1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 #include <linux/crypto.h>
4 #include <linux/dma-mapping.h>
5 #include <linux/dmapool.h>
6 #include <linux/module.h>
7 #include <linux/mutex.h>
8 #include <linux/slab.h>
10 #include <crypto/aes.h>
11 #include <crypto/algapi.h>
12 #include <crypto/des.h>
13 #include <crypto/skcipher.h>
14 #include <crypto/xts.h>
15 #include <crypto/internal/skcipher.h>
19 #define SEC_MAX_CIPHER_KEY 64
20 #define SEC_REQ_LIMIT SZ_32M
22 struct sec_c_alg_cfg
{
29 static const struct sec_c_alg_cfg sec_c_alg_cfgs
[] = {
30 [SEC_C_DES_ECB_64
] = {
31 .c_alg
= SEC_C_ALG_DES
,
32 .c_mode
= SEC_C_MODE_ECB
,
33 .key_len
= SEC_KEY_LEN_DES
,
35 [SEC_C_DES_CBC_64
] = {
36 .c_alg
= SEC_C_ALG_DES
,
37 .c_mode
= SEC_C_MODE_CBC
,
38 .key_len
= SEC_KEY_LEN_DES
,
40 [SEC_C_3DES_ECB_192_3KEY
] = {
41 .c_alg
= SEC_C_ALG_3DES
,
42 .c_mode
= SEC_C_MODE_ECB
,
43 .key_len
= SEC_KEY_LEN_3DES_3_KEY
,
45 [SEC_C_3DES_ECB_192_2KEY
] = {
46 .c_alg
= SEC_C_ALG_3DES
,
47 .c_mode
= SEC_C_MODE_ECB
,
48 .key_len
= SEC_KEY_LEN_3DES_2_KEY
,
50 [SEC_C_3DES_CBC_192_3KEY
] = {
51 .c_alg
= SEC_C_ALG_3DES
,
52 .c_mode
= SEC_C_MODE_CBC
,
53 .key_len
= SEC_KEY_LEN_3DES_3_KEY
,
55 [SEC_C_3DES_CBC_192_2KEY
] = {
56 .c_alg
= SEC_C_ALG_3DES
,
57 .c_mode
= SEC_C_MODE_CBC
,
58 .key_len
= SEC_KEY_LEN_3DES_2_KEY
,
60 [SEC_C_AES_ECB_128
] = {
61 .c_alg
= SEC_C_ALG_AES
,
62 .c_mode
= SEC_C_MODE_ECB
,
63 .key_len
= SEC_KEY_LEN_AES_128
,
65 [SEC_C_AES_ECB_192
] = {
66 .c_alg
= SEC_C_ALG_AES
,
67 .c_mode
= SEC_C_MODE_ECB
,
68 .key_len
= SEC_KEY_LEN_AES_192
,
70 [SEC_C_AES_ECB_256
] = {
71 .c_alg
= SEC_C_ALG_AES
,
72 .c_mode
= SEC_C_MODE_ECB
,
73 .key_len
= SEC_KEY_LEN_AES_256
,
75 [SEC_C_AES_CBC_128
] = {
76 .c_alg
= SEC_C_ALG_AES
,
77 .c_mode
= SEC_C_MODE_CBC
,
78 .key_len
= SEC_KEY_LEN_AES_128
,
80 [SEC_C_AES_CBC_192
] = {
81 .c_alg
= SEC_C_ALG_AES
,
82 .c_mode
= SEC_C_MODE_CBC
,
83 .key_len
= SEC_KEY_LEN_AES_192
,
85 [SEC_C_AES_CBC_256
] = {
86 .c_alg
= SEC_C_ALG_AES
,
87 .c_mode
= SEC_C_MODE_CBC
,
88 .key_len
= SEC_KEY_LEN_AES_256
,
90 [SEC_C_AES_CTR_128
] = {
91 .c_alg
= SEC_C_ALG_AES
,
92 .c_mode
= SEC_C_MODE_CTR
,
93 .key_len
= SEC_KEY_LEN_AES_128
,
95 [SEC_C_AES_CTR_192
] = {
96 .c_alg
= SEC_C_ALG_AES
,
97 .c_mode
= SEC_C_MODE_CTR
,
98 .key_len
= SEC_KEY_LEN_AES_192
,
100 [SEC_C_AES_CTR_256
] = {
101 .c_alg
= SEC_C_ALG_AES
,
102 .c_mode
= SEC_C_MODE_CTR
,
103 .key_len
= SEC_KEY_LEN_AES_256
,
105 [SEC_C_AES_XTS_128
] = {
106 .c_alg
= SEC_C_ALG_AES
,
107 .c_mode
= SEC_C_MODE_XTS
,
108 .key_len
= SEC_KEY_LEN_AES_128
,
110 [SEC_C_AES_XTS_256
] = {
111 .c_alg
= SEC_C_ALG_AES
,
112 .c_mode
= SEC_C_MODE_XTS
,
113 .key_len
= SEC_KEY_LEN_AES_256
,
120 * Mutex used to ensure safe operation of reference count of
123 static DEFINE_MUTEX(algs_lock
);
124 static unsigned int active_devs
;
126 static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx
*ctx
,
127 struct sec_bd_info
*req
,
128 enum sec_cipher_alg alg
)
130 const struct sec_c_alg_cfg
*cfg
= &sec_c_alg_cfgs
[alg
];
132 memset(req
, 0, sizeof(*req
));
133 req
->w0
|= cfg
->c_mode
<< SEC_BD_W0_C_MODE_S
;
134 req
->w1
|= cfg
->c_alg
<< SEC_BD_W1_C_ALG_S
;
135 req
->w3
|= cfg
->key_len
<< SEC_BD_W3_C_KEY_LEN_S
;
136 req
->w0
|= cfg
->c_width
<< SEC_BD_W0_C_WIDTH_S
;
138 req
->cipher_key_addr_lo
= lower_32_bits(ctx
->pkey
);
139 req
->cipher_key_addr_hi
= upper_32_bits(ctx
->pkey
);
142 static void sec_alg_skcipher_init_context(struct crypto_skcipher
*atfm
,
145 enum sec_cipher_alg alg
)
147 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(atfm
);
148 struct sec_alg_tfm_ctx
*ctx
= crypto_tfm_ctx(tfm
);
150 ctx
->cipher_alg
= alg
;
151 memcpy(ctx
->key
, key
, keylen
);
152 sec_alg_skcipher_init_template(ctx
, &ctx
->req_template
,
156 static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl
**sec_sgl
,
157 dma_addr_t
*psec_sgl
,
158 struct scatterlist
*sgl
,
160 struct sec_dev_info
*info
)
162 struct sec_hw_sgl
*sgl_current
= NULL
;
163 struct sec_hw_sgl
*sgl_next
;
164 dma_addr_t sgl_next_dma
;
165 struct scatterlist
*sg
;
166 int ret
, sge_index
, i
;
171 for_each_sg(sgl
, sg
, count
, i
) {
172 sge_index
= i
% SEC_MAX_SGE_NUM
;
173 if (sge_index
== 0) {
174 sgl_next
= dma_pool_zalloc(info
->hw_sgl_pool
,
175 GFP_KERNEL
, &sgl_next_dma
);
178 goto err_free_hw_sgls
;
181 if (!sgl_current
) { /* First one */
182 *psec_sgl
= sgl_next_dma
;
184 } else { /* Chained */
185 sgl_current
->entry_sum_in_sgl
= SEC_MAX_SGE_NUM
;
186 sgl_current
->next_sgl
= sgl_next_dma
;
187 sgl_current
->next
= sgl_next
;
189 sgl_current
= sgl_next
;
191 sgl_current
->sge_entries
[sge_index
].buf
= sg_dma_address(sg
);
192 sgl_current
->sge_entries
[sge_index
].len
= sg_dma_len(sg
);
193 sgl_current
->data_bytes_in_sgl
+= sg_dma_len(sg
);
195 sgl_current
->entry_sum_in_sgl
= count
% SEC_MAX_SGE_NUM
;
196 sgl_current
->next_sgl
= 0;
197 (*sec_sgl
)->entry_sum_in_chain
= count
;
202 sgl_current
= *sec_sgl
;
203 while (sgl_current
) {
204 sgl_next
= sgl_current
->next
;
205 dma_pool_free(info
->hw_sgl_pool
, sgl_current
,
206 sgl_current
->next_sgl
);
207 sgl_current
= sgl_next
;
214 static void sec_free_hw_sgl(struct sec_hw_sgl
*hw_sgl
,
215 dma_addr_t psec_sgl
, struct sec_dev_info
*info
)
217 struct sec_hw_sgl
*sgl_current
, *sgl_next
;
221 sgl_current
= hw_sgl
;
222 while (sgl_current
->next
) {
223 sgl_next
= sgl_current
->next
;
224 dma_pool_free(info
->hw_sgl_pool
, sgl_current
,
225 sgl_current
->next_sgl
);
226 sgl_current
= sgl_next
;
228 dma_pool_free(info
->hw_sgl_pool
, hw_sgl
, psec_sgl
);
231 static int sec_alg_skcipher_setkey(struct crypto_skcipher
*tfm
,
232 const u8
*key
, unsigned int keylen
,
233 enum sec_cipher_alg alg
)
235 struct sec_alg_tfm_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
236 struct device
*dev
= ctx
->queue
->dev_info
->dev
;
238 mutex_lock(&ctx
->lock
);
241 memset(ctx
->key
, 0, SEC_MAX_CIPHER_KEY
);
244 ctx
->key
= dma_alloc_coherent(dev
, SEC_MAX_CIPHER_KEY
,
245 &ctx
->pkey
, GFP_KERNEL
);
247 mutex_unlock(&ctx
->lock
);
251 mutex_unlock(&ctx
->lock
);
252 sec_alg_skcipher_init_context(tfm
, key
, keylen
, alg
);
257 static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher
*tfm
,
258 const u8
*key
, unsigned int keylen
)
260 enum sec_cipher_alg alg
;
263 case AES_KEYSIZE_128
:
264 alg
= SEC_C_AES_ECB_128
;
266 case AES_KEYSIZE_192
:
267 alg
= SEC_C_AES_ECB_192
;
269 case AES_KEYSIZE_256
:
270 alg
= SEC_C_AES_ECB_256
;
276 return sec_alg_skcipher_setkey(tfm
, key
, keylen
, alg
);
279 static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher
*tfm
,
280 const u8
*key
, unsigned int keylen
)
282 enum sec_cipher_alg alg
;
285 case AES_KEYSIZE_128
:
286 alg
= SEC_C_AES_CBC_128
;
288 case AES_KEYSIZE_192
:
289 alg
= SEC_C_AES_CBC_192
;
291 case AES_KEYSIZE_256
:
292 alg
= SEC_C_AES_CBC_256
;
298 return sec_alg_skcipher_setkey(tfm
, key
, keylen
, alg
);
301 static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher
*tfm
,
302 const u8
*key
, unsigned int keylen
)
304 enum sec_cipher_alg alg
;
307 case AES_KEYSIZE_128
:
308 alg
= SEC_C_AES_CTR_128
;
310 case AES_KEYSIZE_192
:
311 alg
= SEC_C_AES_CTR_192
;
313 case AES_KEYSIZE_256
:
314 alg
= SEC_C_AES_CTR_256
;
320 return sec_alg_skcipher_setkey(tfm
, key
, keylen
, alg
);
323 static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher
*tfm
,
324 const u8
*key
, unsigned int keylen
)
326 enum sec_cipher_alg alg
;
329 ret
= xts_verify_key(tfm
, key
, keylen
);
334 case AES_KEYSIZE_128
* 2:
335 alg
= SEC_C_AES_XTS_128
;
337 case AES_KEYSIZE_256
* 2:
338 alg
= SEC_C_AES_XTS_256
;
344 return sec_alg_skcipher_setkey(tfm
, key
, keylen
, alg
);
347 static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher
*tfm
,
348 const u8
*key
, unsigned int keylen
)
350 if (keylen
!= DES_KEY_SIZE
)
353 return sec_alg_skcipher_setkey(tfm
, key
, keylen
, SEC_C_DES_ECB_64
);
356 static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher
*tfm
,
357 const u8
*key
, unsigned int keylen
)
359 if (keylen
!= DES_KEY_SIZE
)
362 return sec_alg_skcipher_setkey(tfm
, key
, keylen
, SEC_C_DES_CBC_64
);
365 static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher
*tfm
,
366 const u8
*key
, unsigned int keylen
)
368 if (keylen
!= DES_KEY_SIZE
* 3)
371 return sec_alg_skcipher_setkey(tfm
, key
, keylen
,
372 SEC_C_3DES_ECB_192_3KEY
);
375 static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher
*tfm
,
376 const u8
*key
, unsigned int keylen
)
378 if (keylen
!= DES3_EDE_KEY_SIZE
)
381 return sec_alg_skcipher_setkey(tfm
, key
, keylen
,
382 SEC_C_3DES_CBC_192_3KEY
);
385 static void sec_alg_free_el(struct sec_request_el
*el
,
386 struct sec_dev_info
*info
)
388 sec_free_hw_sgl(el
->out
, el
->dma_out
, info
);
389 sec_free_hw_sgl(el
->in
, el
->dma_in
, info
);
395 /* queuelock must be held */
396 static int sec_send_request(struct sec_request
*sec_req
, struct sec_queue
*queue
)
398 struct sec_request_el
*el
, *temp
;
401 mutex_lock(&sec_req
->lock
);
402 list_for_each_entry_safe(el
, temp
, &sec_req
->elements
, head
) {
404 * Add to hardware queue only under following circumstances
405 * 1) Software and hardware queue empty so no chain dependencies
406 * 2) No dependencies as new IV - (check software queue empty
408 * 3) No dependencies because the mode does no chaining.
410 * In other cases first insert onto the software queue which
411 * is then emptied as requests complete
413 if (!queue
->havesoftqueue
||
414 (kfifo_is_empty(&queue
->softqueue
) &&
415 sec_queue_empty(queue
))) {
416 ret
= sec_queue_send(queue
, &el
->req
, sec_req
);
417 if (ret
== -EAGAIN
) {
418 /* Wait unti we can send then try again */
419 /* DEAD if here - should not happen */
424 kfifo_put(&queue
->softqueue
, el
);
428 mutex_unlock(&sec_req
->lock
);
433 static void sec_skcipher_alg_callback(struct sec_bd_info
*sec_resp
,
434 struct crypto_async_request
*req_base
)
436 struct skcipher_request
*skreq
= container_of(req_base
,
437 struct skcipher_request
,
439 struct sec_request
*sec_req
= skcipher_request_ctx(skreq
);
440 struct sec_request
*backlog_req
;
441 struct sec_request_el
*sec_req_el
, *nextrequest
;
442 struct sec_alg_tfm_ctx
*ctx
= sec_req
->tfm_ctx
;
443 struct crypto_skcipher
*atfm
= crypto_skcipher_reqtfm(skreq
);
444 struct device
*dev
= ctx
->queue
->dev_info
->dev
;
445 int icv_or_skey_en
, ret
;
448 sec_req_el
= list_first_entry(&sec_req
->elements
, struct sec_request_el
,
450 icv_or_skey_en
= (sec_resp
->w0
& SEC_BD_W0_ICV_OR_SKEY_EN_M
) >>
451 SEC_BD_W0_ICV_OR_SKEY_EN_S
;
452 if (sec_resp
->w1
& SEC_BD_W1_BD_INVALID
|| icv_or_skey_en
== 3) {
453 dev_err(dev
, "Got an invalid answer %lu %d\n",
454 sec_resp
->w1
& SEC_BD_W1_BD_INVALID
,
456 sec_req
->err
= -EINVAL
;
458 * We need to muddle on to avoid getting stuck with elements
459 * on the queue. Error will be reported so requester so
460 * it should be able to handle appropriately.
464 mutex_lock(&ctx
->queue
->queuelock
);
465 /* Put the IV in place for chained cases */
466 switch (ctx
->cipher_alg
) {
467 case SEC_C_AES_CBC_128
:
468 case SEC_C_AES_CBC_192
:
469 case SEC_C_AES_CBC_256
:
470 if (sec_req_el
->req
.w0
& SEC_BD_W0_DE
)
471 sg_pcopy_to_buffer(sec_req_el
->sgl_out
,
472 sg_nents(sec_req_el
->sgl_out
),
474 crypto_skcipher_ivsize(atfm
),
475 sec_req_el
->el_length
-
476 crypto_skcipher_ivsize(atfm
));
478 sg_pcopy_to_buffer(sec_req_el
->sgl_in
,
479 sg_nents(sec_req_el
->sgl_in
),
481 crypto_skcipher_ivsize(atfm
),
482 sec_req_el
->el_length
-
483 crypto_skcipher_ivsize(atfm
));
484 /* No need to sync to the device as coherent DMA */
486 case SEC_C_AES_CTR_128
:
487 case SEC_C_AES_CTR_192
:
488 case SEC_C_AES_CTR_256
:
489 crypto_inc(skreq
->iv
, 16);
496 if (ctx
->queue
->havesoftqueue
&&
497 !kfifo_is_empty(&ctx
->queue
->softqueue
) &&
498 sec_queue_empty(ctx
->queue
)) {
499 ret
= kfifo_get(&ctx
->queue
->softqueue
, &nextrequest
);
502 "Error getting next element from kfifo %d\n",
505 /* We know there is space so this cannot fail */
506 sec_queue_send(ctx
->queue
, &nextrequest
->req
,
507 nextrequest
->sec_req
);
508 } else if (!list_empty(&ctx
->backlog
)) {
509 /* Need to verify there is room first */
510 backlog_req
= list_first_entry(&ctx
->backlog
,
511 typeof(*backlog_req
),
513 if (sec_queue_can_enqueue(ctx
->queue
,
514 backlog_req
->num_elements
) ||
515 (ctx
->queue
->havesoftqueue
&&
516 kfifo_avail(&ctx
->queue
->softqueue
) >
517 backlog_req
->num_elements
)) {
518 sec_send_request(backlog_req
, ctx
->queue
);
519 backlog_req
->req_base
->complete(backlog_req
->req_base
,
521 list_del(&backlog_req
->backlog_head
);
524 mutex_unlock(&ctx
->queue
->queuelock
);
526 mutex_lock(&sec_req
->lock
);
527 list_del(&sec_req_el
->head
);
528 mutex_unlock(&sec_req
->lock
);
529 sec_alg_free_el(sec_req_el
, ctx
->queue
->dev_info
);
533 * The dance is needed as the lock is freed in the completion
535 mutex_lock(&sec_req
->lock
);
536 done
= list_empty(&sec_req
->elements
);
537 mutex_unlock(&sec_req
->lock
);
539 if (crypto_skcipher_ivsize(atfm
)) {
540 dma_unmap_single(dev
, sec_req
->dma_iv
,
541 crypto_skcipher_ivsize(atfm
),
544 dma_unmap_sg(dev
, skreq
->src
, sec_req
->len_in
,
546 if (skreq
->src
!= skreq
->dst
)
547 dma_unmap_sg(dev
, skreq
->dst
, sec_req
->len_out
,
549 skreq
->base
.complete(&skreq
->base
, sec_req
->err
);
553 void sec_alg_callback(struct sec_bd_info
*resp
, void *shadow
)
555 struct sec_request
*sec_req
= shadow
;
557 sec_req
->cb(resp
, sec_req
->req_base
);
560 static int sec_alg_alloc_and_calc_split_sizes(int length
, size_t **split_sizes
,
566 /* Split into suitable sized blocks */
567 *steps
= roundup(length
, SEC_REQ_LIMIT
) / SEC_REQ_LIMIT
;
568 sizes
= kcalloc(*steps
, sizeof(*sizes
), GFP_KERNEL
);
572 for (i
= 0; i
< *steps
- 1; i
++)
573 sizes
[i
] = SEC_REQ_LIMIT
;
574 sizes
[*steps
- 1] = length
- SEC_REQ_LIMIT
* (*steps
- 1);
575 *split_sizes
= sizes
;
580 static int sec_map_and_split_sg(struct scatterlist
*sgl
, size_t *split_sizes
,
581 int steps
, struct scatterlist
***splits
,
588 count
= dma_map_sg(dev
, sgl
, sgl_len_in
, DMA_BIDIRECTIONAL
);
592 *splits
= kcalloc(steps
, sizeof(struct scatterlist
*), GFP_KERNEL
);
597 *splits_nents
= kcalloc(steps
, sizeof(int), GFP_KERNEL
);
598 if (!*splits_nents
) {
600 goto err_free_splits
;
603 /* output the scatter list before and after this */
604 ret
= sg_split(sgl
, count
, 0, steps
, split_sizes
,
605 *splits
, *splits_nents
, GFP_KERNEL
);
608 goto err_free_splits_nents
;
613 err_free_splits_nents
:
614 kfree(*splits_nents
);
618 dma_unmap_sg(dev
, sgl
, sgl_len_in
, DMA_BIDIRECTIONAL
);
624 * Reverses the sec_map_and_split_sg call for messages not yet added to
627 static void sec_unmap_sg_on_err(struct scatterlist
*sgl
, int steps
,
628 struct scatterlist
**splits
, int *splits_nents
,
629 int sgl_len_in
, struct device
*dev
)
633 for (i
= 0; i
< steps
; i
++)
638 dma_unmap_sg(dev
, sgl
, sgl_len_in
, DMA_BIDIRECTIONAL
);
641 static struct sec_request_el
642 *sec_alg_alloc_and_fill_el(struct sec_bd_info
*template, int encrypt
,
643 int el_size
, bool different_dest
,
644 struct scatterlist
*sgl_in
, int n_ents_in
,
645 struct scatterlist
*sgl_out
, int n_ents_out
,
646 struct sec_dev_info
*info
)
648 struct sec_request_el
*el
;
649 struct sec_bd_info
*req
;
652 el
= kzalloc(sizeof(*el
), GFP_KERNEL
);
654 return ERR_PTR(-ENOMEM
);
655 el
->el_length
= el_size
;
657 memcpy(req
, template, sizeof(*req
));
659 req
->w0
&= ~SEC_BD_W0_CIPHER_M
;
661 req
->w0
|= SEC_CIPHER_ENCRYPT
<< SEC_BD_W0_CIPHER_S
;
663 req
->w0
|= SEC_CIPHER_DECRYPT
<< SEC_BD_W0_CIPHER_S
;
665 req
->w0
&= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M
;
666 req
->w0
|= ((el_size
>> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S
) &
667 SEC_BD_W0_C_GRAN_SIZE_19_16_M
;
669 req
->w0
&= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M
;
670 req
->w0
|= ((el_size
>> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S
) &
671 SEC_BD_W0_C_GRAN_SIZE_21_20_M
;
673 /* Writing whole u32 so no need to take care of masking */
674 req
->w2
= ((1 << SEC_BD_W2_GRAN_NUM_S
) & SEC_BD_W2_GRAN_NUM_M
) |
675 ((el_size
<< SEC_BD_W2_C_GRAN_SIZE_15_0_S
) &
676 SEC_BD_W2_C_GRAN_SIZE_15_0_M
);
678 req
->w3
&= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M
;
679 req
->w1
|= SEC_BD_W1_ADDR_TYPE
;
683 ret
= sec_alloc_and_fill_hw_sgl(&el
->in
, &el
->dma_in
, el
->sgl_in
,
688 req
->data_addr_lo
= lower_32_bits(el
->dma_in
);
689 req
->data_addr_hi
= upper_32_bits(el
->dma_in
);
691 if (different_dest
) {
692 el
->sgl_out
= sgl_out
;
693 ret
= sec_alloc_and_fill_hw_sgl(&el
->out
, &el
->dma_out
,
697 goto err_free_hw_sgl_in
;
699 req
->w0
|= SEC_BD_W0_DE
;
700 req
->cipher_destin_addr_lo
= lower_32_bits(el
->dma_out
);
701 req
->cipher_destin_addr_hi
= upper_32_bits(el
->dma_out
);
704 req
->w0
&= ~SEC_BD_W0_DE
;
705 req
->cipher_destin_addr_lo
= lower_32_bits(el
->dma_in
);
706 req
->cipher_destin_addr_hi
= upper_32_bits(el
->dma_in
);
712 sec_free_hw_sgl(el
->in
, el
->dma_in
, info
);
719 static int sec_alg_skcipher_crypto(struct skcipher_request
*skreq
,
722 struct crypto_skcipher
*atfm
= crypto_skcipher_reqtfm(skreq
);
723 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(atfm
);
724 struct sec_alg_tfm_ctx
*ctx
= crypto_tfm_ctx(tfm
);
725 struct sec_queue
*queue
= ctx
->queue
;
726 struct sec_request
*sec_req
= skcipher_request_ctx(skreq
);
727 struct sec_dev_info
*info
= queue
->dev_info
;
730 struct scatterlist
**splits_in
;
731 struct scatterlist
**splits_out
= NULL
;
732 int *splits_in_nents
;
733 int *splits_out_nents
= NULL
;
734 struct sec_request_el
*el
, *temp
;
735 bool split
= skreq
->src
!= skreq
->dst
;
737 mutex_init(&sec_req
->lock
);
738 sec_req
->req_base
= &skreq
->base
;
740 /* SGL mapping out here to allow us to break it up as necessary */
741 sec_req
->len_in
= sg_nents(skreq
->src
);
743 ret
= sec_alg_alloc_and_calc_split_sizes(skreq
->cryptlen
, &split_sizes
,
747 sec_req
->num_elements
= steps
;
748 ret
= sec_map_and_split_sg(skreq
->src
, split_sizes
, steps
, &splits_in
,
749 &splits_in_nents
, sec_req
->len_in
,
752 goto err_free_split_sizes
;
755 sec_req
->len_out
= sg_nents(skreq
->dst
);
756 ret
= sec_map_and_split_sg(skreq
->dst
, split_sizes
, steps
,
757 &splits_out
, &splits_out_nents
,
758 sec_req
->len_out
, info
->dev
);
760 goto err_unmap_in_sg
;
762 /* Shared info stored in seq_req - applies to all BDs */
763 sec_req
->tfm_ctx
= ctx
;
764 sec_req
->cb
= sec_skcipher_alg_callback
;
765 INIT_LIST_HEAD(&sec_req
->elements
);
768 * Future optimization.
769 * In the chaining case we can't use a dma pool bounce buffer
770 * but in the case where we know there is no chaining we can
772 if (crypto_skcipher_ivsize(atfm
)) {
773 sec_req
->dma_iv
= dma_map_single(info
->dev
, skreq
->iv
,
774 crypto_skcipher_ivsize(atfm
),
776 if (dma_mapping_error(info
->dev
, sec_req
->dma_iv
)) {
778 goto err_unmap_out_sg
;
782 /* Set them all up then queue - cleaner error handling. */
783 for (i
= 0; i
< steps
; i
++) {
784 el
= sec_alg_alloc_and_fill_el(&ctx
->req_template
,
787 skreq
->src
!= skreq
->dst
,
788 splits_in
[i
], splits_in_nents
[i
],
789 split
? splits_out
[i
] : NULL
,
790 split
? splits_out_nents
[i
] : 0,
794 goto err_free_elements
;
796 el
->req
.cipher_iv_addr_lo
= lower_32_bits(sec_req
->dma_iv
);
797 el
->req
.cipher_iv_addr_hi
= upper_32_bits(sec_req
->dma_iv
);
798 el
->sec_req
= sec_req
;
799 list_add_tail(&el
->head
, &sec_req
->elements
);
803 * Only attempt to queue if the whole lot can fit in the queue -
804 * we can't successfully cleanup after a partial queing so this
805 * must succeed or fail atomically.
807 * Big hammer test of both software and hardware queues - could be
808 * more refined but this is unlikely to happen so no need.
811 /* Grab a big lock for a long time to avoid concurrency issues */
812 mutex_lock(&queue
->queuelock
);
815 * Can go on to queue if we have space in either:
816 * 1) The hardware queue and no software queue
817 * 2) The software queue
818 * AND there is nothing in the backlog. If there is backlog we
819 * have to only queue to the backlog queue and return busy.
821 if ((!sec_queue_can_enqueue(queue
, steps
) &&
822 (!queue
->havesoftqueue
||
823 kfifo_avail(&queue
->softqueue
) > steps
)) ||
824 !list_empty(&ctx
->backlog
)) {
826 if ((skreq
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)) {
827 list_add_tail(&sec_req
->backlog_head
, &ctx
->backlog
);
828 mutex_unlock(&queue
->queuelock
);
832 mutex_unlock(&queue
->queuelock
);
833 goto err_free_elements
;
835 ret
= sec_send_request(sec_req
, queue
);
836 mutex_unlock(&queue
->queuelock
);
838 goto err_free_elements
;
842 /* Cleanup - all elements in pointer arrays have been copied */
843 kfree(splits_in_nents
);
845 kfree(splits_out_nents
);
851 list_for_each_entry_safe(el
, temp
, &sec_req
->elements
, head
) {
853 sec_alg_free_el(el
, info
);
855 if (crypto_skcipher_ivsize(atfm
))
856 dma_unmap_single(info
->dev
, sec_req
->dma_iv
,
857 crypto_skcipher_ivsize(atfm
),
861 sec_unmap_sg_on_err(skreq
->dst
, steps
, splits_out
,
862 splits_out_nents
, sec_req
->len_out
,
865 sec_unmap_sg_on_err(skreq
->src
, steps
, splits_in
, splits_in_nents
,
866 sec_req
->len_in
, info
->dev
);
867 err_free_split_sizes
:
873 static int sec_alg_skcipher_encrypt(struct skcipher_request
*req
)
875 return sec_alg_skcipher_crypto(req
, true);
878 static int sec_alg_skcipher_decrypt(struct skcipher_request
*req
)
880 return sec_alg_skcipher_crypto(req
, false);
883 static int sec_alg_skcipher_init(struct crypto_skcipher
*tfm
)
885 struct sec_alg_tfm_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
887 mutex_init(&ctx
->lock
);
888 INIT_LIST_HEAD(&ctx
->backlog
);
889 crypto_skcipher_set_reqsize(tfm
, sizeof(struct sec_request
));
891 ctx
->queue
= sec_queue_alloc_start_safe();
892 if (IS_ERR(ctx
->queue
))
893 return PTR_ERR(ctx
->queue
);
895 mutex_init(&ctx
->queue
->queuelock
);
896 ctx
->queue
->havesoftqueue
= false;
901 static void sec_alg_skcipher_exit(struct crypto_skcipher
*tfm
)
903 struct sec_alg_tfm_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
904 struct device
*dev
= ctx
->queue
->dev_info
->dev
;
907 memzero_explicit(ctx
->key
, SEC_MAX_CIPHER_KEY
);
908 dma_free_coherent(dev
, SEC_MAX_CIPHER_KEY
, ctx
->key
,
911 sec_queue_stop_release(ctx
->queue
);
914 static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher
*tfm
)
916 struct sec_alg_tfm_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
919 ret
= sec_alg_skcipher_init(tfm
);
923 INIT_KFIFO(ctx
->queue
->softqueue
);
924 ret
= kfifo_alloc(&ctx
->queue
->softqueue
, 512, GFP_KERNEL
);
926 sec_alg_skcipher_exit(tfm
);
929 ctx
->queue
->havesoftqueue
= true;
934 static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher
*tfm
)
936 struct sec_alg_tfm_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
938 kfifo_free(&ctx
->queue
->softqueue
);
939 sec_alg_skcipher_exit(tfm
);
942 static struct skcipher_alg sec_algs
[] = {
945 .cra_name
= "ecb(aes)",
946 .cra_driver_name
= "hisi_sec_aes_ecb",
947 .cra_priority
= 4001,
948 .cra_flags
= CRYPTO_ALG_ASYNC
,
949 .cra_blocksize
= AES_BLOCK_SIZE
,
950 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
952 .cra_module
= THIS_MODULE
,
954 .init
= sec_alg_skcipher_init
,
955 .exit
= sec_alg_skcipher_exit
,
956 .setkey
= sec_alg_skcipher_setkey_aes_ecb
,
957 .decrypt
= sec_alg_skcipher_decrypt
,
958 .encrypt
= sec_alg_skcipher_encrypt
,
959 .min_keysize
= AES_MIN_KEY_SIZE
,
960 .max_keysize
= AES_MAX_KEY_SIZE
,
964 .cra_name
= "cbc(aes)",
965 .cra_driver_name
= "hisi_sec_aes_cbc",
966 .cra_priority
= 4001,
967 .cra_flags
= CRYPTO_ALG_ASYNC
,
968 .cra_blocksize
= AES_BLOCK_SIZE
,
969 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
971 .cra_module
= THIS_MODULE
,
973 .init
= sec_alg_skcipher_init_with_queue
,
974 .exit
= sec_alg_skcipher_exit_with_queue
,
975 .setkey
= sec_alg_skcipher_setkey_aes_cbc
,
976 .decrypt
= sec_alg_skcipher_decrypt
,
977 .encrypt
= sec_alg_skcipher_encrypt
,
978 .min_keysize
= AES_MIN_KEY_SIZE
,
979 .max_keysize
= AES_MAX_KEY_SIZE
,
980 .ivsize
= AES_BLOCK_SIZE
,
983 .cra_name
= "ctr(aes)",
984 .cra_driver_name
= "hisi_sec_aes_ctr",
985 .cra_priority
= 4001,
986 .cra_flags
= CRYPTO_ALG_ASYNC
,
987 .cra_blocksize
= AES_BLOCK_SIZE
,
988 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
990 .cra_module
= THIS_MODULE
,
992 .init
= sec_alg_skcipher_init_with_queue
,
993 .exit
= sec_alg_skcipher_exit_with_queue
,
994 .setkey
= sec_alg_skcipher_setkey_aes_ctr
,
995 .decrypt
= sec_alg_skcipher_decrypt
,
996 .encrypt
= sec_alg_skcipher_encrypt
,
997 .min_keysize
= AES_MIN_KEY_SIZE
,
998 .max_keysize
= AES_MAX_KEY_SIZE
,
999 .ivsize
= AES_BLOCK_SIZE
,
1002 .cra_name
= "xts(aes)",
1003 .cra_driver_name
= "hisi_sec_aes_xts",
1004 .cra_priority
= 4001,
1005 .cra_flags
= CRYPTO_ALG_ASYNC
,
1006 .cra_blocksize
= AES_BLOCK_SIZE
,
1007 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
1009 .cra_module
= THIS_MODULE
,
1011 .init
= sec_alg_skcipher_init
,
1012 .exit
= sec_alg_skcipher_exit
,
1013 .setkey
= sec_alg_skcipher_setkey_aes_xts
,
1014 .decrypt
= sec_alg_skcipher_decrypt
,
1015 .encrypt
= sec_alg_skcipher_encrypt
,
1016 .min_keysize
= 2 * AES_MIN_KEY_SIZE
,
1017 .max_keysize
= 2 * AES_MAX_KEY_SIZE
,
1018 .ivsize
= AES_BLOCK_SIZE
,
1020 /* Unable to find any test vectors so untested */
1022 .cra_name
= "ecb(des)",
1023 .cra_driver_name
= "hisi_sec_des_ecb",
1024 .cra_priority
= 4001,
1025 .cra_flags
= CRYPTO_ALG_ASYNC
,
1026 .cra_blocksize
= DES_BLOCK_SIZE
,
1027 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
1029 .cra_module
= THIS_MODULE
,
1031 .init
= sec_alg_skcipher_init
,
1032 .exit
= sec_alg_skcipher_exit
,
1033 .setkey
= sec_alg_skcipher_setkey_des_ecb
,
1034 .decrypt
= sec_alg_skcipher_decrypt
,
1035 .encrypt
= sec_alg_skcipher_encrypt
,
1036 .min_keysize
= DES_KEY_SIZE
,
1037 .max_keysize
= DES_KEY_SIZE
,
1041 .cra_name
= "cbc(des)",
1042 .cra_driver_name
= "hisi_sec_des_cbc",
1043 .cra_priority
= 4001,
1044 .cra_flags
= CRYPTO_ALG_ASYNC
,
1045 .cra_blocksize
= DES_BLOCK_SIZE
,
1046 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
1048 .cra_module
= THIS_MODULE
,
1050 .init
= sec_alg_skcipher_init_with_queue
,
1051 .exit
= sec_alg_skcipher_exit_with_queue
,
1052 .setkey
= sec_alg_skcipher_setkey_des_cbc
,
1053 .decrypt
= sec_alg_skcipher_decrypt
,
1054 .encrypt
= sec_alg_skcipher_encrypt
,
1055 .min_keysize
= DES_KEY_SIZE
,
1056 .max_keysize
= DES_KEY_SIZE
,
1057 .ivsize
= DES_BLOCK_SIZE
,
1060 .cra_name
= "cbc(des3_ede)",
1061 .cra_driver_name
= "hisi_sec_3des_cbc",
1062 .cra_priority
= 4001,
1063 .cra_flags
= CRYPTO_ALG_ASYNC
,
1064 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1065 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
1067 .cra_module
= THIS_MODULE
,
1069 .init
= sec_alg_skcipher_init_with_queue
,
1070 .exit
= sec_alg_skcipher_exit_with_queue
,
1071 .setkey
= sec_alg_skcipher_setkey_3des_cbc
,
1072 .decrypt
= sec_alg_skcipher_decrypt
,
1073 .encrypt
= sec_alg_skcipher_encrypt
,
1074 .min_keysize
= DES3_EDE_KEY_SIZE
,
1075 .max_keysize
= DES3_EDE_KEY_SIZE
,
1076 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1079 .cra_name
= "ecb(des3_ede)",
1080 .cra_driver_name
= "hisi_sec_3des_ecb",
1081 .cra_priority
= 4001,
1082 .cra_flags
= CRYPTO_ALG_ASYNC
,
1083 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1084 .cra_ctxsize
= sizeof(struct sec_alg_tfm_ctx
),
1086 .cra_module
= THIS_MODULE
,
1088 .init
= sec_alg_skcipher_init
,
1089 .exit
= sec_alg_skcipher_exit
,
1090 .setkey
= sec_alg_skcipher_setkey_3des_ecb
,
1091 .decrypt
= sec_alg_skcipher_decrypt
,
1092 .encrypt
= sec_alg_skcipher_encrypt
,
1093 .min_keysize
= DES3_EDE_KEY_SIZE
,
1094 .max_keysize
= DES3_EDE_KEY_SIZE
,
1099 int sec_algs_register(void)
1103 mutex_lock(&algs_lock
);
1104 if (++active_devs
!= 1)
1107 ret
= crypto_register_skciphers(sec_algs
, ARRAY_SIZE(sec_algs
));
1111 mutex_unlock(&algs_lock
);
1116 void sec_algs_unregister(void)
1118 mutex_lock(&algs_lock
);
1119 if (--active_devs
!= 0)
1121 crypto_unregister_skciphers(sec_algs
, ARRAY_SIZE(sec_algs
));
1124 mutex_unlock(&algs_lock
);