Linux 5.1.15
[linux/fpc-iii.git] / drivers / iommu / dma-iommu.c
blob77aabe637a6019cad2af759edd8aa416cc3c75a3
1 /*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
35 struct iommu_dma_msi_page {
36 struct list_head list;
37 dma_addr_t iova;
38 phys_addr_t phys;
41 enum iommu_dma_cookie_type {
42 IOMMU_DMA_IOVA_COOKIE,
43 IOMMU_DMA_MSI_COOKIE,
46 struct iommu_dma_cookie {
47 enum iommu_dma_cookie_type type;
48 union {
49 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 struct iova_domain iovad;
51 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
52 dma_addr_t msi_iova;
54 struct list_head msi_page_list;
55 spinlock_t msi_lock;
57 /* Domain for flush queue callback; NULL if flush queue not in use */
58 struct iommu_domain *fq_domain;
61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
63 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
64 return cookie->iovad.granule;
65 return PAGE_SIZE;
68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
70 struct iommu_dma_cookie *cookie;
72 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
73 if (cookie) {
74 spin_lock_init(&cookie->msi_lock);
75 INIT_LIST_HEAD(&cookie->msi_page_list);
76 cookie->type = type;
78 return cookie;
81 int iommu_dma_init(void)
83 return iova_cache_get();
86 /**
87 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
88 * @domain: IOMMU domain to prepare for DMA-API usage
90 * IOMMU drivers should normally call this from their domain_alloc
91 * callback when domain->type == IOMMU_DOMAIN_DMA.
93 int iommu_get_dma_cookie(struct iommu_domain *domain)
95 if (domain->iova_cookie)
96 return -EEXIST;
98 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
99 if (!domain->iova_cookie)
100 return -ENOMEM;
102 return 0;
104 EXPORT_SYMBOL(iommu_get_dma_cookie);
107 * iommu_get_msi_cookie - Acquire just MSI remapping resources
108 * @domain: IOMMU domain to prepare
109 * @base: Start address of IOVA region for MSI mappings
111 * Users who manage their own IOVA allocation and do not want DMA API support,
112 * but would still like to take advantage of automatic MSI remapping, can use
113 * this to initialise their own domain appropriately. Users should reserve a
114 * contiguous IOVA region, starting at @base, large enough to accommodate the
115 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
116 * used by the devices attached to @domain.
118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
120 struct iommu_dma_cookie *cookie;
122 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
123 return -EINVAL;
125 if (domain->iova_cookie)
126 return -EEXIST;
128 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
129 if (!cookie)
130 return -ENOMEM;
132 cookie->msi_iova = base;
133 domain->iova_cookie = cookie;
134 return 0;
136 EXPORT_SYMBOL(iommu_get_msi_cookie);
139 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
140 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
141 * iommu_get_msi_cookie()
143 * IOMMU drivers should normally call this from their domain_free callback.
145 void iommu_put_dma_cookie(struct iommu_domain *domain)
147 struct iommu_dma_cookie *cookie = domain->iova_cookie;
148 struct iommu_dma_msi_page *msi, *tmp;
150 if (!cookie)
151 return;
153 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
154 put_iova_domain(&cookie->iovad);
156 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
157 list_del(&msi->list);
158 kfree(msi);
160 kfree(cookie);
161 domain->iova_cookie = NULL;
163 EXPORT_SYMBOL(iommu_put_dma_cookie);
166 * iommu_dma_get_resv_regions - Reserved region driver helper
167 * @dev: Device from iommu_get_resv_regions()
168 * @list: Reserved region list from iommu_get_resv_regions()
170 * IOMMU drivers can use this to implement their .get_resv_regions callback
171 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
172 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
173 * reservation.
175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
178 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
179 iort_iommu_msi_get_resv_regions(dev, list);
182 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
185 phys_addr_t start, phys_addr_t end)
187 struct iova_domain *iovad = &cookie->iovad;
188 struct iommu_dma_msi_page *msi_page;
189 int i, num_pages;
191 start -= iova_offset(iovad, start);
192 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
194 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
195 if (!msi_page)
196 return -ENOMEM;
198 for (i = 0; i < num_pages; i++) {
199 msi_page[i].phys = start;
200 msi_page[i].iova = start;
201 INIT_LIST_HEAD(&msi_page[i].list);
202 list_add(&msi_page[i].list, &cookie->msi_page_list);
203 start += iovad->granule;
206 return 0;
209 static void iova_reserve_pci_windows(struct pci_dev *dev,
210 struct iova_domain *iovad)
212 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
213 struct resource_entry *window;
214 unsigned long lo, hi;
216 resource_list_for_each_entry(window, &bridge->windows) {
217 if (resource_type(window->res) != IORESOURCE_MEM)
218 continue;
220 lo = iova_pfn(iovad, window->res->start - window->offset);
221 hi = iova_pfn(iovad, window->res->end - window->offset);
222 reserve_iova(iovad, lo, hi);
226 static int iova_reserve_iommu_regions(struct device *dev,
227 struct iommu_domain *domain)
229 struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 struct iova_domain *iovad = &cookie->iovad;
231 struct iommu_resv_region *region;
232 LIST_HEAD(resv_regions);
233 int ret = 0;
235 if (dev_is_pci(dev))
236 iova_reserve_pci_windows(to_pci_dev(dev), iovad);
238 iommu_get_resv_regions(dev, &resv_regions);
239 list_for_each_entry(region, &resv_regions, list) {
240 unsigned long lo, hi;
242 /* We ARE the software that manages these! */
243 if (region->type == IOMMU_RESV_SW_MSI)
244 continue;
246 lo = iova_pfn(iovad, region->start);
247 hi = iova_pfn(iovad, region->start + region->length - 1);
248 reserve_iova(iovad, lo, hi);
250 if (region->type == IOMMU_RESV_MSI)
251 ret = cookie_init_hw_msi_region(cookie, region->start,
252 region->start + region->length);
253 if (ret)
254 break;
256 iommu_put_resv_regions(dev, &resv_regions);
258 return ret;
261 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
263 struct iommu_dma_cookie *cookie;
264 struct iommu_domain *domain;
266 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
267 domain = cookie->fq_domain;
269 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
270 * implies that ops->flush_iotlb_all must be non-NULL.
272 domain->ops->flush_iotlb_all(domain);
276 * iommu_dma_init_domain - Initialise a DMA mapping domain
277 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
278 * @base: IOVA at which the mappable address space starts
279 * @size: Size of IOVA space
280 * @dev: Device the domain is being initialised for
282 * @base and @size should be exact multiples of IOMMU page granularity to
283 * avoid rounding surprises. If necessary, we reserve the page at address 0
284 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
285 * any change which could make prior IOVAs invalid will fail.
287 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
288 u64 size, struct device *dev)
290 struct iommu_dma_cookie *cookie = domain->iova_cookie;
291 struct iova_domain *iovad = &cookie->iovad;
292 unsigned long order, base_pfn;
293 int attr;
295 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
296 return -EINVAL;
298 /* Use the smallest supported page size for IOVA granularity */
299 order = __ffs(domain->pgsize_bitmap);
300 base_pfn = max_t(unsigned long, 1, base >> order);
302 /* Check the domain allows at least some access to the device... */
303 if (domain->geometry.force_aperture) {
304 if (base > domain->geometry.aperture_end ||
305 base + size <= domain->geometry.aperture_start) {
306 pr_warn("specified DMA range outside IOMMU capability\n");
307 return -EFAULT;
309 /* ...then finally give it a kicking to make sure it fits */
310 base_pfn = max_t(unsigned long, base_pfn,
311 domain->geometry.aperture_start >> order);
314 /* start_pfn is always nonzero for an already-initialised domain */
315 if (iovad->start_pfn) {
316 if (1UL << order != iovad->granule ||
317 base_pfn != iovad->start_pfn) {
318 pr_warn("Incompatible range for DMA domain\n");
319 return -EFAULT;
322 return 0;
325 init_iova_domain(iovad, 1UL << order, base_pfn);
327 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
328 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
329 cookie->fq_domain = domain;
330 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
333 if (!dev)
334 return 0;
336 return iova_reserve_iommu_regions(dev, domain);
338 EXPORT_SYMBOL(iommu_dma_init_domain);
341 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
342 * page flags.
343 * @dir: Direction of DMA transfer
344 * @coherent: Is the DMA master cache-coherent?
345 * @attrs: DMA attributes for the mapping
347 * Return: corresponding IOMMU API page protection flags
349 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
350 unsigned long attrs)
352 int prot = coherent ? IOMMU_CACHE : 0;
354 if (attrs & DMA_ATTR_PRIVILEGED)
355 prot |= IOMMU_PRIV;
357 switch (dir) {
358 case DMA_BIDIRECTIONAL:
359 return prot | IOMMU_READ | IOMMU_WRITE;
360 case DMA_TO_DEVICE:
361 return prot | IOMMU_READ;
362 case DMA_FROM_DEVICE:
363 return prot | IOMMU_WRITE;
364 default:
365 return 0;
369 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
370 size_t size, dma_addr_t dma_limit, struct device *dev)
372 struct iommu_dma_cookie *cookie = domain->iova_cookie;
373 struct iova_domain *iovad = &cookie->iovad;
374 unsigned long shift, iova_len, iova = 0;
376 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
377 cookie->msi_iova += size;
378 return cookie->msi_iova - size;
381 shift = iova_shift(iovad);
382 iova_len = size >> shift;
384 * Freeing non-power-of-two-sized allocations back into the IOVA caches
385 * will come back to bite us badly, so we have to waste a bit of space
386 * rounding up anything cacheable to make sure that can't happen. The
387 * order of the unadjusted size will still match upon freeing.
389 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
390 iova_len = roundup_pow_of_two(iova_len);
392 if (dev->bus_dma_mask)
393 dma_limit &= dev->bus_dma_mask;
395 if (domain->geometry.force_aperture)
396 dma_limit = min(dma_limit, domain->geometry.aperture_end);
398 /* Try to get PCI devices a SAC address */
399 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
400 iova = alloc_iova_fast(iovad, iova_len,
401 DMA_BIT_MASK(32) >> shift, false);
403 if (!iova)
404 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
405 true);
407 return (dma_addr_t)iova << shift;
410 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
411 dma_addr_t iova, size_t size)
413 struct iova_domain *iovad = &cookie->iovad;
415 /* The MSI case is only ever cleaning up its most recent allocation */
416 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
417 cookie->msi_iova -= size;
418 else if (cookie->fq_domain) /* non-strict mode */
419 queue_iova(iovad, iova_pfn(iovad, iova),
420 size >> iova_shift(iovad), 0);
421 else
422 free_iova_fast(iovad, iova_pfn(iovad, iova),
423 size >> iova_shift(iovad));
426 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
427 size_t size)
429 struct iommu_dma_cookie *cookie = domain->iova_cookie;
430 struct iova_domain *iovad = &cookie->iovad;
431 size_t iova_off = iova_offset(iovad, dma_addr);
433 dma_addr -= iova_off;
434 size = iova_align(iovad, size + iova_off);
436 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
437 if (!cookie->fq_domain)
438 iommu_tlb_sync(domain);
439 iommu_dma_free_iova(cookie, dma_addr, size);
442 static void __iommu_dma_free_pages(struct page **pages, int count)
444 while (count--)
445 __free_page(pages[count]);
446 kvfree(pages);
449 static struct page **__iommu_dma_alloc_pages(struct device *dev,
450 unsigned int count, unsigned long order_mask, gfp_t gfp)
452 struct page **pages;
453 unsigned int i = 0, nid = dev_to_node(dev);
455 order_mask &= (2U << MAX_ORDER) - 1;
456 if (!order_mask)
457 return NULL;
459 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
460 if (!pages)
461 return NULL;
463 /* IOMMU can map any pages, so himem can also be used here */
464 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
466 while (count) {
467 struct page *page = NULL;
468 unsigned int order_size;
471 * Higher-order allocations are a convenience rather
472 * than a necessity, hence using __GFP_NORETRY until
473 * falling back to minimum-order allocations.
475 for (order_mask &= (2U << __fls(count)) - 1;
476 order_mask; order_mask &= ~order_size) {
477 unsigned int order = __fls(order_mask);
478 gfp_t alloc_flags = gfp;
480 order_size = 1U << order;
481 if (order_mask > order_size)
482 alloc_flags |= __GFP_NORETRY;
483 page = alloc_pages_node(nid, alloc_flags, order);
484 if (!page)
485 continue;
486 if (!order)
487 break;
488 if (!PageCompound(page)) {
489 split_page(page, order);
490 break;
491 } else if (!split_huge_page(page)) {
492 break;
494 __free_pages(page, order);
496 if (!page) {
497 __iommu_dma_free_pages(pages, i);
498 return NULL;
500 count -= order_size;
501 while (order_size--)
502 pages[i++] = page++;
504 return pages;
508 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
509 * @dev: Device which owns this buffer
510 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
511 * @size: Size of buffer in bytes
512 * @handle: DMA address of buffer
514 * Frees both the pages associated with the buffer, and the array
515 * describing them
517 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
518 dma_addr_t *handle)
520 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
521 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
522 *handle = DMA_MAPPING_ERROR;
526 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
527 * @dev: Device to allocate memory for. Must be a real device
528 * attached to an iommu_dma_domain
529 * @size: Size of buffer in bytes
530 * @gfp: Allocation flags
531 * @attrs: DMA attributes for this allocation
532 * @prot: IOMMU mapping flags
533 * @handle: Out argument for allocated DMA handle
534 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
535 * given VA/PA are visible to the given non-coherent device.
537 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
538 * but an IOMMU which supports smaller pages might not map the whole thing.
540 * Return: Array of struct page pointers describing the buffer,
541 * or NULL on failure.
543 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
544 unsigned long attrs, int prot, dma_addr_t *handle,
545 void (*flush_page)(struct device *, const void *, phys_addr_t))
547 struct iommu_domain *domain = iommu_get_dma_domain(dev);
548 struct iommu_dma_cookie *cookie = domain->iova_cookie;
549 struct iova_domain *iovad = &cookie->iovad;
550 struct page **pages;
551 struct sg_table sgt;
552 dma_addr_t iova;
553 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
555 *handle = DMA_MAPPING_ERROR;
557 min_size = alloc_sizes & -alloc_sizes;
558 if (min_size < PAGE_SIZE) {
559 min_size = PAGE_SIZE;
560 alloc_sizes |= PAGE_SIZE;
561 } else {
562 size = ALIGN(size, min_size);
564 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
565 alloc_sizes = min_size;
567 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
568 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
569 gfp);
570 if (!pages)
571 return NULL;
573 size = iova_align(iovad, size);
574 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
575 if (!iova)
576 goto out_free_pages;
578 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
579 goto out_free_iova;
581 if (!(prot & IOMMU_CACHE)) {
582 struct sg_mapping_iter miter;
584 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
585 * sufficient here, so skip it by using the "wrong" direction.
587 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
588 while (sg_miter_next(&miter))
589 flush_page(dev, miter.addr, page_to_phys(miter.page));
590 sg_miter_stop(&miter);
593 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
594 < size)
595 goto out_free_sg;
597 *handle = iova;
598 sg_free_table(&sgt);
599 return pages;
601 out_free_sg:
602 sg_free_table(&sgt);
603 out_free_iova:
604 iommu_dma_free_iova(cookie, iova, size);
605 out_free_pages:
606 __iommu_dma_free_pages(pages, count);
607 return NULL;
611 * iommu_dma_mmap - Map a buffer into provided user VMA
612 * @pages: Array representing buffer from iommu_dma_alloc()
613 * @size: Size of buffer in bytes
614 * @vma: VMA describing requested userspace mapping
616 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
617 * for verifying the correct size and protection of @vma beforehand.
620 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
622 unsigned long uaddr = vma->vm_start;
623 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
624 int ret = -ENXIO;
626 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
627 ret = vm_insert_page(vma, uaddr, pages[i]);
628 if (ret)
629 break;
630 uaddr += PAGE_SIZE;
632 return ret;
635 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
636 size_t size, int prot, struct iommu_domain *domain)
638 struct iommu_dma_cookie *cookie = domain->iova_cookie;
639 size_t iova_off = 0;
640 dma_addr_t iova;
642 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
643 iova_off = iova_offset(&cookie->iovad, phys);
644 size = iova_align(&cookie->iovad, size + iova_off);
647 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
648 if (!iova)
649 return DMA_MAPPING_ERROR;
651 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
652 iommu_dma_free_iova(cookie, iova, size);
653 return DMA_MAPPING_ERROR;
655 return iova + iova_off;
658 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
659 unsigned long offset, size_t size, int prot)
661 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
662 iommu_get_dma_domain(dev));
665 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
666 enum dma_data_direction dir, unsigned long attrs)
668 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
672 * Prepare a successfully-mapped scatterlist to give back to the caller.
674 * At this point the segments are already laid out by iommu_dma_map_sg() to
675 * avoid individually crossing any boundaries, so we merely need to check a
676 * segment's start address to avoid concatenating across one.
678 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
679 dma_addr_t dma_addr)
681 struct scatterlist *s, *cur = sg;
682 unsigned long seg_mask = dma_get_seg_boundary(dev);
683 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
684 int i, count = 0;
686 for_each_sg(sg, s, nents, i) {
687 /* Restore this segment's original unaligned fields first */
688 unsigned int s_iova_off = sg_dma_address(s);
689 unsigned int s_length = sg_dma_len(s);
690 unsigned int s_iova_len = s->length;
692 s->offset += s_iova_off;
693 s->length = s_length;
694 sg_dma_address(s) = DMA_MAPPING_ERROR;
695 sg_dma_len(s) = 0;
698 * Now fill in the real DMA data. If...
699 * - there is a valid output segment to append to
700 * - and this segment starts on an IOVA page boundary
701 * - but doesn't fall at a segment boundary
702 * - and wouldn't make the resulting output segment too long
704 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
705 (cur_len + s_length <= max_len)) {
706 /* ...then concatenate it with the previous one */
707 cur_len += s_length;
708 } else {
709 /* Otherwise start the next output segment */
710 if (i > 0)
711 cur = sg_next(cur);
712 cur_len = s_length;
713 count++;
715 sg_dma_address(cur) = dma_addr + s_iova_off;
718 sg_dma_len(cur) = cur_len;
719 dma_addr += s_iova_len;
721 if (s_length + s_iova_off < s_iova_len)
722 cur_len = 0;
724 return count;
728 * If mapping failed, then just restore the original list,
729 * but making sure the DMA fields are invalidated.
731 static void __invalidate_sg(struct scatterlist *sg, int nents)
733 struct scatterlist *s;
734 int i;
736 for_each_sg(sg, s, nents, i) {
737 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
738 s->offset += sg_dma_address(s);
739 if (sg_dma_len(s))
740 s->length = sg_dma_len(s);
741 sg_dma_address(s) = DMA_MAPPING_ERROR;
742 sg_dma_len(s) = 0;
747 * The DMA API client is passing in a scatterlist which could describe
748 * any old buffer layout, but the IOMMU API requires everything to be
749 * aligned to IOMMU pages. Hence the need for this complicated bit of
750 * impedance-matching, to be able to hand off a suitably-aligned list,
751 * but still preserve the original offsets and sizes for the caller.
753 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
754 int nents, int prot)
756 struct iommu_domain *domain = iommu_get_dma_domain(dev);
757 struct iommu_dma_cookie *cookie = domain->iova_cookie;
758 struct iova_domain *iovad = &cookie->iovad;
759 struct scatterlist *s, *prev = NULL;
760 dma_addr_t iova;
761 size_t iova_len = 0;
762 unsigned long mask = dma_get_seg_boundary(dev);
763 int i;
766 * Work out how much IOVA space we need, and align the segments to
767 * IOVA granules for the IOMMU driver to handle. With some clever
768 * trickery we can modify the list in-place, but reversibly, by
769 * stashing the unaligned parts in the as-yet-unused DMA fields.
771 for_each_sg(sg, s, nents, i) {
772 size_t s_iova_off = iova_offset(iovad, s->offset);
773 size_t s_length = s->length;
774 size_t pad_len = (mask - iova_len + 1) & mask;
776 sg_dma_address(s) = s_iova_off;
777 sg_dma_len(s) = s_length;
778 s->offset -= s_iova_off;
779 s_length = iova_align(iovad, s_length + s_iova_off);
780 s->length = s_length;
783 * Due to the alignment of our single IOVA allocation, we can
784 * depend on these assumptions about the segment boundary mask:
785 * - If mask size >= IOVA size, then the IOVA range cannot
786 * possibly fall across a boundary, so we don't care.
787 * - If mask size < IOVA size, then the IOVA range must start
788 * exactly on a boundary, therefore we can lay things out
789 * based purely on segment lengths without needing to know
790 * the actual addresses beforehand.
791 * - The mask must be a power of 2, so pad_len == 0 if
792 * iova_len == 0, thus we cannot dereference prev the first
793 * time through here (i.e. before it has a meaningful value).
795 if (pad_len && pad_len < s_length - 1) {
796 prev->length += pad_len;
797 iova_len += pad_len;
800 iova_len += s_length;
801 prev = s;
804 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
805 if (!iova)
806 goto out_restore_sg;
809 * We'll leave any physical concatenation to the IOMMU driver's
810 * implementation - it knows better than we do.
812 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
813 goto out_free_iova;
815 return __finalise_sg(dev, sg, nents, iova);
817 out_free_iova:
818 iommu_dma_free_iova(cookie, iova, iova_len);
819 out_restore_sg:
820 __invalidate_sg(sg, nents);
821 return 0;
824 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
825 enum dma_data_direction dir, unsigned long attrs)
827 dma_addr_t start, end;
828 struct scatterlist *tmp;
829 int i;
831 * The scatterlist segments are mapped into a single
832 * contiguous IOVA allocation, so this is incredibly easy.
834 start = sg_dma_address(sg);
835 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
836 if (sg_dma_len(tmp) == 0)
837 break;
838 sg = tmp;
840 end = sg_dma_address(sg) + sg_dma_len(sg);
841 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
844 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
845 size_t size, enum dma_data_direction dir, unsigned long attrs)
847 return __iommu_dma_map(dev, phys, size,
848 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
849 iommu_get_dma_domain(dev));
852 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
853 size_t size, enum dma_data_direction dir, unsigned long attrs)
855 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
858 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
859 phys_addr_t msi_addr, struct iommu_domain *domain)
861 struct iommu_dma_cookie *cookie = domain->iova_cookie;
862 struct iommu_dma_msi_page *msi_page;
863 dma_addr_t iova;
864 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
865 size_t size = cookie_msi_granule(cookie);
867 msi_addr &= ~(phys_addr_t)(size - 1);
868 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
869 if (msi_page->phys == msi_addr)
870 return msi_page;
872 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
873 if (!msi_page)
874 return NULL;
876 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
877 if (iova == DMA_MAPPING_ERROR)
878 goto out_free_page;
880 INIT_LIST_HEAD(&msi_page->list);
881 msi_page->phys = msi_addr;
882 msi_page->iova = iova;
883 list_add(&msi_page->list, &cookie->msi_page_list);
884 return msi_page;
886 out_free_page:
887 kfree(msi_page);
888 return NULL;
891 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
893 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
894 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
895 struct iommu_dma_cookie *cookie;
896 struct iommu_dma_msi_page *msi_page;
897 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
898 unsigned long flags;
900 if (!domain || !domain->iova_cookie)
901 return;
903 cookie = domain->iova_cookie;
906 * We disable IRQs to rule out a possible inversion against
907 * irq_desc_lock if, say, someone tries to retarget the affinity
908 * of an MSI from within an IPI handler.
910 spin_lock_irqsave(&cookie->msi_lock, flags);
911 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
912 spin_unlock_irqrestore(&cookie->msi_lock, flags);
914 if (WARN_ON(!msi_page)) {
916 * We're called from a void callback, so the best we can do is
917 * 'fail' by filling the message with obviously bogus values.
918 * Since we got this far due to an IOMMU being present, it's
919 * not like the existing address would have worked anyway...
921 msg->address_hi = ~0U;
922 msg->address_lo = ~0U;
923 msg->data = ~0U;
924 } else {
925 msg->address_hi = upper_32_bits(msi_page->iova);
926 msg->address_lo &= cookie_msi_granule(cookie) - 1;
927 msg->address_lo += lower_32_bits(msi_page->iova);