Linux 5.1.15
[linux/fpc-iii.git] / drivers / isdn / hisax / hfc_sx.c
blob12af628d9b2c130e77967b9e95a311a3fcb7ea2b
1 /* $Id: hfc_sx.c,v 1.12.2.5 2004/02/11 13:21:33 keil Exp $
3 * level driver for Cologne Chip Designs hfc-s+/sp based cards
5 * Author Werner Cornelius
6 * based on existing driver for CCD HFC PCI cards
7 * Copyright by Werner Cornelius <werner@isdn4linux.de>
9 * This software may be used and distributed according to the terms
10 * of the GNU General Public License, incorporated herein by reference.
14 #include <linux/init.h>
15 #include "hisax.h"
16 #include "hfc_sx.h"
17 #include "isdnl1.h"
18 #include <linux/interrupt.h>
19 #include <linux/isapnp.h>
20 #include <linux/slab.h>
22 static const char *hfcsx_revision = "$Revision: 1.12.2.5 $";
24 /***************************************/
25 /* IRQ-table for CCDs demo board */
26 /* IRQs 6,5,10,11,12,15 are supported */
27 /***************************************/
29 /* Teles 16.3c Vendor Id TAG2620, Version 1.0, Vendor version 2.1
31 * Thanks to Uwe Wisniewski
33 * ISA-SLOT Signal PIN
34 * B25 IRQ3 92 IRQ_G
35 * B23 IRQ5 94 IRQ_A
36 * B4 IRQ2/9 95 IRQ_B
37 * D3 IRQ10 96 IRQ_C
38 * D4 IRQ11 97 IRQ_D
39 * D5 IRQ12 98 IRQ_E
40 * D6 IRQ15 99 IRQ_F
43 #undef CCD_DEMO_BOARD
44 #ifdef CCD_DEMO_BOARD
45 static u_char ccd_sp_irqtab[16] = {
46 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 3, 4, 5, 0, 0, 6
48 #else /* Teles 16.3c */
49 static u_char ccd_sp_irqtab[16] = {
50 0, 0, 0, 7, 0, 1, 0, 0, 0, 2, 3, 4, 5, 0, 0, 6
52 #endif
53 #define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
55 #define byteout(addr, val) outb(val, addr)
56 #define bytein(addr) inb(addr)
58 /******************************/
59 /* In/Out access to registers */
60 /******************************/
61 static inline void
62 Write_hfc(struct IsdnCardState *cs, u_char regnum, u_char val)
64 byteout(cs->hw.hfcsx.base + 1, regnum);
65 byteout(cs->hw.hfcsx.base, val);
68 static inline u_char
69 Read_hfc(struct IsdnCardState *cs, u_char regnum)
71 u_char ret;
73 byteout(cs->hw.hfcsx.base + 1, regnum);
74 ret = bytein(cs->hw.hfcsx.base);
75 return (ret);
79 /**************************************************/
80 /* select a fifo and remember which one for reuse */
81 /**************************************************/
82 static void
83 fifo_select(struct IsdnCardState *cs, u_char fifo)
85 if (fifo == cs->hw.hfcsx.last_fifo)
86 return; /* still valid */
88 byteout(cs->hw.hfcsx.base + 1, HFCSX_FIF_SEL);
89 byteout(cs->hw.hfcsx.base, fifo);
90 while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
91 udelay(4);
92 byteout(cs->hw.hfcsx.base, fifo);
93 while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
96 /******************************************/
97 /* reset the specified fifo to defaults. */
98 /* If its a send fifo init needed markers */
99 /******************************************/
100 static void
101 reset_fifo(struct IsdnCardState *cs, u_char fifo)
103 fifo_select(cs, fifo); /* first select the fifo */
104 byteout(cs->hw.hfcsx.base + 1, HFCSX_CIRM);
105 byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.cirm | 0x80); /* reset cmd */
106 udelay(1);
107 while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
111 /*************************************************************/
112 /* write_fifo writes the skb contents to the desired fifo */
113 /* if no space is available or an error occurs 0 is returned */
114 /* the skb is not released in any way. */
115 /*************************************************************/
116 static int
117 write_fifo(struct IsdnCardState *cs, struct sk_buff *skb, u_char fifo, int trans_max)
119 unsigned short *msp;
120 int fifo_size, count, z1, z2;
121 u_char f_msk, f1, f2, *src;
123 if (skb->len <= 0) return (0);
124 if (fifo & 1) return (0); /* no write fifo */
126 fifo_select(cs, fifo);
127 if (fifo & 4) {
128 fifo_size = D_FIFO_SIZE; /* D-channel */
129 f_msk = MAX_D_FRAMES;
130 if (trans_max) return (0); /* only HDLC */
132 else {
133 fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
134 f_msk = MAX_B_FRAMES;
137 z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
138 z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
140 /* Check for transparent mode */
141 if (trans_max) {
142 z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
143 z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
144 count = z2 - z1;
145 if (count <= 0)
146 count += fifo_size; /* free bytes */
147 if (count < skb->len + 1) return (0); /* no room */
148 count = fifo_size - count; /* bytes still not send */
149 if (count > 2 * trans_max) return (0); /* delay to long */
150 count = skb->len;
151 src = skb->data;
152 while (count--)
153 Write_hfc(cs, HFCSX_FIF_DWR, *src++);
154 return (1); /* success */
157 msp = ((struct hfcsx_extra *)(cs->hw.hfcsx.extra))->marker;
158 msp += (((fifo >> 1) & 3) * (MAX_B_FRAMES + 1));
159 f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
160 f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
162 count = f1 - f2; /* frame count actually buffered */
163 if (count < 0)
164 count += (f_msk + 1); /* if wrap around */
165 if (count > f_msk - 1) {
166 if (cs->debug & L1_DEB_ISAC_FIFO)
167 debugl1(cs, "hfcsx_write_fifo %d more as %d frames", fifo, f_msk - 1);
168 return (0);
171 *(msp + f1) = z1; /* remember marker */
173 if (cs->debug & L1_DEB_ISAC_FIFO)
174 debugl1(cs, "hfcsx_write_fifo %d f1(%x) f2(%x) z1(f1)(%x)",
175 fifo, f1, f2, z1);
176 /* now determine free bytes in FIFO buffer */
177 count = *(msp + f2) - z1;
178 if (count <= 0)
179 count += fifo_size; /* count now contains available bytes */
181 if (cs->debug & L1_DEB_ISAC_FIFO)
182 debugl1(cs, "hfcsx_write_fifo %d count(%u/%d)",
183 fifo, skb->len, count);
184 if (count < skb->len) {
185 if (cs->debug & L1_DEB_ISAC_FIFO)
186 debugl1(cs, "hfcsx_write_fifo %d no fifo mem", fifo);
187 return (0);
190 count = skb->len; /* get frame len */
191 src = skb->data; /* source pointer */
192 while (count--)
193 Write_hfc(cs, HFCSX_FIF_DWR, *src++);
195 Read_hfc(cs, HFCSX_FIF_INCF1); /* increment F1 */
196 udelay(1);
197 while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
198 return (1);
201 /***************************************************************/
202 /* read_fifo reads data to an skb from the desired fifo */
203 /* if no data is available or an error occurs NULL is returned */
204 /* the skb is not released in any way. */
205 /***************************************************************/
206 static struct sk_buff *
207 read_fifo(struct IsdnCardState *cs, u_char fifo, int trans_max)
208 { int fifo_size, count, z1, z2;
209 u_char f_msk, f1, f2, *dst;
210 struct sk_buff *skb;
212 if (!(fifo & 1)) return (NULL); /* no read fifo */
213 fifo_select(cs, fifo);
214 if (fifo & 4) {
215 fifo_size = D_FIFO_SIZE; /* D-channel */
216 f_msk = MAX_D_FRAMES;
217 if (trans_max) return (NULL); /* only hdlc */
219 else {
220 fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
221 f_msk = MAX_B_FRAMES;
224 /* transparent mode */
225 if (trans_max) {
226 z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
227 z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
228 z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
229 z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
230 /* now determine bytes in actual FIFO buffer */
231 count = z1 - z2;
232 if (count <= 0)
233 count += fifo_size; /* count now contains buffered bytes */
234 count++;
235 if (count > trans_max)
236 count = trans_max; /* limit length */
237 skb = dev_alloc_skb(count);
238 if (skb) {
239 dst = skb_put(skb, count);
240 while (count--)
241 *dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
242 return skb;
243 } else
244 return NULL; /* no memory */
247 do {
248 f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
249 f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
251 if (f1 == f2) return (NULL); /* no frame available */
253 z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
254 z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
255 z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
256 z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
258 if (cs->debug & L1_DEB_ISAC_FIFO)
259 debugl1(cs, "hfcsx_read_fifo %d f1(%x) f2(%x) z1(f2)(%x) z2(f2)(%x)",
260 fifo, f1, f2, z1, z2);
261 /* now determine bytes in actual FIFO buffer */
262 count = z1 - z2;
263 if (count <= 0)
264 count += fifo_size; /* count now contains buffered bytes */
265 count++;
267 if (cs->debug & L1_DEB_ISAC_FIFO)
268 debugl1(cs, "hfcsx_read_fifo %d count %u)",
269 fifo, count);
271 if ((count > fifo_size) || (count < 4)) {
272 if (cs->debug & L1_DEB_WARN)
273 debugl1(cs, "hfcsx_read_fifo %d packet inv. len %d ", fifo , count);
274 while (count) {
275 count--; /* empty fifo */
276 Read_hfc(cs, HFCSX_FIF_DRD);
278 skb = NULL;
279 } else
280 if ((skb = dev_alloc_skb(count - 3))) {
281 count -= 3;
282 dst = skb_put(skb, count);
284 while (count--)
285 *dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
287 Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 1 */
288 Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 2 */
289 if (Read_hfc(cs, HFCSX_FIF_DRD)) {
290 dev_kfree_skb_irq(skb);
291 if (cs->debug & L1_DEB_ISAC_FIFO)
292 debugl1(cs, "hfcsx_read_fifo %d crc error", fifo);
293 skb = NULL;
295 } else {
296 printk(KERN_WARNING "HFC-SX: receive out of memory\n");
297 return (NULL);
300 Read_hfc(cs, HFCSX_FIF_INCF2); /* increment F2 */
301 udelay(1);
302 while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
303 udelay(1);
304 } while (!skb); /* retry in case of crc error */
305 return (skb);
308 /******************************************/
309 /* free hardware resources used by driver */
310 /******************************************/
311 static void
312 release_io_hfcsx(struct IsdnCardState *cs)
314 cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */
315 Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
316 Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET); /* Reset On */
317 msleep(30); /* Timeout 30ms */
318 Write_hfc(cs, HFCSX_CIRM, 0); /* Reset Off */
319 del_timer(&cs->hw.hfcsx.timer);
320 release_region(cs->hw.hfcsx.base, 2); /* release IO-Block */
321 kfree(cs->hw.hfcsx.extra);
322 cs->hw.hfcsx.extra = NULL;
325 /**********************************************************/
326 /* set_fifo_size determines the size of the RAM and FIFOs */
327 /* returning 0 -> need to reset the chip again. */
328 /**********************************************************/
329 static int set_fifo_size(struct IsdnCardState *cs)
332 if (cs->hw.hfcsx.b_fifo_size) return (1); /* already determined */
334 if ((cs->hw.hfcsx.chip >> 4) == 9) {
335 cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_32K;
336 return (1);
339 cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_8K;
340 cs->hw.hfcsx.cirm |= 0x10; /* only 8K of ram */
341 return (0);
345 /********************************************************************************/
346 /* function called to reset the HFC SX chip. A complete software reset of chip */
347 /* and fifos is done. */
348 /********************************************************************************/
349 static void
350 reset_hfcsx(struct IsdnCardState *cs)
352 cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */
353 Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
355 printk(KERN_INFO "HFC_SX: resetting card\n");
356 while (1) {
357 Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET | cs->hw.hfcsx.cirm); /* Reset */
358 mdelay(30);
359 Write_hfc(cs, HFCSX_CIRM, cs->hw.hfcsx.cirm); /* Reset Off */
360 mdelay(20);
361 if (Read_hfc(cs, HFCSX_STATUS) & 2)
362 printk(KERN_WARNING "HFC-SX init bit busy\n");
363 cs->hw.hfcsx.last_fifo = 0xff; /* invalidate */
364 if (!set_fifo_size(cs)) continue;
365 break;
368 cs->hw.hfcsx.trm = 0 + HFCSX_BTRANS_THRESMASK; /* no echo connect , threshold */
369 Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
371 Write_hfc(cs, HFCSX_CLKDEL, 0x0e); /* ST-Bit delay for TE-Mode */
372 cs->hw.hfcsx.sctrl_e = HFCSX_AUTO_AWAKE;
373 Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e); /* S/T Auto awake */
374 cs->hw.hfcsx.bswapped = 0; /* no exchange */
375 cs->hw.hfcsx.nt_mode = 0; /* we are in TE mode */
376 cs->hw.hfcsx.ctmt = HFCSX_TIM3_125 | HFCSX_AUTO_TIMER;
377 Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
379 cs->hw.hfcsx.int_m1 = HFCSX_INTS_DTRANS | HFCSX_INTS_DREC |
380 HFCSX_INTS_L1STATE | HFCSX_INTS_TIMER;
381 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
383 /* Clear already pending ints */
384 Read_hfc(cs, HFCSX_INT_S1);
386 Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 2); /* HFC ST 2 */
387 udelay(10);
388 Write_hfc(cs, HFCSX_STATES, 2); /* HFC ST 2 */
389 cs->hw.hfcsx.mst_m = HFCSX_MASTER; /* HFC Master Mode */
391 Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
392 cs->hw.hfcsx.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
393 Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
394 cs->hw.hfcsx.sctrl_r = 0;
395 Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
397 /* Init GCI/IOM2 in master mode */
398 /* Slots 0 and 1 are set for B-chan 1 and 2 */
399 /* D- and monitor/CI channel are not enabled */
400 /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
401 /* STIO2 is used as data input, B1+B2 from IOM->ST */
402 /* ST B-channel send disabled -> continuous 1s */
403 /* The IOM slots are always enabled */
404 cs->hw.hfcsx.conn = 0x36; /* set data flow directions */
405 Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
406 Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
407 Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
408 Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
409 Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
411 /* Finally enable IRQ output */
412 cs->hw.hfcsx.int_m2 = HFCSX_IRQ_ENABLE;
413 Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
414 Read_hfc(cs, HFCSX_INT_S2);
417 /***************************************************/
418 /* Timer function called when kernel timer expires */
419 /***************************************************/
420 static void
421 hfcsx_Timer(struct timer_list *t)
423 struct IsdnCardState *cs = from_timer(cs, t, hw.hfcsx.timer);
424 cs->hw.hfcsx.timer.expires = jiffies + 75;
425 /* WD RESET */
426 /* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcsx.ctmt | 0x80);
427 add_timer(&cs->hw.hfcsx.timer);
431 /************************************************/
432 /* select a b-channel entry matching and active */
433 /************************************************/
434 static
435 struct BCState *
436 Sel_BCS(struct IsdnCardState *cs, int channel)
438 if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
439 return (&cs->bcs[0]);
440 else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
441 return (&cs->bcs[1]);
442 else
443 return (NULL);
446 /*******************************/
447 /* D-channel receive procedure */
448 /*******************************/
449 static
451 receive_dmsg(struct IsdnCardState *cs)
453 struct sk_buff *skb;
454 int count = 5;
456 if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
457 debugl1(cs, "rec_dmsg blocked");
458 return (1);
461 do {
462 skb = read_fifo(cs, HFCSX_SEL_D_RX, 0);
463 if (skb) {
464 skb_queue_tail(&cs->rq, skb);
465 schedule_event(cs, D_RCVBUFREADY);
467 } while (--count && skb);
469 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
470 return (1);
473 /**********************************/
474 /* B-channel main receive routine */
475 /**********************************/
476 static void
477 main_rec_hfcsx(struct BCState *bcs)
479 struct IsdnCardState *cs = bcs->cs;
480 int count = 5;
481 struct sk_buff *skb;
483 Begin:
484 count--;
485 if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
486 debugl1(cs, "rec_data %d blocked", bcs->channel);
487 return;
489 skb = read_fifo(cs, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
490 HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX,
491 (bcs->mode == L1_MODE_TRANS) ?
492 HFCSX_BTRANS_THRESHOLD : 0);
494 if (skb) {
495 skb_queue_tail(&bcs->rqueue, skb);
496 schedule_event(bcs, B_RCVBUFREADY);
499 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
500 if (count && skb)
501 goto Begin;
502 return;
505 /**************************/
506 /* D-channel send routine */
507 /**************************/
508 static void
509 hfcsx_fill_dfifo(struct IsdnCardState *cs)
511 if (!cs->tx_skb)
512 return;
513 if (cs->tx_skb->len <= 0)
514 return;
516 if (write_fifo(cs, cs->tx_skb, HFCSX_SEL_D_TX, 0)) {
517 dev_kfree_skb_any(cs->tx_skb);
518 cs->tx_skb = NULL;
520 return;
523 /**************************/
524 /* B-channel send routine */
525 /**************************/
526 static void
527 hfcsx_fill_fifo(struct BCState *bcs)
529 struct IsdnCardState *cs = bcs->cs;
531 if (!bcs->tx_skb)
532 return;
533 if (bcs->tx_skb->len <= 0)
534 return;
536 if (write_fifo(cs, bcs->tx_skb,
537 ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
538 HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX,
539 (bcs->mode == L1_MODE_TRANS) ?
540 HFCSX_BTRANS_THRESHOLD : 0)) {
542 bcs->tx_cnt -= bcs->tx_skb->len;
543 if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
544 (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
545 u_long flags;
546 spin_lock_irqsave(&bcs->aclock, flags);
547 bcs->ackcnt += bcs->tx_skb->len;
548 spin_unlock_irqrestore(&bcs->aclock, flags);
549 schedule_event(bcs, B_ACKPENDING);
551 dev_kfree_skb_any(bcs->tx_skb);
552 bcs->tx_skb = NULL;
553 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
557 /**********************************************/
558 /* D-channel l1 state call for leased NT-mode */
559 /**********************************************/
560 static void
561 dch_nt_l2l1(struct PStack *st, int pr, void *arg)
563 struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
565 switch (pr) {
566 case (PH_DATA | REQUEST):
567 case (PH_PULL | REQUEST):
568 case (PH_PULL | INDICATION):
569 st->l1.l1hw(st, pr, arg);
570 break;
571 case (PH_ACTIVATE | REQUEST):
572 st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
573 break;
574 case (PH_TESTLOOP | REQUEST):
575 if (1 & (long) arg)
576 debugl1(cs, "PH_TEST_LOOP B1");
577 if (2 & (long) arg)
578 debugl1(cs, "PH_TEST_LOOP B2");
579 if (!(3 & (long) arg))
580 debugl1(cs, "PH_TEST_LOOP DISABLED");
581 st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
582 break;
583 default:
584 if (cs->debug)
585 debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
586 break;
592 /***********************/
593 /* set/reset echo mode */
594 /***********************/
595 static int
596 hfcsx_auxcmd(struct IsdnCardState *cs, isdn_ctrl *ic)
598 unsigned long flags;
599 int i = *(unsigned int *) ic->parm.num;
601 if ((ic->arg == 98) &&
602 (!(cs->hw.hfcsx.int_m1 & (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC + HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC)))) {
603 spin_lock_irqsave(&cs->lock, flags);
604 Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 0); /* HFC ST G0 */
605 udelay(10);
606 cs->hw.hfcsx.sctrl |= SCTRL_MODE_NT;
607 Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl); /* set NT-mode */
608 udelay(10);
609 Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 1); /* HFC ST G1 */
610 udelay(10);
611 Write_hfc(cs, HFCSX_STATES, 1 | HFCSX_ACTIVATE | HFCSX_DO_ACTION);
612 cs->dc.hfcsx.ph_state = 1;
613 cs->hw.hfcsx.nt_mode = 1;
614 cs->hw.hfcsx.nt_timer = 0;
615 spin_unlock_irqrestore(&cs->lock, flags);
616 cs->stlist->l2.l2l1 = dch_nt_l2l1;
617 debugl1(cs, "NT mode activated");
618 return (0);
620 if ((cs->chanlimit > 1) || (cs->hw.hfcsx.bswapped) ||
621 (cs->hw.hfcsx.nt_mode) || (ic->arg != 12))
622 return (-EINVAL);
624 if (i) {
625 cs->logecho = 1;
626 cs->hw.hfcsx.trm |= 0x20; /* enable echo chan */
627 cs->hw.hfcsx.int_m1 |= HFCSX_INTS_B2REC;
628 /* reset Channel !!!!! */
629 } else {
630 cs->logecho = 0;
631 cs->hw.hfcsx.trm &= ~0x20; /* disable echo chan */
632 cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_B2REC;
634 cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
635 cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
636 cs->hw.hfcsx.conn |= 0x10; /* B2-IOM -> B2-ST */
637 cs->hw.hfcsx.ctmt &= ~2;
638 spin_lock_irqsave(&cs->lock, flags);
639 Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
640 Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
641 Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
642 Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
643 Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
644 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
645 spin_unlock_irqrestore(&cs->lock, flags);
646 return (0);
647 } /* hfcsx_auxcmd */
649 /*****************************/
650 /* E-channel receive routine */
651 /*****************************/
652 static void
653 receive_emsg(struct IsdnCardState *cs)
655 int count = 5;
656 u_char *ptr;
657 struct sk_buff *skb;
659 if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
660 debugl1(cs, "echo_rec_data blocked");
661 return;
663 do {
664 skb = read_fifo(cs, HFCSX_SEL_B2_RX, 0);
665 if (skb) {
666 if (cs->debug & DEB_DLOG_HEX) {
667 ptr = cs->dlog;
668 if ((skb->len) < MAX_DLOG_SPACE / 3 - 10) {
669 *ptr++ = 'E';
670 *ptr++ = 'C';
671 *ptr++ = 'H';
672 *ptr++ = 'O';
673 *ptr++ = ':';
674 ptr += QuickHex(ptr, skb->data, skb->len);
675 ptr--;
676 *ptr++ = '\n';
677 *ptr = 0;
678 HiSax_putstatus(cs, NULL, cs->dlog);
679 } else
680 HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", skb->len);
682 dev_kfree_skb_any(skb);
684 } while (--count && skb);
686 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
687 return;
688 } /* receive_emsg */
691 /*********************/
692 /* Interrupt handler */
693 /*********************/
694 static irqreturn_t
695 hfcsx_interrupt(int intno, void *dev_id)
697 struct IsdnCardState *cs = dev_id;
698 u_char exval;
699 struct BCState *bcs;
700 int count = 15;
701 u_long flags;
702 u_char val, stat;
704 if (!(cs->hw.hfcsx.int_m2 & 0x08))
705 return IRQ_NONE; /* not initialised */
707 spin_lock_irqsave(&cs->lock, flags);
708 if (HFCSX_ANYINT & (stat = Read_hfc(cs, HFCSX_STATUS))) {
709 val = Read_hfc(cs, HFCSX_INT_S1);
710 if (cs->debug & L1_DEB_ISAC)
711 debugl1(cs, "HFC-SX: stat(%02x) s1(%02x)", stat, val);
712 } else {
713 spin_unlock_irqrestore(&cs->lock, flags);
714 return IRQ_NONE;
716 if (cs->debug & L1_DEB_ISAC)
717 debugl1(cs, "HFC-SX irq %x %s", val,
718 test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
719 "locked" : "unlocked");
720 val &= cs->hw.hfcsx.int_m1;
721 if (val & 0x40) { /* state machine irq */
722 exval = Read_hfc(cs, HFCSX_STATES) & 0xf;
723 if (cs->debug & L1_DEB_ISAC)
724 debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcsx.ph_state,
725 exval);
726 cs->dc.hfcsx.ph_state = exval;
727 schedule_event(cs, D_L1STATECHANGE);
728 val &= ~0x40;
730 if (val & 0x80) { /* timer irq */
731 if (cs->hw.hfcsx.nt_mode) {
732 if ((--cs->hw.hfcsx.nt_timer) < 0)
733 schedule_event(cs, D_L1STATECHANGE);
735 val &= ~0x80;
736 Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
738 while (val) {
739 if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
740 cs->hw.hfcsx.int_s1 |= val;
741 spin_unlock_irqrestore(&cs->lock, flags);
742 return IRQ_HANDLED;
744 if (cs->hw.hfcsx.int_s1 & 0x18) {
745 exval = val;
746 val = cs->hw.hfcsx.int_s1;
747 cs->hw.hfcsx.int_s1 = exval;
749 if (val & 0x08) {
750 if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
751 if (cs->debug)
752 debugl1(cs, "hfcsx spurious 0x08 IRQ");
753 } else
754 main_rec_hfcsx(bcs);
756 if (val & 0x10) {
757 if (cs->logecho)
758 receive_emsg(cs);
759 else if (!(bcs = Sel_BCS(cs, 1))) {
760 if (cs->debug)
761 debugl1(cs, "hfcsx spurious 0x10 IRQ");
762 } else
763 main_rec_hfcsx(bcs);
765 if (val & 0x01) {
766 if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
767 if (cs->debug)
768 debugl1(cs, "hfcsx spurious 0x01 IRQ");
769 } else {
770 if (bcs->tx_skb) {
771 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
772 hfcsx_fill_fifo(bcs);
773 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
774 } else
775 debugl1(cs, "fill_data %d blocked", bcs->channel);
776 } else {
777 if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
778 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
779 hfcsx_fill_fifo(bcs);
780 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
781 } else
782 debugl1(cs, "fill_data %d blocked", bcs->channel);
783 } else {
784 schedule_event(bcs, B_XMTBUFREADY);
789 if (val & 0x02) {
790 if (!(bcs = Sel_BCS(cs, 1))) {
791 if (cs->debug)
792 debugl1(cs, "hfcsx spurious 0x02 IRQ");
793 } else {
794 if (bcs->tx_skb) {
795 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
796 hfcsx_fill_fifo(bcs);
797 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
798 } else
799 debugl1(cs, "fill_data %d blocked", bcs->channel);
800 } else {
801 if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
802 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
803 hfcsx_fill_fifo(bcs);
804 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
805 } else
806 debugl1(cs, "fill_data %d blocked", bcs->channel);
807 } else {
808 schedule_event(bcs, B_XMTBUFREADY);
813 if (val & 0x20) { /* receive dframe */
814 receive_dmsg(cs);
816 if (val & 0x04) { /* dframe transmitted */
817 if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
818 del_timer(&cs->dbusytimer);
819 if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
820 schedule_event(cs, D_CLEARBUSY);
821 if (cs->tx_skb) {
822 if (cs->tx_skb->len) {
823 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
824 hfcsx_fill_dfifo(cs);
825 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
826 } else {
827 debugl1(cs, "hfcsx_fill_dfifo irq blocked");
829 goto afterXPR;
830 } else {
831 dev_kfree_skb_irq(cs->tx_skb);
832 cs->tx_cnt = 0;
833 cs->tx_skb = NULL;
836 if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
837 cs->tx_cnt = 0;
838 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
839 hfcsx_fill_dfifo(cs);
840 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
841 } else {
842 debugl1(cs, "hfcsx_fill_dfifo irq blocked");
844 } else
845 schedule_event(cs, D_XMTBUFREADY);
847 afterXPR:
848 if (cs->hw.hfcsx.int_s1 && count--) {
849 val = cs->hw.hfcsx.int_s1;
850 cs->hw.hfcsx.int_s1 = 0;
851 if (cs->debug & L1_DEB_ISAC)
852 debugl1(cs, "HFC-SX irq %x loop %d", val, 15 - count);
853 } else
854 val = 0;
856 spin_unlock_irqrestore(&cs->lock, flags);
857 return IRQ_HANDLED;
860 /********************************************************************/
861 /* timer callback for D-chan busy resolution. Currently no function */
862 /********************************************************************/
863 static void
864 hfcsx_dbusy_timer(struct timer_list *t)
868 /*************************************/
869 /* Layer 1 D-channel hardware access */
870 /*************************************/
871 static void
872 HFCSX_l1hw(struct PStack *st, int pr, void *arg)
874 struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
875 struct sk_buff *skb = arg;
876 u_long flags;
878 switch (pr) {
879 case (PH_DATA | REQUEST):
880 if (cs->debug & DEB_DLOG_HEX)
881 LogFrame(cs, skb->data, skb->len);
882 if (cs->debug & DEB_DLOG_VERBOSE)
883 dlogframe(cs, skb, 0);
884 spin_lock_irqsave(&cs->lock, flags);
885 if (cs->tx_skb) {
886 skb_queue_tail(&cs->sq, skb);
887 #ifdef L2FRAME_DEBUG /* psa */
888 if (cs->debug & L1_DEB_LAPD)
889 Logl2Frame(cs, skb, "PH_DATA Queued", 0);
890 #endif
891 } else {
892 cs->tx_skb = skb;
893 cs->tx_cnt = 0;
894 #ifdef L2FRAME_DEBUG /* psa */
895 if (cs->debug & L1_DEB_LAPD)
896 Logl2Frame(cs, skb, "PH_DATA", 0);
897 #endif
898 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
899 hfcsx_fill_dfifo(cs);
900 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
901 } else
902 debugl1(cs, "hfcsx_fill_dfifo blocked");
905 spin_unlock_irqrestore(&cs->lock, flags);
906 break;
907 case (PH_PULL | INDICATION):
908 spin_lock_irqsave(&cs->lock, flags);
909 if (cs->tx_skb) {
910 if (cs->debug & L1_DEB_WARN)
911 debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
912 skb_queue_tail(&cs->sq, skb);
913 spin_unlock_irqrestore(&cs->lock, flags);
914 break;
916 if (cs->debug & DEB_DLOG_HEX)
917 LogFrame(cs, skb->data, skb->len);
918 if (cs->debug & DEB_DLOG_VERBOSE)
919 dlogframe(cs, skb, 0);
920 cs->tx_skb = skb;
921 cs->tx_cnt = 0;
922 #ifdef L2FRAME_DEBUG /* psa */
923 if (cs->debug & L1_DEB_LAPD)
924 Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
925 #endif
926 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
927 hfcsx_fill_dfifo(cs);
928 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
929 } else
930 debugl1(cs, "hfcsx_fill_dfifo blocked");
931 spin_unlock_irqrestore(&cs->lock, flags);
932 break;
933 case (PH_PULL | REQUEST):
934 #ifdef L2FRAME_DEBUG /* psa */
935 if (cs->debug & L1_DEB_LAPD)
936 debugl1(cs, "-> PH_REQUEST_PULL");
937 #endif
938 if (!cs->tx_skb) {
939 test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
940 st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
941 } else
942 test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
943 break;
944 case (HW_RESET | REQUEST):
945 spin_lock_irqsave(&cs->lock, flags);
946 Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 3); /* HFC ST 3 */
947 udelay(6);
948 Write_hfc(cs, HFCSX_STATES, 3); /* HFC ST 2 */
949 cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
950 Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
951 Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
952 spin_unlock_irqrestore(&cs->lock, flags);
953 l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
954 break;
955 case (HW_ENABLE | REQUEST):
956 spin_lock_irqsave(&cs->lock, flags);
957 Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
958 spin_unlock_irqrestore(&cs->lock, flags);
959 break;
960 case (HW_DEACTIVATE | REQUEST):
961 spin_lock_irqsave(&cs->lock, flags);
962 cs->hw.hfcsx.mst_m &= ~HFCSX_MASTER;
963 Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
964 spin_unlock_irqrestore(&cs->lock, flags);
965 break;
966 case (HW_INFO3 | REQUEST):
967 spin_lock_irqsave(&cs->lock, flags);
968 cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
969 Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
970 spin_unlock_irqrestore(&cs->lock, flags);
971 break;
972 case (HW_TESTLOOP | REQUEST):
973 spin_lock_irqsave(&cs->lock, flags);
974 switch ((long) arg) {
975 case (1):
976 Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* tx slot */
977 Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* rx slot */
978 cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~7) | 1;
979 Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
980 break;
981 case (2):
982 Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* tx slot */
983 Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* rx slot */
984 cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~0x38) | 0x08;
985 Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
986 break;
987 default:
988 spin_unlock_irqrestore(&cs->lock, flags);
989 if (cs->debug & L1_DEB_WARN)
990 debugl1(cs, "hfcsx_l1hw loop invalid %4lx", (unsigned long)arg);
991 return;
993 cs->hw.hfcsx.trm |= 0x80; /* enable IOM-loop */
994 Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
995 spin_unlock_irqrestore(&cs->lock, flags);
996 break;
997 default:
998 if (cs->debug & L1_DEB_WARN)
999 debugl1(cs, "hfcsx_l1hw unknown pr %4x", pr);
1000 break;
1004 /***********************************************/
1005 /* called during init setting l1 stack pointer */
1006 /***********************************************/
1007 static void
1008 setstack_hfcsx(struct PStack *st, struct IsdnCardState *cs)
1010 st->l1.l1hw = HFCSX_l1hw;
1013 /**************************************/
1014 /* send B-channel data if not blocked */
1015 /**************************************/
1016 static void
1017 hfcsx_send_data(struct BCState *bcs)
1019 struct IsdnCardState *cs = bcs->cs;
1021 if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
1022 hfcsx_fill_fifo(bcs);
1023 test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
1024 } else
1025 debugl1(cs, "send_data %d blocked", bcs->channel);
1028 /***************************************************************/
1029 /* activate/deactivate hardware for selected channels and mode */
1030 /***************************************************************/
1031 static void
1032 mode_hfcsx(struct BCState *bcs, int mode, int bc)
1034 struct IsdnCardState *cs = bcs->cs;
1035 int fifo2;
1037 if (cs->debug & L1_DEB_HSCX)
1038 debugl1(cs, "HFCSX bchannel mode %d bchan %d/%d",
1039 mode, bc, bcs->channel);
1040 bcs->mode = mode;
1041 bcs->channel = bc;
1042 fifo2 = bc;
1043 if (cs->chanlimit > 1) {
1044 cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
1045 cs->hw.hfcsx.sctrl_e &= ~0x80;
1046 } else {
1047 if (bc) {
1048 if (mode != L1_MODE_NULL) {
1049 cs->hw.hfcsx.bswapped = 1; /* B1 and B2 exchanged */
1050 cs->hw.hfcsx.sctrl_e |= 0x80;
1051 } else {
1052 cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
1053 cs->hw.hfcsx.sctrl_e &= ~0x80;
1055 fifo2 = 0;
1056 } else {
1057 cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
1058 cs->hw.hfcsx.sctrl_e &= ~0x80;
1061 switch (mode) {
1062 case (L1_MODE_NULL):
1063 if (bc) {
1064 cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
1065 cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
1066 } else {
1067 cs->hw.hfcsx.sctrl &= ~SCTRL_B1_ENA;
1068 cs->hw.hfcsx.sctrl_r &= ~SCTRL_B1_ENA;
1070 if (fifo2) {
1071 cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1072 } else {
1073 cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1075 break;
1076 case (L1_MODE_TRANS):
1077 if (bc) {
1078 cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
1079 cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
1080 } else {
1081 cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
1082 cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
1084 if (fifo2) {
1085 cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1086 cs->hw.hfcsx.ctmt |= 2;
1087 cs->hw.hfcsx.conn &= ~0x18;
1088 } else {
1089 cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1090 cs->hw.hfcsx.ctmt |= 1;
1091 cs->hw.hfcsx.conn &= ~0x03;
1093 break;
1094 case (L1_MODE_HDLC):
1095 if (bc) {
1096 cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
1097 cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
1098 } else {
1099 cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
1100 cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
1102 if (fifo2) {
1103 cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1104 cs->hw.hfcsx.ctmt &= ~2;
1105 cs->hw.hfcsx.conn &= ~0x18;
1106 } else {
1107 cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1108 cs->hw.hfcsx.ctmt &= ~1;
1109 cs->hw.hfcsx.conn &= ~0x03;
1111 break;
1112 case (L1_MODE_EXTRN):
1113 if (bc) {
1114 cs->hw.hfcsx.conn |= 0x10;
1115 cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
1116 cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
1117 cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1118 } else {
1119 cs->hw.hfcsx.conn |= 0x02;
1120 cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
1121 cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
1122 cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1124 break;
1126 Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);
1127 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1128 Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
1129 Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
1130 Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
1131 Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
1132 if (mode != L1_MODE_EXTRN) {
1133 reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX);
1134 reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX);
1138 /******************************/
1139 /* Layer2 -> Layer 1 Transfer */
1140 /******************************/
1141 static void
1142 hfcsx_l2l1(struct PStack *st, int pr, void *arg)
1144 struct BCState *bcs = st->l1.bcs;
1145 struct sk_buff *skb = arg;
1146 u_long flags;
1148 switch (pr) {
1149 case (PH_DATA | REQUEST):
1150 spin_lock_irqsave(&bcs->cs->lock, flags);
1151 if (bcs->tx_skb) {
1152 skb_queue_tail(&bcs->squeue, skb);
1153 } else {
1154 bcs->tx_skb = skb;
1155 // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
1156 bcs->cs->BC_Send_Data(bcs);
1158 spin_unlock_irqrestore(&bcs->cs->lock, flags);
1159 break;
1160 case (PH_PULL | INDICATION):
1161 spin_lock_irqsave(&bcs->cs->lock, flags);
1162 if (bcs->tx_skb) {
1163 printk(KERN_WARNING "%s: this shouldn't happen\n",
1164 __func__);
1165 } else {
1166 // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
1167 bcs->tx_skb = skb;
1168 bcs->cs->BC_Send_Data(bcs);
1170 spin_unlock_irqrestore(&bcs->cs->lock, flags);
1171 break;
1172 case (PH_PULL | REQUEST):
1173 if (!bcs->tx_skb) {
1174 test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
1175 st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
1176 } else
1177 test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
1178 break;
1179 case (PH_ACTIVATE | REQUEST):
1180 spin_lock_irqsave(&bcs->cs->lock, flags);
1181 test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
1182 mode_hfcsx(bcs, st->l1.mode, st->l1.bc);
1183 spin_unlock_irqrestore(&bcs->cs->lock, flags);
1184 l1_msg_b(st, pr, arg);
1185 break;
1186 case (PH_DEACTIVATE | REQUEST):
1187 l1_msg_b(st, pr, arg);
1188 break;
1189 case (PH_DEACTIVATE | CONFIRM):
1190 spin_lock_irqsave(&bcs->cs->lock, flags);
1191 test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
1192 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
1193 mode_hfcsx(bcs, 0, st->l1.bc);
1194 spin_unlock_irqrestore(&bcs->cs->lock, flags);
1195 st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
1196 break;
1200 /******************************************/
1201 /* deactivate B-channel access and queues */
1202 /******************************************/
1203 static void
1204 close_hfcsx(struct BCState *bcs)
1206 mode_hfcsx(bcs, 0, bcs->channel);
1207 if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
1208 skb_queue_purge(&bcs->rqueue);
1209 skb_queue_purge(&bcs->squeue);
1210 if (bcs->tx_skb) {
1211 dev_kfree_skb_any(bcs->tx_skb);
1212 bcs->tx_skb = NULL;
1213 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
1218 /*************************************/
1219 /* init B-channel queues and control */
1220 /*************************************/
1221 static int
1222 open_hfcsxstate(struct IsdnCardState *cs, struct BCState *bcs)
1224 if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
1225 skb_queue_head_init(&bcs->rqueue);
1226 skb_queue_head_init(&bcs->squeue);
1228 bcs->tx_skb = NULL;
1229 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
1230 bcs->event = 0;
1231 bcs->tx_cnt = 0;
1232 return (0);
1235 /*********************************/
1236 /* inits the stack for B-channel */
1237 /*********************************/
1238 static int
1239 setstack_2b(struct PStack *st, struct BCState *bcs)
1241 bcs->channel = st->l1.bc;
1242 if (open_hfcsxstate(st->l1.hardware, bcs))
1243 return (-1);
1244 st->l1.bcs = bcs;
1245 st->l2.l2l1 = hfcsx_l2l1;
1246 setstack_manager(st);
1247 bcs->st = st;
1248 setstack_l1_B(st);
1249 return (0);
1252 /***************************/
1253 /* handle L1 state changes */
1254 /***************************/
1255 static void
1256 hfcsx_bh(struct work_struct *work)
1258 struct IsdnCardState *cs =
1259 container_of(work, struct IsdnCardState, tqueue);
1260 u_long flags;
1262 if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
1263 if (!cs->hw.hfcsx.nt_mode)
1264 switch (cs->dc.hfcsx.ph_state) {
1265 case (0):
1266 l1_msg(cs, HW_RESET | INDICATION, NULL);
1267 break;
1268 case (3):
1269 l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
1270 break;
1271 case (8):
1272 l1_msg(cs, HW_RSYNC | INDICATION, NULL);
1273 break;
1274 case (6):
1275 l1_msg(cs, HW_INFO2 | INDICATION, NULL);
1276 break;
1277 case (7):
1278 l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
1279 break;
1280 default:
1281 break;
1282 } else {
1283 switch (cs->dc.hfcsx.ph_state) {
1284 case (2):
1285 spin_lock_irqsave(&cs->lock, flags);
1286 if (cs->hw.hfcsx.nt_timer < 0) {
1287 cs->hw.hfcsx.nt_timer = 0;
1288 cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
1289 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1290 /* Clear already pending ints */
1291 Read_hfc(cs, HFCSX_INT_S1);
1293 Write_hfc(cs, HFCSX_STATES, 4 | HFCSX_LOAD_STATE);
1294 udelay(10);
1295 Write_hfc(cs, HFCSX_STATES, 4);
1296 cs->dc.hfcsx.ph_state = 4;
1297 } else {
1298 cs->hw.hfcsx.int_m1 |= HFCSX_INTS_TIMER;
1299 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1300 cs->hw.hfcsx.ctmt &= ~HFCSX_AUTO_TIMER;
1301 cs->hw.hfcsx.ctmt |= HFCSX_TIM3_125;
1302 Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
1303 Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
1304 cs->hw.hfcsx.nt_timer = NT_T1_COUNT;
1305 Write_hfc(cs, HFCSX_STATES, 2 | HFCSX_NT_G2_G3); /* allow G2 -> G3 transition */
1307 spin_unlock_irqrestore(&cs->lock, flags);
1308 break;
1309 case (1):
1310 case (3):
1311 case (4):
1312 spin_lock_irqsave(&cs->lock, flags);
1313 cs->hw.hfcsx.nt_timer = 0;
1314 cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
1315 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1316 spin_unlock_irqrestore(&cs->lock, flags);
1317 break;
1318 default:
1319 break;
1323 if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
1324 DChannel_proc_rcv(cs);
1325 if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
1326 DChannel_proc_xmt(cs);
1330 /********************************/
1331 /* called for card init message */
1332 /********************************/
1333 static void inithfcsx(struct IsdnCardState *cs)
1335 cs->setstack_d = setstack_hfcsx;
1336 cs->BC_Send_Data = &hfcsx_send_data;
1337 cs->bcs[0].BC_SetStack = setstack_2b;
1338 cs->bcs[1].BC_SetStack = setstack_2b;
1339 cs->bcs[0].BC_Close = close_hfcsx;
1340 cs->bcs[1].BC_Close = close_hfcsx;
1341 mode_hfcsx(cs->bcs, 0, 0);
1342 mode_hfcsx(cs->bcs + 1, 0, 1);
1347 /*******************************************/
1348 /* handle card messages from control layer */
1349 /*******************************************/
1350 static int
1351 hfcsx_card_msg(struct IsdnCardState *cs, int mt, void *arg)
1353 u_long flags;
1355 if (cs->debug & L1_DEB_ISAC)
1356 debugl1(cs, "HFCSX: card_msg %x", mt);
1357 switch (mt) {
1358 case CARD_RESET:
1359 spin_lock_irqsave(&cs->lock, flags);
1360 reset_hfcsx(cs);
1361 spin_unlock_irqrestore(&cs->lock, flags);
1362 return (0);
1363 case CARD_RELEASE:
1364 release_io_hfcsx(cs);
1365 return (0);
1366 case CARD_INIT:
1367 spin_lock_irqsave(&cs->lock, flags);
1368 inithfcsx(cs);
1369 spin_unlock_irqrestore(&cs->lock, flags);
1370 msleep(80); /* Timeout 80ms */
1371 /* now switch timer interrupt off */
1372 spin_lock_irqsave(&cs->lock, flags);
1373 cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
1374 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1375 /* reinit mode reg */
1376 Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
1377 spin_unlock_irqrestore(&cs->lock, flags);
1378 return (0);
1379 case CARD_TEST:
1380 return (0);
1382 return (0);
1385 #ifdef __ISAPNP__
1386 static struct isapnp_device_id hfc_ids[] = {
1387 { ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
1388 ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
1389 (unsigned long) "Teles 16.3c2" },
1390 { 0, }
1393 static struct isapnp_device_id *ipid = &hfc_ids[0];
1394 static struct pnp_card *pnp_c = NULL;
1395 #endif
1397 int setup_hfcsx(struct IsdnCard *card)
1399 struct IsdnCardState *cs = card->cs;
1400 char tmp[64];
1402 strcpy(tmp, hfcsx_revision);
1403 printk(KERN_INFO "HiSax: HFC-SX driver Rev. %s\n", HiSax_getrev(tmp));
1404 #ifdef __ISAPNP__
1405 if (!card->para[1] && isapnp_present()) {
1406 struct pnp_dev *pnp_d;
1407 while (ipid->card_vendor) {
1408 if ((pnp_c = pnp_find_card(ipid->card_vendor,
1409 ipid->card_device, pnp_c))) {
1410 pnp_d = NULL;
1411 if ((pnp_d = pnp_find_dev(pnp_c,
1412 ipid->vendor, ipid->function, pnp_d))) {
1413 int err;
1415 printk(KERN_INFO "HiSax: %s detected\n",
1416 (char *)ipid->driver_data);
1417 pnp_disable_dev(pnp_d);
1418 err = pnp_activate_dev(pnp_d);
1419 if (err < 0) {
1420 printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
1421 __func__, err);
1422 return (0);
1424 card->para[1] = pnp_port_start(pnp_d, 0);
1425 card->para[0] = pnp_irq(pnp_d, 0);
1426 if (card->para[0] == -1 || !card->para[1]) {
1427 printk(KERN_ERR "HFC PnP:some resources are missing %ld/%lx\n",
1428 card->para[0], card->para[1]);
1429 pnp_disable_dev(pnp_d);
1430 return (0);
1432 break;
1433 } else {
1434 printk(KERN_ERR "HFC PnP: PnP error card found, no device\n");
1437 ipid++;
1438 pnp_c = NULL;
1440 if (!ipid->card_vendor) {
1441 printk(KERN_INFO "HFC PnP: no ISAPnP card found\n");
1442 return (0);
1445 #endif
1446 cs->hw.hfcsx.base = card->para[1] & 0xfffe;
1447 cs->irq = card->para[0];
1448 cs->hw.hfcsx.int_s1 = 0;
1449 cs->dc.hfcsx.ph_state = 0;
1450 cs->hw.hfcsx.fifo = 255;
1451 if ((cs->typ == ISDN_CTYPE_HFC_SX) ||
1452 (cs->typ == ISDN_CTYPE_HFC_SP_PCMCIA)) {
1453 if ((!cs->hw.hfcsx.base) || !request_region(cs->hw.hfcsx.base, 2, "HFCSX isdn")) {
1454 printk(KERN_WARNING
1455 "HiSax: HFC-SX io-base %#lx already in use\n",
1456 cs->hw.hfcsx.base);
1457 return (0);
1459 byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.base & 0xFF);
1460 byteout(cs->hw.hfcsx.base + 1,
1461 ((cs->hw.hfcsx.base >> 8) & 3) | 0x54);
1462 udelay(10);
1463 cs->hw.hfcsx.chip = Read_hfc(cs, HFCSX_CHIP_ID);
1464 switch (cs->hw.hfcsx.chip >> 4) {
1465 case 1:
1466 tmp[0] = '+';
1467 break;
1468 case 9:
1469 tmp[0] = 'P';
1470 break;
1471 default:
1472 printk(KERN_WARNING
1473 "HFC-SX: invalid chip id 0x%x\n",
1474 cs->hw.hfcsx.chip >> 4);
1475 release_region(cs->hw.hfcsx.base, 2);
1476 return (0);
1478 if (!ccd_sp_irqtab[cs->irq & 0xF]) {
1479 printk(KERN_WARNING
1480 "HFC_SX: invalid irq %d specified\n", cs->irq & 0xF);
1481 release_region(cs->hw.hfcsx.base, 2);
1482 return (0);
1484 if (!(cs->hw.hfcsx.extra =
1485 kmalloc(sizeof(struct hfcsx_extra), GFP_ATOMIC))) {
1486 release_region(cs->hw.hfcsx.base, 2);
1487 printk(KERN_WARNING "HFC-SX: unable to allocate memory\n");
1488 return (0);
1490 printk(KERN_INFO "HFC-S%c chip detected at base 0x%x IRQ %d HZ %d\n",
1491 tmp[0], (u_int) cs->hw.hfcsx.base, cs->irq, HZ);
1492 cs->hw.hfcsx.int_m2 = 0; /* disable alle interrupts */
1493 cs->hw.hfcsx.int_m1 = 0;
1494 Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1495 Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
1496 } else
1497 return (0); /* no valid card type */
1499 timer_setup(&cs->dbusytimer, hfcsx_dbusy_timer, 0);
1500 INIT_WORK(&cs->tqueue, hfcsx_bh);
1501 cs->readisac = NULL;
1502 cs->writeisac = NULL;
1503 cs->readisacfifo = NULL;
1504 cs->writeisacfifo = NULL;
1505 cs->BC_Read_Reg = NULL;
1506 cs->BC_Write_Reg = NULL;
1507 cs->irq_func = &hfcsx_interrupt;
1509 cs->hw.hfcsx.b_fifo_size = 0; /* fifo size still unknown */
1510 cs->hw.hfcsx.cirm = ccd_sp_irqtab[cs->irq & 0xF]; /* RAM not evaluated */
1511 timer_setup(&cs->hw.hfcsx.timer, hfcsx_Timer, 0);
1513 reset_hfcsx(cs);
1514 cs->cardmsg = &hfcsx_card_msg;
1515 cs->auxcmd = &hfcsx_auxcmd;
1516 return (1);