF(i)_INT[INTR] with 1.
280 * @timer: Timer, incremented every 2048 coprocessor clock cycles
281 * when [CNT] is not zero. The hardware clears both [TIMER] and
282 * [INT] when [CNT] goes to 0.
283 * @cnt: Packet counter. Hardware adds to [CNT] as it sends packets out.
284 * On a write to this CSR, hardware subtracts the amount written to the
285 * [CNT] field from [CNT].
287 union nps_pkt_slc_cnts
{
290 #if defined(__BIG_ENDIAN_BITFIELD)
313 * struct nps_pkt_slc_int_levels - Solicited Packet Out Interrupt Levels
315 * @bmode: Determines whether NPS_PKT_SLC_CNTS[CNT] is a byte or
317 * @timet: Output port counter time interrupt threshold.
318 * @cnt: Output port counter interrupt threshold.
320 union nps_pkt_slc_int_levels
{
323 #if defined(__BIG_ENDIAN_BITFIELD)
338 * struct nps_pkt_inst - NPS Packet Interrupt Register
339 * @in_err: Set when any NPS_PKT_IN_RERR_HI/LO bit and
340 * corresponding NPS_PKT_IN_RERR_*_ENA_* bit are bot set.
341 * @uns_err: Set when any NSP_PKT_UNS_RERR_HI/LO bit and
342 * corresponding NPS_PKT_UNS_RERR_*_ENA_* bit are both set.
343 * @slc_er: Set when any NSP_PKT_SLC_RERR_HI/LO bit and
344 * corresponding NPS_PKT_SLC_RERR_*_ENA_* bit are both set.
349 #if defined(__BIG_ENDIAN_BITFIELD)
378 * struct nps_pkt_in_done_cnts - Input instruction ring counts registers
379 * @slc_cnt: Returns a 1 when:
380 * NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT], or
381 * NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SCL(i)_INT_LEVELS[TIMET]
382 * To clear the bit, the CNTS register must be
383 * written to clear the underlying condition
384 * @uns_int: Return a 1 when:
385 * NPS_PKT_UNS(i)_CNTS[CNT] > NPS_PKT_UNS(i)_INT_LEVELS[CNT], or
386 * NPS_PKT_UNS(i)_CNTS[TIMER] > NPS_PKT_UNS(i)_INT_LEVELS[TIMET]
387 * To clear the bit, the CNTS register must be
388 * written to clear the underlying condition
389 * @in_int: Returns a 1 when:
390 * NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT]
391 * To clear the bit, the DONE_CNTS register
392 * must be written to clear the underlying condition
393 * @mbox_int: Returns a 1 when:
394 * NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set.
395 * To clear the bit, write NPS_PKT_MBOX_PF_VF(i)_INT[INTR]
397 * @resend: A write of 1 will resend an MSI-X interrupt message if any
398 * of the following conditions are true for this ring "i".
399 * NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT]
400 * NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SLC(i)_INT_LEVELS[TIMET]
401 * NPS_PKT_UNS(i)_CNTS[CNT] > NPS_PKT_UNS(i)_INT_LEVELS[CNT]
402 * NPS_PKT_UNS(i)_CNTS[TIMER] > NPS_PKT_UNS(i)_INT_LEVELS[TIMET]
403 * NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT]
404 * NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set
405 * @cnt: Packet counter. Hardware adds to [CNT] as it reads
406 * packets. On a write to this CSR, hardware substracts the
407 * amount written to the [CNT] field from [CNT], which will
408 * clear PKT_IN(i)_INT_STATUS[INTR] if [CNT] becomes <=
409 * NPS_PKT_IN(i)_INT_LEVELS[CNT]. This register should be
410 * cleared before enabling a ring by reading the current
411 * value and writing it back.
413 union nps_pkt_in_done_cnts
{
416 #if defined(__BIG_ENDIAN_BITFIELD)
437 * struct nps_pkt_in_instr_ctl - Input Instruction Ring Control Registers.
438 * @is64b: If 1, the ring uses 64-byte instructions. If 0, the
439 * ring uses 32-byte instructions.
440 * @enb: Enable for the input ring.
442 union nps_pkt_in_instr_ctl
{
445 #if (defined(__BIG_ENDIAN_BITFIELD))
458 * struct nps_pkt_in_instr_rsize - Input instruction ring size registers
459 * @rsize: Ring size (number of instructions)
461 union nps_pkt_in_instr_rsize
{
464 #if (defined(__BIG_ENDIAN_BITFIELD))
475 * struct nps_pkt_in_instr_baoff_dbell - Input instruction ring
476 * base address offset and doorbell registers
477 * @aoff: Address offset. The offset from the NPS_PKT_IN_INSTR_BADDR
478 * where the next pointer is read.
479 * @dbell: Pointer list doorbell count. Write operations to this field
480 * increments the present value here. Read operations return the
483 union nps_pkt_in_instr_baoff_dbell
{
486 #if (defined(__BIG_ENDIAN_BITFIELD))
497 * struct nps_core_int_ena_w1s - NPS core interrupt enable set register
498 * @host_nps_wr_err: Reads or sets enable for
499 * NPS_CORE_INT[HOST_NPS_WR_ERR].
500 * @npco_dma_malform: Reads or sets enable for
501 * NPS_CORE_INT[NPCO_DMA_MALFORM].
502 * @exec_wr_timeout: Reads or sets enable for
503 * NPS_CORE_INT[EXEC_WR_TIMEOUT].
504 * @host_wr_timeout: Reads or sets enable for
505 * NPS_CORE_INT[HOST_WR_TIMEOUT].
506 * @host_wr_err: Reads or sets enable for
507 * NPS_CORE_INT[HOST_WR_ERR]
509 union nps_core_int_ena_w1s
{
512 #if (defined(__BIG_ENDIAN_BITFIELD))
514 u64 host_nps_wr_err
: 1;
515 u64 npco_dma_malform
: 1;
516 u64 exec_wr_timeout
: 1;
517 u64 host_wr_timeout
: 1;
529 u64 host_wr_timeout
: 1;
530 u64 exec_wr_timeout
: 1;
531 u64 npco_dma_malform
: 1;
532 u64 host_nps_wr_err
: 1;
539 * struct nps_core_gbl_vfcfg - Global VF Configuration Register.
540 * @ilk_disable: When set, this bit indicates that the ILK interface has
542 * @obaf: BMO allocation control
543 * 0 = allocate per queue
544 * 1 = allocate per VF
545 * @ibaf: BMI allocation control
546 * 0 = allocate per queue
547 * 1 = allocate per VF
548 * @zaf: ZIP allocation control
549 * 0 = allocate per queue
550 * 1 = allocate per VF
551 * @aeaf: AE allocation control
552 * 0 = allocate per queue
553 * 1 = allocate per VF
554 * @seaf: SE allocation control
555 * 0 = allocation per queue
556 * 1 = allocate per VF
559 union nps_core_gbl_vfcfg
{
562 #if (defined(__BIG_ENDIAN_BITFIELD))
585 * struct nps_core_int_active - NPS Core Interrupt Active Register
586 * @resend: Resend MSI-X interrupt if needs to handle interrupts
587 * Sofware can set this bit and then exit the ISR.
588 * @ocla: Set when any OCLA(0)_INT and corresponding OCLA(0_INT_ENA_W1C
590 * @mbox: Set when any NPS_PKT_MBOX_INT_LO/HI and corresponding
591 * NPS_PKT_MBOX_INT_LO_ENA_W1C/HI_ENA_W1C bits are set
592 * @emu: bit i is set in [EMU] when any EMU(i)_INT bit is set
593 * @bmo: Set when any BMO_INT bit is set
594 * @bmi: Set when any BMI_INT bit is set or when any non-RO
595 * BMI_INT and corresponding BMI_INT_ENA_W1C bits are both set
596 * @aqm: Set when any AQM_INT bit is set
597 * @zqm: Set when any ZQM_INT bit is set
598 * @efl: Set when any EFL_INT RO bit is set or when any non-RO EFL_INT
599 * and corresponding EFL_INT_ENA_W1C bits are both set
600 * @ilk: Set when any ILK_INT bit is set
601 * @lbc: Set when any LBC_INT RO bit is set or when any non-RO LBC_INT
602 * and corresponding LBC_INT_ENA_W1C bits are bot set
603 * @pem: Set when any PEM(0)_INT RO bit is set or when any non-RO
604 * PEM(0)_INT and corresponding PEM(0)_INT_ENA_W1C bit are both set
605 * @ucd: Set when any UCD_INT bit is set
606 * @zctl: Set when any ZIP_INT RO bit is set or when any non-RO ZIP_INT
607 * and corresponding ZIP_INT_ENA_W1C bits are both set
608 * @lbm: Set when any LBM_INT bit is set
609 * @nps_pkt: Set when any NPS_PKT_INT bit is set
610 * @nps_core: Set when any NPS_CORE_INT RO bit is set or when non-RO
611 * NPS_CORE_INT and corresponding NSP_CORE_INT_ENA_W1C bits are both set
613 union nps_core_int_active
{
616 #if (defined(__BIG_ENDIAN_BITFIELD))
661 * struct efl_core_int - EFL Interrupt Registers
662 * @epci_decode_err: EPCI decoded a transacation that was unknown
663 * This error should only occurred when there is a micrcode/SE error
664 * and should be considered fatal
665 * @ae_err: An AE uncorrectable error occurred.
666 * See EFL_CORE(0..3)_AE_ERR_INT
667 * @se_err: An SE uncorrectable error occurred.
668 * See EFL_CORE(0..3)_SE_ERR_INT
669 * @dbe: Double-bit error occurred in EFL
670 * @sbe: Single-bit error occurred in EFL
671 * @d_left: Asserted when new POM-Header-BMI-data is
672 * being sent to an Exec, and that Exec has Not read all BMI
673 * data associated with the previous POM header
674 * @len_ovr: Asserted when an Exec-Read is issued that is more than
675 * 14 greater in length that the BMI data left to be read
680 #if (defined(__BIG_ENDIAN_BITFIELD))
682 u64 epci_decode_err
: 1;
696 u64 epci_decode_err
: 1;
703 * struct efl_core_int_ena_w1s - EFL core interrupt enable set register
704 * @epci_decode_err: Reads or sets enable for
705 * EFL_CORE(0..3)_INT[EPCI_DECODE_ERR].
706 * @d_left: Reads or sets enable for
707 * EFL_CORE(0..3)_INT[D_LEFT].
708 * @len_ovr: Reads or sets enable for
709 * EFL_CORE(0..3)_INT[LEN_OVR].
711 union efl_core_int_ena_w1s
{
714 #if (defined(__BIG_ENDIAN_BITFIELD))
716 u64 epci_decode_err
: 1;
724 u64 epci_decode_err
: 1;
731 * struct efl_rnm_ctl_status - RNM Control and Status Register
732 * @ent_sel: Select input to RNM FIFO
733 * @exp_ent: Exported entropy enable for random number generator
734 * @rng_rst: Reset to RNG. Setting this bit to 1 cancels the generation
735 * of the current random number.
736 * @rnm_rst: Reset the RNM. Setting this bit to 1 clears all sorted numbers
737 * in the random number memory.
738 * @rng_en: Enabled the output of the RNG.
739 * @ent_en: Entropy enable for random number generator.
741 union efl_rnm_ctl_status
{
744 #if (defined(__BIG_ENDIAN_BITFIELD))
765 * struct bmi_ctl - BMI control register
766 * @ilk_hdrq_thrsh: Maximum number of header queue locations
767 * that ILK packets may consume. When the threshold is
768 * exceeded ILK_XOFF is sent to the BMI_X2P_ARB.
769 * @nps_hdrq_thrsh: Maximum number of header queue locations
770 * that NPS packets may consume. When the threshold is
771 * exceeded NPS_XOFF is sent to the BMI_X2P_ARB.
772 * @totl_hdrq_thrsh: Maximum number of header queue locations
773 * that the sum of ILK and NPS packets may consume.
774 * @ilk_free_thrsh: Maximum number of buffers that ILK packet
775 * flows may consume before ILK_XOFF is sent to the BMI_X2P_ARB.
776 * @nps_free_thrsh: Maximum number of buffers that NPS packet
777 * flows may consume before NPS XOFF is sent to the BMI_X2p_ARB.
778 * @totl_free_thrsh: Maximum number of buffers that bot ILK and NPS
779 * packet flows may consume before both NPS_XOFF and ILK_XOFF
780 * are asserted to the BMI_X2P_ARB.
781 * @max_pkt_len: Maximum packet length, integral number of 256B
787 #if (defined(__BIG_ENDIAN_BITFIELD))
789 u64 ilk_hdrq_thrsh
: 8;
790 u64 nps_hdrq_thrsh
: 8;
791 u64 totl_hdrq_thrsh
: 8;
792 u64 ilk_free_thrsh
: 8;
793 u64 nps_free_thrsh
: 8;
794 u64 totl_free_thrsh
: 8;
798 u64 totl_free_thrsh
: 8;
799 u64 nps_free_thrsh
: 8;
800 u64 ilk_free_thrsh
: 8;
801 u64 totl_hdrq_thrsh
: 8;
802 u64 nps_hdrq_thrsh
: 8;
803 u64 ilk_hdrq_thrsh
: 8;
810 * struct bmi_int_ena_w1s - BMI interrupt enable set register
811 * @ilk_req_oflw: Reads or sets enable for
812 * BMI_INT[ILK_REQ_OFLW].
813 * @nps_req_oflw: Reads or sets enable for
814 * BMI_INT[NPS_REQ_OFLW].
815 * @fpf_undrrn: Reads or sets enable for
816 * BMI_INT[FPF_UNDRRN].
817 * @eop_err_ilk: Reads or sets enable for
818 * BMI_INT[EOP_ERR_ILK].
819 * @eop_err_nps: Reads or sets enable for
820 * BMI_INT[EOP_ERR_NPS].
821 * @sop_err_ilk: Reads or sets enable for
822 * BMI_INT[SOP_ERR_ILK].
823 * @sop_err_nps: Reads or sets enable for
824 * BMI_INT[SOP_ERR_NPS].
825 * @pkt_rcv_err_ilk: Reads or sets enable for
826 * BMI_INT[PKT_RCV_ERR_ILK].
827 * @pkt_rcv_err_nps: Reads or sets enable for
828 * BMI_INT[PKT_RCV_ERR_NPS].
829 * @max_len_err_ilk: Reads or sets enable for
830 * BMI_INT[MAX_LEN_ERR_ILK].
831 * @max_len_err_nps: Reads or sets enable for
832 * BMI_INT[MAX_LEN_ERR_NPS].
834 union bmi_int_ena_w1s
{
837 #if (defined(__BIG_ENDIAN_BITFIELD))
839 u64 ilk_req_oflw
: 1;
840 u64 nps_req_oflw
: 1;
848 u64 pkt_rcv_err_ilk
: 1;
849 u64 pkt_rcv_err_nps
: 1;
850 u64 max_len_err_ilk
: 1;
851 u64 max_len_err_nps
: 1;
853 u64 max_len_err_nps
: 1;
854 u64 max_len_err_ilk
: 1;
855 u64 pkt_rcv_err_nps
: 1;
856 u64 pkt_rcv_err_ilk
: 1;
864 u64 nps_req_oflw
: 1;
865 u64 ilk_req_oflw
: 1;
872 * struct bmo_ctl2 - BMO Control2 Register
873 * @arb_sel: Determines P2X Arbitration
874 * @ilk_buf_thrsh: Maximum number of buffers that the
875 * ILK packet flows may consume before ILK XOFF is
876 * asserted to the POM.
877 * @nps_slc_buf_thrsh: Maximum number of buffers that the
878 * NPS_SLC packet flow may consume before NPS_SLC XOFF is
879 * asserted to the POM.
880 * @nps_uns_buf_thrsh: Maximum number of buffers that the
881 * NPS_UNS packet flow may consume before NPS_UNS XOFF is
882 * asserted to the POM.
883 * @totl_buf_thrsh: Maximum number of buffers that ILK, NPS_UNS and
884 * NPS_SLC packet flows may consume before NPS_UNS XOFF, NSP_SLC and
885 * ILK_XOFF are all asserted POM.
890 #if (defined(__BIG_ENDIAN_BITFIELD))
893 u64 ilk_buf_thrsh
: 8;
894 u64 nps_slc_buf_thrsh
: 8;
895 u64 nps_uns_buf_thrsh
: 8;
896 u64 totl_buf_thrsh
: 8;
898 u64 totl_buf_thrsh
: 8;
899 u64 nps_uns_buf_thrsh
: 8;
900 u64 nps_slc_buf_thrsh
: 8;
901 u64 ilk_buf_thrsh
: 8;
909 * struct pom_int_ena_w1s - POM interrupt enable set register
910 * @illegal_intf: Reads or sets enable for POM_INT[ILLEGAL_INTF].
911 * @illegal_dport: Reads or sets enable for POM_INT[ILLEGAL_DPORT].
913 union pom_int_ena_w1s
{
916 #if (defined(__BIG_ENDIAN_BITFIELD))
918 u64 illegal_intf
: 1;
919 u64 illegal_dport
: 1;
925 u64 illegal_dport
: 1;
926 u64 illegal_intf
: 1;
933 * struct lbc_inval_ctl - LBC invalidation control register
934 * @wait_timer: Wait timer for wait state. [WAIT_TIMER] must
935 * always be written with its reset value.
936 * @cam_inval_start: Software should write [CAM_INVAL_START]=1
937 * to initiate an LBC cache invalidation. After this, software
938 * should read LBC_INVAL_STATUS until LBC_INVAL_STATUS[DONE] is set.
939 * LBC hardware clears [CAVM_INVAL_START] before software can
940 * observed LBC_INVAL_STATUS[DONE] to be set
942 union lbc_inval_ctl
{
945 #if (defined(__BIG_ENDIAN_BITFIELD))
949 u64 cam_inval_start
: 1;
953 u64 cam_inval_start
: 1;
962 * struct lbc_int_ena_w1s - LBC interrupt enable set register
963 * @cam_hard_err: Reads or sets enable for LBC_INT[CAM_HARD_ERR].
964 * @cam_inval_abort: Reads or sets enable for LBC_INT[CAM_INVAL_ABORT].
965 * @over_fetch_err: Reads or sets enable for LBC_INT[OVER_FETCH_ERR].
966 * @cache_line_to_err: Reads or sets enable for
967 * LBC_INT[CACHE_LINE_TO_ERR].
968 * @cam_soft_err: Reads or sets enable for
969 * LBC_INT[CAM_SOFT_ERR].
970 * @dma_rd_err: Reads or sets enable for
971 * LBC_INT[DMA_RD_ERR].
973 union lbc_int_ena_w1s
{
976 #if (defined(__BIG_ENDIAN_BITFIELD))
978 u64 cam_hard_err
: 1;
979 u64 cam_inval_abort
: 1;
980 u64 over_fetch_err
: 1;
981 u64 cache_line_to_err
: 1;
983 u64 cam_soft_err
: 1;
987 u64 cam_soft_err
: 1;
989 u64 cache_line_to_err
: 1;
990 u64 over_fetch_err
: 1;
991 u64 cam_inval_abort
: 1;
992 u64 cam_hard_err
: 1;
999 * struct lbc_int - LBC interrupt summary register
1000 * @cam_hard_err: indicates a fatal hardware error.
1001 * It requires system reset.
1002 * When [CAM_HARD_ERR] is set, LBC stops logging any new information in
1003 * LBC_POM_MISS_INFO_LOG,
1004 * LBC_POM_MISS_ADDR_LOG,
1005 * LBC_EFL_MISS_INFO_LOG, and
1006 * LBC_EFL_MISS_ADDR_LOG.
1007 * Software should sample them.
1008 * @cam_inval_abort: indicates a fatal hardware error.
1009 * System reset is required.
1010 * @over_fetch_err: indicates a fatal hardware error
1011 * System reset is required
1012 * @cache_line_to_err: is a debug feature.
1013 * This timeout interrupt bit tells the software that
1014 * a cacheline in LBC has non-zero usage and the context
1015 * has not been used for greater than the
1016 * LBC_TO_CNT[TO_CNT] time interval.
1017 * @sbe: Memory SBE error. This is recoverable via ECC.
1018 * See LBC_ECC_INT for more details.
1019 * @dbe: Memory DBE error. This is a fatal and requires a
1021 * @pref_dat_len_mismatch_err: Summary bit for context length
1023 * @rd_dat_len_mismatch_err: Summary bit for SE read data length
1024 * greater than data prefect length errors.
1025 * @cam_soft_err: is recoverable. Software must complete a
1026 * LBC_INVAL_CTL[CAM_INVAL_START] invalidation sequence and
1027 * then clear [CAM_SOFT_ERR].
1028 * @dma_rd_err: A context prefect read of host memory returned with
1034 #if (defined(__BIG_ENDIAN_BITFIELD))
1036 u64 cam_hard_err
: 1;
1037 u64 cam_inval_abort
: 1;
1038 u64 over_fetch_err
: 1;
1039 u64 cache_line_to_err
: 1;
1042 u64 pref_dat_len_mismatch_err
: 1;
1043 u64 rd_dat_len_mismatch_err
: 1;
1044 u64 cam_soft_err
: 1;
1048 u64 cam_soft_err
: 1;
1049 u64 rd_dat_len_mismatch_err
: 1;
1050 u64 pref_dat_len_mismatch_err
: 1;
1053 u64 cache_line_to_err
: 1;
1054 u64 over_fetch_err
: 1;
1055 u64 cam_inval_abort
: 1;
1056 u64 cam_hard_err
: 1;
1063 * struct lbc_inval_status: LBC Invalidation status register
1064 * @cam_clean_entry_complete_cnt: The number of entries that are
1065 * cleaned up successfully.
1066 * @cam_clean_entry_cnt: The number of entries that have the CAM
1067 * inval command issued.
1068 * @cam_inval_state: cam invalidation FSM state
1069 * @cam_inval_abort: cam invalidation abort
1070 * @cam_rst_rdy: lbc_cam reset ready
1071 * @done: LBC clears [DONE] when
1072 * LBC_INVAL_CTL[CAM_INVAL_START] is written with a one,
1073 * and sets [DONE] when it completes the invalidation
1076 union lbc_inval_status
{
1079 #if (defined(__BIG_ENDIAN_BITFIELD))
1081 u64 cam_clean_entry_complete_cnt
: 9;
1083 u64 cam_clean_entry_cnt
: 9;
1085 u64 cam_inval_state
: 3;
1087 u64 cam_inval_abort
: 1;
1088 u64 cam_rst_rdy
: 1;
1092 u64 cam_rst_rdy
: 1;
1093 u64 cam_inval_abort
: 1;
1095 u64 cam_inval_state
: 3;
1097 u64 cam_clean_entry_cnt
: 9;
1099 u64 cam_clean_entry_complete_cnt
: 9;
1106 * struct rst_boot: RST Boot Register
1107 * @jtcsrdis: when set, internal CSR access via JTAG TAP controller
1109 * @jt_tst_mode: JTAG test mode
1110 * @io_supply: I/O power supply setting based on IO_VDD_SELECT pin:
1114 * All other values are reserved
1115 * @pnr_mul: clock multiplier
1116 * @lboot: last boot cause mask, resets only with PLL_DC_OK
1117 * @rboot: determines whether core 0 remains in reset after
1118 * chip cold or warm or soft reset
1119 * @rboot_pin: read only access to REMOTE_BOOT pin
1124 #if (defined(__BIG_ENDIAN_BITFIELD))
1128 u64 jt_tst_mode
: 1;
1146 u64 jt_tst_mode
: 1;
1155 * struct fus_dat1: Fuse Data 1 Register
1156 * @pll_mul: main clock PLL multiplier hardware limit
1157 * @pll_half_dis: main clock PLL control
1158 * @efus_lck: efuse lockdown
1159 * @zip_info: ZIP information
1160 * @bar2_sz_conf: when zero, BAR2 size conforms to
1161 * PCIe specification
1162 * @efus_ign: efuse ignore
1163 * @nozip: ZIP disable
1164 * @pll_alt_matrix: select alternate PLL matrix
1165 * @pll_bwadj_denom: select CLKF denominator for
1172 #if (defined(__BIG_ENDIAN_BITFIELD))
1175 u64 pll_half_dis
: 1;
1180 u64 bar2_sz_conf
: 1;
1184 u64 pll_alt_matrix
: 1;
1185 u64 pll_bwadj_denom
: 2;
1189 u64 pll_bwadj_denom
: 2;
1190 u64 pll_alt_matrix
: 1;
1194 u64 bar2_sz_conf
: 1;
1199 u64 pll_half_dis
: 1;
1206 #endif /* __NITROX_CSR_H */