Linux 5.1.15
[linux/fpc-iii.git] / drivers / iommu / fsl_pamu.c
blob1b955aea44dde56c6702cfb4f859e61cec69d4ac
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright (C) 2013 Freescale Semiconductor, Inc.
19 #define pr_fmt(fmt) "fsl-pamu: %s: " fmt, __func__
21 #include "fsl_pamu.h"
23 #include <linux/fsl/guts.h>
24 #include <linux/interrupt.h>
25 #include <linux/genalloc.h>
27 #include <asm/mpc85xx.h>
29 /* define indexes for each operation mapping scenario */
30 #define OMI_QMAN 0x00
31 #define OMI_FMAN 0x01
32 #define OMI_QMAN_PRIV 0x02
33 #define OMI_CAAM 0x03
35 #define make64(high, low) (((u64)(high) << 32) | (low))
37 struct pamu_isr_data {
38 void __iomem *pamu_reg_base; /* Base address of PAMU regs */
39 unsigned int count; /* The number of PAMUs */
42 static struct paace *ppaact;
43 static struct paace *spaact;
45 static bool probed; /* Has PAMU been probed? */
48 * Table for matching compatible strings, for device tree
49 * guts node, for QorIQ SOCs.
50 * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
51 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
52 * string would be used.
54 static const struct of_device_id guts_device_ids[] = {
55 { .compatible = "fsl,qoriq-device-config-1.0", },
56 { .compatible = "fsl,qoriq-device-config-2.0", },
61 * Table for matching compatible strings, for device tree
62 * L3 cache controller node.
63 * "fsl,t4240-l3-cache-controller" corresponds to T4,
64 * "fsl,b4860-l3-cache-controller" corresponds to B4 &
65 * "fsl,p4080-l3-cache-controller" corresponds to other,
66 * SOCs.
68 static const struct of_device_id l3_device_ids[] = {
69 { .compatible = "fsl,t4240-l3-cache-controller", },
70 { .compatible = "fsl,b4860-l3-cache-controller", },
71 { .compatible = "fsl,p4080-l3-cache-controller", },
75 /* maximum subwindows permitted per liodn */
76 static u32 max_subwindow_count;
78 /* Pool for fspi allocation */
79 static struct gen_pool *spaace_pool;
81 /**
82 * pamu_get_max_subwin_cnt() - Return the maximum supported
83 * subwindow count per liodn.
86 u32 pamu_get_max_subwin_cnt(void)
88 return max_subwindow_count;
91 /**
92 * pamu_get_ppaace() - Return the primary PACCE
93 * @liodn: liodn PAACT index for desired PAACE
95 * Returns the ppace pointer upon success else return
96 * null.
98 static struct paace *pamu_get_ppaace(int liodn)
100 if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
101 pr_debug("PPAACT doesn't exist\n");
102 return NULL;
105 return &ppaact[liodn];
109 * pamu_enable_liodn() - Set valid bit of PACCE
110 * @liodn: liodn PAACT index for desired PAACE
112 * Returns 0 upon success else error code < 0 returned
114 int pamu_enable_liodn(int liodn)
116 struct paace *ppaace;
118 ppaace = pamu_get_ppaace(liodn);
119 if (!ppaace) {
120 pr_debug("Invalid primary paace entry\n");
121 return -ENOENT;
124 if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
125 pr_debug("liodn %d not configured\n", liodn);
126 return -EINVAL;
129 /* Ensure that all other stores to the ppaace complete first */
130 mb();
132 set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
133 mb();
135 return 0;
139 * pamu_disable_liodn() - Clears valid bit of PACCE
140 * @liodn: liodn PAACT index for desired PAACE
142 * Returns 0 upon success else error code < 0 returned
144 int pamu_disable_liodn(int liodn)
146 struct paace *ppaace;
148 ppaace = pamu_get_ppaace(liodn);
149 if (!ppaace) {
150 pr_debug("Invalid primary paace entry\n");
151 return -ENOENT;
154 set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
155 mb();
157 return 0;
160 /* Derive the window size encoding for a particular PAACE entry */
161 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
163 /* Bug if not a power of 2 */
164 BUG_ON(addrspace_size & (addrspace_size - 1));
166 /* window size is 2^(WSE+1) bytes */
167 return fls64(addrspace_size) - 2;
170 /* Derive the PAACE window count encoding for the subwindow count */
171 static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
173 /* window count is 2^(WCE+1) bytes */
174 return __ffs(subwindow_cnt) - 1;
178 * Set the PAACE type as primary and set the coherency required domain
179 * attribute
181 static void pamu_init_ppaace(struct paace *ppaace)
183 set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
185 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
186 PAACE_M_COHERENCE_REQ);
190 * Set the PAACE type as secondary and set the coherency required domain
191 * attribute.
193 static void pamu_init_spaace(struct paace *spaace)
195 set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
196 set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
197 PAACE_M_COHERENCE_REQ);
201 * Return the spaace (corresponding to the secondary window index)
202 * for a particular ppaace.
204 static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
206 u32 subwin_cnt;
207 struct paace *spaace = NULL;
209 subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
211 if (wnum < subwin_cnt)
212 spaace = &spaact[paace->fspi + wnum];
213 else
214 pr_debug("secondary paace out of bounds\n");
216 return spaace;
220 * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
221 * required for primary PAACE in the secondary
222 * PAACE table.
223 * @subwin_cnt: Number of subwindows to be reserved.
225 * A PPAACE entry may have a number of associated subwindows. A subwindow
226 * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
227 * the index (fspi) of the first SPAACE entry in the SPAACT table. This
228 * function returns the index of the first SPAACE entry. The remaining
229 * SPAACE entries are reserved contiguously from that index.
231 * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
232 * If no SPAACE entry is available or the allocator can not reserve the required
233 * number of contiguous entries function returns ULONG_MAX indicating a failure.
236 static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
238 unsigned long spaace_addr;
240 spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
241 if (!spaace_addr)
242 return ULONG_MAX;
244 return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
247 /* Release the subwindows reserved for a particular LIODN */
248 void pamu_free_subwins(int liodn)
250 struct paace *ppaace;
251 u32 subwin_cnt, size;
253 ppaace = pamu_get_ppaace(liodn);
254 if (!ppaace) {
255 pr_debug("Invalid liodn entry\n");
256 return;
259 if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
260 subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
261 size = (subwin_cnt - 1) * sizeof(struct paace);
262 gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
263 set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
268 * Function used for updating stash destination for the coressponding
269 * LIODN.
271 int pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
273 struct paace *paace;
275 paace = pamu_get_ppaace(liodn);
276 if (!paace) {
277 pr_debug("Invalid liodn entry\n");
278 return -ENOENT;
280 if (subwin) {
281 paace = pamu_get_spaace(paace, subwin - 1);
282 if (!paace)
283 return -ENOENT;
285 set_bf(paace->impl_attr, PAACE_IA_CID, value);
287 mb();
289 return 0;
292 /* Disable a subwindow corresponding to the LIODN */
293 int pamu_disable_spaace(int liodn, u32 subwin)
295 struct paace *paace;
297 paace = pamu_get_ppaace(liodn);
298 if (!paace) {
299 pr_debug("Invalid liodn entry\n");
300 return -ENOENT;
302 if (subwin) {
303 paace = pamu_get_spaace(paace, subwin - 1);
304 if (!paace)
305 return -ENOENT;
306 set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
307 } else {
308 set_bf(paace->addr_bitfields, PAACE_AF_AP,
309 PAACE_AP_PERMS_DENIED);
312 mb();
314 return 0;
318 * pamu_config_paace() - Sets up PPAACE entry for specified liodn
320 * @liodn: Logical IO device number
321 * @win_addr: starting address of DSA window
322 * @win-size: size of DSA window
323 * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
324 * @rpn: real (true physical) page number
325 * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
326 * stashid not defined
327 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
328 * snoopid not defined
329 * @subwin_cnt: number of sub-windows
330 * @prot: window permissions
332 * Returns 0 upon success else error code < 0 returned
334 int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
335 u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
336 u32 subwin_cnt, int prot)
338 struct paace *ppaace;
339 unsigned long fspi;
341 if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) {
342 pr_debug("window size too small or not a power of two %pa\n",
343 &win_size);
344 return -EINVAL;
347 if (win_addr & (win_size - 1)) {
348 pr_debug("window address is not aligned with window size\n");
349 return -EINVAL;
352 ppaace = pamu_get_ppaace(liodn);
353 if (!ppaace)
354 return -ENOENT;
356 /* window size is 2^(WSE+1) bytes */
357 set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
358 map_addrspace_size_to_wse(win_size));
360 pamu_init_ppaace(ppaace);
362 ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
363 set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
364 (win_addr >> PAMU_PAGE_SHIFT));
366 /* set up operation mapping if it's configured */
367 if (omi < OME_NUMBER_ENTRIES) {
368 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
369 ppaace->op_encode.index_ot.omi = omi;
370 } else if (~omi != 0) {
371 pr_debug("bad operation mapping index: %d\n", omi);
372 return -EINVAL;
375 /* configure stash id */
376 if (~stashid != 0)
377 set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
379 /* configure snoop id */
380 if (~snoopid != 0)
381 ppaace->domain_attr.to_host.snpid = snoopid;
383 if (subwin_cnt) {
384 /* The first entry is in the primary PAACE instead */
385 fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
386 if (fspi == ULONG_MAX) {
387 pr_debug("spaace indexes exhausted\n");
388 return -EINVAL;
391 /* window count is 2^(WCE+1) bytes */
392 set_bf(ppaace->impl_attr, PAACE_IA_WCE,
393 map_subwindow_cnt_to_wce(subwin_cnt));
394 set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
395 ppaace->fspi = fspi;
396 } else {
397 set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
398 ppaace->twbah = rpn >> 20;
399 set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
400 set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
401 set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
402 set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
404 mb();
406 return 0;
410 * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
412 * @liodn: Logical IO device number
413 * @subwin_cnt: number of sub-windows associated with dma-window
414 * @subwin: subwindow index
415 * @subwin_size: size of subwindow
416 * @omi: Operation mapping index
417 * @rpn: real (true physical) page number
418 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
419 * snoopid not defined
420 * @stashid: cache stash id for associated cpu
421 * @enable: enable/disable subwindow after reconfiguration
422 * @prot: sub window permissions
424 * Returns 0 upon success else error code < 0 returned
426 int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
427 phys_addr_t subwin_size, u32 omi, unsigned long rpn,
428 u32 snoopid, u32 stashid, int enable, int prot)
430 struct paace *paace;
432 /* setup sub-windows */
433 if (!subwin_cnt) {
434 pr_debug("Invalid subwindow count\n");
435 return -EINVAL;
438 paace = pamu_get_ppaace(liodn);
439 if (subwin > 0 && subwin < subwin_cnt && paace) {
440 paace = pamu_get_spaace(paace, subwin - 1);
442 if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
443 pamu_init_spaace(paace);
444 set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
448 if (!paace) {
449 pr_debug("Invalid liodn entry\n");
450 return -ENOENT;
453 if ((subwin_size & (subwin_size - 1)) || subwin_size < PAMU_PAGE_SIZE) {
454 pr_debug("subwindow size out of range, or not a power of 2\n");
455 return -EINVAL;
458 if (rpn == ULONG_MAX) {
459 pr_debug("real page number out of range\n");
460 return -EINVAL;
463 /* window size is 2^(WSE+1) bytes */
464 set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
465 map_addrspace_size_to_wse(subwin_size));
467 set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
468 paace->twbah = rpn >> 20;
469 set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
470 set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
472 /* configure snoop id */
473 if (~snoopid != 0)
474 paace->domain_attr.to_host.snpid = snoopid;
476 /* set up operation mapping if it's configured */
477 if (omi < OME_NUMBER_ENTRIES) {
478 set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
479 paace->op_encode.index_ot.omi = omi;
480 } else if (~omi != 0) {
481 pr_debug("bad operation mapping index: %d\n", omi);
482 return -EINVAL;
485 if (~stashid != 0)
486 set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
488 smp_wmb();
490 if (enable)
491 set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
493 mb();
495 return 0;
499 * get_ome_index() - Returns the index in the operation mapping table
500 * for device.
501 * @*omi_index: pointer for storing the index value
504 void get_ome_index(u32 *omi_index, struct device *dev)
506 if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
507 *omi_index = OMI_QMAN;
508 if (of_device_is_compatible(dev->of_node, "fsl,qman"))
509 *omi_index = OMI_QMAN_PRIV;
513 * get_stash_id - Returns stash destination id corresponding to a
514 * cache type and vcpu.
515 * @stash_dest_hint: L1, L2 or L3
516 * @vcpu: vpcu target for a particular cache type.
518 * Returs stash on success or ~(u32)0 on failure.
521 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
523 const u32 *prop;
524 struct device_node *node;
525 u32 cache_level;
526 int len, found = 0;
527 int i;
529 /* Fastpath, exit early if L3/CPC cache is target for stashing */
530 if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
531 node = of_find_matching_node(NULL, l3_device_ids);
532 if (node) {
533 prop = of_get_property(node, "cache-stash-id", NULL);
534 if (!prop) {
535 pr_debug("missing cache-stash-id at %pOF\n",
536 node);
537 of_node_put(node);
538 return ~(u32)0;
540 of_node_put(node);
541 return be32_to_cpup(prop);
543 return ~(u32)0;
546 for_each_of_cpu_node(node) {
547 prop = of_get_property(node, "reg", &len);
548 for (i = 0; i < len / sizeof(u32); i++) {
549 if (be32_to_cpup(&prop[i]) == vcpu) {
550 found = 1;
551 goto found_cpu_node;
555 found_cpu_node:
557 /* find the hwnode that represents the cache */
558 for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
559 if (stash_dest_hint == cache_level) {
560 prop = of_get_property(node, "cache-stash-id", NULL);
561 if (!prop) {
562 pr_debug("missing cache-stash-id at %pOF\n",
563 node);
564 of_node_put(node);
565 return ~(u32)0;
567 of_node_put(node);
568 return be32_to_cpup(prop);
571 prop = of_get_property(node, "next-level-cache", NULL);
572 if (!prop) {
573 pr_debug("can't find next-level-cache at %pOF\n", node);
574 of_node_put(node);
575 return ~(u32)0; /* can't traverse any further */
577 of_node_put(node);
579 /* advance to next node in cache hierarchy */
580 node = of_find_node_by_phandle(*prop);
581 if (!node) {
582 pr_debug("Invalid node for cache hierarchy\n");
583 return ~(u32)0;
587 pr_debug("stash dest not found for %d on vcpu %d\n",
588 stash_dest_hint, vcpu);
589 return ~(u32)0;
592 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
593 #define QMAN_PAACE 1
594 #define QMAN_PORTAL_PAACE 2
595 #define BMAN_PAACE 3
598 * Setup operation mapping and stash destinations for QMAN and QMAN portal.
599 * Memory accesses to QMAN and BMAN private memory need not be coherent, so
600 * clear the PAACE entry coherency attribute for them.
602 static void setup_qbman_paace(struct paace *ppaace, int paace_type)
604 switch (paace_type) {
605 case QMAN_PAACE:
606 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
607 ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
608 /* setup QMAN Private data stashing for the L3 cache */
609 set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
610 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
612 break;
613 case QMAN_PORTAL_PAACE:
614 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
615 ppaace->op_encode.index_ot.omi = OMI_QMAN;
616 /* Set DQRR and Frame stashing for the L3 cache */
617 set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
618 break;
619 case BMAN_PAACE:
620 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
622 break;
627 * Setup the operation mapping table for various devices. This is a static
628 * table where each table index corresponds to a particular device. PAMU uses
629 * this table to translate device transaction to appropriate corenet
630 * transaction.
632 static void setup_omt(struct ome *omt)
634 struct ome *ome;
636 /* Configure OMI_QMAN */
637 ome = &omt[OMI_QMAN];
639 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
640 ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
641 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
642 ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
644 ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
645 ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
647 /* Configure OMI_FMAN */
648 ome = &omt[OMI_FMAN];
649 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
650 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
652 /* Configure OMI_QMAN private */
653 ome = &omt[OMI_QMAN_PRIV];
654 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
655 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
656 ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
657 ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
659 /* Configure OMI_CAAM */
660 ome = &omt[OMI_CAAM];
661 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
662 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
666 * Get the maximum number of PAACT table entries
667 * and subwindows supported by PAMU
669 static void get_pamu_cap_values(unsigned long pamu_reg_base)
671 u32 pc_val;
673 pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
674 /* Maximum number of subwindows per liodn */
675 max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
678 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
679 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
680 phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
681 phys_addr_t omt_phys)
683 u32 *pc;
684 struct pamu_mmap_regs *pamu_regs;
686 pc = (u32 *) (pamu_reg_base + PAMU_PC);
687 pamu_regs = (struct pamu_mmap_regs *)
688 (pamu_reg_base + PAMU_MMAP_REGS_BASE);
690 /* set up pointers to corenet control blocks */
692 out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
693 out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
694 ppaact_phys = ppaact_phys + PAACT_SIZE;
695 out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
696 out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
698 out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
699 out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
700 spaact_phys = spaact_phys + SPAACT_SIZE;
701 out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
702 out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
704 out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
705 out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
706 omt_phys = omt_phys + OMT_SIZE;
707 out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
708 out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
711 * set PAMU enable bit,
712 * allow ppaact & omt to be cached
713 * & enable PAMU access violation interrupts.
716 out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
717 PAMU_ACCESS_VIOLATION_ENABLE);
718 out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
719 return 0;
722 /* Enable all device LIODNS */
723 static void setup_liodns(void)
725 int i, len;
726 struct paace *ppaace;
727 struct device_node *node = NULL;
728 const u32 *prop;
730 for_each_node_with_property(node, "fsl,liodn") {
731 prop = of_get_property(node, "fsl,liodn", &len);
732 for (i = 0; i < len / sizeof(u32); i++) {
733 int liodn;
735 liodn = be32_to_cpup(&prop[i]);
736 if (liodn >= PAACE_NUMBER_ENTRIES) {
737 pr_debug("Invalid LIODN value %d\n", liodn);
738 continue;
740 ppaace = pamu_get_ppaace(liodn);
741 pamu_init_ppaace(ppaace);
742 /* window size is 2^(WSE+1) bytes */
743 set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
744 ppaace->wbah = 0;
745 set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
746 set_bf(ppaace->impl_attr, PAACE_IA_ATM,
747 PAACE_ATM_NO_XLATE);
748 set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
749 PAACE_AP_PERMS_ALL);
750 if (of_device_is_compatible(node, "fsl,qman-portal"))
751 setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
752 if (of_device_is_compatible(node, "fsl,qman"))
753 setup_qbman_paace(ppaace, QMAN_PAACE);
754 if (of_device_is_compatible(node, "fsl,bman"))
755 setup_qbman_paace(ppaace, BMAN_PAACE);
756 mb();
757 pamu_enable_liodn(liodn);
762 static irqreturn_t pamu_av_isr(int irq, void *arg)
764 struct pamu_isr_data *data = arg;
765 phys_addr_t phys;
766 unsigned int i, j, ret;
768 pr_emerg("access violation interrupt\n");
770 for (i = 0; i < data->count; i++) {
771 void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
772 u32 pics = in_be32(p + PAMU_PICS);
774 if (pics & PAMU_ACCESS_VIOLATION_STAT) {
775 u32 avs1 = in_be32(p + PAMU_AVS1);
776 struct paace *paace;
778 pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
779 pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
780 pr_emerg("AVS1=%08x\n", avs1);
781 pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
782 pr_emerg("AVA=%016llx\n",
783 make64(in_be32(p + PAMU_AVAH),
784 in_be32(p + PAMU_AVAL)));
785 pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
786 pr_emerg("POEA=%016llx\n",
787 make64(in_be32(p + PAMU_POEAH),
788 in_be32(p + PAMU_POEAL)));
790 phys = make64(in_be32(p + PAMU_POEAH),
791 in_be32(p + PAMU_POEAL));
793 /* Assume that POEA points to a PAACE */
794 if (phys) {
795 u32 *paace = phys_to_virt(phys);
797 /* Only the first four words are relevant */
798 for (j = 0; j < 4; j++)
799 pr_emerg("PAACE[%u]=%08x\n",
800 j, in_be32(paace + j));
803 /* clear access violation condition */
804 out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
805 paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
806 BUG_ON(!paace);
807 /* check if we got a violation for a disabled LIODN */
808 if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
810 * As per hardware erratum A-003638, access
811 * violation can be reported for a disabled
812 * LIODN. If we hit that condition, disable
813 * access violation reporting.
815 pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
816 } else {
817 /* Disable the LIODN */
818 ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
819 BUG_ON(ret);
820 pr_emerg("Disabling liodn %x\n",
821 avs1 >> PAMU_AVS1_LIODN_SHIFT);
823 out_be32((p + PAMU_PICS), pics);
827 return IRQ_HANDLED;
830 #define LAWAR_EN 0x80000000
831 #define LAWAR_TARGET_MASK 0x0FF00000
832 #define LAWAR_TARGET_SHIFT 20
833 #define LAWAR_SIZE_MASK 0x0000003F
834 #define LAWAR_CSDID_MASK 0x000FF000
835 #define LAWAR_CSDID_SHIFT 12
837 #define LAW_SIZE_4K 0xb
839 struct ccsr_law {
840 u32 lawbarh; /* LAWn base address high */
841 u32 lawbarl; /* LAWn base address low */
842 u32 lawar; /* LAWn attributes */
843 u32 reserved;
847 * Create a coherence subdomain for a given memory block.
849 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
851 struct device_node *np;
852 const __be32 *iprop;
853 void __iomem *lac = NULL; /* Local Access Control registers */
854 struct ccsr_law __iomem *law;
855 void __iomem *ccm = NULL;
856 u32 __iomem *csdids;
857 unsigned int i, num_laws, num_csds;
858 u32 law_target = 0;
859 u32 csd_id = 0;
860 int ret = 0;
862 np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
863 if (!np)
864 return -ENODEV;
866 iprop = of_get_property(np, "fsl,num-laws", NULL);
867 if (!iprop) {
868 ret = -ENODEV;
869 goto error;
872 num_laws = be32_to_cpup(iprop);
873 if (!num_laws) {
874 ret = -ENODEV;
875 goto error;
878 lac = of_iomap(np, 0);
879 if (!lac) {
880 ret = -ENODEV;
881 goto error;
884 /* LAW registers are at offset 0xC00 */
885 law = lac + 0xC00;
887 of_node_put(np);
889 np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
890 if (!np) {
891 ret = -ENODEV;
892 goto error;
895 iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
896 if (!iprop) {
897 ret = -ENODEV;
898 goto error;
901 num_csds = be32_to_cpup(iprop);
902 if (!num_csds) {
903 ret = -ENODEV;
904 goto error;
907 ccm = of_iomap(np, 0);
908 if (!ccm) {
909 ret = -ENOMEM;
910 goto error;
913 /* The undocumented CSDID registers are at offset 0x600 */
914 csdids = ccm + 0x600;
916 of_node_put(np);
917 np = NULL;
919 /* Find an unused coherence subdomain ID */
920 for (csd_id = 0; csd_id < num_csds; csd_id++) {
921 if (!csdids[csd_id])
922 break;
925 /* Store the Port ID in the (undocumented) proper CIDMRxx register */
926 csdids[csd_id] = csd_port_id;
928 /* Find the DDR LAW that maps to our buffer. */
929 for (i = 0; i < num_laws; i++) {
930 if (law[i].lawar & LAWAR_EN) {
931 phys_addr_t law_start, law_end;
933 law_start = make64(law[i].lawbarh, law[i].lawbarl);
934 law_end = law_start +
935 (2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
937 if (law_start <= phys && phys < law_end) {
938 law_target = law[i].lawar & LAWAR_TARGET_MASK;
939 break;
944 if (i == 0 || i == num_laws) {
945 /* This should never happen */
946 ret = -ENOENT;
947 goto error;
950 /* Find a free LAW entry */
951 while (law[--i].lawar & LAWAR_EN) {
952 if (i == 0) {
953 /* No higher priority LAW slots available */
954 ret = -ENOENT;
955 goto error;
959 law[i].lawbarh = upper_32_bits(phys);
960 law[i].lawbarl = lower_32_bits(phys);
961 wmb();
962 law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
963 (LAW_SIZE_4K + get_order(size));
964 wmb();
966 error:
967 if (ccm)
968 iounmap(ccm);
970 if (lac)
971 iounmap(lac);
973 if (np)
974 of_node_put(np);
976 return ret;
980 * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
981 * bit map of snoopers for a given range of memory mapped by a LAW.
983 * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
984 * table should never need to be updated. SVRs are guaranteed to be unique, so
985 * there is no worry that a future SOC will inadvertently have one of these
986 * values.
988 static const struct {
989 u32 svr;
990 u32 port_id;
991 } port_id_map[] = {
992 {(SVR_P2040 << 8) | 0x10, 0xFF000000}, /* P2040 1.0 */
993 {(SVR_P2040 << 8) | 0x11, 0xFF000000}, /* P2040 1.1 */
994 {(SVR_P2041 << 8) | 0x10, 0xFF000000}, /* P2041 1.0 */
995 {(SVR_P2041 << 8) | 0x11, 0xFF000000}, /* P2041 1.1 */
996 {(SVR_P3041 << 8) | 0x10, 0xFF000000}, /* P3041 1.0 */
997 {(SVR_P3041 << 8) | 0x11, 0xFF000000}, /* P3041 1.1 */
998 {(SVR_P4040 << 8) | 0x20, 0xFFF80000}, /* P4040 2.0 */
999 {(SVR_P4080 << 8) | 0x20, 0xFFF80000}, /* P4080 2.0 */
1000 {(SVR_P5010 << 8) | 0x10, 0xFC000000}, /* P5010 1.0 */
1001 {(SVR_P5010 << 8) | 0x20, 0xFC000000}, /* P5010 2.0 */
1002 {(SVR_P5020 << 8) | 0x10, 0xFC000000}, /* P5020 1.0 */
1003 {(SVR_P5021 << 8) | 0x10, 0xFF800000}, /* P5021 1.0 */
1004 {(SVR_P5040 << 8) | 0x10, 0xFF800000}, /* P5040 1.0 */
1007 #define SVR_SECURITY 0x80000 /* The Security (E) bit */
1009 static int fsl_pamu_probe(struct platform_device *pdev)
1011 struct device *dev = &pdev->dev;
1012 void __iomem *pamu_regs = NULL;
1013 struct ccsr_guts __iomem *guts_regs = NULL;
1014 u32 pamubypenr, pamu_counter;
1015 unsigned long pamu_reg_off;
1016 unsigned long pamu_reg_base;
1017 struct pamu_isr_data *data = NULL;
1018 struct device_node *guts_node;
1019 u64 size;
1020 struct page *p;
1021 int ret = 0;
1022 int irq;
1023 phys_addr_t ppaact_phys;
1024 phys_addr_t spaact_phys;
1025 struct ome *omt;
1026 phys_addr_t omt_phys;
1027 size_t mem_size = 0;
1028 unsigned int order = 0;
1029 u32 csd_port_id = 0;
1030 unsigned i;
1032 * enumerate all PAMUs and allocate and setup PAMU tables
1033 * for each of them,
1034 * NOTE : All PAMUs share the same LIODN tables.
1037 if (WARN_ON(probed))
1038 return -EBUSY;
1040 pamu_regs = of_iomap(dev->of_node, 0);
1041 if (!pamu_regs) {
1042 dev_err(dev, "ioremap of PAMU node failed\n");
1043 return -ENOMEM;
1045 of_get_address(dev->of_node, 0, &size, NULL);
1047 irq = irq_of_parse_and_map(dev->of_node, 0);
1048 if (irq == NO_IRQ) {
1049 dev_warn(dev, "no interrupts listed in PAMU node\n");
1050 goto error;
1053 data = kzalloc(sizeof(*data), GFP_KERNEL);
1054 if (!data) {
1055 ret = -ENOMEM;
1056 goto error;
1058 data->pamu_reg_base = pamu_regs;
1059 data->count = size / PAMU_OFFSET;
1061 /* The ISR needs access to the regs, so we won't iounmap them */
1062 ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1063 if (ret < 0) {
1064 dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
1065 goto error;
1068 guts_node = of_find_matching_node(NULL, guts_device_ids);
1069 if (!guts_node) {
1070 dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
1071 ret = -ENODEV;
1072 goto error;
1075 guts_regs = of_iomap(guts_node, 0);
1076 of_node_put(guts_node);
1077 if (!guts_regs) {
1078 dev_err(dev, "ioremap of GUTS node failed\n");
1079 ret = -ENODEV;
1080 goto error;
1083 /* read in the PAMU capability registers */
1084 get_pamu_cap_values((unsigned long)pamu_regs);
1086 * To simplify the allocation of a coherency domain, we allocate the
1087 * PAACT and the OMT in the same memory buffer. Unfortunately, this
1088 * wastes more memory compared to allocating the buffers separately.
1090 /* Determine how much memory we need */
1091 mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1092 (PAGE_SIZE << get_order(SPAACT_SIZE)) +
1093 (PAGE_SIZE << get_order(OMT_SIZE));
1094 order = get_order(mem_size);
1096 p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1097 if (!p) {
1098 dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1099 ret = -ENOMEM;
1100 goto error;
1103 ppaact = page_address(p);
1104 ppaact_phys = page_to_phys(p);
1106 /* Make sure the memory is naturally aligned */
1107 if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1108 dev_err(dev, "PAACT/OMT block is unaligned\n");
1109 ret = -ENOMEM;
1110 goto error;
1113 spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1114 omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1116 dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
1118 /* Check to see if we need to implement the work-around on this SOC */
1120 /* Determine the Port ID for our coherence subdomain */
1121 for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1122 if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1123 csd_port_id = port_id_map[i].port_id;
1124 dev_dbg(dev, "found matching SVR %08x\n",
1125 port_id_map[i].svr);
1126 break;
1130 if (csd_port_id) {
1131 dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
1132 &ppaact_phys, mem_size, csd_port_id);
1134 ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1135 if (ret) {
1136 dev_err(dev, "could not create coherence subdomain\n");
1137 return ret;
1141 spaact_phys = virt_to_phys(spaact);
1142 omt_phys = virt_to_phys(omt);
1144 spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1145 if (!spaace_pool) {
1146 ret = -ENOMEM;
1147 dev_err(dev, "Failed to allocate spaace gen pool\n");
1148 goto error;
1151 ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1152 if (ret)
1153 goto error_genpool;
1155 pamubypenr = in_be32(&guts_regs->pamubypenr);
1157 for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1158 pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1160 pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
1161 setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1162 spaact_phys, omt_phys);
1163 /* Disable PAMU bypass for this PAMU */
1164 pamubypenr &= ~pamu_counter;
1167 setup_omt(omt);
1169 /* Enable all relevant PAMU(s) */
1170 out_be32(&guts_regs->pamubypenr, pamubypenr);
1172 iounmap(guts_regs);
1174 /* Enable DMA for the LIODNs in the device tree */
1176 setup_liodns();
1178 probed = true;
1180 return 0;
1182 error_genpool:
1183 gen_pool_destroy(spaace_pool);
1185 error:
1186 if (irq != NO_IRQ)
1187 free_irq(irq, data);
1189 if (data) {
1190 memset(data, 0, sizeof(struct pamu_isr_data));
1191 kfree(data);
1194 if (pamu_regs)
1195 iounmap(pamu_regs);
1197 if (guts_regs)
1198 iounmap(guts_regs);
1200 if (ppaact)
1201 free_pages((unsigned long)ppaact, order);
1203 ppaact = NULL;
1205 return ret;
1208 static struct platform_driver fsl_of_pamu_driver = {
1209 .driver = {
1210 .name = "fsl-of-pamu",
1212 .probe = fsl_pamu_probe,
1215 static __init int fsl_pamu_init(void)
1217 struct platform_device *pdev = NULL;
1218 struct device_node *np;
1219 int ret;
1222 * The normal OF process calls the probe function at some
1223 * indeterminate later time, after most drivers have loaded. This is
1224 * too late for us, because PAMU clients (like the Qman driver)
1225 * depend on PAMU being initialized early.
1227 * So instead, we "manually" call our probe function by creating the
1228 * platform devices ourselves.
1232 * We assume that there is only one PAMU node in the device tree. A
1233 * single PAMU node represents all of the PAMU devices in the SOC
1234 * already. Everything else already makes that assumption, and the
1235 * binding for the PAMU nodes doesn't allow for any parent-child
1236 * relationships anyway. In other words, support for more than one
1237 * PAMU node would require significant changes to a lot of code.
1240 np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1241 if (!np) {
1242 pr_err("could not find a PAMU node\n");
1243 return -ENODEV;
1246 ret = platform_driver_register(&fsl_of_pamu_driver);
1247 if (ret) {
1248 pr_err("could not register driver (err=%i)\n", ret);
1249 goto error_driver_register;
1252 pdev = platform_device_alloc("fsl-of-pamu", 0);
1253 if (!pdev) {
1254 pr_err("could not allocate device %pOF\n", np);
1255 ret = -ENOMEM;
1256 goto error_device_alloc;
1258 pdev->dev.of_node = of_node_get(np);
1260 ret = pamu_domain_init();
1261 if (ret)
1262 goto error_device_add;
1264 ret = platform_device_add(pdev);
1265 if (ret) {
1266 pr_err("could not add device %pOF (err=%i)\n", np, ret);
1267 goto error_device_add;
1270 return 0;
1272 error_device_add:
1273 of_node_put(pdev->dev.of_node);
1274 pdev->dev.of_node = NULL;
1276 platform_device_put(pdev);
1278 error_device_alloc:
1279 platform_driver_unregister(&fsl_of_pamu_driver);
1281 error_driver_register:
1282 of_node_put(np);
1284 return ret;
1286 arch_initcall(fsl_pamu_init);