Linux 5.1.15
[linux/fpc-iii.git] / drivers / input / rmi4 / rmi_spi.c
blob33b8c6e7ac0aceaca903af36e624ffdedfd9097a
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 */
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/rmi.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <linux/of.h>
16 #include "rmi_driver.h"
18 #define RMI_SPI_DEFAULT_XFER_BUF_SIZE 64
20 #define RMI_PAGE_SELECT_REGISTER 0x00FF
21 #define RMI_SPI_PAGE(addr) (((addr) >> 8) & 0x80)
22 #define RMI_SPI_XFER_SIZE_LIMIT 255
24 #define BUFFER_SIZE_INCREMENT 32
26 enum rmi_spi_op {
27 RMI_SPI_WRITE = 0,
28 RMI_SPI_READ,
29 RMI_SPI_V2_READ_UNIFIED,
30 RMI_SPI_V2_READ_SPLIT,
31 RMI_SPI_V2_WRITE,
34 struct rmi_spi_cmd {
35 enum rmi_spi_op op;
36 u16 addr;
39 struct rmi_spi_xport {
40 struct rmi_transport_dev xport;
41 struct spi_device *spi;
43 struct mutex page_mutex;
44 int page;
46 u8 *rx_buf;
47 u8 *tx_buf;
48 int xfer_buf_size;
50 struct spi_transfer *rx_xfers;
51 struct spi_transfer *tx_xfers;
52 int rx_xfer_count;
53 int tx_xfer_count;
56 static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
58 struct spi_device *spi = rmi_spi->spi;
59 int buf_size = rmi_spi->xfer_buf_size
60 ? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
61 struct spi_transfer *xfer_buf;
62 void *buf;
63 void *tmp;
65 while (buf_size < len)
66 buf_size *= 2;
68 if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
69 buf_size = RMI_SPI_XFER_SIZE_LIMIT;
71 tmp = rmi_spi->rx_buf;
72 buf = devm_kcalloc(&spi->dev, buf_size, 2,
73 GFP_KERNEL | GFP_DMA);
74 if (!buf)
75 return -ENOMEM;
77 rmi_spi->rx_buf = buf;
78 rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
79 rmi_spi->xfer_buf_size = buf_size;
81 if (tmp)
82 devm_kfree(&spi->dev, tmp);
84 if (rmi_spi->xport.pdata.spi_data.read_delay_us)
85 rmi_spi->rx_xfer_count = buf_size;
86 else
87 rmi_spi->rx_xfer_count = 1;
89 if (rmi_spi->xport.pdata.spi_data.write_delay_us)
90 rmi_spi->tx_xfer_count = buf_size;
91 else
92 rmi_spi->tx_xfer_count = 1;
95 * Allocate a pool of spi_transfer buffers for devices which need
96 * per byte delays.
98 tmp = rmi_spi->rx_xfers;
99 xfer_buf = devm_kcalloc(&spi->dev,
100 rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count,
101 sizeof(struct spi_transfer),
102 GFP_KERNEL);
103 if (!xfer_buf)
104 return -ENOMEM;
106 rmi_spi->rx_xfers = xfer_buf;
107 rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
109 if (tmp)
110 devm_kfree(&spi->dev, tmp);
112 return 0;
115 static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
116 const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
117 int tx_len, u8 *rx_buf, int rx_len)
119 struct spi_device *spi = rmi_spi->spi;
120 struct rmi_device_platform_data_spi *spi_data =
121 &rmi_spi->xport.pdata.spi_data;
122 struct spi_message msg;
123 struct spi_transfer *xfer;
124 int ret = 0;
125 int len;
126 int cmd_len = 0;
127 int total_tx_len;
128 int i;
129 u16 addr = cmd->addr;
131 spi_message_init(&msg);
133 switch (cmd->op) {
134 case RMI_SPI_WRITE:
135 case RMI_SPI_READ:
136 cmd_len += 2;
137 break;
138 case RMI_SPI_V2_READ_UNIFIED:
139 case RMI_SPI_V2_READ_SPLIT:
140 case RMI_SPI_V2_WRITE:
141 cmd_len += 4;
142 break;
145 total_tx_len = cmd_len + tx_len;
146 len = max(total_tx_len, rx_len);
148 if (len > RMI_SPI_XFER_SIZE_LIMIT)
149 return -EINVAL;
151 if (rmi_spi->xfer_buf_size < len) {
152 ret = rmi_spi_manage_pools(rmi_spi, len);
153 if (ret < 0)
154 return ret;
157 if (addr == 0)
159 * SPI needs an address. Use 0x7FF if we want to keep
160 * reading from the last position of the register pointer.
162 addr = 0x7FF;
164 switch (cmd->op) {
165 case RMI_SPI_WRITE:
166 rmi_spi->tx_buf[0] = (addr >> 8);
167 rmi_spi->tx_buf[1] = addr & 0xFF;
168 break;
169 case RMI_SPI_READ:
170 rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
171 rmi_spi->tx_buf[1] = addr & 0xFF;
172 break;
173 case RMI_SPI_V2_READ_UNIFIED:
174 break;
175 case RMI_SPI_V2_READ_SPLIT:
176 break;
177 case RMI_SPI_V2_WRITE:
178 rmi_spi->tx_buf[0] = 0x40;
179 rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
180 rmi_spi->tx_buf[2] = addr & 0xFF;
181 rmi_spi->tx_buf[3] = tx_len;
182 break;
185 if (tx_buf)
186 memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
188 if (rmi_spi->tx_xfer_count > 1) {
189 for (i = 0; i < total_tx_len; i++) {
190 xfer = &rmi_spi->tx_xfers[i];
191 memset(xfer, 0, sizeof(struct spi_transfer));
192 xfer->tx_buf = &rmi_spi->tx_buf[i];
193 xfer->len = 1;
194 xfer->delay_usecs = spi_data->write_delay_us;
195 spi_message_add_tail(xfer, &msg);
197 } else {
198 xfer = rmi_spi->tx_xfers;
199 memset(xfer, 0, sizeof(struct spi_transfer));
200 xfer->tx_buf = rmi_spi->tx_buf;
201 xfer->len = total_tx_len;
202 spi_message_add_tail(xfer, &msg);
205 rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
206 __func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
207 total_tx_len, total_tx_len, rmi_spi->tx_buf);
209 if (rx_buf) {
210 if (rmi_spi->rx_xfer_count > 1) {
211 for (i = 0; i < rx_len; i++) {
212 xfer = &rmi_spi->rx_xfers[i];
213 memset(xfer, 0, sizeof(struct spi_transfer));
214 xfer->rx_buf = &rmi_spi->rx_buf[i];
215 xfer->len = 1;
216 xfer->delay_usecs = spi_data->read_delay_us;
217 spi_message_add_tail(xfer, &msg);
219 } else {
220 xfer = rmi_spi->rx_xfers;
221 memset(xfer, 0, sizeof(struct spi_transfer));
222 xfer->rx_buf = rmi_spi->rx_buf;
223 xfer->len = rx_len;
224 spi_message_add_tail(xfer, &msg);
228 ret = spi_sync(spi, &msg);
229 if (ret < 0) {
230 dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
231 return ret;
234 if (rx_buf) {
235 memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
236 rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
237 __func__, rx_len, rx_len, rx_buf);
240 return 0;
244 * rmi_set_page - Set RMI page
245 * @xport: The pointer to the rmi_transport_dev struct
246 * @page: The new page address.
248 * RMI devices have 16-bit addressing, but some of the transport
249 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
250 * a page address at 0xff of every page so we can reliable page addresses
251 * every 256 registers.
253 * The page_mutex lock must be held when this function is entered.
255 * Returns zero on success, non-zero on failure.
257 static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
259 struct rmi_spi_cmd cmd;
260 int ret;
262 cmd.op = RMI_SPI_WRITE;
263 cmd.addr = RMI_PAGE_SELECT_REGISTER;
265 ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
267 if (ret)
268 rmi_spi->page = page;
270 return ret;
273 static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
274 const void *buf, size_t len)
276 struct rmi_spi_xport *rmi_spi =
277 container_of(xport, struct rmi_spi_xport, xport);
278 struct rmi_spi_cmd cmd;
279 int ret;
281 mutex_lock(&rmi_spi->page_mutex);
283 if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
284 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
285 if (ret)
286 goto exit;
289 cmd.op = RMI_SPI_WRITE;
290 cmd.addr = addr;
292 ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
294 exit:
295 mutex_unlock(&rmi_spi->page_mutex);
296 return ret;
299 static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
300 void *buf, size_t len)
302 struct rmi_spi_xport *rmi_spi =
303 container_of(xport, struct rmi_spi_xport, xport);
304 struct rmi_spi_cmd cmd;
305 int ret;
307 mutex_lock(&rmi_spi->page_mutex);
309 if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
310 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
311 if (ret)
312 goto exit;
315 cmd.op = RMI_SPI_READ;
316 cmd.addr = addr;
318 ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
320 exit:
321 mutex_unlock(&rmi_spi->page_mutex);
322 return ret;
325 static const struct rmi_transport_ops rmi_spi_ops = {
326 .write_block = rmi_spi_write_block,
327 .read_block = rmi_spi_read_block,
330 #ifdef CONFIG_OF
331 static int rmi_spi_of_probe(struct spi_device *spi,
332 struct rmi_device_platform_data *pdata)
334 struct device *dev = &spi->dev;
335 int retval;
337 retval = rmi_of_property_read_u32(dev,
338 &pdata->spi_data.read_delay_us,
339 "spi-rx-delay-us", 1);
340 if (retval)
341 return retval;
343 retval = rmi_of_property_read_u32(dev,
344 &pdata->spi_data.write_delay_us,
345 "spi-tx-delay-us", 1);
346 if (retval)
347 return retval;
349 return 0;
352 static const struct of_device_id rmi_spi_of_match[] = {
353 { .compatible = "syna,rmi4-spi" },
356 MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
357 #else
358 static inline int rmi_spi_of_probe(struct spi_device *spi,
359 struct rmi_device_platform_data *pdata)
361 return -ENODEV;
363 #endif
365 static void rmi_spi_unregister_transport(void *data)
367 struct rmi_spi_xport *rmi_spi = data;
369 rmi_unregister_transport_device(&rmi_spi->xport);
372 static int rmi_spi_probe(struct spi_device *spi)
374 struct rmi_spi_xport *rmi_spi;
375 struct rmi_device_platform_data *pdata;
376 struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
377 int error;
379 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
380 return -EINVAL;
382 rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
383 GFP_KERNEL);
384 if (!rmi_spi)
385 return -ENOMEM;
387 pdata = &rmi_spi->xport.pdata;
389 if (spi->dev.of_node) {
390 error = rmi_spi_of_probe(spi, pdata);
391 if (error)
392 return error;
393 } else if (spi_pdata) {
394 *pdata = *spi_pdata;
397 if (pdata->spi_data.bits_per_word)
398 spi->bits_per_word = pdata->spi_data.bits_per_word;
400 if (pdata->spi_data.mode)
401 spi->mode = pdata->spi_data.mode;
403 error = spi_setup(spi);
404 if (error < 0) {
405 dev_err(&spi->dev, "spi_setup failed!\n");
406 return error;
409 pdata->irq = spi->irq;
411 rmi_spi->spi = spi;
412 mutex_init(&rmi_spi->page_mutex);
414 rmi_spi->xport.dev = &spi->dev;
415 rmi_spi->xport.proto_name = "spi";
416 rmi_spi->xport.ops = &rmi_spi_ops;
418 spi_set_drvdata(spi, rmi_spi);
420 error = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
421 if (error)
422 return error;
425 * Setting the page to zero will (a) make sure the PSR is in a
426 * known state, and (b) make sure we can talk to the device.
428 error = rmi_set_page(rmi_spi, 0);
429 if (error) {
430 dev_err(&spi->dev, "Failed to set page select to 0.\n");
431 return error;
434 dev_info(&spi->dev, "registering SPI-connected sensor\n");
436 error = rmi_register_transport_device(&rmi_spi->xport);
437 if (error) {
438 dev_err(&spi->dev, "failed to register sensor: %d\n", error);
439 return error;
442 error = devm_add_action_or_reset(&spi->dev,
443 rmi_spi_unregister_transport,
444 rmi_spi);
445 if (error)
446 return error;
448 return 0;
451 #ifdef CONFIG_PM_SLEEP
452 static int rmi_spi_suspend(struct device *dev)
454 struct spi_device *spi = to_spi_device(dev);
455 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
456 int ret;
458 ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, true);
459 if (ret)
460 dev_warn(dev, "Failed to resume device: %d\n", ret);
462 return ret;
465 static int rmi_spi_resume(struct device *dev)
467 struct spi_device *spi = to_spi_device(dev);
468 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
469 int ret;
471 ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, true);
472 if (ret)
473 dev_warn(dev, "Failed to resume device: %d\n", ret);
475 return ret;
477 #endif
479 #ifdef CONFIG_PM
480 static int rmi_spi_runtime_suspend(struct device *dev)
482 struct spi_device *spi = to_spi_device(dev);
483 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
484 int ret;
486 ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, false);
487 if (ret)
488 dev_warn(dev, "Failed to resume device: %d\n", ret);
490 return 0;
493 static int rmi_spi_runtime_resume(struct device *dev)
495 struct spi_device *spi = to_spi_device(dev);
496 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
497 int ret;
499 ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, false);
500 if (ret)
501 dev_warn(dev, "Failed to resume device: %d\n", ret);
503 return 0;
505 #endif
507 static const struct dev_pm_ops rmi_spi_pm = {
508 SET_SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
509 SET_RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume,
510 NULL)
513 static const struct spi_device_id rmi_id[] = {
514 { "rmi4_spi", 0 },
517 MODULE_DEVICE_TABLE(spi, rmi_id);
519 static struct spi_driver rmi_spi_driver = {
520 .driver = {
521 .name = "rmi4_spi",
522 .pm = &rmi_spi_pm,
523 .of_match_table = of_match_ptr(rmi_spi_of_match),
525 .id_table = rmi_id,
526 .probe = rmi_spi_probe,
529 module_spi_driver(rmi_spi_driver);
531 MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
532 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
533 MODULE_DESCRIPTION("RMI SPI driver");
534 MODULE_LICENSE("GPL");