2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio/consumer.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 static DEFINE_WW_CLASS(regulator_ww_class
);
53 static DEFINE_MUTEX(regulator_nesting_mutex
);
54 static DEFINE_MUTEX(regulator_list_mutex
);
55 static LIST_HEAD(regulator_map_list
);
56 static LIST_HEAD(regulator_ena_gpio_list
);
57 static LIST_HEAD(regulator_supply_alias_list
);
58 static bool has_full_constraints
;
60 static struct dentry
*debugfs_root
;
63 * struct regulator_map
65 * Used to provide symbolic supply names to devices.
67 struct regulator_map
{
68 struct list_head list
;
69 const char *dev_name
; /* The dev_name() for the consumer */
71 struct regulator_dev
*regulator
;
75 * struct regulator_enable_gpio
77 * Management for shared enable GPIO pin
79 struct regulator_enable_gpio
{
80 struct list_head list
;
81 struct gpio_desc
*gpiod
;
82 u32 enable_count
; /* a number of enabled shared GPIO */
83 u32 request_count
; /* a number of requested shared GPIO */
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias
{
92 struct list_head list
;
93 struct device
*src_dev
;
94 const char *src_supply
;
95 struct device
*alias_dev
;
96 const char *alias_supply
;
99 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
100 static int _regulator_disable(struct regulator
*regulator
);
101 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
102 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
103 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
104 static int _notifier_call_chain(struct regulator_dev
*rdev
,
105 unsigned long event
, void *data
);
106 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
107 int min_uV
, int max_uV
);
108 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
109 suspend_state_t state
);
110 static int regulator_set_voltage_rdev(struct regulator_dev
*rdev
,
111 int min_uV
, int max_uV
,
112 suspend_state_t state
);
113 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
115 const char *supply_name
);
116 static void _regulator_put(struct regulator
*regulator
);
118 static const char *rdev_get_name(struct regulator_dev
*rdev
)
120 if (rdev
->constraints
&& rdev
->constraints
->name
)
121 return rdev
->constraints
->name
;
122 else if (rdev
->desc
->name
)
123 return rdev
->desc
->name
;
128 static bool have_full_constraints(void)
130 return has_full_constraints
|| of_have_populated_dt();
133 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
135 if (!rdev
->constraints
) {
136 rdev_err(rdev
, "no constraints\n");
140 if (rdev
->constraints
->valid_ops_mask
& ops
)
147 * regulator_lock_nested - lock a single regulator
148 * @rdev: regulator source
149 * @ww_ctx: w/w mutex acquire context
151 * This function can be called many times by one task on
152 * a single regulator and its mutex will be locked only
153 * once. If a task, which is calling this function is other
154 * than the one, which initially locked the mutex, it will
157 static inline int regulator_lock_nested(struct regulator_dev
*rdev
,
158 struct ww_acquire_ctx
*ww_ctx
)
163 mutex_lock(®ulator_nesting_mutex
);
165 if (ww_ctx
|| !ww_mutex_trylock(&rdev
->mutex
)) {
166 if (rdev
->mutex_owner
== current
)
172 mutex_unlock(®ulator_nesting_mutex
);
173 ret
= ww_mutex_lock(&rdev
->mutex
, ww_ctx
);
174 mutex_lock(®ulator_nesting_mutex
);
180 if (lock
&& ret
!= -EDEADLK
) {
182 rdev
->mutex_owner
= current
;
185 mutex_unlock(®ulator_nesting_mutex
);
191 * regulator_lock - lock a single regulator
192 * @rdev: regulator source
194 * This function can be called many times by one task on
195 * a single regulator and its mutex will be locked only
196 * once. If a task, which is calling this function is other
197 * than the one, which initially locked the mutex, it will
200 void regulator_lock(struct regulator_dev
*rdev
)
202 regulator_lock_nested(rdev
, NULL
);
204 EXPORT_SYMBOL_GPL(regulator_lock
);
207 * regulator_unlock - unlock a single regulator
208 * @rdev: regulator_source
210 * This function unlocks the mutex when the
211 * reference counter reaches 0.
213 void regulator_unlock(struct regulator_dev
*rdev
)
215 mutex_lock(®ulator_nesting_mutex
);
217 if (--rdev
->ref_cnt
== 0) {
218 rdev
->mutex_owner
= NULL
;
219 ww_mutex_unlock(&rdev
->mutex
);
222 WARN_ON_ONCE(rdev
->ref_cnt
< 0);
224 mutex_unlock(®ulator_nesting_mutex
);
226 EXPORT_SYMBOL_GPL(regulator_unlock
);
228 static bool regulator_supply_is_couple(struct regulator_dev
*rdev
)
230 struct regulator_dev
*c_rdev
;
233 for (i
= 1; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
234 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
236 if (rdev
->supply
->rdev
== c_rdev
)
243 static void regulator_unlock_recursive(struct regulator_dev
*rdev
,
244 unsigned int n_coupled
)
246 struct regulator_dev
*c_rdev
;
249 for (i
= n_coupled
; i
> 0; i
--) {
250 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
- 1];
255 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
))
256 regulator_unlock_recursive(
257 c_rdev
->supply
->rdev
,
258 c_rdev
->coupling_desc
.n_coupled
);
260 regulator_unlock(c_rdev
);
264 static int regulator_lock_recursive(struct regulator_dev
*rdev
,
265 struct regulator_dev
**new_contended_rdev
,
266 struct regulator_dev
**old_contended_rdev
,
267 struct ww_acquire_ctx
*ww_ctx
)
269 struct regulator_dev
*c_rdev
;
272 for (i
= 0; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
273 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
278 if (c_rdev
!= *old_contended_rdev
) {
279 err
= regulator_lock_nested(c_rdev
, ww_ctx
);
281 if (err
== -EDEADLK
) {
282 *new_contended_rdev
= c_rdev
;
286 /* shouldn't happen */
287 WARN_ON_ONCE(err
!= -EALREADY
);
290 *old_contended_rdev
= NULL
;
293 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
294 err
= regulator_lock_recursive(c_rdev
->supply
->rdev
,
299 regulator_unlock(c_rdev
);
308 regulator_unlock_recursive(rdev
, i
);
314 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
316 * @rdev: regulator source
317 * @ww_ctx: w/w mutex acquire context
319 * Unlock all regulators related with rdev by coupling or supplying.
321 static void regulator_unlock_dependent(struct regulator_dev
*rdev
,
322 struct ww_acquire_ctx
*ww_ctx
)
324 regulator_unlock_recursive(rdev
, rdev
->coupling_desc
.n_coupled
);
325 ww_acquire_fini(ww_ctx
);
329 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
330 * @rdev: regulator source
331 * @ww_ctx: w/w mutex acquire context
333 * This function as a wrapper on regulator_lock_recursive(), which locks
334 * all regulators related with rdev by coupling or supplying.
336 static void regulator_lock_dependent(struct regulator_dev
*rdev
,
337 struct ww_acquire_ctx
*ww_ctx
)
339 struct regulator_dev
*new_contended_rdev
= NULL
;
340 struct regulator_dev
*old_contended_rdev
= NULL
;
343 mutex_lock(®ulator_list_mutex
);
345 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
348 if (new_contended_rdev
) {
349 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
350 old_contended_rdev
= new_contended_rdev
;
351 old_contended_rdev
->ref_cnt
++;
354 err
= regulator_lock_recursive(rdev
,
359 if (old_contended_rdev
)
360 regulator_unlock(old_contended_rdev
);
362 } while (err
== -EDEADLK
);
364 ww_acquire_done(ww_ctx
);
366 mutex_unlock(®ulator_list_mutex
);
370 * of_get_child_regulator - get a child regulator device node
371 * based on supply name
372 * @parent: Parent device node
373 * @prop_name: Combination regulator supply name and "-supply"
375 * Traverse all child nodes.
376 * Extract the child regulator device node corresponding to the supply name.
377 * returns the device node corresponding to the regulator if found, else
380 static struct device_node
*of_get_child_regulator(struct device_node
*parent
,
381 const char *prop_name
)
383 struct device_node
*regnode
= NULL
;
384 struct device_node
*child
= NULL
;
386 for_each_child_of_node(parent
, child
) {
387 regnode
= of_parse_phandle(child
, prop_name
, 0);
390 regnode
= of_get_child_regulator(child
, prop_name
);
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
409 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
411 struct device_node
*regnode
= NULL
;
412 char prop_name
[32]; /* 32 is max size of property name */
414 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
416 snprintf(prop_name
, 32, "%s-supply", supply
);
417 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
420 regnode
= of_get_child_regulator(dev
->of_node
, prop_name
);
424 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
425 prop_name
, dev
->of_node
);
431 /* Platform voltage constraint check */
432 static int regulator_check_voltage(struct regulator_dev
*rdev
,
433 int *min_uV
, int *max_uV
)
435 BUG_ON(*min_uV
> *max_uV
);
437 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
438 rdev_err(rdev
, "voltage operation not allowed\n");
442 if (*max_uV
> rdev
->constraints
->max_uV
)
443 *max_uV
= rdev
->constraints
->max_uV
;
444 if (*min_uV
< rdev
->constraints
->min_uV
)
445 *min_uV
= rdev
->constraints
->min_uV
;
447 if (*min_uV
> *max_uV
) {
448 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state
)
459 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
462 /* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
465 static int regulator_check_consumers(struct regulator_dev
*rdev
,
466 int *min_uV
, int *max_uV
,
467 suspend_state_t state
)
469 struct regulator
*regulator
;
470 struct regulator_voltage
*voltage
;
472 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
473 voltage
= ®ulator
->voltage
[state
];
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
478 if (!voltage
->min_uV
&& !voltage
->max_uV
)
481 if (*max_uV
> voltage
->max_uV
)
482 *max_uV
= voltage
->max_uV
;
483 if (*min_uV
< voltage
->min_uV
)
484 *min_uV
= voltage
->min_uV
;
487 if (*min_uV
> *max_uV
) {
488 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
498 int *min_uA
, int *max_uA
)
500 BUG_ON(*min_uA
> *max_uA
);
502 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
503 rdev_err(rdev
, "current operation not allowed\n");
507 if (*max_uA
> rdev
->constraints
->max_uA
)
508 *max_uA
= rdev
->constraints
->max_uA
;
509 if (*min_uA
< rdev
->constraints
->min_uA
)
510 *min_uA
= rdev
->constraints
->min_uA
;
512 if (*min_uA
> *max_uA
) {
513 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
526 case REGULATOR_MODE_FAST
:
527 case REGULATOR_MODE_NORMAL
:
528 case REGULATOR_MODE_IDLE
:
529 case REGULATOR_MODE_STANDBY
:
532 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
536 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
537 rdev_err(rdev
, "mode operation not allowed\n");
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
545 if (rdev
->constraints
->valid_modes_mask
& *mode
)
553 static inline struct regulator_state
*
554 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
556 if (rdev
->constraints
== NULL
)
560 case PM_SUSPEND_STANDBY
:
561 return &rdev
->constraints
->state_standby
;
563 return &rdev
->constraints
->state_mem
;
565 return &rdev
->constraints
->state_disk
;
571 static ssize_t
regulator_uV_show(struct device
*dev
,
572 struct device_attribute
*attr
, char *buf
)
574 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
577 regulator_lock(rdev
);
578 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
579 regulator_unlock(rdev
);
583 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
585 static ssize_t
regulator_uA_show(struct device
*dev
,
586 struct device_attribute
*attr
, char *buf
)
588 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
590 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
592 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
594 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
597 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
599 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
601 static DEVICE_ATTR_RO(name
);
603 static const char *regulator_opmode_to_str(int mode
)
606 case REGULATOR_MODE_FAST
:
608 case REGULATOR_MODE_NORMAL
:
610 case REGULATOR_MODE_IDLE
:
612 case REGULATOR_MODE_STANDBY
:
618 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
620 return sprintf(buf
, "%s\n", regulator_opmode_to_str(mode
));
623 static ssize_t
regulator_opmode_show(struct device
*dev
,
624 struct device_attribute
*attr
, char *buf
)
626 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
628 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
630 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
632 static ssize_t
regulator_print_state(char *buf
, int state
)
635 return sprintf(buf
, "enabled\n");
637 return sprintf(buf
, "disabled\n");
639 return sprintf(buf
, "unknown\n");
642 static ssize_t
regulator_state_show(struct device
*dev
,
643 struct device_attribute
*attr
, char *buf
)
645 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
648 regulator_lock(rdev
);
649 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
650 regulator_unlock(rdev
);
654 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
656 static ssize_t
regulator_status_show(struct device
*dev
,
657 struct device_attribute
*attr
, char *buf
)
659 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
663 status
= rdev
->desc
->ops
->get_status(rdev
);
668 case REGULATOR_STATUS_OFF
:
671 case REGULATOR_STATUS_ON
:
674 case REGULATOR_STATUS_ERROR
:
677 case REGULATOR_STATUS_FAST
:
680 case REGULATOR_STATUS_NORMAL
:
683 case REGULATOR_STATUS_IDLE
:
686 case REGULATOR_STATUS_STANDBY
:
689 case REGULATOR_STATUS_BYPASS
:
692 case REGULATOR_STATUS_UNDEFINED
:
699 return sprintf(buf
, "%s\n", label
);
701 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
703 static ssize_t
regulator_min_uA_show(struct device
*dev
,
704 struct device_attribute
*attr
, char *buf
)
706 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
708 if (!rdev
->constraints
)
709 return sprintf(buf
, "constraint not defined\n");
711 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
713 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
715 static ssize_t
regulator_max_uA_show(struct device
*dev
,
716 struct device_attribute
*attr
, char *buf
)
718 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
720 if (!rdev
->constraints
)
721 return sprintf(buf
, "constraint not defined\n");
723 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
725 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
727 static ssize_t
regulator_min_uV_show(struct device
*dev
,
728 struct device_attribute
*attr
, char *buf
)
730 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
732 if (!rdev
->constraints
)
733 return sprintf(buf
, "constraint not defined\n");
735 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
737 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
739 static ssize_t
regulator_max_uV_show(struct device
*dev
,
740 struct device_attribute
*attr
, char *buf
)
742 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
744 if (!rdev
->constraints
)
745 return sprintf(buf
, "constraint not defined\n");
747 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
749 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
751 static ssize_t
regulator_total_uA_show(struct device
*dev
,
752 struct device_attribute
*attr
, char *buf
)
754 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
755 struct regulator
*regulator
;
758 regulator_lock(rdev
);
759 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
760 if (regulator
->enable_count
)
761 uA
+= regulator
->uA_load
;
763 regulator_unlock(rdev
);
764 return sprintf(buf
, "%d\n", uA
);
766 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
768 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
771 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
772 return sprintf(buf
, "%d\n", rdev
->use_count
);
774 static DEVICE_ATTR_RO(num_users
);
776 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
779 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
781 switch (rdev
->desc
->type
) {
782 case REGULATOR_VOLTAGE
:
783 return sprintf(buf
, "voltage\n");
784 case REGULATOR_CURRENT
:
785 return sprintf(buf
, "current\n");
787 return sprintf(buf
, "unknown\n");
789 static DEVICE_ATTR_RO(type
);
791 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
792 struct device_attribute
*attr
, char *buf
)
794 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
796 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
798 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
799 regulator_suspend_mem_uV_show
, NULL
);
801 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
802 struct device_attribute
*attr
, char *buf
)
804 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
806 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
808 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
809 regulator_suspend_disk_uV_show
, NULL
);
811 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
812 struct device_attribute
*attr
, char *buf
)
814 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
816 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
818 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
819 regulator_suspend_standby_uV_show
, NULL
);
821 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
822 struct device_attribute
*attr
, char *buf
)
824 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
826 return regulator_print_opmode(buf
,
827 rdev
->constraints
->state_mem
.mode
);
829 static DEVICE_ATTR(suspend_mem_mode
, 0444,
830 regulator_suspend_mem_mode_show
, NULL
);
832 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
833 struct device_attribute
*attr
, char *buf
)
835 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
837 return regulator_print_opmode(buf
,
838 rdev
->constraints
->state_disk
.mode
);
840 static DEVICE_ATTR(suspend_disk_mode
, 0444,
841 regulator_suspend_disk_mode_show
, NULL
);
843 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
844 struct device_attribute
*attr
, char *buf
)
846 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
848 return regulator_print_opmode(buf
,
849 rdev
->constraints
->state_standby
.mode
);
851 static DEVICE_ATTR(suspend_standby_mode
, 0444,
852 regulator_suspend_standby_mode_show
, NULL
);
854 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
855 struct device_attribute
*attr
, char *buf
)
857 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
859 return regulator_print_state(buf
,
860 rdev
->constraints
->state_mem
.enabled
);
862 static DEVICE_ATTR(suspend_mem_state
, 0444,
863 regulator_suspend_mem_state_show
, NULL
);
865 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
866 struct device_attribute
*attr
, char *buf
)
868 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
870 return regulator_print_state(buf
,
871 rdev
->constraints
->state_disk
.enabled
);
873 static DEVICE_ATTR(suspend_disk_state
, 0444,
874 regulator_suspend_disk_state_show
, NULL
);
876 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
877 struct device_attribute
*attr
, char *buf
)
879 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
881 return regulator_print_state(buf
,
882 rdev
->constraints
->state_standby
.enabled
);
884 static DEVICE_ATTR(suspend_standby_state
, 0444,
885 regulator_suspend_standby_state_show
, NULL
);
887 static ssize_t
regulator_bypass_show(struct device
*dev
,
888 struct device_attribute
*attr
, char *buf
)
890 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
895 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
904 return sprintf(buf
, "%s\n", report
);
906 static DEVICE_ATTR(bypass
, 0444,
907 regulator_bypass_show
, NULL
);
909 /* Calculate the new optimum regulator operating mode based on the new total
910 * consumer load. All locks held by caller */
911 static int drms_uA_update(struct regulator_dev
*rdev
)
913 struct regulator
*sibling
;
914 int current_uA
= 0, output_uV
, input_uV
, err
;
918 * first check to see if we can set modes at all, otherwise just
919 * tell the consumer everything is OK.
921 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
)) {
922 rdev_dbg(rdev
, "DRMS operation not allowed\n");
926 if (!rdev
->desc
->ops
->get_optimum_mode
&&
927 !rdev
->desc
->ops
->set_load
)
930 if (!rdev
->desc
->ops
->set_mode
&&
931 !rdev
->desc
->ops
->set_load
)
934 /* calc total requested load */
935 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
) {
936 if (sibling
->enable_count
)
937 current_uA
+= sibling
->uA_load
;
940 current_uA
+= rdev
->constraints
->system_load
;
942 if (rdev
->desc
->ops
->set_load
) {
943 /* set the optimum mode for our new total regulator load */
944 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
946 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
948 /* get output voltage */
949 output_uV
= _regulator_get_voltage(rdev
);
950 if (output_uV
<= 0) {
951 rdev_err(rdev
, "invalid output voltage found\n");
955 /* get input voltage */
958 input_uV
= regulator_get_voltage(rdev
->supply
);
960 input_uV
= rdev
->constraints
->input_uV
;
962 rdev_err(rdev
, "invalid input voltage found\n");
966 /* now get the optimum mode for our new total regulator load */
967 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
968 output_uV
, current_uA
);
970 /* check the new mode is allowed */
971 err
= regulator_mode_constrain(rdev
, &mode
);
973 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
974 current_uA
, input_uV
, output_uV
);
978 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
980 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
986 static int suspend_set_state(struct regulator_dev
*rdev
,
987 suspend_state_t state
)
990 struct regulator_state
*rstate
;
992 rstate
= regulator_get_suspend_state(rdev
, state
);
996 /* If we have no suspend mode configuration don't set anything;
997 * only warn if the driver implements set_suspend_voltage or
998 * set_suspend_mode callback.
1000 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
1001 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
1002 if (rdev
->desc
->ops
->set_suspend_voltage
||
1003 rdev
->desc
->ops
->set_suspend_mode
)
1004 rdev_warn(rdev
, "No configuration\n");
1008 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
1009 rdev
->desc
->ops
->set_suspend_enable
)
1010 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
1011 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
1012 rdev
->desc
->ops
->set_suspend_disable
)
1013 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
1014 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1018 rdev_err(rdev
, "failed to enabled/disable\n");
1022 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
1023 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
1025 rdev_err(rdev
, "failed to set voltage\n");
1030 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
1031 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
1033 rdev_err(rdev
, "failed to set mode\n");
1041 static void print_constraints(struct regulator_dev
*rdev
)
1043 struct regulation_constraints
*constraints
= rdev
->constraints
;
1045 size_t len
= sizeof(buf
) - 1;
1049 if (constraints
->min_uV
&& constraints
->max_uV
) {
1050 if (constraints
->min_uV
== constraints
->max_uV
)
1051 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
1052 constraints
->min_uV
/ 1000);
1054 count
+= scnprintf(buf
+ count
, len
- count
,
1056 constraints
->min_uV
/ 1000,
1057 constraints
->max_uV
/ 1000);
1060 if (!constraints
->min_uV
||
1061 constraints
->min_uV
!= constraints
->max_uV
) {
1062 ret
= _regulator_get_voltage(rdev
);
1064 count
+= scnprintf(buf
+ count
, len
- count
,
1065 "at %d mV ", ret
/ 1000);
1068 if (constraints
->uV_offset
)
1069 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
1070 constraints
->uV_offset
/ 1000);
1072 if (constraints
->min_uA
&& constraints
->max_uA
) {
1073 if (constraints
->min_uA
== constraints
->max_uA
)
1074 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
1075 constraints
->min_uA
/ 1000);
1077 count
+= scnprintf(buf
+ count
, len
- count
,
1079 constraints
->min_uA
/ 1000,
1080 constraints
->max_uA
/ 1000);
1083 if (!constraints
->min_uA
||
1084 constraints
->min_uA
!= constraints
->max_uA
) {
1085 ret
= _regulator_get_current_limit(rdev
);
1087 count
+= scnprintf(buf
+ count
, len
- count
,
1088 "at %d mA ", ret
/ 1000);
1091 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
1092 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
1093 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
1094 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
1095 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
1096 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
1097 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
1098 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
1101 scnprintf(buf
, len
, "no parameters");
1103 rdev_dbg(rdev
, "%s\n", buf
);
1105 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
1106 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
1108 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
1112 struct regulation_constraints
*constraints
)
1114 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1117 /* do we need to apply the constraint voltage */
1118 if (rdev
->constraints
->apply_uV
&&
1119 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
1120 int target_min
, target_max
;
1121 int current_uV
= _regulator_get_voltage(rdev
);
1123 if (current_uV
== -ENOTRECOVERABLE
) {
1124 /* This regulator can't be read and must be initialized */
1125 rdev_info(rdev
, "Setting %d-%duV\n",
1126 rdev
->constraints
->min_uV
,
1127 rdev
->constraints
->max_uV
);
1128 _regulator_do_set_voltage(rdev
,
1129 rdev
->constraints
->min_uV
,
1130 rdev
->constraints
->max_uV
);
1131 current_uV
= _regulator_get_voltage(rdev
);
1134 if (current_uV
< 0) {
1136 "failed to get the current voltage(%d)\n",
1142 * If we're below the minimum voltage move up to the
1143 * minimum voltage, if we're above the maximum voltage
1144 * then move down to the maximum.
1146 target_min
= current_uV
;
1147 target_max
= current_uV
;
1149 if (current_uV
< rdev
->constraints
->min_uV
) {
1150 target_min
= rdev
->constraints
->min_uV
;
1151 target_max
= rdev
->constraints
->min_uV
;
1154 if (current_uV
> rdev
->constraints
->max_uV
) {
1155 target_min
= rdev
->constraints
->max_uV
;
1156 target_max
= rdev
->constraints
->max_uV
;
1159 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
1160 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
1161 current_uV
, target_min
, target_max
);
1162 ret
= _regulator_do_set_voltage(
1163 rdev
, target_min
, target_max
);
1166 "failed to apply %d-%duV constraint(%d)\n",
1167 target_min
, target_max
, ret
);
1173 /* constrain machine-level voltage specs to fit
1174 * the actual range supported by this regulator.
1176 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
1177 int count
= rdev
->desc
->n_voltages
;
1179 int min_uV
= INT_MAX
;
1180 int max_uV
= INT_MIN
;
1181 int cmin
= constraints
->min_uV
;
1182 int cmax
= constraints
->max_uV
;
1184 /* it's safe to autoconfigure fixed-voltage supplies
1185 and the constraints are used by list_voltage. */
1186 if (count
== 1 && !cmin
) {
1189 constraints
->min_uV
= cmin
;
1190 constraints
->max_uV
= cmax
;
1193 /* voltage constraints are optional */
1194 if ((cmin
== 0) && (cmax
== 0))
1197 /* else require explicit machine-level constraints */
1198 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1199 rdev_err(rdev
, "invalid voltage constraints\n");
1203 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1204 for (i
= 0; i
< count
; i
++) {
1207 value
= ops
->list_voltage(rdev
, i
);
1211 /* maybe adjust [min_uV..max_uV] */
1212 if (value
>= cmin
&& value
< min_uV
)
1214 if (value
<= cmax
&& value
> max_uV
)
1218 /* final: [min_uV..max_uV] valid iff constraints valid */
1219 if (max_uV
< min_uV
) {
1221 "unsupportable voltage constraints %u-%uuV\n",
1226 /* use regulator's subset of machine constraints */
1227 if (constraints
->min_uV
< min_uV
) {
1228 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1229 constraints
->min_uV
, min_uV
);
1230 constraints
->min_uV
= min_uV
;
1232 if (constraints
->max_uV
> max_uV
) {
1233 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1234 constraints
->max_uV
, max_uV
);
1235 constraints
->max_uV
= max_uV
;
1242 static int machine_constraints_current(struct regulator_dev
*rdev
,
1243 struct regulation_constraints
*constraints
)
1245 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1248 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1251 if (constraints
->min_uA
> constraints
->max_uA
) {
1252 rdev_err(rdev
, "Invalid current constraints\n");
1256 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1257 rdev_warn(rdev
, "Operation of current configuration missing\n");
1261 /* Set regulator current in constraints range */
1262 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1263 constraints
->max_uA
);
1265 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1272 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1275 * set_machine_constraints - sets regulator constraints
1276 * @rdev: regulator source
1277 * @constraints: constraints to apply
1279 * Allows platform initialisation code to define and constrain
1280 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1281 * Constraints *must* be set by platform code in order for some
1282 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1285 static int set_machine_constraints(struct regulator_dev
*rdev
,
1286 const struct regulation_constraints
*constraints
)
1289 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1292 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1295 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1297 if (!rdev
->constraints
)
1300 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1304 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1308 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1309 ret
= ops
->set_input_current_limit(rdev
,
1310 rdev
->constraints
->ilim_uA
);
1312 rdev_err(rdev
, "failed to set input limit\n");
1317 /* do we need to setup our suspend state */
1318 if (rdev
->constraints
->initial_state
) {
1319 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1321 rdev_err(rdev
, "failed to set suspend state\n");
1326 if (rdev
->constraints
->initial_mode
) {
1327 if (!ops
->set_mode
) {
1328 rdev_err(rdev
, "no set_mode operation\n");
1332 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1334 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1337 } else if (rdev
->constraints
->system_load
) {
1339 * We'll only apply the initial system load if an
1340 * initial mode wasn't specified.
1342 regulator_lock(rdev
);
1343 drms_uA_update(rdev
);
1344 regulator_unlock(rdev
);
1347 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1348 && ops
->set_ramp_delay
) {
1349 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1351 rdev_err(rdev
, "failed to set ramp_delay\n");
1356 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1357 ret
= ops
->set_pull_down(rdev
);
1359 rdev_err(rdev
, "failed to set pull down\n");
1364 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1365 ret
= ops
->set_soft_start(rdev
);
1367 rdev_err(rdev
, "failed to set soft start\n");
1372 if (rdev
->constraints
->over_current_protection
1373 && ops
->set_over_current_protection
) {
1374 ret
= ops
->set_over_current_protection(rdev
);
1376 rdev_err(rdev
, "failed to set over current protection\n");
1381 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1382 bool ad_state
= (rdev
->constraints
->active_discharge
==
1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1385 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1387 rdev_err(rdev
, "failed to set active discharge\n");
1392 /* If the constraints say the regulator should be on at this point
1393 * and we have control then make sure it is enabled.
1395 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1397 ret
= regulator_enable(rdev
->supply
);
1399 _regulator_put(rdev
->supply
);
1400 rdev
->supply
= NULL
;
1405 ret
= _regulator_do_enable(rdev
);
1406 if (ret
< 0 && ret
!= -EINVAL
) {
1407 rdev_err(rdev
, "failed to enable\n");
1413 print_constraints(rdev
);
1418 * set_supply - set regulator supply regulator
1419 * @rdev: regulator name
1420 * @supply_rdev: supply regulator name
1422 * Called by platform initialisation code to set the supply regulator for this
1423 * regulator. This ensures that a regulators supply will also be enabled by the
1424 * core if it's child is enabled.
1426 static int set_supply(struct regulator_dev
*rdev
,
1427 struct regulator_dev
*supply_rdev
)
1431 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1433 if (!try_module_get(supply_rdev
->owner
))
1436 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1437 if (rdev
->supply
== NULL
) {
1441 supply_rdev
->open_count
++;
1447 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1448 * @rdev: regulator source
1449 * @consumer_dev_name: dev_name() string for device supply applies to
1450 * @supply: symbolic name for supply
1452 * Allows platform initialisation code to map physical regulator
1453 * sources to symbolic names for supplies for use by devices. Devices
1454 * should use these symbolic names to request regulators, avoiding the
1455 * need to provide board-specific regulator names as platform data.
1457 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1458 const char *consumer_dev_name
,
1461 struct regulator_map
*node
;
1467 if (consumer_dev_name
!= NULL
)
1472 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1473 if (node
->dev_name
&& consumer_dev_name
) {
1474 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1476 } else if (node
->dev_name
|| consumer_dev_name
) {
1480 if (strcmp(node
->supply
, supply
) != 0)
1483 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1485 dev_name(&node
->regulator
->dev
),
1486 node
->regulator
->desc
->name
,
1488 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1492 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1496 node
->regulator
= rdev
;
1497 node
->supply
= supply
;
1500 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1501 if (node
->dev_name
== NULL
) {
1507 list_add(&node
->list
, ®ulator_map_list
);
1511 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1513 struct regulator_map
*node
, *n
;
1515 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1516 if (rdev
== node
->regulator
) {
1517 list_del(&node
->list
);
1518 kfree(node
->dev_name
);
1524 #ifdef CONFIG_DEBUG_FS
1525 static ssize_t
constraint_flags_read_file(struct file
*file
,
1526 char __user
*user_buf
,
1527 size_t count
, loff_t
*ppos
)
1529 const struct regulator
*regulator
= file
->private_data
;
1530 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1537 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1541 ret
= snprintf(buf
, PAGE_SIZE
,
1545 "ramp_disable: %u\n"
1548 "over_current_protection: %u\n",
1555 c
->over_current_protection
);
1557 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1565 static const struct file_operations constraint_flags_fops
= {
1566 #ifdef CONFIG_DEBUG_FS
1567 .open
= simple_open
,
1568 .read
= constraint_flags_read_file
,
1569 .llseek
= default_llseek
,
1573 #define REG_STR_SIZE 64
1575 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1577 const char *supply_name
)
1579 struct regulator
*regulator
;
1580 char buf
[REG_STR_SIZE
];
1583 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1584 if (regulator
== NULL
)
1587 regulator_lock(rdev
);
1588 regulator
->rdev
= rdev
;
1589 list_add(®ulator
->list
, &rdev
->consumer_list
);
1592 regulator
->dev
= dev
;
1594 /* Add a link to the device sysfs entry */
1595 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1596 dev
->kobj
.name
, supply_name
);
1597 if (size
>= REG_STR_SIZE
)
1600 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1601 if (regulator
->supply_name
== NULL
)
1604 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1607 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1608 dev
->kobj
.name
, err
);
1612 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1613 if (regulator
->supply_name
== NULL
)
1617 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1619 if (!regulator
->debugfs
) {
1620 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1622 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1623 ®ulator
->uA_load
);
1624 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1625 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1626 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1627 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1628 debugfs_create_file("constraint_flags", 0444,
1629 regulator
->debugfs
, regulator
,
1630 &constraint_flags_fops
);
1634 * Check now if the regulator is an always on regulator - if
1635 * it is then we don't need to do nearly so much work for
1636 * enable/disable calls.
1638 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1639 _regulator_is_enabled(rdev
))
1640 regulator
->always_on
= true;
1642 regulator_unlock(rdev
);
1645 list_del(®ulator
->list
);
1647 regulator_unlock(rdev
);
1651 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1653 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1654 return rdev
->constraints
->enable_time
;
1655 if (!rdev
->desc
->ops
->enable_time
)
1656 return rdev
->desc
->enable_time
;
1657 return rdev
->desc
->ops
->enable_time(rdev
);
1660 static struct regulator_supply_alias
*regulator_find_supply_alias(
1661 struct device
*dev
, const char *supply
)
1663 struct regulator_supply_alias
*map
;
1665 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1666 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1672 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1674 struct regulator_supply_alias
*map
;
1676 map
= regulator_find_supply_alias(*dev
, *supply
);
1678 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1679 *supply
, map
->alias_supply
,
1680 dev_name(map
->alias_dev
));
1681 *dev
= map
->alias_dev
;
1682 *supply
= map
->alias_supply
;
1686 static int regulator_match(struct device
*dev
, const void *data
)
1688 struct regulator_dev
*r
= dev_to_rdev(dev
);
1690 return strcmp(rdev_get_name(r
), data
) == 0;
1693 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1697 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1699 return dev
? dev_to_rdev(dev
) : NULL
;
1703 * regulator_dev_lookup - lookup a regulator device.
1704 * @dev: device for regulator "consumer".
1705 * @supply: Supply name or regulator ID.
1707 * If successful, returns a struct regulator_dev that corresponds to the name
1708 * @supply and with the embedded struct device refcount incremented by one.
1709 * The refcount must be dropped by calling put_device().
1710 * On failure one of the following ERR-PTR-encoded values is returned:
1711 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1714 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1717 struct regulator_dev
*r
= NULL
;
1718 struct device_node
*node
;
1719 struct regulator_map
*map
;
1720 const char *devname
= NULL
;
1722 regulator_supply_alias(&dev
, &supply
);
1724 /* first do a dt based lookup */
1725 if (dev
&& dev
->of_node
) {
1726 node
= of_get_regulator(dev
, supply
);
1728 r
= of_find_regulator_by_node(node
);
1733 * We have a node, but there is no device.
1734 * assume it has not registered yet.
1736 return ERR_PTR(-EPROBE_DEFER
);
1740 /* if not found, try doing it non-dt way */
1742 devname
= dev_name(dev
);
1744 mutex_lock(®ulator_list_mutex
);
1745 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1746 /* If the mapping has a device set up it must match */
1747 if (map
->dev_name
&&
1748 (!devname
|| strcmp(map
->dev_name
, devname
)))
1751 if (strcmp(map
->supply
, supply
) == 0 &&
1752 get_device(&map
->regulator
->dev
)) {
1757 mutex_unlock(®ulator_list_mutex
);
1762 r
= regulator_lookup_by_name(supply
);
1766 return ERR_PTR(-ENODEV
);
1769 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1771 struct regulator_dev
*r
;
1772 struct device
*dev
= rdev
->dev
.parent
;
1775 /* No supply to resolve? */
1776 if (!rdev
->supply_name
)
1779 /* Supply already resolved? */
1783 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1787 /* Did the lookup explicitly defer for us? */
1788 if (ret
== -EPROBE_DEFER
)
1791 if (have_full_constraints()) {
1792 r
= dummy_regulator_rdev
;
1793 get_device(&r
->dev
);
1795 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1796 rdev
->supply_name
, rdev
->desc
->name
);
1797 return -EPROBE_DEFER
;
1802 * If the supply's parent device is not the same as the
1803 * regulator's parent device, then ensure the parent device
1804 * is bound before we resolve the supply, in case the parent
1805 * device get probe deferred and unregisters the supply.
1807 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1808 if (!device_is_bound(r
->dev
.parent
)) {
1809 put_device(&r
->dev
);
1810 return -EPROBE_DEFER
;
1814 /* Recursively resolve the supply of the supply */
1815 ret
= regulator_resolve_supply(r
);
1817 put_device(&r
->dev
);
1821 ret
= set_supply(rdev
, r
);
1823 put_device(&r
->dev
);
1828 * In set_machine_constraints() we may have turned this regulator on
1829 * but we couldn't propagate to the supply if it hadn't been resolved
1832 if (rdev
->use_count
) {
1833 ret
= regulator_enable(rdev
->supply
);
1835 _regulator_put(rdev
->supply
);
1836 rdev
->supply
= NULL
;
1844 /* Internal regulator request function */
1845 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1846 enum regulator_get_type get_type
)
1848 struct regulator_dev
*rdev
;
1849 struct regulator
*regulator
;
1850 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1853 if (get_type
>= MAX_GET_TYPE
) {
1854 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1855 return ERR_PTR(-EINVAL
);
1859 pr_err("get() with no identifier\n");
1860 return ERR_PTR(-EINVAL
);
1863 rdev
= regulator_dev_lookup(dev
, id
);
1865 ret
= PTR_ERR(rdev
);
1868 * If regulator_dev_lookup() fails with error other
1869 * than -ENODEV our job here is done, we simply return it.
1872 return ERR_PTR(ret
);
1874 if (!have_full_constraints()) {
1876 "incomplete constraints, dummy supplies not allowed\n");
1877 return ERR_PTR(-ENODEV
);
1883 * Assume that a regulator is physically present and
1884 * enabled, even if it isn't hooked up, and just
1888 "%s supply %s not found, using dummy regulator\n",
1890 rdev
= dummy_regulator_rdev
;
1891 get_device(&rdev
->dev
);
1896 "dummy supplies not allowed for exclusive requests\n");
1900 return ERR_PTR(-ENODEV
);
1904 if (rdev
->exclusive
) {
1905 regulator
= ERR_PTR(-EPERM
);
1906 put_device(&rdev
->dev
);
1910 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1911 regulator
= ERR_PTR(-EBUSY
);
1912 put_device(&rdev
->dev
);
1916 mutex_lock(®ulator_list_mutex
);
1917 ret
= (rdev
->coupling_desc
.n_resolved
!= rdev
->coupling_desc
.n_coupled
);
1918 mutex_unlock(®ulator_list_mutex
);
1921 regulator
= ERR_PTR(-EPROBE_DEFER
);
1922 put_device(&rdev
->dev
);
1926 ret
= regulator_resolve_supply(rdev
);
1928 regulator
= ERR_PTR(ret
);
1929 put_device(&rdev
->dev
);
1933 if (!try_module_get(rdev
->owner
)) {
1934 regulator
= ERR_PTR(-EPROBE_DEFER
);
1935 put_device(&rdev
->dev
);
1939 regulator
= create_regulator(rdev
, dev
, id
);
1940 if (regulator
== NULL
) {
1941 regulator
= ERR_PTR(-ENOMEM
);
1942 put_device(&rdev
->dev
);
1943 module_put(rdev
->owner
);
1948 if (get_type
== EXCLUSIVE_GET
) {
1949 rdev
->exclusive
= 1;
1951 ret
= _regulator_is_enabled(rdev
);
1953 rdev
->use_count
= 1;
1955 rdev
->use_count
= 0;
1958 device_link_add(dev
, &rdev
->dev
, DL_FLAG_STATELESS
);
1964 * regulator_get - lookup and obtain a reference to a regulator.
1965 * @dev: device for regulator "consumer"
1966 * @id: Supply name or regulator ID.
1968 * Returns a struct regulator corresponding to the regulator producer,
1969 * or IS_ERR() condition containing errno.
1971 * Use of supply names configured via regulator_set_device_supply() is
1972 * strongly encouraged. It is recommended that the supply name used
1973 * should match the name used for the supply and/or the relevant
1974 * device pins in the datasheet.
1976 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1978 return _regulator_get(dev
, id
, NORMAL_GET
);
1980 EXPORT_SYMBOL_GPL(regulator_get
);
1983 * regulator_get_exclusive - obtain exclusive access to a regulator.
1984 * @dev: device for regulator "consumer"
1985 * @id: Supply name or regulator ID.
1987 * Returns a struct regulator corresponding to the regulator producer,
1988 * or IS_ERR() condition containing errno. Other consumers will be
1989 * unable to obtain this regulator while this reference is held and the
1990 * use count for the regulator will be initialised to reflect the current
1991 * state of the regulator.
1993 * This is intended for use by consumers which cannot tolerate shared
1994 * use of the regulator such as those which need to force the
1995 * regulator off for correct operation of the hardware they are
1998 * Use of supply names configured via regulator_set_device_supply() is
1999 * strongly encouraged. It is recommended that the supply name used
2000 * should match the name used for the supply and/or the relevant
2001 * device pins in the datasheet.
2003 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
2005 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
2007 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
2010 * regulator_get_optional - obtain optional access to a regulator.
2011 * @dev: device for regulator "consumer"
2012 * @id: Supply name or regulator ID.
2014 * Returns a struct regulator corresponding to the regulator producer,
2015 * or IS_ERR() condition containing errno.
2017 * This is intended for use by consumers for devices which can have
2018 * some supplies unconnected in normal use, such as some MMC devices.
2019 * It can allow the regulator core to provide stub supplies for other
2020 * supplies requested using normal regulator_get() calls without
2021 * disrupting the operation of drivers that can handle absent
2024 * Use of supply names configured via regulator_set_device_supply() is
2025 * strongly encouraged. It is recommended that the supply name used
2026 * should match the name used for the supply and/or the relevant
2027 * device pins in the datasheet.
2029 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
2031 return _regulator_get(dev
, id
, OPTIONAL_GET
);
2033 EXPORT_SYMBOL_GPL(regulator_get_optional
);
2035 /* regulator_list_mutex lock held by regulator_put() */
2036 static void _regulator_put(struct regulator
*regulator
)
2038 struct regulator_dev
*rdev
;
2040 if (IS_ERR_OR_NULL(regulator
))
2043 lockdep_assert_held_once(®ulator_list_mutex
);
2045 /* Docs say you must disable before calling regulator_put() */
2046 WARN_ON(regulator
->enable_count
);
2048 rdev
= regulator
->rdev
;
2050 debugfs_remove_recursive(regulator
->debugfs
);
2052 if (regulator
->dev
) {
2053 device_link_remove(regulator
->dev
, &rdev
->dev
);
2055 /* remove any sysfs entries */
2056 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
2059 regulator_lock(rdev
);
2060 list_del(®ulator
->list
);
2063 rdev
->exclusive
= 0;
2064 put_device(&rdev
->dev
);
2065 regulator_unlock(rdev
);
2067 kfree_const(regulator
->supply_name
);
2070 module_put(rdev
->owner
);
2074 * regulator_put - "free" the regulator source
2075 * @regulator: regulator source
2077 * Note: drivers must ensure that all regulator_enable calls made on this
2078 * regulator source are balanced by regulator_disable calls prior to calling
2081 void regulator_put(struct regulator
*regulator
)
2083 mutex_lock(®ulator_list_mutex
);
2084 _regulator_put(regulator
);
2085 mutex_unlock(®ulator_list_mutex
);
2087 EXPORT_SYMBOL_GPL(regulator_put
);
2090 * regulator_register_supply_alias - Provide device alias for supply lookup
2092 * @dev: device that will be given as the regulator "consumer"
2093 * @id: Supply name or regulator ID
2094 * @alias_dev: device that should be used to lookup the supply
2095 * @alias_id: Supply name or regulator ID that should be used to lookup the
2098 * All lookups for id on dev will instead be conducted for alias_id on
2101 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
2102 struct device
*alias_dev
,
2103 const char *alias_id
)
2105 struct regulator_supply_alias
*map
;
2107 map
= regulator_find_supply_alias(dev
, id
);
2111 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
2116 map
->src_supply
= id
;
2117 map
->alias_dev
= alias_dev
;
2118 map
->alias_supply
= alias_id
;
2120 list_add(&map
->list
, ®ulator_supply_alias_list
);
2122 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2123 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
2127 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
2130 * regulator_unregister_supply_alias - Remove device alias
2132 * @dev: device that will be given as the regulator "consumer"
2133 * @id: Supply name or regulator ID
2135 * Remove a lookup alias if one exists for id on dev.
2137 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
2139 struct regulator_supply_alias
*map
;
2141 map
= regulator_find_supply_alias(dev
, id
);
2143 list_del(&map
->list
);
2147 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
2150 * regulator_bulk_register_supply_alias - register multiple aliases
2152 * @dev: device that will be given as the regulator "consumer"
2153 * @id: List of supply names or regulator IDs
2154 * @alias_dev: device that should be used to lookup the supply
2155 * @alias_id: List of supply names or regulator IDs that should be used to
2157 * @num_id: Number of aliases to register
2159 * @return 0 on success, an errno on failure.
2161 * This helper function allows drivers to register several supply
2162 * aliases in one operation. If any of the aliases cannot be
2163 * registered any aliases that were registered will be removed
2164 * before returning to the caller.
2166 int regulator_bulk_register_supply_alias(struct device
*dev
,
2167 const char *const *id
,
2168 struct device
*alias_dev
,
2169 const char *const *alias_id
,
2175 for (i
= 0; i
< num_id
; ++i
) {
2176 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
2186 "Failed to create supply alias %s,%s -> %s,%s\n",
2187 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
2190 regulator_unregister_supply_alias(dev
, id
[i
]);
2194 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
2197 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2199 * @dev: device that will be given as the regulator "consumer"
2200 * @id: List of supply names or regulator IDs
2201 * @num_id: Number of aliases to unregister
2203 * This helper function allows drivers to unregister several supply
2204 * aliases in one operation.
2206 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
2207 const char *const *id
,
2212 for (i
= 0; i
< num_id
; ++i
)
2213 regulator_unregister_supply_alias(dev
, id
[i
]);
2215 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
2218 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2219 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
2220 const struct regulator_config
*config
)
2222 struct regulator_enable_gpio
*pin
;
2223 struct gpio_desc
*gpiod
;
2225 gpiod
= config
->ena_gpiod
;
2227 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2228 if (pin
->gpiod
== gpiod
) {
2229 rdev_dbg(rdev
, "GPIO is already used\n");
2230 goto update_ena_gpio_to_rdev
;
2234 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
2239 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2241 update_ena_gpio_to_rdev
:
2242 pin
->request_count
++;
2243 rdev
->ena_pin
= pin
;
2247 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2249 struct regulator_enable_gpio
*pin
, *n
;
2254 /* Free the GPIO only in case of no use */
2255 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2256 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
2257 if (pin
->request_count
<= 1) {
2258 pin
->request_count
= 0;
2259 gpiod_put(pin
->gpiod
);
2260 list_del(&pin
->list
);
2262 rdev
->ena_pin
= NULL
;
2265 pin
->request_count
--;
2272 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2273 * @rdev: regulator_dev structure
2274 * @enable: enable GPIO at initial use?
2276 * GPIO is enabled in case of initial use. (enable_count is 0)
2277 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2279 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2281 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2287 /* Enable GPIO at initial use */
2288 if (pin
->enable_count
== 0)
2289 gpiod_set_value_cansleep(pin
->gpiod
, 1);
2291 pin
->enable_count
++;
2293 if (pin
->enable_count
> 1) {
2294 pin
->enable_count
--;
2298 /* Disable GPIO if not used */
2299 if (pin
->enable_count
<= 1) {
2300 gpiod_set_value_cansleep(pin
->gpiod
, 0);
2301 pin
->enable_count
= 0;
2309 * _regulator_enable_delay - a delay helper function
2310 * @delay: time to delay in microseconds
2312 * Delay for the requested amount of time as per the guidelines in:
2314 * Documentation/timers/timers-howto.txt
2316 * The assumption here is that regulators will never be enabled in
2317 * atomic context and therefore sleeping functions can be used.
2319 static void _regulator_enable_delay(unsigned int delay
)
2321 unsigned int ms
= delay
/ 1000;
2322 unsigned int us
= delay
% 1000;
2326 * For small enough values, handle super-millisecond
2327 * delays in the usleep_range() call below.
2336 * Give the scheduler some room to coalesce with any other
2337 * wakeup sources. For delays shorter than 10 us, don't even
2338 * bother setting up high-resolution timers and just busy-
2342 usleep_range(us
, us
+ 100);
2347 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2351 /* Query before enabling in case configuration dependent. */
2352 ret
= _regulator_get_enable_time(rdev
);
2356 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2360 trace_regulator_enable(rdev_get_name(rdev
));
2362 if (rdev
->desc
->off_on_delay
) {
2363 /* if needed, keep a distance of off_on_delay from last time
2364 * this regulator was disabled.
2366 unsigned long start_jiffy
= jiffies
;
2367 unsigned long intended
, max_delay
, remaining
;
2369 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2370 intended
= rdev
->last_off_jiffy
+ max_delay
;
2372 if (time_before(start_jiffy
, intended
)) {
2373 /* calc remaining jiffies to deal with one-time
2375 * in case of multiple timer wrapping, either it can be
2376 * detected by out-of-range remaining, or it cannot be
2377 * detected and we get a penalty of
2378 * _regulator_enable_delay().
2380 remaining
= intended
- start_jiffy
;
2381 if (remaining
<= max_delay
)
2382 _regulator_enable_delay(
2383 jiffies_to_usecs(remaining
));
2387 if (rdev
->ena_pin
) {
2388 if (!rdev
->ena_gpio_state
) {
2389 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2392 rdev
->ena_gpio_state
= 1;
2394 } else if (rdev
->desc
->ops
->enable
) {
2395 ret
= rdev
->desc
->ops
->enable(rdev
);
2402 /* Allow the regulator to ramp; it would be useful to extend
2403 * this for bulk operations so that the regulators can ramp
2405 trace_regulator_enable_delay(rdev_get_name(rdev
));
2407 _regulator_enable_delay(delay
);
2409 trace_regulator_enable_complete(rdev_get_name(rdev
));
2415 * _regulator_handle_consumer_enable - handle that a consumer enabled
2416 * @regulator: regulator source
2418 * Some things on a regulator consumer (like the contribution towards total
2419 * load on the regulator) only have an effect when the consumer wants the
2420 * regulator enabled. Explained in example with two consumers of the same
2422 * consumer A: set_load(100); => total load = 0
2423 * consumer A: regulator_enable(); => total load = 100
2424 * consumer B: set_load(1000); => total load = 100
2425 * consumer B: regulator_enable(); => total load = 1100
2426 * consumer A: regulator_disable(); => total_load = 1000
2428 * This function (together with _regulator_handle_consumer_disable) is
2429 * responsible for keeping track of the refcount for a given regulator consumer
2430 * and applying / unapplying these things.
2432 * Returns 0 upon no error; -error upon error.
2434 static int _regulator_handle_consumer_enable(struct regulator
*regulator
)
2436 struct regulator_dev
*rdev
= regulator
->rdev
;
2438 lockdep_assert_held_once(&rdev
->mutex
.base
);
2440 regulator
->enable_count
++;
2441 if (regulator
->uA_load
&& regulator
->enable_count
== 1)
2442 return drms_uA_update(rdev
);
2448 * _regulator_handle_consumer_disable - handle that a consumer disabled
2449 * @regulator: regulator source
2451 * The opposite of _regulator_handle_consumer_enable().
2453 * Returns 0 upon no error; -error upon error.
2455 static int _regulator_handle_consumer_disable(struct regulator
*regulator
)
2457 struct regulator_dev
*rdev
= regulator
->rdev
;
2459 lockdep_assert_held_once(&rdev
->mutex
.base
);
2461 if (!regulator
->enable_count
) {
2462 rdev_err(rdev
, "Underflow of regulator enable count\n");
2466 regulator
->enable_count
--;
2467 if (regulator
->uA_load
&& regulator
->enable_count
== 0)
2468 return drms_uA_update(rdev
);
2473 /* locks held by regulator_enable() */
2474 static int _regulator_enable(struct regulator
*regulator
)
2476 struct regulator_dev
*rdev
= regulator
->rdev
;
2479 lockdep_assert_held_once(&rdev
->mutex
.base
);
2481 if (rdev
->use_count
== 0 && rdev
->supply
) {
2482 ret
= _regulator_enable(rdev
->supply
);
2487 /* balance only if there are regulators coupled */
2488 if (rdev
->coupling_desc
.n_coupled
> 1) {
2489 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2491 goto err_disable_supply
;
2494 ret
= _regulator_handle_consumer_enable(regulator
);
2496 goto err_disable_supply
;
2498 if (rdev
->use_count
== 0) {
2499 /* The regulator may on if it's not switchable or left on */
2500 ret
= _regulator_is_enabled(rdev
);
2501 if (ret
== -EINVAL
|| ret
== 0) {
2502 if (!regulator_ops_is_valid(rdev
,
2503 REGULATOR_CHANGE_STATUS
)) {
2505 goto err_consumer_disable
;
2508 ret
= _regulator_do_enable(rdev
);
2510 goto err_consumer_disable
;
2512 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2514 } else if (ret
< 0) {
2515 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2516 goto err_consumer_disable
;
2518 /* Fallthrough on positive return values - already enabled */
2525 err_consumer_disable
:
2526 _regulator_handle_consumer_disable(regulator
);
2529 if (rdev
->use_count
== 0 && rdev
->supply
)
2530 _regulator_disable(rdev
->supply
);
2536 * regulator_enable - enable regulator output
2537 * @regulator: regulator source
2539 * Request that the regulator be enabled with the regulator output at
2540 * the predefined voltage or current value. Calls to regulator_enable()
2541 * must be balanced with calls to regulator_disable().
2543 * NOTE: the output value can be set by other drivers, boot loader or may be
2544 * hardwired in the regulator.
2546 int regulator_enable(struct regulator
*regulator
)
2548 struct regulator_dev
*rdev
= regulator
->rdev
;
2549 struct ww_acquire_ctx ww_ctx
;
2552 regulator_lock_dependent(rdev
, &ww_ctx
);
2553 ret
= _regulator_enable(regulator
);
2554 regulator_unlock_dependent(rdev
, &ww_ctx
);
2558 EXPORT_SYMBOL_GPL(regulator_enable
);
2560 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2564 trace_regulator_disable(rdev_get_name(rdev
));
2566 if (rdev
->ena_pin
) {
2567 if (rdev
->ena_gpio_state
) {
2568 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2571 rdev
->ena_gpio_state
= 0;
2574 } else if (rdev
->desc
->ops
->disable
) {
2575 ret
= rdev
->desc
->ops
->disable(rdev
);
2580 /* cares about last_off_jiffy only if off_on_delay is required by
2583 if (rdev
->desc
->off_on_delay
)
2584 rdev
->last_off_jiffy
= jiffies
;
2586 trace_regulator_disable_complete(rdev_get_name(rdev
));
2591 /* locks held by regulator_disable() */
2592 static int _regulator_disable(struct regulator
*regulator
)
2594 struct regulator_dev
*rdev
= regulator
->rdev
;
2597 lockdep_assert_held_once(&rdev
->mutex
.base
);
2599 if (WARN(rdev
->use_count
<= 0,
2600 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2603 /* are we the last user and permitted to disable ? */
2604 if (rdev
->use_count
== 1 &&
2605 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2607 /* we are last user */
2608 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2609 ret
= _notifier_call_chain(rdev
,
2610 REGULATOR_EVENT_PRE_DISABLE
,
2612 if (ret
& NOTIFY_STOP_MASK
)
2615 ret
= _regulator_do_disable(rdev
);
2617 rdev_err(rdev
, "failed to disable\n");
2618 _notifier_call_chain(rdev
,
2619 REGULATOR_EVENT_ABORT_DISABLE
,
2623 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2627 rdev
->use_count
= 0;
2628 } else if (rdev
->use_count
> 1) {
2633 ret
= _regulator_handle_consumer_disable(regulator
);
2635 if (ret
== 0 && rdev
->coupling_desc
.n_coupled
> 1)
2636 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2638 if (ret
== 0 && rdev
->use_count
== 0 && rdev
->supply
)
2639 ret
= _regulator_disable(rdev
->supply
);
2645 * regulator_disable - disable regulator output
2646 * @regulator: regulator source
2648 * Disable the regulator output voltage or current. Calls to
2649 * regulator_enable() must be balanced with calls to
2650 * regulator_disable().
2652 * NOTE: this will only disable the regulator output if no other consumer
2653 * devices have it enabled, the regulator device supports disabling and
2654 * machine constraints permit this operation.
2656 int regulator_disable(struct regulator
*regulator
)
2658 struct regulator_dev
*rdev
= regulator
->rdev
;
2659 struct ww_acquire_ctx ww_ctx
;
2662 regulator_lock_dependent(rdev
, &ww_ctx
);
2663 ret
= _regulator_disable(regulator
);
2664 regulator_unlock_dependent(rdev
, &ww_ctx
);
2668 EXPORT_SYMBOL_GPL(regulator_disable
);
2670 /* locks held by regulator_force_disable() */
2671 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2675 lockdep_assert_held_once(&rdev
->mutex
.base
);
2677 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2678 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2679 if (ret
& NOTIFY_STOP_MASK
)
2682 ret
= _regulator_do_disable(rdev
);
2684 rdev_err(rdev
, "failed to force disable\n");
2685 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2686 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2690 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2691 REGULATOR_EVENT_DISABLE
, NULL
);
2697 * regulator_force_disable - force disable regulator output
2698 * @regulator: regulator source
2700 * Forcibly disable the regulator output voltage or current.
2701 * NOTE: this *will* disable the regulator output even if other consumer
2702 * devices have it enabled. This should be used for situations when device
2703 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2705 int regulator_force_disable(struct regulator
*regulator
)
2707 struct regulator_dev
*rdev
= regulator
->rdev
;
2708 struct ww_acquire_ctx ww_ctx
;
2711 regulator_lock_dependent(rdev
, &ww_ctx
);
2713 ret
= _regulator_force_disable(regulator
->rdev
);
2715 if (rdev
->coupling_desc
.n_coupled
> 1)
2716 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2718 if (regulator
->uA_load
) {
2719 regulator
->uA_load
= 0;
2720 ret
= drms_uA_update(rdev
);
2723 if (rdev
->use_count
!= 0 && rdev
->supply
)
2724 _regulator_disable(rdev
->supply
);
2726 regulator_unlock_dependent(rdev
, &ww_ctx
);
2730 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2732 static void regulator_disable_work(struct work_struct
*work
)
2734 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2736 struct ww_acquire_ctx ww_ctx
;
2738 struct regulator
*regulator
;
2739 int total_count
= 0;
2741 regulator_lock_dependent(rdev
, &ww_ctx
);
2744 * Workqueue functions queue the new work instance while the previous
2745 * work instance is being processed. Cancel the queued work instance
2746 * as the work instance under processing does the job of the queued
2749 cancel_delayed_work(&rdev
->disable_work
);
2751 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
2752 count
= regulator
->deferred_disables
;
2757 total_count
+= count
;
2758 regulator
->deferred_disables
= 0;
2760 for (i
= 0; i
< count
; i
++) {
2761 ret
= _regulator_disable(regulator
);
2763 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2766 WARN_ON(!total_count
);
2768 if (rdev
->coupling_desc
.n_coupled
> 1)
2769 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2771 regulator_unlock_dependent(rdev
, &ww_ctx
);
2775 * regulator_disable_deferred - disable regulator output with delay
2776 * @regulator: regulator source
2777 * @ms: milliseconds until the regulator is disabled
2779 * Execute regulator_disable() on the regulator after a delay. This
2780 * is intended for use with devices that require some time to quiesce.
2782 * NOTE: this will only disable the regulator output if no other consumer
2783 * devices have it enabled, the regulator device supports disabling and
2784 * machine constraints permit this operation.
2786 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2788 struct regulator_dev
*rdev
= regulator
->rdev
;
2791 return regulator_disable(regulator
);
2793 regulator_lock(rdev
);
2794 regulator
->deferred_disables
++;
2795 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2796 msecs_to_jiffies(ms
));
2797 regulator_unlock(rdev
);
2801 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2803 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2805 /* A GPIO control always takes precedence */
2807 return rdev
->ena_gpio_state
;
2809 /* If we don't know then assume that the regulator is always on */
2810 if (!rdev
->desc
->ops
->is_enabled
)
2813 return rdev
->desc
->ops
->is_enabled(rdev
);
2816 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2817 unsigned selector
, int lock
)
2819 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2822 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2823 return rdev
->desc
->fixed_uV
;
2825 if (ops
->list_voltage
) {
2826 if (selector
>= rdev
->desc
->n_voltages
)
2829 regulator_lock(rdev
);
2830 ret
= ops
->list_voltage(rdev
, selector
);
2832 regulator_unlock(rdev
);
2833 } else if (rdev
->is_switch
&& rdev
->supply
) {
2834 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2841 if (ret
< rdev
->constraints
->min_uV
)
2843 else if (ret
> rdev
->constraints
->max_uV
)
2851 * regulator_is_enabled - is the regulator output enabled
2852 * @regulator: regulator source
2854 * Returns positive if the regulator driver backing the source/client
2855 * has requested that the device be enabled, zero if it hasn't, else a
2856 * negative errno code.
2858 * Note that the device backing this regulator handle can have multiple
2859 * users, so it might be enabled even if regulator_enable() was never
2860 * called for this particular source.
2862 int regulator_is_enabled(struct regulator
*regulator
)
2866 if (regulator
->always_on
)
2869 regulator_lock(regulator
->rdev
);
2870 ret
= _regulator_is_enabled(regulator
->rdev
);
2871 regulator_unlock(regulator
->rdev
);
2875 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2878 * regulator_count_voltages - count regulator_list_voltage() selectors
2879 * @regulator: regulator source
2881 * Returns number of selectors, or negative errno. Selectors are
2882 * numbered starting at zero, and typically correspond to bitfields
2883 * in hardware registers.
2885 int regulator_count_voltages(struct regulator
*regulator
)
2887 struct regulator_dev
*rdev
= regulator
->rdev
;
2889 if (rdev
->desc
->n_voltages
)
2890 return rdev
->desc
->n_voltages
;
2892 if (!rdev
->is_switch
|| !rdev
->supply
)
2895 return regulator_count_voltages(rdev
->supply
);
2897 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2900 * regulator_list_voltage - enumerate supported voltages
2901 * @regulator: regulator source
2902 * @selector: identify voltage to list
2903 * Context: can sleep
2905 * Returns a voltage that can be passed to @regulator_set_voltage(),
2906 * zero if this selector code can't be used on this system, or a
2909 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2911 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
2913 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2916 * regulator_get_regmap - get the regulator's register map
2917 * @regulator: regulator source
2919 * Returns the register map for the given regulator, or an ERR_PTR value
2920 * if the regulator doesn't use regmap.
2922 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2924 struct regmap
*map
= regulator
->rdev
->regmap
;
2926 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2930 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2931 * @regulator: regulator source
2932 * @vsel_reg: voltage selector register, output parameter
2933 * @vsel_mask: mask for voltage selector bitfield, output parameter
2935 * Returns the hardware register offset and bitmask used for setting the
2936 * regulator voltage. This might be useful when configuring voltage-scaling
2937 * hardware or firmware that can make I2C requests behind the kernel's back,
2940 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2941 * and 0 is returned, otherwise a negative errno is returned.
2943 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2945 unsigned *vsel_mask
)
2947 struct regulator_dev
*rdev
= regulator
->rdev
;
2948 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2950 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2953 *vsel_reg
= rdev
->desc
->vsel_reg
;
2954 *vsel_mask
= rdev
->desc
->vsel_mask
;
2958 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2961 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2962 * @regulator: regulator source
2963 * @selector: identify voltage to list
2965 * Converts the selector to a hardware-specific voltage selector that can be
2966 * directly written to the regulator registers. The address of the voltage
2967 * register can be determined by calling @regulator_get_hardware_vsel_register.
2969 * On error a negative errno is returned.
2971 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2974 struct regulator_dev
*rdev
= regulator
->rdev
;
2975 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2977 if (selector
>= rdev
->desc
->n_voltages
)
2979 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2984 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2987 * regulator_get_linear_step - return the voltage step size between VSEL values
2988 * @regulator: regulator source
2990 * Returns the voltage step size between VSEL values for linear
2991 * regulators, or return 0 if the regulator isn't a linear regulator.
2993 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2995 struct regulator_dev
*rdev
= regulator
->rdev
;
2997 return rdev
->desc
->uV_step
;
2999 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
3002 * regulator_is_supported_voltage - check if a voltage range can be supported
3004 * @regulator: Regulator to check.
3005 * @min_uV: Minimum required voltage in uV.
3006 * @max_uV: Maximum required voltage in uV.
3008 * Returns a boolean or a negative error code.
3010 int regulator_is_supported_voltage(struct regulator
*regulator
,
3011 int min_uV
, int max_uV
)
3013 struct regulator_dev
*rdev
= regulator
->rdev
;
3014 int i
, voltages
, ret
;
3016 /* If we can't change voltage check the current voltage */
3017 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3018 ret
= regulator_get_voltage(regulator
);
3020 return min_uV
<= ret
&& ret
<= max_uV
;
3025 /* Any voltage within constrains range is fine? */
3026 if (rdev
->desc
->continuous_voltage_range
)
3027 return min_uV
>= rdev
->constraints
->min_uV
&&
3028 max_uV
<= rdev
->constraints
->max_uV
;
3030 ret
= regulator_count_voltages(regulator
);
3035 for (i
= 0; i
< voltages
; i
++) {
3036 ret
= regulator_list_voltage(regulator
, i
);
3038 if (ret
>= min_uV
&& ret
<= max_uV
)
3044 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
3046 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
3049 const struct regulator_desc
*desc
= rdev
->desc
;
3051 if (desc
->ops
->map_voltage
)
3052 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
3054 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
3055 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
3057 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
3058 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
3060 if (desc
->ops
->list_voltage
==
3061 regulator_list_voltage_pickable_linear_range
)
3062 return regulator_map_voltage_pickable_linear_range(rdev
,
3065 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
3068 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
3069 int min_uV
, int max_uV
,
3072 struct pre_voltage_change_data data
;
3075 data
.old_uV
= _regulator_get_voltage(rdev
);
3076 data
.min_uV
= min_uV
;
3077 data
.max_uV
= max_uV
;
3078 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3080 if (ret
& NOTIFY_STOP_MASK
)
3083 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
3087 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3088 (void *)data
.old_uV
);
3093 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
3094 int uV
, unsigned selector
)
3096 struct pre_voltage_change_data data
;
3099 data
.old_uV
= _regulator_get_voltage(rdev
);
3102 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3104 if (ret
& NOTIFY_STOP_MASK
)
3107 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
3111 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3112 (void *)data
.old_uV
);
3117 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
3118 int old_uV
, int new_uV
)
3120 unsigned int ramp_delay
= 0;
3122 if (rdev
->constraints
->ramp_delay
)
3123 ramp_delay
= rdev
->constraints
->ramp_delay
;
3124 else if (rdev
->desc
->ramp_delay
)
3125 ramp_delay
= rdev
->desc
->ramp_delay
;
3126 else if (rdev
->constraints
->settling_time
)
3127 return rdev
->constraints
->settling_time
;
3128 else if (rdev
->constraints
->settling_time_up
&&
3130 return rdev
->constraints
->settling_time_up
;
3131 else if (rdev
->constraints
->settling_time_down
&&
3133 return rdev
->constraints
->settling_time_down
;
3135 if (ramp_delay
== 0) {
3136 rdev_dbg(rdev
, "ramp_delay not set\n");
3140 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
3143 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
3144 int min_uV
, int max_uV
)
3149 unsigned int selector
;
3150 int old_selector
= -1;
3151 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3152 int old_uV
= _regulator_get_voltage(rdev
);
3154 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
3156 min_uV
+= rdev
->constraints
->uV_offset
;
3157 max_uV
+= rdev
->constraints
->uV_offset
;
3160 * If we can't obtain the old selector there is not enough
3161 * info to call set_voltage_time_sel().
3163 if (_regulator_is_enabled(rdev
) &&
3164 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
3165 old_selector
= ops
->get_voltage_sel(rdev
);
3166 if (old_selector
< 0)
3167 return old_selector
;
3170 if (ops
->set_voltage
) {
3171 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
3175 if (ops
->list_voltage
)
3176 best_val
= ops
->list_voltage(rdev
,
3179 best_val
= _regulator_get_voltage(rdev
);
3182 } else if (ops
->set_voltage_sel
) {
3183 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3185 best_val
= ops
->list_voltage(rdev
, ret
);
3186 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
3188 if (old_selector
== selector
)
3191 ret
= _regulator_call_set_voltage_sel(
3192 rdev
, best_val
, selector
);
3204 if (ops
->set_voltage_time_sel
) {
3206 * Call set_voltage_time_sel if successfully obtained
3209 if (old_selector
>= 0 && old_selector
!= selector
)
3210 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
3213 if (old_uV
!= best_val
) {
3214 if (ops
->set_voltage_time
)
3215 delay
= ops
->set_voltage_time(rdev
, old_uV
,
3218 delay
= _regulator_set_voltage_time(rdev
,
3225 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
3229 /* Insert any necessary delays */
3230 if (delay
>= 1000) {
3231 mdelay(delay
/ 1000);
3232 udelay(delay
% 1000);
3237 if (best_val
>= 0) {
3238 unsigned long data
= best_val
;
3240 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
3245 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
3250 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
3251 int min_uV
, int max_uV
, suspend_state_t state
)
3253 struct regulator_state
*rstate
;
3256 rstate
= regulator_get_suspend_state(rdev
, state
);
3260 if (min_uV
< rstate
->min_uV
)
3261 min_uV
= rstate
->min_uV
;
3262 if (max_uV
> rstate
->max_uV
)
3263 max_uV
= rstate
->max_uV
;
3265 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3269 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3270 if (uV
>= min_uV
&& uV
<= max_uV
)
3276 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
3277 int min_uV
, int max_uV
,
3278 suspend_state_t state
)
3280 struct regulator_dev
*rdev
= regulator
->rdev
;
3281 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
3283 int old_min_uV
, old_max_uV
;
3286 /* If we're setting the same range as last time the change
3287 * should be a noop (some cpufreq implementations use the same
3288 * voltage for multiple frequencies, for example).
3290 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3293 /* If we're trying to set a range that overlaps the current voltage,
3294 * return successfully even though the regulator does not support
3295 * changing the voltage.
3297 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3298 current_uV
= _regulator_get_voltage(rdev
);
3299 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3300 voltage
->min_uV
= min_uV
;
3301 voltage
->max_uV
= max_uV
;
3307 if (!rdev
->desc
->ops
->set_voltage
&&
3308 !rdev
->desc
->ops
->set_voltage_sel
) {
3313 /* constraints check */
3314 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3318 /* restore original values in case of error */
3319 old_min_uV
= voltage
->min_uV
;
3320 old_max_uV
= voltage
->max_uV
;
3321 voltage
->min_uV
= min_uV
;
3322 voltage
->max_uV
= max_uV
;
3324 /* for not coupled regulators this will just set the voltage */
3325 ret
= regulator_balance_voltage(rdev
, state
);
3327 voltage
->min_uV
= old_min_uV
;
3328 voltage
->max_uV
= old_max_uV
;
3335 static int regulator_set_voltage_rdev(struct regulator_dev
*rdev
, int min_uV
,
3336 int max_uV
, suspend_state_t state
)
3338 int best_supply_uV
= 0;
3339 int supply_change_uV
= 0;
3343 regulator_ops_is_valid(rdev
->supply
->rdev
,
3344 REGULATOR_CHANGE_VOLTAGE
) &&
3345 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3346 rdev
->desc
->ops
->get_voltage_sel
))) {
3347 int current_supply_uV
;
3350 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3356 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3357 if (best_supply_uV
< 0) {
3358 ret
= best_supply_uV
;
3362 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3364 current_supply_uV
= _regulator_get_voltage(rdev
->supply
->rdev
);
3365 if (current_supply_uV
< 0) {
3366 ret
= current_supply_uV
;
3370 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3373 if (supply_change_uV
> 0) {
3374 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3375 best_supply_uV
, INT_MAX
, state
);
3377 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3383 if (state
== PM_SUSPEND_ON
)
3384 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3386 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3391 if (supply_change_uV
< 0) {
3392 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3393 best_supply_uV
, INT_MAX
, state
);
3395 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3397 /* No need to fail here */
3405 static int regulator_limit_voltage_step(struct regulator_dev
*rdev
,
3406 int *current_uV
, int *min_uV
)
3408 struct regulation_constraints
*constraints
= rdev
->constraints
;
3410 /* Limit voltage change only if necessary */
3411 if (!constraints
->max_uV_step
|| !_regulator_is_enabled(rdev
))
3414 if (*current_uV
< 0) {
3415 *current_uV
= _regulator_get_voltage(rdev
);
3417 if (*current_uV
< 0)
3421 if (abs(*current_uV
- *min_uV
) <= constraints
->max_uV_step
)
3424 /* Clamp target voltage within the given step */
3425 if (*current_uV
< *min_uV
)
3426 *min_uV
= min(*current_uV
+ constraints
->max_uV_step
,
3429 *min_uV
= max(*current_uV
- constraints
->max_uV_step
,
3435 static int regulator_get_optimal_voltage(struct regulator_dev
*rdev
,
3437 int *min_uV
, int *max_uV
,
3438 suspend_state_t state
,
3441 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3442 struct regulator_dev
**c_rdevs
= c_desc
->coupled_rdevs
;
3443 struct regulation_constraints
*constraints
= rdev
->constraints
;
3444 int max_spread
= constraints
->max_spread
;
3445 int desired_min_uV
= 0, desired_max_uV
= INT_MAX
;
3446 int max_current_uV
= 0, min_current_uV
= INT_MAX
;
3447 int highest_min_uV
= 0, target_uV
, possible_uV
;
3454 * If there are no coupled regulators, simply set the voltage
3455 * demanded by consumers.
3457 if (n_coupled
== 1) {
3459 * If consumers don't provide any demands, set voltage
3462 desired_min_uV
= constraints
->min_uV
;
3463 desired_max_uV
= constraints
->max_uV
;
3465 ret
= regulator_check_consumers(rdev
,
3467 &desired_max_uV
, state
);
3471 possible_uV
= desired_min_uV
;
3477 /* Find highest min desired voltage */
3478 for (i
= 0; i
< n_coupled
; i
++) {
3480 int tmp_max
= INT_MAX
;
3482 lockdep_assert_held_once(&c_rdevs
[i
]->mutex
.base
);
3484 ret
= regulator_check_consumers(c_rdevs
[i
],
3490 ret
= regulator_check_voltage(c_rdevs
[i
], &tmp_min
, &tmp_max
);
3494 highest_min_uV
= max(highest_min_uV
, tmp_min
);
3497 desired_min_uV
= tmp_min
;
3498 desired_max_uV
= tmp_max
;
3503 * Let target_uV be equal to the desired one if possible.
3504 * If not, set it to minimum voltage, allowed by other coupled
3507 target_uV
= max(desired_min_uV
, highest_min_uV
- max_spread
);
3510 * Find min and max voltages, which currently aren't violating
3513 for (i
= 1; i
< n_coupled
; i
++) {
3516 if (!_regulator_is_enabled(c_rdevs
[i
]))
3519 tmp_act
= _regulator_get_voltage(c_rdevs
[i
]);
3523 min_current_uV
= min(tmp_act
, min_current_uV
);
3524 max_current_uV
= max(tmp_act
, max_current_uV
);
3527 /* There aren't any other regulators enabled */
3528 if (max_current_uV
== 0) {
3529 possible_uV
= target_uV
;
3532 * Correct target voltage, so as it currently isn't
3533 * violating max_spread
3535 possible_uV
= max(target_uV
, max_current_uV
- max_spread
);
3536 possible_uV
= min(possible_uV
, min_current_uV
+ max_spread
);
3539 if (possible_uV
> desired_max_uV
)
3542 done
= (possible_uV
== target_uV
);
3543 desired_min_uV
= possible_uV
;
3546 /* Apply max_uV_step constraint if necessary */
3547 if (state
== PM_SUSPEND_ON
) {
3548 ret
= regulator_limit_voltage_step(rdev
, current_uV
,
3557 /* Set current_uV if wasn't done earlier in the code and if necessary */
3558 if (n_coupled
> 1 && *current_uV
== -1) {
3560 if (_regulator_is_enabled(rdev
)) {
3561 ret
= _regulator_get_voltage(rdev
);
3567 *current_uV
= desired_min_uV
;
3571 *min_uV
= desired_min_uV
;
3572 *max_uV
= desired_max_uV
;
3577 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
3578 suspend_state_t state
)
3580 struct regulator_dev
**c_rdevs
;
3581 struct regulator_dev
*best_rdev
;
3582 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3583 int i
, ret
, n_coupled
, best_min_uV
, best_max_uV
, best_c_rdev
;
3584 bool best_c_rdev_done
, c_rdev_done
[MAX_COUPLED
];
3585 unsigned int delta
, best_delta
;
3587 c_rdevs
= c_desc
->coupled_rdevs
;
3588 n_coupled
= c_desc
->n_coupled
;
3591 * If system is in a state other than PM_SUSPEND_ON, don't check
3592 * other coupled regulators.
3594 if (state
!= PM_SUSPEND_ON
)
3597 if (c_desc
->n_resolved
< n_coupled
) {
3598 rdev_err(rdev
, "Not all coupled regulators registered\n");
3602 for (i
= 0; i
< n_coupled
; i
++)
3603 c_rdev_done
[i
] = false;
3606 * Find the best possible voltage change on each loop. Leave the loop
3607 * if there isn't any possible change.
3610 best_c_rdev_done
= false;
3618 * Find highest difference between optimal voltage
3619 * and current voltage.
3621 for (i
= 0; i
< n_coupled
; i
++) {
3623 * optimal_uV is the best voltage that can be set for
3624 * i-th regulator at the moment without violating
3625 * max_spread constraint in order to balance
3626 * the coupled voltages.
3628 int optimal_uV
= 0, optimal_max_uV
= 0, current_uV
= 0;
3633 ret
= regulator_get_optimal_voltage(c_rdevs
[i
],
3641 delta
= abs(optimal_uV
- current_uV
);
3643 if (delta
&& best_delta
<= delta
) {
3644 best_c_rdev_done
= ret
;
3646 best_rdev
= c_rdevs
[i
];
3647 best_min_uV
= optimal_uV
;
3648 best_max_uV
= optimal_max_uV
;
3653 /* Nothing to change, return successfully */
3659 ret
= regulator_set_voltage_rdev(best_rdev
, best_min_uV
,
3660 best_max_uV
, state
);
3665 c_rdev_done
[best_c_rdev
] = best_c_rdev_done
;
3667 } while (n_coupled
> 1);
3674 * regulator_set_voltage - set regulator output voltage
3675 * @regulator: regulator source
3676 * @min_uV: Minimum required voltage in uV
3677 * @max_uV: Maximum acceptable voltage in uV
3679 * Sets a voltage regulator to the desired output voltage. This can be set
3680 * during any regulator state. IOW, regulator can be disabled or enabled.
3682 * If the regulator is enabled then the voltage will change to the new value
3683 * immediately otherwise if the regulator is disabled the regulator will
3684 * output at the new voltage when enabled.
3686 * NOTE: If the regulator is shared between several devices then the lowest
3687 * request voltage that meets the system constraints will be used.
3688 * Regulator system constraints must be set for this regulator before
3689 * calling this function otherwise this call will fail.
3691 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3693 struct ww_acquire_ctx ww_ctx
;
3696 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3698 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3701 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3705 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3707 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3708 suspend_state_t state
, bool en
)
3710 struct regulator_state
*rstate
;
3712 rstate
= regulator_get_suspend_state(rdev
, state
);
3716 if (!rstate
->changeable
)
3719 rstate
->enabled
= (en
) ? ENABLE_IN_SUSPEND
: DISABLE_IN_SUSPEND
;
3724 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3725 suspend_state_t state
)
3727 return regulator_suspend_toggle(rdev
, state
, true);
3729 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3731 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3732 suspend_state_t state
)
3734 struct regulator
*regulator
;
3735 struct regulator_voltage
*voltage
;
3738 * if any consumer wants this regulator device keeping on in
3739 * suspend states, don't set it as disabled.
3741 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3742 voltage
= ®ulator
->voltage
[state
];
3743 if (voltage
->min_uV
|| voltage
->max_uV
)
3747 return regulator_suspend_toggle(rdev
, state
, false);
3749 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3751 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3752 int min_uV
, int max_uV
,
3753 suspend_state_t state
)
3755 struct regulator_dev
*rdev
= regulator
->rdev
;
3756 struct regulator_state
*rstate
;
3758 rstate
= regulator_get_suspend_state(rdev
, state
);
3762 if (rstate
->min_uV
== rstate
->max_uV
) {
3763 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3767 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3770 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3771 int max_uV
, suspend_state_t state
)
3773 struct ww_acquire_ctx ww_ctx
;
3776 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3777 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3780 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3782 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3785 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3789 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3792 * regulator_set_voltage_time - get raise/fall time
3793 * @regulator: regulator source
3794 * @old_uV: starting voltage in microvolts
3795 * @new_uV: target voltage in microvolts
3797 * Provided with the starting and ending voltage, this function attempts to
3798 * calculate the time in microseconds required to rise or fall to this new
3801 int regulator_set_voltage_time(struct regulator
*regulator
,
3802 int old_uV
, int new_uV
)
3804 struct regulator_dev
*rdev
= regulator
->rdev
;
3805 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3811 if (ops
->set_voltage_time
)
3812 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3813 else if (!ops
->set_voltage_time_sel
)
3814 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3816 /* Currently requires operations to do this */
3817 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3820 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3821 /* We only look for exact voltage matches here */
3822 voltage
= regulator_list_voltage(regulator
, i
);
3827 if (voltage
== old_uV
)
3829 if (voltage
== new_uV
)
3833 if (old_sel
< 0 || new_sel
< 0)
3836 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3838 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3841 * regulator_set_voltage_time_sel - get raise/fall time
3842 * @rdev: regulator source device
3843 * @old_selector: selector for starting voltage
3844 * @new_selector: selector for target voltage
3846 * Provided with the starting and target voltage selectors, this function
3847 * returns time in microseconds required to rise or fall to this new voltage
3849 * Drivers providing ramp_delay in regulation_constraints can use this as their
3850 * set_voltage_time_sel() operation.
3852 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3853 unsigned int old_selector
,
3854 unsigned int new_selector
)
3856 int old_volt
, new_volt
;
3859 if (!rdev
->desc
->ops
->list_voltage
)
3862 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3863 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3865 if (rdev
->desc
->ops
->set_voltage_time
)
3866 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3869 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3871 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3874 * regulator_sync_voltage - re-apply last regulator output voltage
3875 * @regulator: regulator source
3877 * Re-apply the last configured voltage. This is intended to be used
3878 * where some external control source the consumer is cooperating with
3879 * has caused the configured voltage to change.
3881 int regulator_sync_voltage(struct regulator
*regulator
)
3883 struct regulator_dev
*rdev
= regulator
->rdev
;
3884 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
3885 int ret
, min_uV
, max_uV
;
3887 regulator_lock(rdev
);
3889 if (!rdev
->desc
->ops
->set_voltage
&&
3890 !rdev
->desc
->ops
->set_voltage_sel
) {
3895 /* This is only going to work if we've had a voltage configured. */
3896 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
3901 min_uV
= voltage
->min_uV
;
3902 max_uV
= voltage
->max_uV
;
3904 /* This should be a paranoia check... */
3905 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3909 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
3913 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3916 regulator_unlock(rdev
);
3919 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3921 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
3926 if (rdev
->desc
->ops
->get_bypass
) {
3927 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
3931 /* if bypassed the regulator must have a supply */
3932 if (!rdev
->supply
) {
3934 "bypassed regulator has no supply!\n");
3935 return -EPROBE_DEFER
;
3938 return _regulator_get_voltage(rdev
->supply
->rdev
);
3942 if (rdev
->desc
->ops
->get_voltage_sel
) {
3943 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
3946 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3947 } else if (rdev
->desc
->ops
->get_voltage
) {
3948 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
3949 } else if (rdev
->desc
->ops
->list_voltage
) {
3950 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
3951 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
3952 ret
= rdev
->desc
->fixed_uV
;
3953 } else if (rdev
->supply
) {
3954 ret
= _regulator_get_voltage(rdev
->supply
->rdev
);
3961 return ret
- rdev
->constraints
->uV_offset
;
3965 * regulator_get_voltage - get regulator output voltage
3966 * @regulator: regulator source
3968 * This returns the current regulator voltage in uV.
3970 * NOTE: If the regulator is disabled it will return the voltage value. This
3971 * function should not be used to determine regulator state.
3973 int regulator_get_voltage(struct regulator
*regulator
)
3975 struct ww_acquire_ctx ww_ctx
;
3978 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3979 ret
= _regulator_get_voltage(regulator
->rdev
);
3980 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3984 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
3987 * regulator_set_current_limit - set regulator output current limit
3988 * @regulator: regulator source
3989 * @min_uA: Minimum supported current in uA
3990 * @max_uA: Maximum supported current in uA
3992 * Sets current sink to the desired output current. This can be set during
3993 * any regulator state. IOW, regulator can be disabled or enabled.
3995 * If the regulator is enabled then the current will change to the new value
3996 * immediately otherwise if the regulator is disabled the regulator will
3997 * output at the new current when enabled.
3999 * NOTE: Regulator system constraints must be set for this regulator before
4000 * calling this function otherwise this call will fail.
4002 int regulator_set_current_limit(struct regulator
*regulator
,
4003 int min_uA
, int max_uA
)
4005 struct regulator_dev
*rdev
= regulator
->rdev
;
4008 regulator_lock(rdev
);
4011 if (!rdev
->desc
->ops
->set_current_limit
) {
4016 /* constraints check */
4017 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
4021 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
4023 regulator_unlock(rdev
);
4026 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
4028 static int _regulator_get_current_limit_unlocked(struct regulator_dev
*rdev
)
4031 if (!rdev
->desc
->ops
->get_current_limit
)
4034 return rdev
->desc
->ops
->get_current_limit(rdev
);
4037 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
4041 regulator_lock(rdev
);
4042 ret
= _regulator_get_current_limit_unlocked(rdev
);
4043 regulator_unlock(rdev
);
4049 * regulator_get_current_limit - get regulator output current
4050 * @regulator: regulator source
4052 * This returns the current supplied by the specified current sink in uA.
4054 * NOTE: If the regulator is disabled it will return the current value. This
4055 * function should not be used to determine regulator state.
4057 int regulator_get_current_limit(struct regulator
*regulator
)
4059 return _regulator_get_current_limit(regulator
->rdev
);
4061 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
4064 * regulator_set_mode - set regulator operating mode
4065 * @regulator: regulator source
4066 * @mode: operating mode - one of the REGULATOR_MODE constants
4068 * Set regulator operating mode to increase regulator efficiency or improve
4069 * regulation performance.
4071 * NOTE: Regulator system constraints must be set for this regulator before
4072 * calling this function otherwise this call will fail.
4074 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
4076 struct regulator_dev
*rdev
= regulator
->rdev
;
4078 int regulator_curr_mode
;
4080 regulator_lock(rdev
);
4083 if (!rdev
->desc
->ops
->set_mode
) {
4088 /* return if the same mode is requested */
4089 if (rdev
->desc
->ops
->get_mode
) {
4090 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
4091 if (regulator_curr_mode
== mode
) {
4097 /* constraints check */
4098 ret
= regulator_mode_constrain(rdev
, &mode
);
4102 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
4104 regulator_unlock(rdev
);
4107 EXPORT_SYMBOL_GPL(regulator_set_mode
);
4109 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev
*rdev
)
4112 if (!rdev
->desc
->ops
->get_mode
)
4115 return rdev
->desc
->ops
->get_mode(rdev
);
4118 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
4122 regulator_lock(rdev
);
4123 ret
= _regulator_get_mode_unlocked(rdev
);
4124 regulator_unlock(rdev
);
4130 * regulator_get_mode - get regulator operating mode
4131 * @regulator: regulator source
4133 * Get the current regulator operating mode.
4135 unsigned int regulator_get_mode(struct regulator
*regulator
)
4137 return _regulator_get_mode(regulator
->rdev
);
4139 EXPORT_SYMBOL_GPL(regulator_get_mode
);
4141 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
4142 unsigned int *flags
)
4146 regulator_lock(rdev
);
4149 if (!rdev
->desc
->ops
->get_error_flags
) {
4154 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
4156 regulator_unlock(rdev
);
4161 * regulator_get_error_flags - get regulator error information
4162 * @regulator: regulator source
4163 * @flags: pointer to store error flags
4165 * Get the current regulator error information.
4167 int regulator_get_error_flags(struct regulator
*regulator
,
4168 unsigned int *flags
)
4170 return _regulator_get_error_flags(regulator
->rdev
, flags
);
4172 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
4175 * regulator_set_load - set regulator load
4176 * @regulator: regulator source
4177 * @uA_load: load current
4179 * Notifies the regulator core of a new device load. This is then used by
4180 * DRMS (if enabled by constraints) to set the most efficient regulator
4181 * operating mode for the new regulator loading.
4183 * Consumer devices notify their supply regulator of the maximum power
4184 * they will require (can be taken from device datasheet in the power
4185 * consumption tables) when they change operational status and hence power
4186 * state. Examples of operational state changes that can affect power
4187 * consumption are :-
4189 * o Device is opened / closed.
4190 * o Device I/O is about to begin or has just finished.
4191 * o Device is idling in between work.
4193 * This information is also exported via sysfs to userspace.
4195 * DRMS will sum the total requested load on the regulator and change
4196 * to the most efficient operating mode if platform constraints allow.
4198 * NOTE: when a regulator consumer requests to have a regulator
4199 * disabled then any load that consumer requested no longer counts
4200 * toward the total requested load. If the regulator is re-enabled
4201 * then the previously requested load will start counting again.
4203 * If a regulator is an always-on regulator then an individual consumer's
4204 * load will still be removed if that consumer is fully disabled.
4206 * On error a negative errno is returned.
4208 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
4210 struct regulator_dev
*rdev
= regulator
->rdev
;
4214 regulator_lock(rdev
);
4215 old_uA_load
= regulator
->uA_load
;
4216 regulator
->uA_load
= uA_load
;
4217 if (regulator
->enable_count
&& old_uA_load
!= uA_load
) {
4218 ret
= drms_uA_update(rdev
);
4220 regulator
->uA_load
= old_uA_load
;
4222 regulator_unlock(rdev
);
4226 EXPORT_SYMBOL_GPL(regulator_set_load
);
4229 * regulator_allow_bypass - allow the regulator to go into bypass mode
4231 * @regulator: Regulator to configure
4232 * @enable: enable or disable bypass mode
4234 * Allow the regulator to go into bypass mode if all other consumers
4235 * for the regulator also enable bypass mode and the machine
4236 * constraints allow this. Bypass mode means that the regulator is
4237 * simply passing the input directly to the output with no regulation.
4239 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
4241 struct regulator_dev
*rdev
= regulator
->rdev
;
4244 if (!rdev
->desc
->ops
->set_bypass
)
4247 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
4250 regulator_lock(rdev
);
4252 if (enable
&& !regulator
->bypass
) {
4253 rdev
->bypass_count
++;
4255 if (rdev
->bypass_count
== rdev
->open_count
) {
4256 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4258 rdev
->bypass_count
--;
4261 } else if (!enable
&& regulator
->bypass
) {
4262 rdev
->bypass_count
--;
4264 if (rdev
->bypass_count
!= rdev
->open_count
) {
4265 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4267 rdev
->bypass_count
++;
4272 regulator
->bypass
= enable
;
4274 regulator_unlock(rdev
);
4278 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
4281 * regulator_register_notifier - register regulator event notifier
4282 * @regulator: regulator source
4283 * @nb: notifier block
4285 * Register notifier block to receive regulator events.
4287 int regulator_register_notifier(struct regulator
*regulator
,
4288 struct notifier_block
*nb
)
4290 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
4293 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
4296 * regulator_unregister_notifier - unregister regulator event notifier
4297 * @regulator: regulator source
4298 * @nb: notifier block
4300 * Unregister regulator event notifier block.
4302 int regulator_unregister_notifier(struct regulator
*regulator
,
4303 struct notifier_block
*nb
)
4305 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
4308 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
4310 /* notify regulator consumers and downstream regulator consumers.
4311 * Note mutex must be held by caller.
4313 static int _notifier_call_chain(struct regulator_dev
*rdev
,
4314 unsigned long event
, void *data
)
4316 /* call rdev chain first */
4317 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
4321 * regulator_bulk_get - get multiple regulator consumers
4323 * @dev: Device to supply
4324 * @num_consumers: Number of consumers to register
4325 * @consumers: Configuration of consumers; clients are stored here.
4327 * @return 0 on success, an errno on failure.
4329 * This helper function allows drivers to get several regulator
4330 * consumers in one operation. If any of the regulators cannot be
4331 * acquired then any regulators that were allocated will be freed
4332 * before returning to the caller.
4334 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
4335 struct regulator_bulk_data
*consumers
)
4340 for (i
= 0; i
< num_consumers
; i
++)
4341 consumers
[i
].consumer
= NULL
;
4343 for (i
= 0; i
< num_consumers
; i
++) {
4344 consumers
[i
].consumer
= regulator_get(dev
,
4345 consumers
[i
].supply
);
4346 if (IS_ERR(consumers
[i
].consumer
)) {
4347 ret
= PTR_ERR(consumers
[i
].consumer
);
4348 dev_err(dev
, "Failed to get supply '%s': %d\n",
4349 consumers
[i
].supply
, ret
);
4350 consumers
[i
].consumer
= NULL
;
4359 regulator_put(consumers
[i
].consumer
);
4363 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
4365 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
4367 struct regulator_bulk_data
*bulk
= data
;
4369 bulk
->ret
= regulator_enable(bulk
->consumer
);
4373 * regulator_bulk_enable - enable multiple regulator consumers
4375 * @num_consumers: Number of consumers
4376 * @consumers: Consumer data; clients are stored here.
4377 * @return 0 on success, an errno on failure
4379 * This convenience API allows consumers to enable multiple regulator
4380 * clients in a single API call. If any consumers cannot be enabled
4381 * then any others that were enabled will be disabled again prior to
4384 int regulator_bulk_enable(int num_consumers
,
4385 struct regulator_bulk_data
*consumers
)
4387 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
4391 for (i
= 0; i
< num_consumers
; i
++) {
4392 async_schedule_domain(regulator_bulk_enable_async
,
4393 &consumers
[i
], &async_domain
);
4396 async_synchronize_full_domain(&async_domain
);
4398 /* If any consumer failed we need to unwind any that succeeded */
4399 for (i
= 0; i
< num_consumers
; i
++) {
4400 if (consumers
[i
].ret
!= 0) {
4401 ret
= consumers
[i
].ret
;
4409 for (i
= 0; i
< num_consumers
; i
++) {
4410 if (consumers
[i
].ret
< 0)
4411 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
4414 regulator_disable(consumers
[i
].consumer
);
4419 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
4422 * regulator_bulk_disable - disable multiple regulator consumers
4424 * @num_consumers: Number of consumers
4425 * @consumers: Consumer data; clients are stored here.
4426 * @return 0 on success, an errno on failure
4428 * This convenience API allows consumers to disable multiple regulator
4429 * clients in a single API call. If any consumers cannot be disabled
4430 * then any others that were disabled will be enabled again prior to
4433 int regulator_bulk_disable(int num_consumers
,
4434 struct regulator_bulk_data
*consumers
)
4439 for (i
= num_consumers
- 1; i
>= 0; --i
) {
4440 ret
= regulator_disable(consumers
[i
].consumer
);
4448 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
4449 for (++i
; i
< num_consumers
; ++i
) {
4450 r
= regulator_enable(consumers
[i
].consumer
);
4452 pr_err("Failed to re-enable %s: %d\n",
4453 consumers
[i
].supply
, r
);
4458 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
4461 * regulator_bulk_force_disable - force disable multiple regulator consumers
4463 * @num_consumers: Number of consumers
4464 * @consumers: Consumer data; clients are stored here.
4465 * @return 0 on success, an errno on failure
4467 * This convenience API allows consumers to forcibly disable multiple regulator
4468 * clients in a single API call.
4469 * NOTE: This should be used for situations when device damage will
4470 * likely occur if the regulators are not disabled (e.g. over temp).
4471 * Although regulator_force_disable function call for some consumers can
4472 * return error numbers, the function is called for all consumers.
4474 int regulator_bulk_force_disable(int num_consumers
,
4475 struct regulator_bulk_data
*consumers
)
4480 for (i
= 0; i
< num_consumers
; i
++) {
4482 regulator_force_disable(consumers
[i
].consumer
);
4484 /* Store first error for reporting */
4485 if (consumers
[i
].ret
&& !ret
)
4486 ret
= consumers
[i
].ret
;
4491 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
4494 * regulator_bulk_free - free multiple regulator consumers
4496 * @num_consumers: Number of consumers
4497 * @consumers: Consumer data; clients are stored here.
4499 * This convenience API allows consumers to free multiple regulator
4500 * clients in a single API call.
4502 void regulator_bulk_free(int num_consumers
,
4503 struct regulator_bulk_data
*consumers
)
4507 for (i
= 0; i
< num_consumers
; i
++) {
4508 regulator_put(consumers
[i
].consumer
);
4509 consumers
[i
].consumer
= NULL
;
4512 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
4515 * regulator_notifier_call_chain - call regulator event notifier
4516 * @rdev: regulator source
4517 * @event: notifier block
4518 * @data: callback-specific data.
4520 * Called by regulator drivers to notify clients a regulator event has
4521 * occurred. We also notify regulator clients downstream.
4522 * Note lock must be held by caller.
4524 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
4525 unsigned long event
, void *data
)
4527 lockdep_assert_held_once(&rdev
->mutex
.base
);
4529 _notifier_call_chain(rdev
, event
, data
);
4533 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
4536 * regulator_mode_to_status - convert a regulator mode into a status
4538 * @mode: Mode to convert
4540 * Convert a regulator mode into a status.
4542 int regulator_mode_to_status(unsigned int mode
)
4545 case REGULATOR_MODE_FAST
:
4546 return REGULATOR_STATUS_FAST
;
4547 case REGULATOR_MODE_NORMAL
:
4548 return REGULATOR_STATUS_NORMAL
;
4549 case REGULATOR_MODE_IDLE
:
4550 return REGULATOR_STATUS_IDLE
;
4551 case REGULATOR_MODE_STANDBY
:
4552 return REGULATOR_STATUS_STANDBY
;
4554 return REGULATOR_STATUS_UNDEFINED
;
4557 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
4559 static struct attribute
*regulator_dev_attrs
[] = {
4560 &dev_attr_name
.attr
,
4561 &dev_attr_num_users
.attr
,
4562 &dev_attr_type
.attr
,
4563 &dev_attr_microvolts
.attr
,
4564 &dev_attr_microamps
.attr
,
4565 &dev_attr_opmode
.attr
,
4566 &dev_attr_state
.attr
,
4567 &dev_attr_status
.attr
,
4568 &dev_attr_bypass
.attr
,
4569 &dev_attr_requested_microamps
.attr
,
4570 &dev_attr_min_microvolts
.attr
,
4571 &dev_attr_max_microvolts
.attr
,
4572 &dev_attr_min_microamps
.attr
,
4573 &dev_attr_max_microamps
.attr
,
4574 &dev_attr_suspend_standby_state
.attr
,
4575 &dev_attr_suspend_mem_state
.attr
,
4576 &dev_attr_suspend_disk_state
.attr
,
4577 &dev_attr_suspend_standby_microvolts
.attr
,
4578 &dev_attr_suspend_mem_microvolts
.attr
,
4579 &dev_attr_suspend_disk_microvolts
.attr
,
4580 &dev_attr_suspend_standby_mode
.attr
,
4581 &dev_attr_suspend_mem_mode
.attr
,
4582 &dev_attr_suspend_disk_mode
.attr
,
4587 * To avoid cluttering sysfs (and memory) with useless state, only
4588 * create attributes that can be meaningfully displayed.
4590 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
4591 struct attribute
*attr
, int idx
)
4593 struct device
*dev
= kobj_to_dev(kobj
);
4594 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4595 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4596 umode_t mode
= attr
->mode
;
4598 /* these three are always present */
4599 if (attr
== &dev_attr_name
.attr
||
4600 attr
== &dev_attr_num_users
.attr
||
4601 attr
== &dev_attr_type
.attr
)
4604 /* some attributes need specific methods to be displayed */
4605 if (attr
== &dev_attr_microvolts
.attr
) {
4606 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
4607 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
4608 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
4609 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
4614 if (attr
== &dev_attr_microamps
.attr
)
4615 return ops
->get_current_limit
? mode
: 0;
4617 if (attr
== &dev_attr_opmode
.attr
)
4618 return ops
->get_mode
? mode
: 0;
4620 if (attr
== &dev_attr_state
.attr
)
4621 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
4623 if (attr
== &dev_attr_status
.attr
)
4624 return ops
->get_status
? mode
: 0;
4626 if (attr
== &dev_attr_bypass
.attr
)
4627 return ops
->get_bypass
? mode
: 0;
4629 /* constraints need specific supporting methods */
4630 if (attr
== &dev_attr_min_microvolts
.attr
||
4631 attr
== &dev_attr_max_microvolts
.attr
)
4632 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
4634 if (attr
== &dev_attr_min_microamps
.attr
||
4635 attr
== &dev_attr_max_microamps
.attr
)
4636 return ops
->set_current_limit
? mode
: 0;
4638 if (attr
== &dev_attr_suspend_standby_state
.attr
||
4639 attr
== &dev_attr_suspend_mem_state
.attr
||
4640 attr
== &dev_attr_suspend_disk_state
.attr
)
4643 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
4644 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
4645 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
4646 return ops
->set_suspend_voltage
? mode
: 0;
4648 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4649 attr
== &dev_attr_suspend_mem_mode
.attr
||
4650 attr
== &dev_attr_suspend_disk_mode
.attr
)
4651 return ops
->set_suspend_mode
? mode
: 0;
4656 static const struct attribute_group regulator_dev_group
= {
4657 .attrs
= regulator_dev_attrs
,
4658 .is_visible
= regulator_attr_is_visible
,
4661 static const struct attribute_group
*regulator_dev_groups
[] = {
4662 ®ulator_dev_group
,
4666 static void regulator_dev_release(struct device
*dev
)
4668 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4670 kfree(rdev
->constraints
);
4671 of_node_put(rdev
->dev
.of_node
);
4675 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4677 struct device
*parent
= rdev
->dev
.parent
;
4678 const char *rname
= rdev_get_name(rdev
);
4679 char name
[NAME_MAX
];
4681 /* Avoid duplicate debugfs directory names */
4682 if (parent
&& rname
== rdev
->desc
->name
) {
4683 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4688 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4689 if (!rdev
->debugfs
) {
4690 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4694 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4696 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4698 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4699 &rdev
->bypass_count
);
4702 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4704 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4706 if (regulator_resolve_supply(rdev
))
4707 rdev_dbg(rdev
, "unable to resolve supply\n");
4712 static void regulator_resolve_coupling(struct regulator_dev
*rdev
)
4714 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4715 int n_coupled
= c_desc
->n_coupled
;
4716 struct regulator_dev
*c_rdev
;
4719 for (i
= 1; i
< n_coupled
; i
++) {
4720 /* already resolved */
4721 if (c_desc
->coupled_rdevs
[i
])
4724 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
4729 regulator_lock(c_rdev
);
4731 c_desc
->coupled_rdevs
[i
] = c_rdev
;
4732 c_desc
->n_resolved
++;
4734 regulator_unlock(c_rdev
);
4736 regulator_resolve_coupling(c_rdev
);
4740 static void regulator_remove_coupling(struct regulator_dev
*rdev
)
4742 struct coupling_desc
*__c_desc
, *c_desc
= &rdev
->coupling_desc
;
4743 struct regulator_dev
*__c_rdev
, *c_rdev
;
4744 unsigned int __n_coupled
, n_coupled
;
4747 n_coupled
= c_desc
->n_coupled
;
4749 for (i
= 1; i
< n_coupled
; i
++) {
4750 c_rdev
= c_desc
->coupled_rdevs
[i
];
4755 regulator_lock(c_rdev
);
4757 __c_desc
= &c_rdev
->coupling_desc
;
4758 __n_coupled
= __c_desc
->n_coupled
;
4760 for (k
= 1; k
< __n_coupled
; k
++) {
4761 __c_rdev
= __c_desc
->coupled_rdevs
[k
];
4763 if (__c_rdev
== rdev
) {
4764 __c_desc
->coupled_rdevs
[k
] = NULL
;
4765 __c_desc
->n_resolved
--;
4770 regulator_unlock(c_rdev
);
4772 c_desc
->coupled_rdevs
[i
] = NULL
;
4773 c_desc
->n_resolved
--;
4777 static int regulator_init_coupling(struct regulator_dev
*rdev
)
4781 if (!IS_ENABLED(CONFIG_OF
))
4784 n_phandles
= of_get_n_coupled(rdev
);
4786 if (n_phandles
+ 1 > MAX_COUPLED
) {
4787 rdev_err(rdev
, "too many regulators coupled\n");
4792 * Every regulator should always have coupling descriptor filled with
4793 * at least pointer to itself.
4795 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
4796 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
4797 rdev
->coupling_desc
.n_resolved
++;
4799 /* regulator isn't coupled */
4800 if (n_phandles
== 0)
4803 /* regulator, which can't change its voltage, can't be coupled */
4804 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
4805 rdev_err(rdev
, "voltage operation not allowed\n");
4809 if (rdev
->constraints
->max_spread
<= 0) {
4810 rdev_err(rdev
, "wrong max_spread value\n");
4814 if (!of_check_coupling_data(rdev
))
4821 * regulator_register - register regulator
4822 * @regulator_desc: regulator to register
4823 * @cfg: runtime configuration for regulator
4825 * Called by regulator drivers to register a regulator.
4826 * Returns a valid pointer to struct regulator_dev on success
4827 * or an ERR_PTR() on error.
4829 struct regulator_dev
*
4830 regulator_register(const struct regulator_desc
*regulator_desc
,
4831 const struct regulator_config
*cfg
)
4833 const struct regulation_constraints
*constraints
= NULL
;
4834 const struct regulator_init_data
*init_data
;
4835 struct regulator_config
*config
= NULL
;
4836 static atomic_t regulator_no
= ATOMIC_INIT(-1);
4837 struct regulator_dev
*rdev
;
4838 bool dangling_cfg_gpiod
= false;
4839 bool dangling_of_gpiod
= false;
4844 return ERR_PTR(-EINVAL
);
4846 dangling_cfg_gpiod
= true;
4847 if (regulator_desc
== NULL
) {
4855 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
) {
4860 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
4861 regulator_desc
->type
!= REGULATOR_CURRENT
) {
4866 /* Only one of each should be implemented */
4867 WARN_ON(regulator_desc
->ops
->get_voltage
&&
4868 regulator_desc
->ops
->get_voltage_sel
);
4869 WARN_ON(regulator_desc
->ops
->set_voltage
&&
4870 regulator_desc
->ops
->set_voltage_sel
);
4872 /* If we're using selectors we must implement list_voltage. */
4873 if (regulator_desc
->ops
->get_voltage_sel
&&
4874 !regulator_desc
->ops
->list_voltage
) {
4878 if (regulator_desc
->ops
->set_voltage_sel
&&
4879 !regulator_desc
->ops
->list_voltage
) {
4884 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
4891 * Duplicate the config so the driver could override it after
4892 * parsing init data.
4894 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
4895 if (config
== NULL
) {
4901 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
4902 &rdev
->dev
.of_node
);
4904 * We need to keep track of any GPIO descriptor coming from the
4905 * device tree until we have handled it over to the core. If the
4906 * config that was passed in to this function DOES NOT contain
4907 * a descriptor, and the config after this call DOES contain
4908 * a descriptor, we definitely got one from parsing the device
4911 if (!cfg
->ena_gpiod
&& config
->ena_gpiod
)
4912 dangling_of_gpiod
= true;
4914 init_data
= config
->init_data
;
4915 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
4918 ww_mutex_init(&rdev
->mutex
, ®ulator_ww_class
);
4919 rdev
->reg_data
= config
->driver_data
;
4920 rdev
->owner
= regulator_desc
->owner
;
4921 rdev
->desc
= regulator_desc
;
4923 rdev
->regmap
= config
->regmap
;
4924 else if (dev_get_regmap(dev
, NULL
))
4925 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
4926 else if (dev
->parent
)
4927 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
4928 INIT_LIST_HEAD(&rdev
->consumer_list
);
4929 INIT_LIST_HEAD(&rdev
->list
);
4930 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
4931 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
4933 /* preform any regulator specific init */
4934 if (init_data
&& init_data
->regulator_init
) {
4935 ret
= init_data
->regulator_init(rdev
->reg_data
);
4940 if (config
->ena_gpiod
) {
4941 mutex_lock(®ulator_list_mutex
);
4942 ret
= regulator_ena_gpio_request(rdev
, config
);
4943 mutex_unlock(®ulator_list_mutex
);
4945 rdev_err(rdev
, "Failed to request enable GPIO: %d\n",
4949 /* The regulator core took over the GPIO descriptor */
4950 dangling_cfg_gpiod
= false;
4951 dangling_of_gpiod
= false;
4954 /* register with sysfs */
4955 rdev
->dev
.class = ®ulator_class
;
4956 rdev
->dev
.parent
= dev
;
4957 dev_set_name(&rdev
->dev
, "regulator.%lu",
4958 (unsigned long) atomic_inc_return(®ulator_no
));
4960 /* set regulator constraints */
4962 constraints
= &init_data
->constraints
;
4964 if (init_data
&& init_data
->supply_regulator
)
4965 rdev
->supply_name
= init_data
->supply_regulator
;
4966 else if (regulator_desc
->supply_name
)
4967 rdev
->supply_name
= regulator_desc
->supply_name
;
4970 * Attempt to resolve the regulator supply, if specified,
4971 * but don't return an error if we fail because we will try
4972 * to resolve it again later as more regulators are added.
4974 if (regulator_resolve_supply(rdev
))
4975 rdev_dbg(rdev
, "unable to resolve supply\n");
4977 ret
= set_machine_constraints(rdev
, constraints
);
4981 ret
= regulator_init_coupling(rdev
);
4985 /* add consumers devices */
4987 mutex_lock(®ulator_list_mutex
);
4988 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
4989 ret
= set_consumer_device_supply(rdev
,
4990 init_data
->consumer_supplies
[i
].dev_name
,
4991 init_data
->consumer_supplies
[i
].supply
);
4993 mutex_unlock(®ulator_list_mutex
);
4994 dev_err(dev
, "Failed to set supply %s\n",
4995 init_data
->consumer_supplies
[i
].supply
);
4996 goto unset_supplies
;
4999 mutex_unlock(®ulator_list_mutex
);
5002 if (!rdev
->desc
->ops
->get_voltage
&&
5003 !rdev
->desc
->ops
->list_voltage
&&
5004 !rdev
->desc
->fixed_uV
)
5005 rdev
->is_switch
= true;
5007 dev_set_drvdata(&rdev
->dev
, rdev
);
5008 ret
= device_register(&rdev
->dev
);
5010 put_device(&rdev
->dev
);
5011 goto unset_supplies
;
5014 rdev_init_debugfs(rdev
);
5016 /* try to resolve regulators coupling since a new one was registered */
5017 mutex_lock(®ulator_list_mutex
);
5018 regulator_resolve_coupling(rdev
);
5019 mutex_unlock(®ulator_list_mutex
);
5021 /* try to resolve regulators supply since a new one was registered */
5022 class_for_each_device(®ulator_class
, NULL
, NULL
,
5023 regulator_register_resolve_supply
);
5028 mutex_lock(®ulator_list_mutex
);
5029 unset_regulator_supplies(rdev
);
5030 mutex_unlock(®ulator_list_mutex
);
5032 kfree(rdev
->constraints
);
5033 mutex_lock(®ulator_list_mutex
);
5034 regulator_ena_gpio_free(rdev
);
5035 mutex_unlock(®ulator_list_mutex
);
5037 if (dangling_of_gpiod
)
5038 gpiod_put(config
->ena_gpiod
);
5042 if (dangling_cfg_gpiod
)
5043 gpiod_put(cfg
->ena_gpiod
);
5044 return ERR_PTR(ret
);
5046 EXPORT_SYMBOL_GPL(regulator_register
);
5049 * regulator_unregister - unregister regulator
5050 * @rdev: regulator to unregister
5052 * Called by regulator drivers to unregister a regulator.
5054 void regulator_unregister(struct regulator_dev
*rdev
)
5060 while (rdev
->use_count
--)
5061 regulator_disable(rdev
->supply
);
5062 regulator_put(rdev
->supply
);
5065 flush_work(&rdev
->disable_work
.work
);
5067 mutex_lock(®ulator_list_mutex
);
5069 debugfs_remove_recursive(rdev
->debugfs
);
5070 WARN_ON(rdev
->open_count
);
5071 regulator_remove_coupling(rdev
);
5072 unset_regulator_supplies(rdev
);
5073 list_del(&rdev
->list
);
5074 regulator_ena_gpio_free(rdev
);
5075 device_unregister(&rdev
->dev
);
5077 mutex_unlock(®ulator_list_mutex
);
5079 EXPORT_SYMBOL_GPL(regulator_unregister
);
5081 #ifdef CONFIG_SUSPEND
5083 * regulator_suspend - prepare regulators for system wide suspend
5084 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5086 * Configure each regulator with it's suspend operating parameters for state.
5088 static int regulator_suspend(struct device
*dev
)
5090 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5091 suspend_state_t state
= pm_suspend_target_state
;
5094 regulator_lock(rdev
);
5095 ret
= suspend_set_state(rdev
, state
);
5096 regulator_unlock(rdev
);
5101 static int regulator_resume(struct device
*dev
)
5103 suspend_state_t state
= pm_suspend_target_state
;
5104 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5105 struct regulator_state
*rstate
;
5108 rstate
= regulator_get_suspend_state(rdev
, state
);
5112 regulator_lock(rdev
);
5114 if (rdev
->desc
->ops
->resume
&&
5115 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
5116 rstate
->enabled
== DISABLE_IN_SUSPEND
))
5117 ret
= rdev
->desc
->ops
->resume(rdev
);
5119 regulator_unlock(rdev
);
5123 #else /* !CONFIG_SUSPEND */
5125 #define regulator_suspend NULL
5126 #define regulator_resume NULL
5128 #endif /* !CONFIG_SUSPEND */
5131 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
5132 .suspend
= regulator_suspend
,
5133 .resume
= regulator_resume
,
5137 struct class regulator_class
= {
5138 .name
= "regulator",
5139 .dev_release
= regulator_dev_release
,
5140 .dev_groups
= regulator_dev_groups
,
5142 .pm
= ®ulator_pm_ops
,
5146 * regulator_has_full_constraints - the system has fully specified constraints
5148 * Calling this function will cause the regulator API to disable all
5149 * regulators which have a zero use count and don't have an always_on
5150 * constraint in a late_initcall.
5152 * The intention is that this will become the default behaviour in a
5153 * future kernel release so users are encouraged to use this facility
5156 void regulator_has_full_constraints(void)
5158 has_full_constraints
= 1;
5160 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
5163 * rdev_get_drvdata - get rdev regulator driver data
5166 * Get rdev regulator driver private data. This call can be used in the
5167 * regulator driver context.
5169 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
5171 return rdev
->reg_data
;
5173 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
5176 * regulator_get_drvdata - get regulator driver data
5177 * @regulator: regulator
5179 * Get regulator driver private data. This call can be used in the consumer
5180 * driver context when non API regulator specific functions need to be called.
5182 void *regulator_get_drvdata(struct regulator
*regulator
)
5184 return regulator
->rdev
->reg_data
;
5186 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
5189 * regulator_set_drvdata - set regulator driver data
5190 * @regulator: regulator
5193 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
5195 regulator
->rdev
->reg_data
= data
;
5197 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
5200 * regulator_get_id - get regulator ID
5203 int rdev_get_id(struct regulator_dev
*rdev
)
5205 return rdev
->desc
->id
;
5207 EXPORT_SYMBOL_GPL(rdev_get_id
);
5209 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
5213 EXPORT_SYMBOL_GPL(rdev_get_dev
);
5215 struct regmap
*rdev_get_regmap(struct regulator_dev
*rdev
)
5217 return rdev
->regmap
;
5219 EXPORT_SYMBOL_GPL(rdev_get_regmap
);
5221 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
5223 return reg_init_data
->driver_data
;
5225 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
5227 #ifdef CONFIG_DEBUG_FS
5228 static int supply_map_show(struct seq_file
*sf
, void *data
)
5230 struct regulator_map
*map
;
5232 list_for_each_entry(map
, ®ulator_map_list
, list
) {
5233 seq_printf(sf
, "%s -> %s.%s\n",
5234 rdev_get_name(map
->regulator
), map
->dev_name
,
5240 DEFINE_SHOW_ATTRIBUTE(supply_map
);
5242 struct summary_data
{
5244 struct regulator_dev
*parent
;
5248 static void regulator_summary_show_subtree(struct seq_file
*s
,
5249 struct regulator_dev
*rdev
,
5252 static int regulator_summary_show_children(struct device
*dev
, void *data
)
5254 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5255 struct summary_data
*summary_data
= data
;
5257 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
5258 regulator_summary_show_subtree(summary_data
->s
, rdev
,
5259 summary_data
->level
+ 1);
5264 static void regulator_summary_show_subtree(struct seq_file
*s
,
5265 struct regulator_dev
*rdev
,
5268 struct regulation_constraints
*c
;
5269 struct regulator
*consumer
;
5270 struct summary_data summary_data
;
5271 unsigned int opmode
;
5276 opmode
= _regulator_get_mode_unlocked(rdev
);
5277 seq_printf(s
, "%*s%-*s %3d %4d %6d %7s ",
5279 30 - level
* 3, rdev_get_name(rdev
),
5280 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
,
5281 regulator_opmode_to_str(opmode
));
5283 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
5284 seq_printf(s
, "%5dmA ",
5285 _regulator_get_current_limit_unlocked(rdev
) / 1000);
5287 c
= rdev
->constraints
;
5289 switch (rdev
->desc
->type
) {
5290 case REGULATOR_VOLTAGE
:
5291 seq_printf(s
, "%5dmV %5dmV ",
5292 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
5294 case REGULATOR_CURRENT
:
5295 seq_printf(s
, "%5dmA %5dmA ",
5296 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
5303 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
5304 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
5307 seq_printf(s
, "%*s%-*s ",
5308 (level
+ 1) * 3 + 1, "",
5309 30 - (level
+ 1) * 3,
5310 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
5312 switch (rdev
->desc
->type
) {
5313 case REGULATOR_VOLTAGE
:
5314 seq_printf(s
, "%3d %33dmA%c%5dmV %5dmV",
5315 consumer
->enable_count
,
5316 consumer
->uA_load
/ 1000,
5317 consumer
->uA_load
&& !consumer
->enable_count
?
5319 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
5320 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
5322 case REGULATOR_CURRENT
:
5330 summary_data
.level
= level
;
5331 summary_data
.parent
= rdev
;
5333 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
5334 regulator_summary_show_children
);
5337 struct summary_lock_data
{
5338 struct ww_acquire_ctx
*ww_ctx
;
5339 struct regulator_dev
**new_contended_rdev
;
5340 struct regulator_dev
**old_contended_rdev
;
5343 static int regulator_summary_lock_one(struct device
*dev
, void *data
)
5345 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5346 struct summary_lock_data
*lock_data
= data
;
5349 if (rdev
!= *lock_data
->old_contended_rdev
) {
5350 ret
= regulator_lock_nested(rdev
, lock_data
->ww_ctx
);
5352 if (ret
== -EDEADLK
)
5353 *lock_data
->new_contended_rdev
= rdev
;
5357 *lock_data
->old_contended_rdev
= NULL
;
5363 static int regulator_summary_unlock_one(struct device
*dev
, void *data
)
5365 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5366 struct summary_lock_data
*lock_data
= data
;
5369 if (rdev
== *lock_data
->new_contended_rdev
)
5373 regulator_unlock(rdev
);
5378 static int regulator_summary_lock_all(struct ww_acquire_ctx
*ww_ctx
,
5379 struct regulator_dev
**new_contended_rdev
,
5380 struct regulator_dev
**old_contended_rdev
)
5382 struct summary_lock_data lock_data
;
5385 lock_data
.ww_ctx
= ww_ctx
;
5386 lock_data
.new_contended_rdev
= new_contended_rdev
;
5387 lock_data
.old_contended_rdev
= old_contended_rdev
;
5389 ret
= class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5390 regulator_summary_lock_one
);
5392 class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5393 regulator_summary_unlock_one
);
5398 static void regulator_summary_lock(struct ww_acquire_ctx
*ww_ctx
)
5400 struct regulator_dev
*new_contended_rdev
= NULL
;
5401 struct regulator_dev
*old_contended_rdev
= NULL
;
5404 mutex_lock(®ulator_list_mutex
);
5406 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
5409 if (new_contended_rdev
) {
5410 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
5411 old_contended_rdev
= new_contended_rdev
;
5412 old_contended_rdev
->ref_cnt
++;
5415 err
= regulator_summary_lock_all(ww_ctx
,
5416 &new_contended_rdev
,
5417 &old_contended_rdev
);
5419 if (old_contended_rdev
)
5420 regulator_unlock(old_contended_rdev
);
5422 } while (err
== -EDEADLK
);
5424 ww_acquire_done(ww_ctx
);
5427 static void regulator_summary_unlock(struct ww_acquire_ctx
*ww_ctx
)
5429 class_for_each_device(®ulator_class
, NULL
, NULL
,
5430 regulator_summary_unlock_one
);
5431 ww_acquire_fini(ww_ctx
);
5433 mutex_unlock(®ulator_list_mutex
);
5436 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
5438 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5439 struct seq_file
*s
= data
;
5442 regulator_summary_show_subtree(s
, rdev
, 0);
5447 static int regulator_summary_show(struct seq_file
*s
, void *data
)
5449 struct ww_acquire_ctx ww_ctx
;
5451 seq_puts(s
, " regulator use open bypass opmode voltage current min max\n");
5452 seq_puts(s
, "---------------------------------------------------------------------------------------\n");
5454 regulator_summary_lock(&ww_ctx
);
5456 class_for_each_device(®ulator_class
, NULL
, s
,
5457 regulator_summary_show_roots
);
5459 regulator_summary_unlock(&ww_ctx
);
5463 DEFINE_SHOW_ATTRIBUTE(regulator_summary
);
5464 #endif /* CONFIG_DEBUG_FS */
5466 static int __init
regulator_init(void)
5470 ret
= class_register(®ulator_class
);
5472 debugfs_root
= debugfs_create_dir("regulator", NULL
);
5474 pr_warn("regulator: Failed to create debugfs directory\n");
5476 #ifdef CONFIG_DEBUG_FS
5477 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
5480 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
5481 NULL
, ®ulator_summary_fops
);
5483 regulator_dummy_init();
5488 /* init early to allow our consumers to complete system booting */
5489 core_initcall(regulator_init
);
5491 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
5493 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5494 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
5495 struct regulation_constraints
*c
= rdev
->constraints
;
5498 if (c
&& c
->always_on
)
5501 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
5504 regulator_lock(rdev
);
5506 if (rdev
->use_count
)
5509 /* If we can't read the status assume it's on. */
5510 if (ops
->is_enabled
)
5511 enabled
= ops
->is_enabled(rdev
);
5518 if (have_full_constraints()) {
5519 /* We log since this may kill the system if it goes
5521 rdev_info(rdev
, "disabling\n");
5522 ret
= _regulator_do_disable(rdev
);
5524 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
5526 /* The intention is that in future we will
5527 * assume that full constraints are provided
5528 * so warn even if we aren't going to do
5531 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
5535 regulator_unlock(rdev
);
5540 static int __init
regulator_init_complete(void)
5543 * Since DT doesn't provide an idiomatic mechanism for
5544 * enabling full constraints and since it's much more natural
5545 * with DT to provide them just assume that a DT enabled
5546 * system has full constraints.
5548 if (of_have_populated_dt())
5549 has_full_constraints
= true;
5552 * Regulators may had failed to resolve their input supplies
5553 * when were registered, either because the input supply was
5554 * not registered yet or because its parent device was not
5555 * bound yet. So attempt to resolve the input supplies for
5556 * pending regulators before trying to disable unused ones.
5558 class_for_each_device(®ulator_class
, NULL
, NULL
,
5559 regulator_register_resolve_supply
);
5561 /* If we have a full configuration then disable any regulators
5562 * we have permission to change the status for and which are
5563 * not in use or always_on. This is effectively the default
5564 * for DT and ACPI as they have full constraints.
5566 class_for_each_device(®ulator_class
, NULL
, NULL
,
5567 regulator_late_cleanup
);
5571 late_initcall_sync(regulator_init_complete
);