Linux 5.1.15
[linux/fpc-iii.git] / drivers / input / rmi4 / rmi_driver.c
blob7fb358f961957507969db706c780459b937d2ba0
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
5 * This driver provides the core support for a single RMI4-based device.
7 * The RMI4 specification can be found here (URL split for line length):
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/irqdomain.h>
25 #include <uapi/linux/input.h>
26 #include <linux/rmi.h>
27 #include "rmi_bus.h"
28 #include "rmi_driver.h"
30 #define HAS_NONSTANDARD_PDT_MASK 0x40
31 #define RMI4_MAX_PAGE 0xff
32 #define RMI4_PAGE_SIZE 0x100
33 #define RMI4_PAGE_MASK 0xFF00
35 #define RMI_DEVICE_RESET_CMD 0x01
36 #define DEFAULT_RESET_DELAY_MS 100
38 void rmi_free_function_list(struct rmi_device *rmi_dev)
40 struct rmi_function *fn, *tmp;
41 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
43 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
45 /* Doing it in the reverse order so F01 will be removed last */
46 list_for_each_entry_safe_reverse(fn, tmp,
47 &data->function_list, node) {
48 list_del(&fn->node);
49 rmi_unregister_function(fn);
52 devm_kfree(&rmi_dev->dev, data->irq_memory);
53 data->irq_memory = NULL;
54 data->irq_status = NULL;
55 data->fn_irq_bits = NULL;
56 data->current_irq_mask = NULL;
57 data->new_irq_mask = NULL;
59 data->f01_container = NULL;
60 data->f34_container = NULL;
63 static int reset_one_function(struct rmi_function *fn)
65 struct rmi_function_handler *fh;
66 int retval = 0;
68 if (!fn || !fn->dev.driver)
69 return 0;
71 fh = to_rmi_function_handler(fn->dev.driver);
72 if (fh->reset) {
73 retval = fh->reset(fn);
74 if (retval < 0)
75 dev_err(&fn->dev, "Reset failed with code %d.\n",
76 retval);
79 return retval;
82 static int configure_one_function(struct rmi_function *fn)
84 struct rmi_function_handler *fh;
85 int retval = 0;
87 if (!fn || !fn->dev.driver)
88 return 0;
90 fh = to_rmi_function_handler(fn->dev.driver);
91 if (fh->config) {
92 retval = fh->config(fn);
93 if (retval < 0)
94 dev_err(&fn->dev, "Config failed with code %d.\n",
95 retval);
98 return retval;
101 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
103 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
104 struct rmi_function *entry;
105 int retval;
107 list_for_each_entry(entry, &data->function_list, node) {
108 retval = reset_one_function(entry);
109 if (retval < 0)
110 return retval;
113 return 0;
116 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
118 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
119 struct rmi_function *entry;
120 int retval;
122 list_for_each_entry(entry, &data->function_list, node) {
123 retval = configure_one_function(entry);
124 if (retval < 0)
125 return retval;
128 return 0;
131 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
133 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
134 struct device *dev = &rmi_dev->dev;
135 int i;
136 int error;
138 if (!data)
139 return 0;
141 if (!data->attn_data.data) {
142 error = rmi_read_block(rmi_dev,
143 data->f01_container->fd.data_base_addr + 1,
144 data->irq_status, data->num_of_irq_regs);
145 if (error < 0) {
146 dev_err(dev, "Failed to read irqs, code=%d\n", error);
147 return error;
151 mutex_lock(&data->irq_mutex);
152 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
153 data->irq_count);
155 * At this point, irq_status has all bits that are set in the
156 * interrupt status register and are enabled.
158 mutex_unlock(&data->irq_mutex);
160 for_each_set_bit(i, data->irq_status, data->irq_count)
161 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
163 if (data->input)
164 input_sync(data->input);
166 return 0;
169 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
170 void *data, size_t size)
172 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
173 struct rmi4_attn_data attn_data;
174 void *fifo_data;
176 if (!drvdata->enabled)
177 return;
179 fifo_data = kmemdup(data, size, GFP_ATOMIC);
180 if (!fifo_data)
181 return;
183 attn_data.irq_status = irq_status;
184 attn_data.size = size;
185 attn_data.data = fifo_data;
187 kfifo_put(&drvdata->attn_fifo, attn_data);
189 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
191 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
193 struct rmi_device *rmi_dev = dev_id;
194 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
195 struct rmi4_attn_data attn_data = {0};
196 int ret, count;
198 count = kfifo_get(&drvdata->attn_fifo, &attn_data);
199 if (count) {
200 *(drvdata->irq_status) = attn_data.irq_status;
201 drvdata->attn_data = attn_data;
204 ret = rmi_process_interrupt_requests(rmi_dev);
205 if (ret)
206 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
207 "Failed to process interrupt request: %d\n", ret);
209 if (count) {
210 kfree(attn_data.data);
211 attn_data.data = NULL;
214 if (!kfifo_is_empty(&drvdata->attn_fifo))
215 return rmi_irq_fn(irq, dev_id);
217 return IRQ_HANDLED;
220 static int rmi_irq_init(struct rmi_device *rmi_dev)
222 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
223 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
224 int irq_flags = irq_get_trigger_type(pdata->irq);
225 int ret;
227 if (!irq_flags)
228 irq_flags = IRQF_TRIGGER_LOW;
230 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
231 rmi_irq_fn, irq_flags | IRQF_ONESHOT,
232 dev_driver_string(rmi_dev->xport->dev),
233 rmi_dev);
234 if (ret < 0) {
235 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
236 pdata->irq);
238 return ret;
241 data->enabled = true;
243 return 0;
246 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
248 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
249 struct rmi_function *entry;
251 list_for_each_entry(entry, &data->function_list, node) {
252 if (entry->fd.function_number == number)
253 return entry;
256 return NULL;
259 static int suspend_one_function(struct rmi_function *fn)
261 struct rmi_function_handler *fh;
262 int retval = 0;
264 if (!fn || !fn->dev.driver)
265 return 0;
267 fh = to_rmi_function_handler(fn->dev.driver);
268 if (fh->suspend) {
269 retval = fh->suspend(fn);
270 if (retval < 0)
271 dev_err(&fn->dev, "Suspend failed with code %d.\n",
272 retval);
275 return retval;
278 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
280 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
281 struct rmi_function *entry;
282 int retval;
284 list_for_each_entry(entry, &data->function_list, node) {
285 retval = suspend_one_function(entry);
286 if (retval < 0)
287 return retval;
290 return 0;
293 static int resume_one_function(struct rmi_function *fn)
295 struct rmi_function_handler *fh;
296 int retval = 0;
298 if (!fn || !fn->dev.driver)
299 return 0;
301 fh = to_rmi_function_handler(fn->dev.driver);
302 if (fh->resume) {
303 retval = fh->resume(fn);
304 if (retval < 0)
305 dev_err(&fn->dev, "Resume failed with code %d.\n",
306 retval);
309 return retval;
312 static int rmi_resume_functions(struct rmi_device *rmi_dev)
314 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
315 struct rmi_function *entry;
316 int retval;
318 list_for_each_entry(entry, &data->function_list, node) {
319 retval = resume_one_function(entry);
320 if (retval < 0)
321 return retval;
324 return 0;
327 int rmi_enable_sensor(struct rmi_device *rmi_dev)
329 int retval = 0;
331 retval = rmi_driver_process_config_requests(rmi_dev);
332 if (retval < 0)
333 return retval;
335 return rmi_process_interrupt_requests(rmi_dev);
339 * rmi_driver_set_input_params - set input device id and other data.
341 * @rmi_dev: Pointer to an RMI device
342 * @input: Pointer to input device
345 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
346 struct input_dev *input)
348 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
349 input->id.vendor = SYNAPTICS_VENDOR_ID;
350 input->id.bustype = BUS_RMI;
351 return 0;
354 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
355 struct input_dev *input)
357 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
358 const char *device_name = rmi_f01_get_product_ID(data->f01_container);
359 char *name;
361 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
362 "Synaptics %s", device_name);
363 if (!name)
364 return;
366 input->name = name;
369 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
370 unsigned long *mask)
372 int error = 0;
373 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
374 struct device *dev = &rmi_dev->dev;
376 mutex_lock(&data->irq_mutex);
377 bitmap_or(data->new_irq_mask,
378 data->current_irq_mask, mask, data->irq_count);
380 error = rmi_write_block(rmi_dev,
381 data->f01_container->fd.control_base_addr + 1,
382 data->new_irq_mask, data->num_of_irq_regs);
383 if (error < 0) {
384 dev_err(dev, "%s: Failed to change enabled interrupts!",
385 __func__);
386 goto error_unlock;
388 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
389 data->num_of_irq_regs);
391 error_unlock:
392 mutex_unlock(&data->irq_mutex);
393 return error;
396 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
397 unsigned long *mask)
399 int error = 0;
400 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
401 struct device *dev = &rmi_dev->dev;
403 mutex_lock(&data->irq_mutex);
404 bitmap_andnot(data->new_irq_mask,
405 data->current_irq_mask, mask, data->irq_count);
407 error = rmi_write_block(rmi_dev,
408 data->f01_container->fd.control_base_addr + 1,
409 data->new_irq_mask, data->num_of_irq_regs);
410 if (error < 0) {
411 dev_err(dev, "%s: Failed to change enabled interrupts!",
412 __func__);
413 goto error_unlock;
415 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
416 data->num_of_irq_regs);
418 error_unlock:
419 mutex_unlock(&data->irq_mutex);
420 return error;
423 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
425 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
426 int error;
429 * Can get called before the driver is fully ready to deal with
430 * this situation.
432 if (!data || !data->f01_container) {
433 dev_warn(&rmi_dev->dev,
434 "Not ready to handle reset yet!\n");
435 return 0;
438 error = rmi_read_block(rmi_dev,
439 data->f01_container->fd.control_base_addr + 1,
440 data->current_irq_mask, data->num_of_irq_regs);
441 if (error < 0) {
442 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
443 __func__);
444 return error;
447 error = rmi_driver_process_reset_requests(rmi_dev);
448 if (error < 0)
449 return error;
451 error = rmi_driver_process_config_requests(rmi_dev);
452 if (error < 0)
453 return error;
455 return 0;
458 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
459 struct pdt_entry *entry, u16 pdt_address)
461 u8 buf[RMI_PDT_ENTRY_SIZE];
462 int error;
464 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
465 if (error) {
466 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
467 pdt_address, error);
468 return error;
471 entry->page_start = pdt_address & RMI4_PAGE_MASK;
472 entry->query_base_addr = buf[0];
473 entry->command_base_addr = buf[1];
474 entry->control_base_addr = buf[2];
475 entry->data_base_addr = buf[3];
476 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
477 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
478 entry->function_number = buf[5];
480 return 0;
483 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
484 struct rmi_function_descriptor *fd)
486 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
487 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
488 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
489 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
490 fd->function_number = pdt->function_number;
491 fd->interrupt_source_count = pdt->interrupt_source_count;
492 fd->function_version = pdt->function_version;
495 #define RMI_SCAN_CONTINUE 0
496 #define RMI_SCAN_DONE 1
498 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
499 int page,
500 int *empty_pages,
501 void *ctx,
502 int (*callback)(struct rmi_device *rmi_dev,
503 void *ctx,
504 const struct pdt_entry *entry))
506 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
507 struct pdt_entry pdt_entry;
508 u16 page_start = RMI4_PAGE_SIZE * page;
509 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
510 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
511 u16 addr;
512 int error;
513 int retval;
515 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
516 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
517 if (error)
518 return error;
520 if (RMI4_END_OF_PDT(pdt_entry.function_number))
521 break;
523 retval = callback(rmi_dev, ctx, &pdt_entry);
524 if (retval != RMI_SCAN_CONTINUE)
525 return retval;
529 * Count number of empty PDT pages. If a gap of two pages
530 * or more is found, stop scanning.
532 if (addr == pdt_start)
533 ++*empty_pages;
534 else
535 *empty_pages = 0;
537 return (data->bootloader_mode || *empty_pages >= 2) ?
538 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
541 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
542 int (*callback)(struct rmi_device *rmi_dev,
543 void *ctx, const struct pdt_entry *entry))
545 int page;
546 int empty_pages = 0;
547 int retval = RMI_SCAN_DONE;
549 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
550 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
551 ctx, callback);
552 if (retval != RMI_SCAN_CONTINUE)
553 break;
556 return retval < 0 ? retval : 0;
559 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
560 struct rmi_register_descriptor *rdesc)
562 int ret;
563 u8 size_presence_reg;
564 u8 buf[35];
565 int presense_offset = 1;
566 u8 *struct_buf;
567 int reg;
568 int offset = 0;
569 int map_offset = 0;
570 int i;
571 int b;
574 * The first register of the register descriptor is the size of
575 * the register descriptor's presense register.
577 ret = rmi_read(d, addr, &size_presence_reg);
578 if (ret)
579 return ret;
580 ++addr;
582 if (size_presence_reg < 0 || size_presence_reg > 35)
583 return -EIO;
585 memset(buf, 0, sizeof(buf));
588 * The presence register contains the size of the register structure
589 * and a bitmap which identified which packet registers are present
590 * for this particular register type (ie query, control, or data).
592 ret = rmi_read_block(d, addr, buf, size_presence_reg);
593 if (ret)
594 return ret;
595 ++addr;
597 if (buf[0] == 0) {
598 presense_offset = 3;
599 rdesc->struct_size = buf[1] | (buf[2] << 8);
600 } else {
601 rdesc->struct_size = buf[0];
604 for (i = presense_offset; i < size_presence_reg; i++) {
605 for (b = 0; b < 8; b++) {
606 if (buf[i] & (0x1 << b))
607 bitmap_set(rdesc->presense_map, map_offset, 1);
608 ++map_offset;
612 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
613 RMI_REG_DESC_PRESENSE_BITS);
615 rdesc->registers = devm_kcalloc(&d->dev,
616 rdesc->num_registers,
617 sizeof(struct rmi_register_desc_item),
618 GFP_KERNEL);
619 if (!rdesc->registers)
620 return -ENOMEM;
623 * Allocate a temporary buffer to hold the register structure.
624 * I'm not using devm_kzalloc here since it will not be retained
625 * after exiting this function
627 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
628 if (!struct_buf)
629 return -ENOMEM;
632 * The register structure contains information about every packet
633 * register of this type. This includes the size of the packet
634 * register and a bitmap of all subpackets contained in the packet
635 * register.
637 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
638 if (ret)
639 goto free_struct_buff;
641 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
642 for (i = 0; i < rdesc->num_registers; i++) {
643 struct rmi_register_desc_item *item = &rdesc->registers[i];
644 int reg_size = struct_buf[offset];
646 ++offset;
647 if (reg_size == 0) {
648 reg_size = struct_buf[offset] |
649 (struct_buf[offset + 1] << 8);
650 offset += 2;
653 if (reg_size == 0) {
654 reg_size = struct_buf[offset] |
655 (struct_buf[offset + 1] << 8) |
656 (struct_buf[offset + 2] << 16) |
657 (struct_buf[offset + 3] << 24);
658 offset += 4;
661 item->reg = reg;
662 item->reg_size = reg_size;
664 map_offset = 0;
666 do {
667 for (b = 0; b < 7; b++) {
668 if (struct_buf[offset] & (0x1 << b))
669 bitmap_set(item->subpacket_map,
670 map_offset, 1);
671 ++map_offset;
673 } while (struct_buf[offset++] & 0x80);
675 item->num_subpackets = bitmap_weight(item->subpacket_map,
676 RMI_REG_DESC_SUBPACKET_BITS);
678 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
679 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
680 item->reg, item->reg_size, item->num_subpackets);
682 reg = find_next_bit(rdesc->presense_map,
683 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
686 free_struct_buff:
687 kfree(struct_buf);
688 return ret;
691 const struct rmi_register_desc_item *rmi_get_register_desc_item(
692 struct rmi_register_descriptor *rdesc, u16 reg)
694 const struct rmi_register_desc_item *item;
695 int i;
697 for (i = 0; i < rdesc->num_registers; i++) {
698 item = &rdesc->registers[i];
699 if (item->reg == reg)
700 return item;
703 return NULL;
706 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
708 const struct rmi_register_desc_item *item;
709 int i;
710 size_t size = 0;
712 for (i = 0; i < rdesc->num_registers; i++) {
713 item = &rdesc->registers[i];
714 size += item->reg_size;
716 return size;
719 /* Compute the register offset relative to the base address */
720 int rmi_register_desc_calc_reg_offset(
721 struct rmi_register_descriptor *rdesc, u16 reg)
723 const struct rmi_register_desc_item *item;
724 int offset = 0;
725 int i;
727 for (i = 0; i < rdesc->num_registers; i++) {
728 item = &rdesc->registers[i];
729 if (item->reg == reg)
730 return offset;
731 ++offset;
733 return -1;
736 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
737 u8 subpacket)
739 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
740 subpacket) == subpacket;
743 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
744 const struct pdt_entry *pdt)
746 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
747 int ret;
748 u8 status;
750 if (pdt->function_number == 0x34 && pdt->function_version > 1) {
751 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
752 if (ret) {
753 dev_err(&rmi_dev->dev,
754 "Failed to read F34 status: %d.\n", ret);
755 return ret;
758 if (status & BIT(7))
759 data->bootloader_mode = true;
760 } else if (pdt->function_number == 0x01) {
761 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
762 if (ret) {
763 dev_err(&rmi_dev->dev,
764 "Failed to read F01 status: %d.\n", ret);
765 return ret;
768 if (status & BIT(6))
769 data->bootloader_mode = true;
772 return 0;
775 static int rmi_count_irqs(struct rmi_device *rmi_dev,
776 void *ctx, const struct pdt_entry *pdt)
778 int *irq_count = ctx;
779 int ret;
781 *irq_count += pdt->interrupt_source_count;
783 ret = rmi_check_bootloader_mode(rmi_dev, pdt);
784 if (ret < 0)
785 return ret;
787 return RMI_SCAN_CONTINUE;
790 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
791 const struct pdt_entry *pdt)
793 int error;
795 if (pdt->function_number == 0x01) {
796 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
797 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
798 const struct rmi_device_platform_data *pdata =
799 rmi_get_platform_data(rmi_dev);
801 if (rmi_dev->xport->ops->reset) {
802 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
803 cmd_addr);
804 if (error)
805 return error;
807 return RMI_SCAN_DONE;
810 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
811 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
812 if (error) {
813 dev_err(&rmi_dev->dev,
814 "Initial reset failed. Code = %d.\n", error);
815 return error;
818 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
820 return RMI_SCAN_DONE;
823 /* F01 should always be on page 0. If we don't find it there, fail. */
824 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
827 static int rmi_create_function(struct rmi_device *rmi_dev,
828 void *ctx, const struct pdt_entry *pdt)
830 struct device *dev = &rmi_dev->dev;
831 struct rmi_driver_data *data = dev_get_drvdata(dev);
832 int *current_irq_count = ctx;
833 struct rmi_function *fn;
834 int i;
835 int error;
837 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
838 pdt->function_number);
840 fn = kzalloc(sizeof(struct rmi_function) +
841 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
842 GFP_KERNEL);
843 if (!fn) {
844 dev_err(dev, "Failed to allocate memory for F%02X\n",
845 pdt->function_number);
846 return -ENOMEM;
849 INIT_LIST_HEAD(&fn->node);
850 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
852 fn->rmi_dev = rmi_dev;
854 fn->num_of_irqs = pdt->interrupt_source_count;
855 fn->irq_pos = *current_irq_count;
856 *current_irq_count += fn->num_of_irqs;
858 for (i = 0; i < fn->num_of_irqs; i++)
859 set_bit(fn->irq_pos + i, fn->irq_mask);
861 error = rmi_register_function(fn);
862 if (error)
863 return error;
865 if (pdt->function_number == 0x01)
866 data->f01_container = fn;
867 else if (pdt->function_number == 0x34)
868 data->f34_container = fn;
870 list_add_tail(&fn->node, &data->function_list);
872 return RMI_SCAN_CONTINUE;
875 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
877 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
878 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
879 int irq = pdata->irq;
880 int irq_flags;
881 int retval;
883 mutex_lock(&data->enabled_mutex);
885 if (data->enabled)
886 goto out;
888 enable_irq(irq);
889 data->enabled = true;
890 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
891 retval = disable_irq_wake(irq);
892 if (retval)
893 dev_warn(&rmi_dev->dev,
894 "Failed to disable irq for wake: %d\n",
895 retval);
899 * Call rmi_process_interrupt_requests() after enabling irq,
900 * otherwise we may lose interrupt on edge-triggered systems.
902 irq_flags = irq_get_trigger_type(pdata->irq);
903 if (irq_flags & IRQ_TYPE_EDGE_BOTH)
904 rmi_process_interrupt_requests(rmi_dev);
906 out:
907 mutex_unlock(&data->enabled_mutex);
910 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
912 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
913 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
914 struct rmi4_attn_data attn_data = {0};
915 int irq = pdata->irq;
916 int retval, count;
918 mutex_lock(&data->enabled_mutex);
920 if (!data->enabled)
921 goto out;
923 data->enabled = false;
924 disable_irq(irq);
925 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
926 retval = enable_irq_wake(irq);
927 if (retval)
928 dev_warn(&rmi_dev->dev,
929 "Failed to enable irq for wake: %d\n",
930 retval);
933 /* make sure the fifo is clean */
934 while (!kfifo_is_empty(&data->attn_fifo)) {
935 count = kfifo_get(&data->attn_fifo, &attn_data);
936 if (count)
937 kfree(attn_data.data);
940 out:
941 mutex_unlock(&data->enabled_mutex);
944 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
946 int retval;
948 retval = rmi_suspend_functions(rmi_dev);
949 if (retval)
950 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
951 retval);
953 rmi_disable_irq(rmi_dev, enable_wake);
954 return retval;
956 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
958 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
960 int retval;
962 rmi_enable_irq(rmi_dev, clear_wake);
964 retval = rmi_resume_functions(rmi_dev);
965 if (retval)
966 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
967 retval);
969 return retval;
971 EXPORT_SYMBOL_GPL(rmi_driver_resume);
973 static int rmi_driver_remove(struct device *dev)
975 struct rmi_device *rmi_dev = to_rmi_device(dev);
976 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
978 rmi_disable_irq(rmi_dev, false);
980 irq_domain_remove(data->irqdomain);
981 data->irqdomain = NULL;
983 rmi_f34_remove_sysfs(rmi_dev);
984 rmi_free_function_list(rmi_dev);
986 return 0;
989 #ifdef CONFIG_OF
990 static int rmi_driver_of_probe(struct device *dev,
991 struct rmi_device_platform_data *pdata)
993 int retval;
995 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
996 "syna,reset-delay-ms", 1);
997 if (retval)
998 return retval;
1000 return 0;
1002 #else
1003 static inline int rmi_driver_of_probe(struct device *dev,
1004 struct rmi_device_platform_data *pdata)
1006 return -ENODEV;
1008 #endif
1010 int rmi_probe_interrupts(struct rmi_driver_data *data)
1012 struct rmi_device *rmi_dev = data->rmi_dev;
1013 struct device *dev = &rmi_dev->dev;
1014 struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1015 int irq_count = 0;
1016 size_t size;
1017 int retval;
1020 * We need to count the IRQs and allocate their storage before scanning
1021 * the PDT and creating the function entries, because adding a new
1022 * function can trigger events that result in the IRQ related storage
1023 * being accessed.
1025 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1026 data->bootloader_mode = false;
1028 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1029 if (retval < 0) {
1030 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1031 return retval;
1034 if (data->bootloader_mode)
1035 dev_warn(dev, "Device in bootloader mode.\n");
1037 /* Allocate and register a linear revmap irq_domain */
1038 data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1039 &irq_domain_simple_ops,
1040 data);
1041 if (!data->irqdomain) {
1042 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1043 return -ENOMEM;
1046 data->irq_count = irq_count;
1047 data->num_of_irq_regs = (data->irq_count + 7) / 8;
1049 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1050 data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1051 if (!data->irq_memory) {
1052 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1053 return -ENOMEM;
1056 data->irq_status = data->irq_memory + size * 0;
1057 data->fn_irq_bits = data->irq_memory + size * 1;
1058 data->current_irq_mask = data->irq_memory + size * 2;
1059 data->new_irq_mask = data->irq_memory + size * 3;
1061 return retval;
1064 int rmi_init_functions(struct rmi_driver_data *data)
1066 struct rmi_device *rmi_dev = data->rmi_dev;
1067 struct device *dev = &rmi_dev->dev;
1068 int irq_count = 0;
1069 int retval;
1071 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1072 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1073 if (retval < 0) {
1074 dev_err(dev, "Function creation failed with code %d.\n",
1075 retval);
1076 goto err_destroy_functions;
1079 if (!data->f01_container) {
1080 dev_err(dev, "Missing F01 container!\n");
1081 retval = -EINVAL;
1082 goto err_destroy_functions;
1085 retval = rmi_read_block(rmi_dev,
1086 data->f01_container->fd.control_base_addr + 1,
1087 data->current_irq_mask, data->num_of_irq_regs);
1088 if (retval < 0) {
1089 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1090 __func__);
1091 goto err_destroy_functions;
1094 return 0;
1096 err_destroy_functions:
1097 rmi_free_function_list(rmi_dev);
1098 return retval;
1101 static int rmi_driver_probe(struct device *dev)
1103 struct rmi_driver *rmi_driver;
1104 struct rmi_driver_data *data;
1105 struct rmi_device_platform_data *pdata;
1106 struct rmi_device *rmi_dev;
1107 int retval;
1109 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1110 __func__);
1112 if (!rmi_is_physical_device(dev)) {
1113 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1114 return -ENODEV;
1117 rmi_dev = to_rmi_device(dev);
1118 rmi_driver = to_rmi_driver(dev->driver);
1119 rmi_dev->driver = rmi_driver;
1121 pdata = rmi_get_platform_data(rmi_dev);
1123 if (rmi_dev->xport->dev->of_node) {
1124 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1125 if (retval)
1126 return retval;
1129 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1130 if (!data)
1131 return -ENOMEM;
1133 INIT_LIST_HEAD(&data->function_list);
1134 data->rmi_dev = rmi_dev;
1135 dev_set_drvdata(&rmi_dev->dev, data);
1138 * Right before a warm boot, the sensor might be in some unusual state,
1139 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1140 * or configuration update. In order to clear the sensor to a known
1141 * state and/or apply any updates, we issue a initial reset to clear any
1142 * previous settings and force it into normal operation.
1144 * We have to do this before actually building the PDT because
1145 * the reflash updates (if any) might cause various registers to move
1146 * around.
1148 * For a number of reasons, this initial reset may fail to return
1149 * within the specified time, but we'll still be able to bring up the
1150 * driver normally after that failure. This occurs most commonly in
1151 * a cold boot situation (where then firmware takes longer to come up
1152 * than from a warm boot) and the reset_delay_ms in the platform data
1153 * has been set too short to accommodate that. Since the sensor will
1154 * eventually come up and be usable, we don't want to just fail here
1155 * and leave the customer's device unusable. So we warn them, and
1156 * continue processing.
1158 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1159 if (retval < 0)
1160 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1162 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1163 if (retval < 0) {
1165 * we'll print out a warning and continue since
1166 * failure to get the PDT properties is not a cause to fail
1168 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1169 PDT_PROPERTIES_LOCATION, retval);
1172 mutex_init(&data->irq_mutex);
1173 mutex_init(&data->enabled_mutex);
1175 retval = rmi_probe_interrupts(data);
1176 if (retval)
1177 goto err;
1179 if (rmi_dev->xport->input) {
1181 * The transport driver already has an input device.
1182 * In some cases it is preferable to reuse the transport
1183 * devices input device instead of creating a new one here.
1184 * One example is some HID touchpads report "pass-through"
1185 * button events are not reported by rmi registers.
1187 data->input = rmi_dev->xport->input;
1188 } else {
1189 data->input = devm_input_allocate_device(dev);
1190 if (!data->input) {
1191 dev_err(dev, "%s: Failed to allocate input device.\n",
1192 __func__);
1193 retval = -ENOMEM;
1194 goto err;
1196 rmi_driver_set_input_params(rmi_dev, data->input);
1197 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1198 "%s/input0", dev_name(dev));
1201 retval = rmi_init_functions(data);
1202 if (retval)
1203 goto err;
1205 retval = rmi_f34_create_sysfs(rmi_dev);
1206 if (retval)
1207 goto err;
1209 if (data->input) {
1210 rmi_driver_set_input_name(rmi_dev, data->input);
1211 if (!rmi_dev->xport->input) {
1212 if (input_register_device(data->input)) {
1213 dev_err(dev, "%s: Failed to register input device.\n",
1214 __func__);
1215 goto err_destroy_functions;
1220 retval = rmi_irq_init(rmi_dev);
1221 if (retval < 0)
1222 goto err_destroy_functions;
1224 if (data->f01_container->dev.driver) {
1225 /* Driver already bound, so enable ATTN now. */
1226 retval = rmi_enable_sensor(rmi_dev);
1227 if (retval)
1228 goto err_disable_irq;
1231 return 0;
1233 err_disable_irq:
1234 rmi_disable_irq(rmi_dev, false);
1235 err_destroy_functions:
1236 rmi_free_function_list(rmi_dev);
1237 err:
1238 return retval;
1241 static struct rmi_driver rmi_physical_driver = {
1242 .driver = {
1243 .owner = THIS_MODULE,
1244 .name = "rmi4_physical",
1245 .bus = &rmi_bus_type,
1246 .probe = rmi_driver_probe,
1247 .remove = rmi_driver_remove,
1249 .reset_handler = rmi_driver_reset_handler,
1250 .clear_irq_bits = rmi_driver_clear_irq_bits,
1251 .set_irq_bits = rmi_driver_set_irq_bits,
1252 .set_input_params = rmi_driver_set_input_params,
1255 bool rmi_is_physical_driver(struct device_driver *drv)
1257 return drv == &rmi_physical_driver.driver;
1260 int __init rmi_register_physical_driver(void)
1262 int error;
1264 error = driver_register(&rmi_physical_driver.driver);
1265 if (error) {
1266 pr_err("%s: driver register failed, code=%d.\n", __func__,
1267 error);
1268 return error;
1271 return 0;
1274 void __exit rmi_unregister_physical_driver(void)
1276 driver_unregister(&rmi_physical_driver.driver);