1 // SPDX-License-Identifier: GPL-2.0
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
10 // Hash part based on omap-sham.c driver.
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
36 #define _SBF(s, v) ((v) << (s))
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT 0x0000
40 #define SSS_FCINTSTAT_HPARTINT BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
47 #define SSS_REG_FCINTENSET 0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
55 #define SSS_REG_FCINTENCLR 0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
63 #define SSS_REG_FCINTPEND 0x000C
64 #define SSS_FCINTPEND_HPARTINTP BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
71 #define SSS_REG_FCFIFOSTAT 0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
81 #define SSS_REG_FCFIFOCTRL 0x0014
82 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
86 #define SSS_HASHIN_MASK _SBF(0, 0x03)
88 #define SSS_REG_FCBRDMAS 0x0020
89 #define SSS_REG_FCBRDMAL 0x0024
90 #define SSS_REG_FCBRDMAC 0x0028
91 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
92 #define SSS_FCBRDMAC_FLUSH BIT(0)
94 #define SSS_REG_FCBTDMAS 0x0030
95 #define SSS_REG_FCBTDMAL 0x0034
96 #define SSS_REG_FCBTDMAC 0x0038
97 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
98 #define SSS_FCBTDMAC_FLUSH BIT(0)
100 #define SSS_REG_FCHRDMAS 0x0040
101 #define SSS_REG_FCHRDMAL 0x0044
102 #define SSS_REG_FCHRDMAC 0x0048
103 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
104 #define SSS_FCHRDMAC_FLUSH BIT(0)
106 #define SSS_REG_FCPKDMAS 0x0050
107 #define SSS_REG_FCPKDMAL 0x0054
108 #define SSS_REG_FCPKDMAC 0x0058
109 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
110 #define SSS_FCPKDMAC_DESCEND BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
112 #define SSS_FCPKDMAC_FLUSH BIT(0)
114 #define SSS_REG_FCPKDMAO 0x005C
117 #define SSS_REG_AES_CONTROL 0x00
118 #define SSS_AES_BYTESWAP_DI BIT(11)
119 #define SSS_AES_BYTESWAP_DO BIT(10)
120 #define SSS_AES_BYTESWAP_IV BIT(9)
121 #define SSS_AES_BYTESWAP_CNT BIT(8)
122 #define SSS_AES_BYTESWAP_KEY BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT BIT(0)
133 #define SSS_REG_AES_STATUS 0x04
134 #define SSS_AES_BUSY BIT(2)
135 #define SSS_AES_INPUT_READY BIT(1)
136 #define SSS_AES_OUTPUT_READY BIT(0)
138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
150 SSS_AES_REG(dev, reg))
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT BIT(0)
154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
155 #define FLAGS_AES_CBC _SBF(1, 0x01)
156 #define FLAGS_AES_CTR _SBF(1, 0x02)
158 #define AES_KEY_LEN 16
159 #define CRYPTO_QUEUE_LEN 1
162 #define SSS_REG_HASH_CTRL 0x00
164 #define SSS_HASH_USER_IV_EN BIT(5)
165 #define SSS_HASH_INIT_BIT BIT(4)
166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
172 #define SSS_REG_HASH_CTRL_PAUSE 0x04
174 #define SSS_HASH_PAUSE BIT(0)
176 #define SSS_REG_HASH_CTRL_FIFO 0x08
178 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU 0
181 #define SSS_REG_HASH_CTRL_SWAP 0x0C
183 #define SSS_HASH_BYTESWAP_DI BIT(3)
184 #define SSS_HASH_BYTESWAP_DO BIT(2)
185 #define SSS_HASH_BYTESWAP_IV BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY BIT(0)
188 #define SSS_REG_HASH_STATUS 0x10
190 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
203 #define HASH_BLOCK_SIZE 64
204 #define HASH_REG_SIZEOF 4
205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 #define HASH_FLAGS_BUSY 0
216 #define HASH_FLAGS_FINAL 1
217 #define HASH_FLAGS_DMA_ACTIVE 2
218 #define HASH_FLAGS_OUTPUT_READY 3
219 #define HASH_FLAGS_DMA_READY 4
220 #define HASH_FLAGS_SGS_COPIED 5
221 #define HASH_FLAGS_SGS_ALLOCED 6
223 /* HASH HW constants */
224 #define BUFLEN HASH_BLOCK_SIZE
226 #define SSS_HASH_DMA_LEN_ALIGN 8
227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
229 #define SSS_HASH_QUEUE_LENGTH 10
232 * struct samsung_aes_variant - platform specific SSS driver data
233 * @aes_offset: AES register offset from SSS module's base.
234 * @hash_offset: HASH register offset from SSS module's base.
235 * @clk_names: names of clocks needed to run SSS IP
237 * Specifies platform specific configuration of SSS module.
238 * Note: A structure for driver specific platform data is used for future
239 * expansion of its usage.
241 struct samsung_aes_variant
{
242 unsigned int aes_offset
;
243 unsigned int hash_offset
;
244 const char *clk_names
[2];
247 struct s5p_aes_reqctx
{
252 struct s5p_aes_dev
*dev
;
254 u8 aes_key
[AES_MAX_KEY_SIZE
];
255 u8 nonce
[CTR_RFC3686_NONCE_SIZE
];
260 * struct s5p_aes_dev - Crypto device state container
261 * @dev: Associated device
262 * @clk: Clock for accessing hardware
263 * @ioaddr: Mapped IO memory region
264 * @aes_ioaddr: Per-varian offset for AES block IO memory
265 * @irq_fc: Feed control interrupt line
266 * @req: Crypto request currently handled by the device
267 * @ctx: Configuration for currently handled crypto request
268 * @sg_src: Scatter list with source data for currently handled block
269 * in device. This is DMA-mapped into device.
270 * @sg_dst: Scatter list with destination data for currently handled block
271 * in device. This is DMA-mapped into device.
272 * @sg_src_cpy: In case of unaligned access, copied scatter list
274 * @sg_dst_cpy: In case of unaligned access, copied scatter list
275 * with destination data.
276 * @tasklet: New request scheduling jib
277 * @queue: Crypto queue
278 * @busy: Indicates whether the device is currently handling some request
279 * thus it uses some of the fields from this state, like:
280 * req, ctx, sg_src/dst (and copies). This essentially
281 * protects against concurrent access to these fields.
282 * @lock: Lock for protecting both access to device hardware registers
283 * and fields related to current request (including the busy field).
284 * @res: Resources for hash.
285 * @io_hash_base: Per-variant offset for HASH block IO memory.
286 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
288 * @hash_flags: Flags for current HASH op.
289 * @hash_queue: Async hash queue.
290 * @hash_tasklet: New HASH request scheduling job.
291 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
292 * @hash_req: Current request sending to SSS HASH block.
293 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
294 * @hash_sg_cnt: Counter for hash_sg_iter.
296 * @use_hash: true if HASH algs enabled
302 void __iomem
*ioaddr
;
303 void __iomem
*aes_ioaddr
;
306 struct ablkcipher_request
*req
;
307 struct s5p_aes_ctx
*ctx
;
308 struct scatterlist
*sg_src
;
309 struct scatterlist
*sg_dst
;
311 struct scatterlist
*sg_src_cpy
;
312 struct scatterlist
*sg_dst_cpy
;
314 struct tasklet_struct tasklet
;
315 struct crypto_queue queue
;
319 struct resource
*res
;
320 void __iomem
*io_hash_base
;
322 spinlock_t hash_lock
; /* protect hash_ vars */
323 unsigned long hash_flags
;
324 struct crypto_queue hash_queue
;
325 struct tasklet_struct hash_tasklet
;
328 struct ahash_request
*hash_req
;
329 struct scatterlist
*hash_sg_iter
;
330 unsigned int hash_sg_cnt
;
336 * struct s5p_hash_reqctx - HASH request context
337 * @dd: Associated device
338 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
339 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
340 * @digest: Digest message or IV for partial result
341 * @nregs: Number of HW registers for digest or IV read/write
342 * @engine: Bits for selecting type of HASH in SSS block
343 * @sg: sg for DMA transfer
344 * @sg_len: Length of sg for DMA transfer
345 * @sgl[]: sg for joining buffer and req->src scatterlist
346 * @skip: Skip offset in req->src for current op
347 * @total: Total number of bytes for current request
348 * @finup: Keep state for finup or final.
349 * @error: Keep track of error.
350 * @bufcnt: Number of bytes holded in buffer[]
351 * @buffer[]: For byte(s) from end of req->src in UPDATE op
353 struct s5p_hash_reqctx
{
354 struct s5p_aes_dev
*dd
;
358 u8 digest
[SHA256_DIGEST_SIZE
];
360 unsigned int nregs
; /* digest_size / sizeof(reg) */
363 struct scatterlist
*sg
;
365 struct scatterlist sgl
[2];
376 * struct s5p_hash_ctx - HASH transformation context
377 * @dd: Associated device
378 * @flags: Bits for algorithm HASH.
379 * @fallback: Software transformation for zero message or size < BUFLEN.
381 struct s5p_hash_ctx
{
382 struct s5p_aes_dev
*dd
;
384 struct crypto_shash
*fallback
;
387 static const struct samsung_aes_variant s5p_aes_data
= {
388 .aes_offset
= 0x4000,
389 .hash_offset
= 0x6000,
390 .clk_names
= { "secss", },
393 static const struct samsung_aes_variant exynos_aes_data
= {
395 .hash_offset
= 0x400,
396 .clk_names
= { "secss", },
399 static const struct samsung_aes_variant exynos5433_slim_aes_data
= {
401 .hash_offset
= 0x800,
402 .clk_names
= { "pclk", "aclk", },
405 static const struct of_device_id s5p_sss_dt_match
[] = {
407 .compatible
= "samsung,s5pv210-secss",
408 .data
= &s5p_aes_data
,
411 .compatible
= "samsung,exynos4210-secss",
412 .data
= &exynos_aes_data
,
415 .compatible
= "samsung,exynos5433-slim-sss",
416 .data
= &exynos5433_slim_aes_data
,
420 MODULE_DEVICE_TABLE(of
, s5p_sss_dt_match
);
422 static inline const struct samsung_aes_variant
*find_s5p_sss_version
423 (const struct platform_device
*pdev
)
425 if (IS_ENABLED(CONFIG_OF
) && (pdev
->dev
.of_node
)) {
426 const struct of_device_id
*match
;
428 match
= of_match_node(s5p_sss_dt_match
,
430 return (const struct samsung_aes_variant
*)match
->data
;
432 return (const struct samsung_aes_variant
*)
433 platform_get_device_id(pdev
)->driver_data
;
436 static struct s5p_aes_dev
*s5p_dev
;
438 static void s5p_set_dma_indata(struct s5p_aes_dev
*dev
,
439 const struct scatterlist
*sg
)
441 SSS_WRITE(dev
, FCBRDMAS
, sg_dma_address(sg
));
442 SSS_WRITE(dev
, FCBRDMAL
, sg_dma_len(sg
));
445 static void s5p_set_dma_outdata(struct s5p_aes_dev
*dev
,
446 const struct scatterlist
*sg
)
448 SSS_WRITE(dev
, FCBTDMAS
, sg_dma_address(sg
));
449 SSS_WRITE(dev
, FCBTDMAL
, sg_dma_len(sg
));
452 static void s5p_free_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
**sg
)
459 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
460 free_pages((unsigned long)sg_virt(*sg
), get_order(len
));
466 static void s5p_sg_copy_buf(void *buf
, struct scatterlist
*sg
,
467 unsigned int nbytes
, int out
)
469 struct scatter_walk walk
;
474 scatterwalk_start(&walk
, sg
);
475 scatterwalk_copychunks(buf
, &walk
, nbytes
, out
);
476 scatterwalk_done(&walk
, out
, 0);
479 static void s5p_sg_done(struct s5p_aes_dev
*dev
)
481 struct ablkcipher_request
*req
= dev
->req
;
482 struct s5p_aes_reqctx
*reqctx
= ablkcipher_request_ctx(req
);
484 if (dev
->sg_dst_cpy
) {
486 "Copying %d bytes of output data back to original place\n",
488 s5p_sg_copy_buf(sg_virt(dev
->sg_dst_cpy
), dev
->req
->dst
,
489 dev
->req
->nbytes
, 1);
491 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
492 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
493 if (reqctx
->mode
& FLAGS_AES_CBC
)
494 memcpy_fromio(req
->info
, dev
->aes_ioaddr
+ SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE
);
496 else if (reqctx
->mode
& FLAGS_AES_CTR
)
497 memcpy_fromio(req
->info
, dev
->aes_ioaddr
+ SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE
);
500 /* Calls the completion. Cannot be called with dev->lock hold. */
501 static void s5p_aes_complete(struct ablkcipher_request
*req
, int err
)
503 req
->base
.complete(&req
->base
, err
);
506 static void s5p_unset_outdata(struct s5p_aes_dev
*dev
)
508 dma_unmap_sg(dev
->dev
, dev
->sg_dst
, 1, DMA_FROM_DEVICE
);
511 static void s5p_unset_indata(struct s5p_aes_dev
*dev
)
513 dma_unmap_sg(dev
->dev
, dev
->sg_src
, 1, DMA_TO_DEVICE
);
516 static int s5p_make_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
*src
,
517 struct scatterlist
**dst
)
522 *dst
= kmalloc(sizeof(**dst
), GFP_ATOMIC
);
526 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
527 pages
= (void *)__get_free_pages(GFP_ATOMIC
, get_order(len
));
534 s5p_sg_copy_buf(pages
, src
, dev
->req
->nbytes
, 0);
536 sg_init_table(*dst
, 1);
537 sg_set_buf(*dst
, pages
, len
);
542 static int s5p_set_outdata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
547 if (!dma_map_sg(dev
->dev
, sg
, 1, DMA_FROM_DEVICE
))
555 static int s5p_set_indata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
560 if (!dma_map_sg(dev
->dev
, sg
, 1, DMA_TO_DEVICE
))
569 * Returns -ERRNO on error (mapping of new data failed).
570 * On success returns:
571 * - 0 if there is no more data,
572 * - 1 if new transmitting (output) data is ready and its address+length
573 * have to be written to device (by calling s5p_set_dma_outdata()).
575 static int s5p_aes_tx(struct s5p_aes_dev
*dev
)
579 s5p_unset_outdata(dev
);
581 if (!sg_is_last(dev
->sg_dst
)) {
582 ret
= s5p_set_outdata(dev
, sg_next(dev
->sg_dst
));
591 * Returns -ERRNO on error (mapping of new data failed).
592 * On success returns:
593 * - 0 if there is no more data,
594 * - 1 if new receiving (input) data is ready and its address+length
595 * have to be written to device (by calling s5p_set_dma_indata()).
597 static int s5p_aes_rx(struct s5p_aes_dev
*dev
/*, bool *set_dma*/)
601 s5p_unset_indata(dev
);
603 if (!sg_is_last(dev
->sg_src
)) {
604 ret
= s5p_set_indata(dev
, sg_next(dev
->sg_src
));
612 static inline u32
s5p_hash_read(struct s5p_aes_dev
*dd
, u32 offset
)
614 return __raw_readl(dd
->io_hash_base
+ offset
);
617 static inline void s5p_hash_write(struct s5p_aes_dev
*dd
,
618 u32 offset
, u32 value
)
620 __raw_writel(value
, dd
->io_hash_base
+ offset
);
624 * s5p_set_dma_hashdata() - start DMA with sg
626 * @sg: scatterlist ready to DMA transmit
628 static void s5p_set_dma_hashdata(struct s5p_aes_dev
*dev
,
629 const struct scatterlist
*sg
)
632 SSS_WRITE(dev
, FCHRDMAS
, sg_dma_address(sg
));
633 SSS_WRITE(dev
, FCHRDMAL
, sg_dma_len(sg
)); /* DMA starts */
637 * s5p_hash_rx() - get next hash_sg_iter
641 * 2 if there is no more data and it is UPDATE op
642 * 1 if new receiving (input) data is ready and can be written to device
643 * 0 if there is no more data and it is FINAL op
645 static int s5p_hash_rx(struct s5p_aes_dev
*dev
)
647 if (dev
->hash_sg_cnt
> 0) {
648 dev
->hash_sg_iter
= sg_next(dev
->hash_sg_iter
);
652 set_bit(HASH_FLAGS_DMA_READY
, &dev
->hash_flags
);
653 if (test_bit(HASH_FLAGS_FINAL
, &dev
->hash_flags
))
659 static irqreturn_t
s5p_aes_interrupt(int irq
, void *dev_id
)
661 struct platform_device
*pdev
= dev_id
;
662 struct s5p_aes_dev
*dev
= platform_get_drvdata(pdev
);
663 struct ablkcipher_request
*req
;
673 spin_lock_irqsave(&dev
->lock
, flags
);
676 * Handle rx or tx interrupt. If there is still data (scatterlist did not
677 * reach end), then map next scatterlist entry.
678 * In case of such mapping error, s5p_aes_complete() should be called.
680 * If there is no more data in tx scatter list, call s5p_aes_complete()
681 * and schedule new tasklet.
683 * Handle hx interrupt. If there is still data map next entry.
685 status
= SSS_READ(dev
, FCINTSTAT
);
686 if (status
& SSS_FCINTSTAT_BRDMAINT
)
687 err_dma_rx
= s5p_aes_rx(dev
);
689 if (status
& SSS_FCINTSTAT_BTDMAINT
) {
690 if (sg_is_last(dev
->sg_dst
))
692 err_dma_tx
= s5p_aes_tx(dev
);
695 if (status
& SSS_FCINTSTAT_HRDMAINT
)
696 err_dma_hx
= s5p_hash_rx(dev
);
698 st_bits
= status
& (SSS_FCINTSTAT_BRDMAINT
| SSS_FCINTSTAT_BTDMAINT
|
699 SSS_FCINTSTAT_HRDMAINT
);
701 SSS_WRITE(dev
, FCINTPEND
, st_bits
);
703 /* clear HASH irq bits */
704 if (status
& (SSS_FCINTSTAT_HDONEINT
| SSS_FCINTSTAT_HPARTINT
)) {
705 /* cannot have both HPART and HDONE */
706 if (status
& SSS_FCINTSTAT_HPARTINT
)
707 st_bits
= SSS_HASH_STATUS_PARTIAL_DONE
;
709 if (status
& SSS_FCINTSTAT_HDONEINT
)
710 st_bits
= SSS_HASH_STATUS_MSG_DONE
;
712 set_bit(HASH_FLAGS_OUTPUT_READY
, &dev
->hash_flags
);
713 s5p_hash_write(dev
, SSS_REG_HASH_STATUS
, st_bits
);
715 /* when DONE or PART, do not handle HASH DMA */
719 if (err_dma_rx
< 0) {
723 if (err_dma_tx
< 0) {
731 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
733 spin_unlock_irqrestore(&dev
->lock
, flags
);
735 s5p_aes_complete(dev
->req
, 0);
736 /* Device is still busy */
737 tasklet_schedule(&dev
->tasklet
);
740 * Writing length of DMA block (either receiving or
741 * transmitting) will start the operation immediately, so this
742 * should be done at the end (even after clearing pending
743 * interrupts to not miss the interrupt).
746 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
748 s5p_set_dma_indata(dev
, dev
->sg_src
);
750 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
752 spin_unlock_irqrestore(&dev
->lock
, flags
);
762 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
764 spin_unlock_irqrestore(&dev
->lock
, flags
);
765 s5p_aes_complete(req
, err
);
769 * Note about else if:
770 * when hash_sg_iter reaches end and its UPDATE op,
771 * issue SSS_HASH_PAUSE and wait for HPART irq
774 tasklet_schedule(&dev
->hash_tasklet
);
775 else if (err_dma_hx
== 2)
776 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_PAUSE
,
783 * s5p_hash_read_msg() - read message or IV from HW
784 * @req: AHASH request
786 static void s5p_hash_read_msg(struct ahash_request
*req
)
788 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
789 struct s5p_aes_dev
*dd
= ctx
->dd
;
790 u32
*hash
= (u32
*)ctx
->digest
;
793 for (i
= 0; i
< ctx
->nregs
; i
++)
794 hash
[i
] = s5p_hash_read(dd
, SSS_REG_HASH_OUT(i
));
798 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
800 * @ctx: request context
802 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev
*dd
,
803 const struct s5p_hash_reqctx
*ctx
)
805 const u32
*hash
= (const u32
*)ctx
->digest
;
808 for (i
= 0; i
< ctx
->nregs
; i
++)
809 s5p_hash_write(dd
, SSS_REG_HASH_IV(i
), hash
[i
]);
813 * s5p_hash_write_iv() - write IV for next partial/finup op.
814 * @req: AHASH request
816 static void s5p_hash_write_iv(struct ahash_request
*req
)
818 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
820 s5p_hash_write_ctx_iv(ctx
->dd
, ctx
);
824 * s5p_hash_copy_result() - copy digest into req->result
825 * @req: AHASH request
827 static void s5p_hash_copy_result(struct ahash_request
*req
)
829 const struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
834 memcpy(req
->result
, ctx
->digest
, ctx
->nregs
* HASH_REG_SIZEOF
);
838 * s5p_hash_dma_flush() - flush HASH DMA
841 static void s5p_hash_dma_flush(struct s5p_aes_dev
*dev
)
843 SSS_WRITE(dev
, FCHRDMAC
, SSS_FCHRDMAC_FLUSH
);
847 * s5p_hash_dma_enable() - enable DMA mode for HASH
850 * enable DMA mode for HASH
852 static void s5p_hash_dma_enable(struct s5p_aes_dev
*dev
)
854 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_FIFO
, SSS_HASH_FIFO_MODE_DMA
);
858 * s5p_hash_irq_disable() - disable irq HASH signals
860 * @flags: bitfield with irq's to be disabled
862 static void s5p_hash_irq_disable(struct s5p_aes_dev
*dev
, u32 flags
)
864 SSS_WRITE(dev
, FCINTENCLR
, flags
);
868 * s5p_hash_irq_enable() - enable irq signals
870 * @flags: bitfield with irq's to be enabled
872 static void s5p_hash_irq_enable(struct s5p_aes_dev
*dev
, int flags
)
874 SSS_WRITE(dev
, FCINTENSET
, flags
);
878 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
880 * @hashflow: HASH stream flow with/without crypto AES/DES
882 static void s5p_hash_set_flow(struct s5p_aes_dev
*dev
, u32 hashflow
)
887 spin_lock_irqsave(&dev
->lock
, flags
);
889 flow
= SSS_READ(dev
, FCFIFOCTRL
);
890 flow
&= ~SSS_HASHIN_MASK
;
892 SSS_WRITE(dev
, FCFIFOCTRL
, flow
);
894 spin_unlock_irqrestore(&dev
->lock
, flags
);
898 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
900 * @hashflow: HASH stream flow with/without AES/DES
902 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
903 * enable HASH irq's HRDMA, HDONE, HPART
905 static void s5p_ahash_dma_init(struct s5p_aes_dev
*dev
, u32 hashflow
)
907 s5p_hash_irq_disable(dev
, SSS_FCINTENCLR_HRDMAINTENCLR
|
908 SSS_FCINTENCLR_HDONEINTENCLR
|
909 SSS_FCINTENCLR_HPARTINTENCLR
);
910 s5p_hash_dma_flush(dev
);
912 s5p_hash_dma_enable(dev
);
913 s5p_hash_set_flow(dev
, hashflow
& SSS_HASHIN_MASK
);
914 s5p_hash_irq_enable(dev
, SSS_FCINTENSET_HRDMAINTENSET
|
915 SSS_FCINTENSET_HDONEINTENSET
|
916 SSS_FCINTENSET_HPARTINTENSET
);
920 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
922 * @length: length for request
923 * @final: true if final op
925 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
926 * after previous updates, fill up IV words. For final, calculate and set
927 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
928 * length as 2^63 so it will be never reached and set to zero prelow and
931 * This function does not start DMA transfer.
933 static void s5p_hash_write_ctrl(struct s5p_aes_dev
*dd
, size_t length
,
936 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
937 u32 prelow
, prehigh
, low
, high
;
938 u32 configflags
, swapflags
;
941 configflags
= ctx
->engine
| SSS_HASH_INIT_BIT
;
943 if (likely(ctx
->digcnt
)) {
944 s5p_hash_write_ctx_iv(dd
, ctx
);
945 configflags
|= SSS_HASH_USER_IV_EN
;
949 /* number of bytes for last part */
952 /* total number of bits prev hashed */
953 tmplen
= ctx
->digcnt
* 8;
954 prelow
= (u32
)tmplen
;
955 prehigh
= (u32
)(tmplen
>> 32);
963 swapflags
= SSS_HASH_BYTESWAP_DI
| SSS_HASH_BYTESWAP_DO
|
964 SSS_HASH_BYTESWAP_IV
| SSS_HASH_BYTESWAP_KEY
;
966 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_LOW
, low
);
967 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_HIGH
, high
);
968 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_LOW
, prelow
);
969 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_HIGH
, prehigh
);
971 s5p_hash_write(dd
, SSS_REG_HASH_CTRL_SWAP
, swapflags
);
972 s5p_hash_write(dd
, SSS_REG_HASH_CTRL
, configflags
);
976 * s5p_hash_xmit_dma() - start DMA hash processing
978 * @length: length for request
979 * @final: true if final op
981 * Update digcnt here, as it is needed for finup/final op.
983 static int s5p_hash_xmit_dma(struct s5p_aes_dev
*dd
, size_t length
,
986 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
989 cnt
= dma_map_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
991 dev_err(dd
->dev
, "dma_map_sg error\n");
996 set_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
997 dd
->hash_sg_iter
= ctx
->sg
;
998 dd
->hash_sg_cnt
= cnt
;
999 s5p_hash_write_ctrl(dd
, length
, final
);
1000 ctx
->digcnt
+= length
;
1001 ctx
->total
-= length
;
1003 /* catch last interrupt */
1005 set_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
);
1007 s5p_set_dma_hashdata(dd
, dd
->hash_sg_iter
); /* DMA starts */
1009 return -EINPROGRESS
;
1013 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1014 * @ctx: request context
1015 * @sg: source scatterlist request
1016 * @new_len: number of bytes to process from sg
1018 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1019 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1020 * with allocated buffer.
1022 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1024 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx
*ctx
,
1025 struct scatterlist
*sg
, unsigned int new_len
)
1027 unsigned int pages
, len
;
1030 len
= new_len
+ ctx
->bufcnt
;
1031 pages
= get_order(len
);
1033 buf
= (void *)__get_free_pages(GFP_ATOMIC
, pages
);
1035 dev_err(ctx
->dd
->dev
, "alloc pages for unaligned case.\n");
1041 memcpy(buf
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1043 scatterwalk_map_and_copy(buf
+ ctx
->bufcnt
, sg
, ctx
->skip
,
1045 sg_init_table(ctx
->sgl
, 1);
1046 sg_set_buf(ctx
->sgl
, buf
, len
);
1051 set_bit(HASH_FLAGS_SGS_COPIED
, &ctx
->dd
->hash_flags
);
1057 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1058 * @ctx: request context
1059 * @sg: source scatterlist request
1060 * @new_len: number of bytes to process from sg
1062 * Allocate new scatterlist table, copy data for HASH into it. If there was
1063 * xmit_buf filled, prepare it first, then copy page, length and offset from
1064 * source sg into it, adjusting begin and/or end for skip offset and
1067 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1068 * it after irq ends processing.
1070 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx
*ctx
,
1071 struct scatterlist
*sg
, unsigned int new_len
)
1073 unsigned int skip
= ctx
->skip
, n
= sg_nents(sg
);
1074 struct scatterlist
*tmp
;
1080 ctx
->sg
= kmalloc_array(n
, sizeof(*sg
), GFP_KERNEL
);
1086 sg_init_table(ctx
->sg
, n
);
1093 sg_set_buf(tmp
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1098 while (sg
&& skip
>= sg
->length
) {
1103 while (sg
&& new_len
) {
1104 len
= sg
->length
- skip
;
1109 sg_set_page(tmp
, sg_page(sg
), len
, sg
->offset
+ skip
);
1119 set_bit(HASH_FLAGS_SGS_ALLOCED
, &ctx
->dd
->hash_flags
);
1125 * s5p_hash_prepare_sgs() - prepare sg for processing
1126 * @ctx: request context
1127 * @sg: source scatterlist request
1128 * @nbytes: number of bytes to process from sg
1129 * @final: final flag
1131 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1132 * sg table have good aligned elements (list_ok). If one of this checks fails,
1133 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1134 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1135 * table and prepare sg elements.
1137 * For digest or finup all conditions can be good, and we may not need any
1140 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx
*ctx
,
1141 struct scatterlist
*sg
,
1142 unsigned int new_len
, bool final
)
1144 unsigned int skip
= ctx
->skip
, nbytes
= new_len
, n
= 0;
1145 bool aligned
= true, list_ok
= true;
1146 struct scatterlist
*sg_tmp
= sg
;
1148 if (!sg
|| !sg
->length
|| !new_len
)
1154 while (nbytes
> 0 && sg_tmp
) {
1156 if (skip
>= sg_tmp
->length
) {
1157 skip
-= sg_tmp
->length
;
1158 if (!sg_tmp
->length
) {
1163 if (!IS_ALIGNED(sg_tmp
->length
- skip
, BUFLEN
)) {
1168 if (nbytes
< sg_tmp
->length
- skip
) {
1173 nbytes
-= sg_tmp
->length
- skip
;
1177 sg_tmp
= sg_next(sg_tmp
);
1181 return s5p_hash_copy_sgs(ctx
, sg
, new_len
);
1183 return s5p_hash_copy_sg_lists(ctx
, sg
, new_len
);
1186 * Have aligned data from previous operation and/or current
1187 * Note: will enter here only if (digest or finup) and aligned
1191 sg_init_table(ctx
->sgl
, 2);
1192 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1193 sg_chain(ctx
->sgl
, 2, sg
);
1205 * s5p_hash_prepare_request() - prepare request for processing
1206 * @req: AHASH request
1207 * @update: true if UPDATE op
1209 * Note 1: we can have update flag _and_ final flag at the same time.
1210 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1211 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1214 static int s5p_hash_prepare_request(struct ahash_request
*req
, bool update
)
1216 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1217 bool final
= ctx
->finup
;
1218 int xmit_len
, hash_later
, nbytes
;
1222 nbytes
= req
->nbytes
;
1226 ctx
->total
= nbytes
+ ctx
->bufcnt
;
1230 if (nbytes
&& (!IS_ALIGNED(ctx
->bufcnt
, BUFLEN
))) {
1231 /* bytes left from previous request, so fill up to BUFLEN */
1232 int len
= BUFLEN
- ctx
->bufcnt
% BUFLEN
;
1237 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1247 memcpy(ctx
->dd
->xmit_buf
, ctx
->buffer
, ctx
->bufcnt
);
1249 xmit_len
= ctx
->total
;
1253 if (IS_ALIGNED(xmit_len
, BUFLEN
))
1256 xmit_len
-= xmit_len
& (BUFLEN
- 1);
1258 hash_later
= ctx
->total
- xmit_len
;
1259 /* copy hash_later bytes from end of req->src */
1260 /* previous bytes are in xmit_buf, so no overwrite */
1261 scatterwalk_map_and_copy(ctx
->buffer
, req
->src
,
1262 req
->nbytes
- hash_later
,
1266 if (xmit_len
> BUFLEN
) {
1267 ret
= s5p_hash_prepare_sgs(ctx
, req
->src
, nbytes
- hash_later
,
1272 /* have buffered data only */
1273 if (unlikely(!ctx
->bufcnt
)) {
1274 /* first update didn't fill up buffer */
1275 scatterwalk_map_and_copy(ctx
->dd
->xmit_buf
, req
->src
,
1279 sg_init_table(ctx
->sgl
, 1);
1280 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, xmit_len
);
1286 ctx
->bufcnt
= hash_later
;
1288 ctx
->total
= xmit_len
;
1294 * s5p_hash_update_dma_stop() - unmap DMA
1297 * Unmap scatterlist ctx->sg.
1299 static void s5p_hash_update_dma_stop(struct s5p_aes_dev
*dd
)
1301 const struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
1303 dma_unmap_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
1304 clear_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
1308 * s5p_hash_finish() - copy calculated digest to crypto layer
1309 * @req: AHASH request
1311 static void s5p_hash_finish(struct ahash_request
*req
)
1313 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1314 struct s5p_aes_dev
*dd
= ctx
->dd
;
1317 s5p_hash_copy_result(req
);
1319 dev_dbg(dd
->dev
, "hash_finish digcnt: %lld\n", ctx
->digcnt
);
1323 * s5p_hash_finish_req() - finish request
1324 * @req: AHASH request
1327 static void s5p_hash_finish_req(struct ahash_request
*req
, int err
)
1329 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1330 struct s5p_aes_dev
*dd
= ctx
->dd
;
1331 unsigned long flags
;
1333 if (test_bit(HASH_FLAGS_SGS_COPIED
, &dd
->hash_flags
))
1334 free_pages((unsigned long)sg_virt(ctx
->sg
),
1335 get_order(ctx
->sg
->length
));
1337 if (test_bit(HASH_FLAGS_SGS_ALLOCED
, &dd
->hash_flags
))
1341 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_SGS_ALLOCED
) |
1342 BIT(HASH_FLAGS_SGS_COPIED
));
1344 if (!err
&& !ctx
->error
) {
1345 s5p_hash_read_msg(req
);
1346 if (test_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
))
1347 s5p_hash_finish(req
);
1352 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1353 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_BUSY
) | BIT(HASH_FLAGS_FINAL
) |
1354 BIT(HASH_FLAGS_DMA_READY
) |
1355 BIT(HASH_FLAGS_OUTPUT_READY
));
1356 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1358 if (req
->base
.complete
)
1359 req
->base
.complete(&req
->base
, err
);
1363 * s5p_hash_handle_queue() - handle hash queue
1364 * @dd: device s5p_aes_dev
1365 * @req: AHASH request
1367 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1368 * device then processes the first request from the dd->queue
1370 * Returns: see s5p_hash_final below.
1372 static int s5p_hash_handle_queue(struct s5p_aes_dev
*dd
,
1373 struct ahash_request
*req
)
1375 struct crypto_async_request
*async_req
, *backlog
;
1376 struct s5p_hash_reqctx
*ctx
;
1377 unsigned long flags
;
1378 int err
= 0, ret
= 0;
1381 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1383 ret
= ahash_enqueue_request(&dd
->hash_queue
, req
);
1385 if (test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1386 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1390 backlog
= crypto_get_backlog(&dd
->hash_queue
);
1391 async_req
= crypto_dequeue_request(&dd
->hash_queue
);
1393 set_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
);
1395 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1401 backlog
->complete(backlog
, -EINPROGRESS
);
1403 req
= ahash_request_cast(async_req
);
1405 ctx
= ahash_request_ctx(req
);
1407 err
= s5p_hash_prepare_request(req
, ctx
->op_update
);
1408 if (err
|| !ctx
->total
)
1411 dev_dbg(dd
->dev
, "handling new req, op_update: %u, nbytes: %d\n",
1412 ctx
->op_update
, req
->nbytes
);
1414 s5p_ahash_dma_init(dd
, SSS_HASHIN_INDEPENDENT
);
1416 s5p_hash_write_iv(req
); /* restore hash IV */
1418 if (ctx
->op_update
) { /* HASH_OP_UPDATE */
1419 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, ctx
->finup
);
1420 if (err
!= -EINPROGRESS
&& ctx
->finup
&& !ctx
->error
)
1421 /* no final() after finup() */
1422 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1423 } else { /* HASH_OP_FINAL */
1424 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1427 if (err
!= -EINPROGRESS
) {
1428 /* hash_tasklet_cb will not finish it, so do it here */
1429 s5p_hash_finish_req(req
, err
);
1433 * Execute next request immediately if there is anything
1443 * s5p_hash_tasklet_cb() - hash tasklet
1444 * @data: ptr to s5p_aes_dev
1446 static void s5p_hash_tasklet_cb(unsigned long data
)
1448 struct s5p_aes_dev
*dd
= (struct s5p_aes_dev
*)data
;
1450 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1451 s5p_hash_handle_queue(dd
, NULL
);
1455 if (test_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
)) {
1456 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE
,
1458 s5p_hash_update_dma_stop(dd
);
1461 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY
,
1463 /* hash or semi-hash ready */
1464 clear_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
);
1472 /* finish curent request */
1473 s5p_hash_finish_req(dd
->hash_req
, 0);
1475 /* If we are not busy, process next req */
1476 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
))
1477 s5p_hash_handle_queue(dd
, NULL
);
1481 * s5p_hash_enqueue() - enqueue request
1482 * @req: AHASH request
1483 * @op: operation UPDATE (true) or FINAL (false)
1485 * Returns: see s5p_hash_final below.
1487 static int s5p_hash_enqueue(struct ahash_request
*req
, bool op
)
1489 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1490 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1492 ctx
->op_update
= op
;
1494 return s5p_hash_handle_queue(tctx
->dd
, req
);
1498 * s5p_hash_update() - process the hash input data
1499 * @req: AHASH request
1501 * If request will fit in buffer, copy it and return immediately
1502 * else enqueue it with OP_UPDATE.
1504 * Returns: see s5p_hash_final below.
1506 static int s5p_hash_update(struct ahash_request
*req
)
1508 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1513 if (ctx
->bufcnt
+ req
->nbytes
<= BUFLEN
) {
1514 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1516 ctx
->bufcnt
+= req
->nbytes
;
1520 return s5p_hash_enqueue(req
, true); /* HASH_OP_UPDATE */
1524 * s5p_hash_shash_digest() - calculate shash digest
1525 * @tfm: crypto transformation
1528 * @len: length of data
1529 * @out: output buffer
1531 static int s5p_hash_shash_digest(struct crypto_shash
*tfm
, u32 flags
,
1532 const u8
*data
, unsigned int len
, u8
*out
)
1534 SHASH_DESC_ON_STACK(shash
, tfm
);
1537 shash
->flags
= flags
& ~CRYPTO_TFM_REQ_MAY_SLEEP
;
1539 return crypto_shash_digest(shash
, data
, len
, out
);
1543 * s5p_hash_final_shash() - calculate shash digest
1544 * @req: AHASH request
1546 static int s5p_hash_final_shash(struct ahash_request
*req
)
1548 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1549 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1551 return s5p_hash_shash_digest(tctx
->fallback
, req
->base
.flags
,
1552 ctx
->buffer
, ctx
->bufcnt
, req
->result
);
1556 * s5p_hash_final() - close up hash and calculate digest
1557 * @req: AHASH request
1559 * Note: in final req->src do not have any data, and req->nbytes can be
1562 * If there were no input data processed yet and the buffered hash data is
1563 * less than BUFLEN (64) then calculate the final hash immediately by using
1564 * SW algorithm fallback.
1566 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1567 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1568 * previous update op, so there are always some buffered bytes in ctx->buffer,
1569 * which means that ctx->bufcnt!=0
1572 * 0 if the request has been processed immediately,
1573 * -EINPROGRESS if the operation has been queued for later execution or is set
1574 * to processing by HW,
1575 * -EBUSY if queue is full and request should be resubmitted later,
1576 * other negative values denotes an error.
1578 static int s5p_hash_final(struct ahash_request
*req
)
1580 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1584 return -EINVAL
; /* uncompleted hash is not needed */
1586 if (!ctx
->digcnt
&& ctx
->bufcnt
< BUFLEN
)
1587 return s5p_hash_final_shash(req
);
1589 return s5p_hash_enqueue(req
, false); /* HASH_OP_FINAL */
1593 * s5p_hash_finup() - process last req->src and calculate digest
1594 * @req: AHASH request containing the last update data
1596 * Return values: see s5p_hash_final above.
1598 static int s5p_hash_finup(struct ahash_request
*req
)
1600 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1605 err1
= s5p_hash_update(req
);
1606 if (err1
== -EINPROGRESS
|| err1
== -EBUSY
)
1610 * final() has to be always called to cleanup resources even if
1611 * update() failed, except EINPROGRESS or calculate digest for small
1614 err2
= s5p_hash_final(req
);
1616 return err1
?: err2
;
1620 * s5p_hash_init() - initialize AHASH request contex
1621 * @req: AHASH request
1623 * Init async hash request context.
1625 static int s5p_hash_init(struct ahash_request
*req
)
1627 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1628 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1629 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1639 dev_dbg(tctx
->dd
->dev
, "init: digest size: %d\n",
1640 crypto_ahash_digestsize(tfm
));
1642 switch (crypto_ahash_digestsize(tfm
)) {
1643 case MD5_DIGEST_SIZE
:
1644 ctx
->engine
= SSS_HASH_ENGINE_MD5
;
1645 ctx
->nregs
= HASH_MD5_MAX_REG
;
1647 case SHA1_DIGEST_SIZE
:
1648 ctx
->engine
= SSS_HASH_ENGINE_SHA1
;
1649 ctx
->nregs
= HASH_SHA1_MAX_REG
;
1651 case SHA256_DIGEST_SIZE
:
1652 ctx
->engine
= SSS_HASH_ENGINE_SHA256
;
1653 ctx
->nregs
= HASH_SHA256_MAX_REG
;
1664 * s5p_hash_digest - calculate digest from req->src
1665 * @req: AHASH request
1667 * Return values: see s5p_hash_final above.
1669 static int s5p_hash_digest(struct ahash_request
*req
)
1671 return s5p_hash_init(req
) ?: s5p_hash_finup(req
);
1675 * s5p_hash_cra_init_alg - init crypto alg transformation
1676 * @tfm: crypto transformation
1678 static int s5p_hash_cra_init_alg(struct crypto_tfm
*tfm
)
1680 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1681 const char *alg_name
= crypto_tfm_alg_name(tfm
);
1684 /* Allocate a fallback and abort if it failed. */
1685 tctx
->fallback
= crypto_alloc_shash(alg_name
, 0,
1686 CRYPTO_ALG_NEED_FALLBACK
);
1687 if (IS_ERR(tctx
->fallback
)) {
1688 pr_err("fallback alloc fails for '%s'\n", alg_name
);
1689 return PTR_ERR(tctx
->fallback
);
1692 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1693 sizeof(struct s5p_hash_reqctx
) + BUFLEN
);
1699 * s5p_hash_cra_init - init crypto tfm
1700 * @tfm: crypto transformation
1702 static int s5p_hash_cra_init(struct crypto_tfm
*tfm
)
1704 return s5p_hash_cra_init_alg(tfm
);
1708 * s5p_hash_cra_exit - exit crypto tfm
1709 * @tfm: crypto transformation
1711 * free allocated fallback
1713 static void s5p_hash_cra_exit(struct crypto_tfm
*tfm
)
1715 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1717 crypto_free_shash(tctx
->fallback
);
1718 tctx
->fallback
= NULL
;
1722 * s5p_hash_export - export hash state
1723 * @req: AHASH request
1724 * @out: buffer for exported state
1726 static int s5p_hash_export(struct ahash_request
*req
, void *out
)
1728 const struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1730 memcpy(out
, ctx
, sizeof(*ctx
) + ctx
->bufcnt
);
1736 * s5p_hash_import - import hash state
1737 * @req: AHASH request
1738 * @in: buffer with state to be imported from
1740 static int s5p_hash_import(struct ahash_request
*req
, const void *in
)
1742 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1743 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1744 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1745 const struct s5p_hash_reqctx
*ctx_in
= in
;
1747 memcpy(ctx
, in
, sizeof(*ctx
) + BUFLEN
);
1748 if (ctx_in
->bufcnt
> BUFLEN
) {
1759 static struct ahash_alg algs_sha1_md5_sha256
[] = {
1761 .init
= s5p_hash_init
,
1762 .update
= s5p_hash_update
,
1763 .final
= s5p_hash_final
,
1764 .finup
= s5p_hash_finup
,
1765 .digest
= s5p_hash_digest
,
1766 .export
= s5p_hash_export
,
1767 .import
= s5p_hash_import
,
1768 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1769 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1772 .cra_driver_name
= "exynos-sha1",
1773 .cra_priority
= 100,
1774 .cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1776 CRYPTO_ALG_NEED_FALLBACK
,
1777 .cra_blocksize
= HASH_BLOCK_SIZE
,
1778 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1779 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1780 .cra_module
= THIS_MODULE
,
1781 .cra_init
= s5p_hash_cra_init
,
1782 .cra_exit
= s5p_hash_cra_exit
,
1786 .init
= s5p_hash_init
,
1787 .update
= s5p_hash_update
,
1788 .final
= s5p_hash_final
,
1789 .finup
= s5p_hash_finup
,
1790 .digest
= s5p_hash_digest
,
1791 .export
= s5p_hash_export
,
1792 .import
= s5p_hash_import
,
1793 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1794 .halg
.digestsize
= MD5_DIGEST_SIZE
,
1797 .cra_driver_name
= "exynos-md5",
1798 .cra_priority
= 100,
1799 .cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1801 CRYPTO_ALG_NEED_FALLBACK
,
1802 .cra_blocksize
= HASH_BLOCK_SIZE
,
1803 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1804 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1805 .cra_module
= THIS_MODULE
,
1806 .cra_init
= s5p_hash_cra_init
,
1807 .cra_exit
= s5p_hash_cra_exit
,
1811 .init
= s5p_hash_init
,
1812 .update
= s5p_hash_update
,
1813 .final
= s5p_hash_final
,
1814 .finup
= s5p_hash_finup
,
1815 .digest
= s5p_hash_digest
,
1816 .export
= s5p_hash_export
,
1817 .import
= s5p_hash_import
,
1818 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1819 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1821 .cra_name
= "sha256",
1822 .cra_driver_name
= "exynos-sha256",
1823 .cra_priority
= 100,
1824 .cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1826 CRYPTO_ALG_NEED_FALLBACK
,
1827 .cra_blocksize
= HASH_BLOCK_SIZE
,
1828 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1829 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1830 .cra_module
= THIS_MODULE
,
1831 .cra_init
= s5p_hash_cra_init
,
1832 .cra_exit
= s5p_hash_cra_exit
,
1838 static void s5p_set_aes(struct s5p_aes_dev
*dev
,
1839 const u8
*key
, const u8
*iv
, const u8
*ctr
,
1840 unsigned int keylen
)
1842 void __iomem
*keystart
;
1845 memcpy_toio(dev
->aes_ioaddr
+ SSS_REG_AES_IV_DATA(0), iv
,
1849 memcpy_toio(dev
->aes_ioaddr
+ SSS_REG_AES_CNT_DATA(0), ctr
,
1852 if (keylen
== AES_KEYSIZE_256
)
1853 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(0);
1854 else if (keylen
== AES_KEYSIZE_192
)
1855 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(2);
1857 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(4);
1859 memcpy_toio(keystart
, key
, keylen
);
1862 static bool s5p_is_sg_aligned(struct scatterlist
*sg
)
1865 if (!IS_ALIGNED(sg
->length
, AES_BLOCK_SIZE
))
1873 static int s5p_set_indata_start(struct s5p_aes_dev
*dev
,
1874 struct ablkcipher_request
*req
)
1876 struct scatterlist
*sg
;
1879 dev
->sg_src_cpy
= NULL
;
1881 if (!s5p_is_sg_aligned(sg
)) {
1883 "At least one unaligned source scatter list, making a copy\n");
1884 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_src_cpy
);
1888 sg
= dev
->sg_src_cpy
;
1891 err
= s5p_set_indata(dev
, sg
);
1893 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
1900 static int s5p_set_outdata_start(struct s5p_aes_dev
*dev
,
1901 struct ablkcipher_request
*req
)
1903 struct scatterlist
*sg
;
1906 dev
->sg_dst_cpy
= NULL
;
1908 if (!s5p_is_sg_aligned(sg
)) {
1910 "At least one unaligned dest scatter list, making a copy\n");
1911 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_dst_cpy
);
1915 sg
= dev
->sg_dst_cpy
;
1918 err
= s5p_set_outdata(dev
, sg
);
1920 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
1927 static void s5p_aes_crypt_start(struct s5p_aes_dev
*dev
, unsigned long mode
)
1929 struct ablkcipher_request
*req
= dev
->req
;
1931 unsigned long flags
;
1935 /* This sets bit [13:12] to 00, which selects 128-bit counter */
1936 aes_control
= SSS_AES_KEY_CHANGE_MODE
;
1937 if (mode
& FLAGS_AES_DECRYPT
)
1938 aes_control
|= SSS_AES_MODE_DECRYPT
;
1940 if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CBC
) {
1941 aes_control
|= SSS_AES_CHAIN_MODE_CBC
;
1944 } else if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CTR
) {
1945 aes_control
|= SSS_AES_CHAIN_MODE_CTR
;
1949 iv
= NULL
; /* AES_ECB */
1953 if (dev
->ctx
->keylen
== AES_KEYSIZE_192
)
1954 aes_control
|= SSS_AES_KEY_SIZE_192
;
1955 else if (dev
->ctx
->keylen
== AES_KEYSIZE_256
)
1956 aes_control
|= SSS_AES_KEY_SIZE_256
;
1958 aes_control
|= SSS_AES_FIFO_MODE
;
1960 /* as a variant it is possible to use byte swapping on DMA side */
1961 aes_control
|= SSS_AES_BYTESWAP_DI
1962 | SSS_AES_BYTESWAP_DO
1963 | SSS_AES_BYTESWAP_IV
1964 | SSS_AES_BYTESWAP_KEY
1965 | SSS_AES_BYTESWAP_CNT
;
1967 spin_lock_irqsave(&dev
->lock
, flags
);
1969 SSS_WRITE(dev
, FCINTENCLR
,
1970 SSS_FCINTENCLR_BTDMAINTENCLR
| SSS_FCINTENCLR_BRDMAINTENCLR
);
1971 SSS_WRITE(dev
, FCFIFOCTRL
, 0x00);
1973 err
= s5p_set_indata_start(dev
, req
);
1977 err
= s5p_set_outdata_start(dev
, req
);
1981 SSS_AES_WRITE(dev
, AES_CONTROL
, aes_control
);
1982 s5p_set_aes(dev
, dev
->ctx
->aes_key
, iv
, ctr
, dev
->ctx
->keylen
);
1984 s5p_set_dma_indata(dev
, dev
->sg_src
);
1985 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
1987 SSS_WRITE(dev
, FCINTENSET
,
1988 SSS_FCINTENSET_BTDMAINTENSET
| SSS_FCINTENSET_BRDMAINTENSET
);
1990 spin_unlock_irqrestore(&dev
->lock
, flags
);
1995 s5p_unset_indata(dev
);
2000 spin_unlock_irqrestore(&dev
->lock
, flags
);
2001 s5p_aes_complete(req
, err
);
2004 static void s5p_tasklet_cb(unsigned long data
)
2006 struct s5p_aes_dev
*dev
= (struct s5p_aes_dev
*)data
;
2007 struct crypto_async_request
*async_req
, *backlog
;
2008 struct s5p_aes_reqctx
*reqctx
;
2009 unsigned long flags
;
2011 spin_lock_irqsave(&dev
->lock
, flags
);
2012 backlog
= crypto_get_backlog(&dev
->queue
);
2013 async_req
= crypto_dequeue_request(&dev
->queue
);
2017 spin_unlock_irqrestore(&dev
->lock
, flags
);
2020 spin_unlock_irqrestore(&dev
->lock
, flags
);
2023 backlog
->complete(backlog
, -EINPROGRESS
);
2025 dev
->req
= ablkcipher_request_cast(async_req
);
2026 dev
->ctx
= crypto_tfm_ctx(dev
->req
->base
.tfm
);
2027 reqctx
= ablkcipher_request_ctx(dev
->req
);
2029 s5p_aes_crypt_start(dev
, reqctx
->mode
);
2032 static int s5p_aes_handle_req(struct s5p_aes_dev
*dev
,
2033 struct ablkcipher_request
*req
)
2035 unsigned long flags
;
2038 spin_lock_irqsave(&dev
->lock
, flags
);
2039 err
= ablkcipher_enqueue_request(&dev
->queue
, req
);
2041 spin_unlock_irqrestore(&dev
->lock
, flags
);
2046 spin_unlock_irqrestore(&dev
->lock
, flags
);
2048 tasklet_schedule(&dev
->tasklet
);
2053 static int s5p_aes_crypt(struct ablkcipher_request
*req
, unsigned long mode
)
2055 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
2056 struct s5p_aes_reqctx
*reqctx
= ablkcipher_request_ctx(req
);
2057 struct s5p_aes_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
2058 struct s5p_aes_dev
*dev
= ctx
->dev
;
2060 if (!IS_ALIGNED(req
->nbytes
, AES_BLOCK_SIZE
) &&
2061 ((mode
& FLAGS_AES_MODE_MASK
) != FLAGS_AES_CTR
)) {
2062 dev_err(dev
->dev
, "request size is not exact amount of AES blocks\n");
2066 reqctx
->mode
= mode
;
2068 return s5p_aes_handle_req(dev
, req
);
2071 static int s5p_aes_setkey(struct crypto_ablkcipher
*cipher
,
2072 const u8
*key
, unsigned int keylen
)
2074 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
2075 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2077 if (keylen
!= AES_KEYSIZE_128
&&
2078 keylen
!= AES_KEYSIZE_192
&&
2079 keylen
!= AES_KEYSIZE_256
)
2082 memcpy(ctx
->aes_key
, key
, keylen
);
2083 ctx
->keylen
= keylen
;
2088 static int s5p_aes_ecb_encrypt(struct ablkcipher_request
*req
)
2090 return s5p_aes_crypt(req
, 0);
2093 static int s5p_aes_ecb_decrypt(struct ablkcipher_request
*req
)
2095 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
);
2098 static int s5p_aes_cbc_encrypt(struct ablkcipher_request
*req
)
2100 return s5p_aes_crypt(req
, FLAGS_AES_CBC
);
2103 static int s5p_aes_cbc_decrypt(struct ablkcipher_request
*req
)
2105 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
| FLAGS_AES_CBC
);
2108 static int s5p_aes_ctr_crypt(struct ablkcipher_request
*req
)
2110 return s5p_aes_crypt(req
, FLAGS_AES_CTR
);
2113 static int s5p_aes_cra_init(struct crypto_tfm
*tfm
)
2115 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2118 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct s5p_aes_reqctx
);
2123 static struct crypto_alg algs
[] = {
2125 .cra_name
= "ecb(aes)",
2126 .cra_driver_name
= "ecb-aes-s5p",
2127 .cra_priority
= 100,
2128 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2130 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2131 .cra_blocksize
= AES_BLOCK_SIZE
,
2132 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2133 .cra_alignmask
= 0x0f,
2134 .cra_type
= &crypto_ablkcipher_type
,
2135 .cra_module
= THIS_MODULE
,
2136 .cra_init
= s5p_aes_cra_init
,
2137 .cra_u
.ablkcipher
= {
2138 .min_keysize
= AES_MIN_KEY_SIZE
,
2139 .max_keysize
= AES_MAX_KEY_SIZE
,
2140 .setkey
= s5p_aes_setkey
,
2141 .encrypt
= s5p_aes_ecb_encrypt
,
2142 .decrypt
= s5p_aes_ecb_decrypt
,
2146 .cra_name
= "cbc(aes)",
2147 .cra_driver_name
= "cbc-aes-s5p",
2148 .cra_priority
= 100,
2149 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2151 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2152 .cra_blocksize
= AES_BLOCK_SIZE
,
2153 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2154 .cra_alignmask
= 0x0f,
2155 .cra_type
= &crypto_ablkcipher_type
,
2156 .cra_module
= THIS_MODULE
,
2157 .cra_init
= s5p_aes_cra_init
,
2158 .cra_u
.ablkcipher
= {
2159 .min_keysize
= AES_MIN_KEY_SIZE
,
2160 .max_keysize
= AES_MAX_KEY_SIZE
,
2161 .ivsize
= AES_BLOCK_SIZE
,
2162 .setkey
= s5p_aes_setkey
,
2163 .encrypt
= s5p_aes_cbc_encrypt
,
2164 .decrypt
= s5p_aes_cbc_decrypt
,
2168 .cra_name
= "ctr(aes)",
2169 .cra_driver_name
= "ctr-aes-s5p",
2170 .cra_priority
= 100,
2171 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2173 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2174 .cra_blocksize
= AES_BLOCK_SIZE
,
2175 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2176 .cra_alignmask
= 0x0f,
2177 .cra_type
= &crypto_ablkcipher_type
,
2178 .cra_module
= THIS_MODULE
,
2179 .cra_init
= s5p_aes_cra_init
,
2180 .cra_u
.ablkcipher
= {
2181 .min_keysize
= AES_MIN_KEY_SIZE
,
2182 .max_keysize
= AES_MAX_KEY_SIZE
,
2183 .ivsize
= AES_BLOCK_SIZE
,
2184 .setkey
= s5p_aes_setkey
,
2185 .encrypt
= s5p_aes_ctr_crypt
,
2186 .decrypt
= s5p_aes_ctr_crypt
,
2191 static int s5p_aes_probe(struct platform_device
*pdev
)
2193 struct device
*dev
= &pdev
->dev
;
2194 int i
, j
, err
= -ENODEV
;
2195 const struct samsung_aes_variant
*variant
;
2196 struct s5p_aes_dev
*pdata
;
2197 struct resource
*res
;
2198 unsigned int hash_i
;
2203 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
2207 variant
= find_s5p_sss_version(pdev
);
2208 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2211 * Note: HASH and PRNG uses the same registers in secss, avoid
2212 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2213 * is enabled in config. We need larger size for HASH registers in
2214 * secss, current describe only AES/DES
2216 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH
)) {
2217 if (variant
== &exynos_aes_data
) {
2219 pdata
->use_hash
= true;
2224 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2225 if (IS_ERR(pdata
->ioaddr
)) {
2226 if (!pdata
->use_hash
)
2227 return PTR_ERR(pdata
->ioaddr
);
2228 /* try AES without HASH */
2230 pdata
->use_hash
= false;
2231 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2232 if (IS_ERR(pdata
->ioaddr
))
2233 return PTR_ERR(pdata
->ioaddr
);
2236 pdata
->clk
= devm_clk_get(dev
, variant
->clk_names
[0]);
2237 if (IS_ERR(pdata
->clk
)) {
2238 dev_err(dev
, "failed to find secss clock %s\n",
2239 variant
->clk_names
[0]);
2243 err
= clk_prepare_enable(pdata
->clk
);
2245 dev_err(dev
, "Enabling clock %s failed, err %d\n",
2246 variant
->clk_names
[0], err
);
2250 if (variant
->clk_names
[1]) {
2251 pdata
->pclk
= devm_clk_get(dev
, variant
->clk_names
[1]);
2252 if (IS_ERR(pdata
->pclk
)) {
2253 dev_err(dev
, "failed to find clock %s\n",
2254 variant
->clk_names
[1]);
2259 err
= clk_prepare_enable(pdata
->pclk
);
2261 dev_err(dev
, "Enabling clock %s failed, err %d\n",
2262 variant
->clk_names
[0], err
);
2269 spin_lock_init(&pdata
->lock
);
2270 spin_lock_init(&pdata
->hash_lock
);
2272 pdata
->aes_ioaddr
= pdata
->ioaddr
+ variant
->aes_offset
;
2273 pdata
->io_hash_base
= pdata
->ioaddr
+ variant
->hash_offset
;
2275 pdata
->irq_fc
= platform_get_irq(pdev
, 0);
2276 if (pdata
->irq_fc
< 0) {
2277 err
= pdata
->irq_fc
;
2278 dev_warn(dev
, "feed control interrupt is not available.\n");
2281 err
= devm_request_threaded_irq(dev
, pdata
->irq_fc
, NULL
,
2282 s5p_aes_interrupt
, IRQF_ONESHOT
,
2285 dev_warn(dev
, "feed control interrupt is not available.\n");
2289 pdata
->busy
= false;
2291 platform_set_drvdata(pdev
, pdata
);
2294 tasklet_init(&pdata
->tasklet
, s5p_tasklet_cb
, (unsigned long)pdata
);
2295 crypto_init_queue(&pdata
->queue
, CRYPTO_QUEUE_LEN
);
2297 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++) {
2298 err
= crypto_register_alg(&algs
[i
]);
2303 if (pdata
->use_hash
) {
2304 tasklet_init(&pdata
->hash_tasklet
, s5p_hash_tasklet_cb
,
2305 (unsigned long)pdata
);
2306 crypto_init_queue(&pdata
->hash_queue
, SSS_HASH_QUEUE_LENGTH
);
2308 for (hash_i
= 0; hash_i
< ARRAY_SIZE(algs_sha1_md5_sha256
);
2310 struct ahash_alg
*alg
;
2312 alg
= &algs_sha1_md5_sha256
[hash_i
];
2313 err
= crypto_register_ahash(alg
);
2315 dev_err(dev
, "can't register '%s': %d\n",
2316 alg
->halg
.base
.cra_driver_name
, err
);
2322 dev_info(dev
, "s5p-sss driver registered\n");
2327 for (j
= hash_i
- 1; j
>= 0; j
--)
2328 crypto_unregister_ahash(&algs_sha1_md5_sha256
[j
]);
2330 tasklet_kill(&pdata
->hash_tasklet
);
2334 if (i
< ARRAY_SIZE(algs
))
2335 dev_err(dev
, "can't register '%s': %d\n", algs
[i
].cra_name
,
2338 for (j
= 0; j
< i
; j
++)
2339 crypto_unregister_alg(&algs
[j
]);
2341 tasklet_kill(&pdata
->tasklet
);
2345 clk_disable_unprepare(pdata
->pclk
);
2348 clk_disable_unprepare(pdata
->clk
);
2354 static int s5p_aes_remove(struct platform_device
*pdev
)
2356 struct s5p_aes_dev
*pdata
= platform_get_drvdata(pdev
);
2362 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++)
2363 crypto_unregister_alg(&algs
[i
]);
2365 tasklet_kill(&pdata
->tasklet
);
2366 if (pdata
->use_hash
) {
2367 for (i
= ARRAY_SIZE(algs_sha1_md5_sha256
) - 1; i
>= 0; i
--)
2368 crypto_unregister_ahash(&algs_sha1_md5_sha256
[i
]);
2370 pdata
->res
->end
-= 0x300;
2371 tasklet_kill(&pdata
->hash_tasklet
);
2372 pdata
->use_hash
= false;
2376 clk_disable_unprepare(pdata
->pclk
);
2378 clk_disable_unprepare(pdata
->clk
);
2384 static struct platform_driver s5p_aes_crypto
= {
2385 .probe
= s5p_aes_probe
,
2386 .remove
= s5p_aes_remove
,
2388 .name
= "s5p-secss",
2389 .of_match_table
= s5p_sss_dt_match
,
2393 module_platform_driver(s5p_aes_crypto
);
2395 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2396 MODULE_LICENSE("GPL v2");
2397 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2398 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");