2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks
[MPT_MAX_CALLBACKS
];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth
= -1;
77 module_param(max_queue_depth
, int, 0);
78 MODULE_PARM_DESC(max_queue_depth
, " max controller queue depth ");
80 static int max_sgl_entries
= -1;
81 module_param(max_sgl_entries
, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries
, " max sg entries ");
84 static int msix_disable
= -1;
85 module_param(msix_disable
, int, 0);
86 MODULE_PARM_DESC(msix_disable
, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable
= 1;
89 module_param(smp_affinity_enable
, int, S_IRUGO
);
90 MODULE_PARM_DESC(smp_affinity_enable
, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors
= -1;
93 module_param(max_msix_vectors
, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors
,
97 static int mpt3sas_fwfault_debug
;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug
,
99 " enable detection of firmware fault and halt firmware - (default=0)");
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
);
105 * mpt3sas_base_check_cmd_timeout - Function
106 * to check timeout and command termination due
109 * @ioc: per adapter object.
110 * @status: Status of issued command.
111 * @mpi_request:mf request pointer.
112 * @sz: size of buffer.
114 * @Returns - 1/0 Reset to be done or Not
117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER
*ioc
,
118 u8 status
, void *mpi_request
, int sz
)
122 if (!(status
& MPT3_CMD_RESET
))
125 ioc_err(ioc
, "Command %s\n",
126 issue_reset
== 0 ? "terminated due to Host Reset" : "Timeout");
127 _debug_dump_mf(mpi_request
, sz
);
133 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
140 _scsih_set_fwfault_debug(const char *val
, const struct kernel_param
*kp
)
142 int ret
= param_set_int(val
, kp
);
143 struct MPT3SAS_ADAPTER
*ioc
;
148 /* global ioc spinlock to protect controller list on list operations */
149 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug
);
150 spin_lock(&gioc_lock
);
151 list_for_each_entry(ioc
, &mpt3sas_ioc_list
, list
)
152 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
153 spin_unlock(&gioc_lock
);
156 module_param_call(mpt3sas_fwfault_debug
, _scsih_set_fwfault_debug
,
157 param_get_int
, &mpt3sas_fwfault_debug
, 0644);
160 * _base_readl_aero - retry readl for max three times.
161 * @addr - MPT Fusion system interface register address
163 * Retry the readl() for max three times if it gets zero value
164 * while reading the system interface register.
167 _base_readl_aero(const volatile void __iomem
*addr
)
172 ret_val
= readl(addr
);
174 } while (ret_val
== 0 && i
< 3);
180 _base_readl(const volatile void __iomem
*addr
)
186 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
189 * @ioc: per adapter object
190 * @reply: reply message frame(lower 32bit addr)
191 * @index: System request message index.
194 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER
*ioc
, u32 reply
,
198 * 256 is offset within sys register.
199 * 256 offset MPI frame starts. Max MPI frame supported is 32.
200 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
202 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
203 void __iomem
*reply_free_iomem
= (void __iomem
*)ioc
->chip
+
204 MPI_FRAME_START_OFFSET
+
205 (cmd_credit
* ioc
->request_sz
) + (index
* sizeof(u32
));
207 writel(reply
, reply_free_iomem
);
211 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
212 * to system/BAR0 region.
214 * @dst_iomem: Pointer to the destination location in BAR0 space.
215 * @src: Pointer to the Source data.
216 * @size: Size of data to be copied.
219 _base_clone_mpi_to_sys_mem(void *dst_iomem
, void *src
, u32 size
)
222 u32
*src_virt_mem
= (u32
*)src
;
224 for (i
= 0; i
< size
/4; i
++)
225 writel((u32
)src_virt_mem
[i
],
226 (void __iomem
*)dst_iomem
+ (i
* 4));
230 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
232 * @dst_iomem: Pointer to the destination location in BAR0 space.
233 * @src: Pointer to the Source data.
234 * @size: Size of data to be copied.
237 _base_clone_to_sys_mem(void __iomem
*dst_iomem
, void *src
, u32 size
)
240 u32
*src_virt_mem
= (u32
*)(src
);
242 for (i
= 0; i
< size
/4; i
++)
243 writel((u32
)src_virt_mem
[i
],
244 (void __iomem
*)dst_iomem
+ (i
* 4));
248 * _base_get_chain - Calculates and Returns virtual chain address
249 * for the provided smid in BAR0 space.
251 * @ioc: per adapter object
252 * @smid: system request message index
253 * @sge_chain_count: Scatter gather chain count.
255 * Return: the chain address.
257 static inline void __iomem
*
258 _base_get_chain(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
261 void __iomem
*base_chain
, *chain_virt
;
262 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
264 base_chain
= (void __iomem
*)ioc
->chip
+ MPI_FRAME_START_OFFSET
+
265 (cmd_credit
* ioc
->request_sz
) +
266 REPLY_FREE_POOL_SIZE
;
267 chain_virt
= base_chain
+ (smid
* ioc
->facts
.MaxChainDepth
*
268 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
273 * _base_get_chain_phys - Calculates and Returns physical address
274 * in BAR0 for scatter gather chains, for
277 * @ioc: per adapter object
278 * @smid: system request message index
279 * @sge_chain_count: Scatter gather chain count.
281 * Return: Physical chain address.
283 static inline phys_addr_t
284 _base_get_chain_phys(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
287 phys_addr_t base_chain_phys
, chain_phys
;
288 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
290 base_chain_phys
= ioc
->chip_phys
+ MPI_FRAME_START_OFFSET
+
291 (cmd_credit
* ioc
->request_sz
) +
292 REPLY_FREE_POOL_SIZE
;
293 chain_phys
= base_chain_phys
+ (smid
* ioc
->facts
.MaxChainDepth
*
294 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
299 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
300 * buffer address for the provided smid.
301 * (Each smid can have 64K starts from 17024)
303 * @ioc: per adapter object
304 * @smid: system request message index
306 * Return: Pointer to buffer location in BAR0.
309 static void __iomem
*
310 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
312 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
313 // Added extra 1 to reach end of chain.
314 void __iomem
*chain_end
= _base_get_chain(ioc
,
316 ioc
->facts
.MaxChainDepth
);
317 return chain_end
+ (smid
* 64 * 1024);
321 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
322 * Host buffer Physical address for the provided smid.
323 * (Each smid can have 64K starts from 17024)
325 * @ioc: per adapter object
326 * @smid: system request message index
328 * Return: Pointer to buffer location in BAR0.
331 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
333 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
334 phys_addr_t chain_end_phys
= _base_get_chain_phys(ioc
,
336 ioc
->facts
.MaxChainDepth
);
337 return chain_end_phys
+ (smid
* 64 * 1024);
341 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
342 * lookup list and Provides chain_buffer
343 * address for the matching dma address.
344 * (Each smid can have 64K starts from 17024)
346 * @ioc: per adapter object
347 * @chain_buffer_dma: Chain buffer dma address.
349 * Return: Pointer to chain buffer. Or Null on Failure.
352 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER
*ioc
,
353 dma_addr_t chain_buffer_dma
)
356 struct chain_tracker
*ct
;
358 for (index
= 0; index
< ioc
->scsiio_depth
; index
++) {
359 for (j
= 0; j
< ioc
->chains_needed_per_io
; j
++) {
360 ct
= &ioc
->chain_lookup
[index
].chains_per_smid
[j
];
361 if (ct
&& ct
->chain_buffer_dma
== chain_buffer_dma
)
362 return ct
->chain_buffer
;
365 ioc_info(ioc
, "Provided chain_buffer_dma address is not in the lookup list\n");
370 * _clone_sg_entries - MPI EP's scsiio and config requests
371 * are handled here. Base function for
372 * double buffering, before submitting
375 * @ioc: per adapter object.
376 * @mpi_request: mf request pointer.
377 * @smid: system request message index.
379 static void _clone_sg_entries(struct MPT3SAS_ADAPTER
*ioc
,
380 void *mpi_request
, u16 smid
)
382 Mpi2SGESimple32_t
*sgel
, *sgel_next
;
383 u32 sgl_flags
, sge_chain_count
= 0;
386 void __iomem
*buffer_iomem
;
387 phys_addr_t buffer_iomem_phys
;
388 void __iomem
*buff_ptr
;
389 phys_addr_t buff_ptr_phys
;
390 void __iomem
*dst_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
391 void *src_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
392 phys_addr_t dst_addr_phys
;
393 MPI2RequestHeader_t
*request_hdr
;
394 struct scsi_cmnd
*scmd
;
395 struct scatterlist
*sg_scmd
= NULL
;
396 int is_scsiio_req
= 0;
398 request_hdr
= (MPI2RequestHeader_t
*) mpi_request
;
400 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
) {
401 Mpi25SCSIIORequest_t
*scsiio_request
=
402 (Mpi25SCSIIORequest_t
*)mpi_request
;
403 sgel
= (Mpi2SGESimple32_t
*) &scsiio_request
->SGL
;
405 } else if (request_hdr
->Function
== MPI2_FUNCTION_CONFIG
) {
406 Mpi2ConfigRequest_t
*config_req
=
407 (Mpi2ConfigRequest_t
*)mpi_request
;
408 sgel
= (Mpi2SGESimple32_t
*) &config_req
->PageBufferSGE
;
412 /* From smid we can get scsi_cmd, once we have sg_scmd,
413 * we just need to get sg_virt and sg_next to get virual
414 * address associated with sgel->Address.
418 /* Get scsi_cmd using smid */
419 scmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
421 ioc_err(ioc
, "scmd is NULL\n");
425 /* Get sg_scmd from scmd provided */
426 sg_scmd
= scsi_sglist(scmd
);
430 * 0 - 255 System register
431 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
432 * 4352 - 4864 Reply_free pool (512 byte is reserved
433 * considering maxCredit 32. Reply need extra
434 * room, for mCPU case kept four times of
436 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
437 * 128 byte size = 12288)
438 * 17152 - x Host buffer mapped with smid.
439 * (Each smid can have 64K Max IO.)
440 * BAR0+Last 1K MSIX Addr and Data
441 * Total size in use 2113664 bytes of 4MB BAR0
444 buffer_iomem
= _base_get_buffer_bar0(ioc
, smid
);
445 buffer_iomem_phys
= _base_get_buffer_phys_bar0(ioc
, smid
);
447 buff_ptr
= buffer_iomem
;
448 buff_ptr_phys
= buffer_iomem_phys
;
449 WARN_ON(buff_ptr_phys
> U32_MAX
);
451 if (le32_to_cpu(sgel
->FlagsLength
) &
452 (MPI2_SGE_FLAGS_HOST_TO_IOC
<< MPI2_SGE_FLAGS_SHIFT
))
455 for (i
= 0; i
< MPT_MIN_PHYS_SEGMENTS
+ ioc
->facts
.MaxChainDepth
; i
++) {
458 (le32_to_cpu(sgel
->FlagsLength
) >> MPI2_SGE_FLAGS_SHIFT
);
460 switch (sgl_flags
& MPI2_SGE_FLAGS_ELEMENT_MASK
) {
461 case MPI2_SGE_FLAGS_CHAIN_ELEMENT
:
463 * Helper function which on passing
464 * chain_buffer_dma returns chain_buffer. Get
465 * the virtual address for sgel->Address
468 _base_get_chain_buffer_dma_to_chain_buffer(ioc
,
469 le32_to_cpu(sgel
->Address
));
470 if (sgel_next
== NULL
)
473 * This is coping 128 byte chain
474 * frame (not a host buffer)
476 dst_chain_addr
[sge_chain_count
] =
478 smid
, sge_chain_count
);
479 src_chain_addr
[sge_chain_count
] =
481 dst_addr_phys
= _base_get_chain_phys(ioc
,
482 smid
, sge_chain_count
);
483 WARN_ON(dst_addr_phys
> U32_MAX
);
485 cpu_to_le32(lower_32_bits(dst_addr_phys
));
489 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT
:
492 _base_clone_to_sys_mem(buff_ptr
,
494 (le32_to_cpu(sgel
->FlagsLength
) &
497 * FIXME: this relies on a a zero
501 cpu_to_le32((u32
)buff_ptr_phys
);
503 _base_clone_to_sys_mem(buff_ptr
,
505 (le32_to_cpu(sgel
->FlagsLength
) &
508 cpu_to_le32((u32
)buff_ptr_phys
);
511 buff_ptr
+= (le32_to_cpu(sgel
->FlagsLength
) &
513 buff_ptr_phys
+= (le32_to_cpu(sgel
->FlagsLength
) &
515 if ((le32_to_cpu(sgel
->FlagsLength
) &
516 (MPI2_SGE_FLAGS_END_OF_BUFFER
517 << MPI2_SGE_FLAGS_SHIFT
)))
518 goto eob_clone_chain
;
521 * Every single element in MPT will have
522 * associated sg_next. Better to sanity that
523 * sg_next is not NULL, but it will be a bug
527 sg_scmd
= sg_next(sg_scmd
);
531 goto eob_clone_chain
;
539 for (i
= 0; i
< sge_chain_count
; i
++) {
541 _base_clone_to_sys_mem(dst_chain_addr
[i
],
542 src_chain_addr
[i
], ioc
->request_sz
);
547 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
548 * @arg: input argument, used to derive ioc
551 * 0 if controller is removed from pci subsystem.
554 static int mpt3sas_remove_dead_ioc_func(void *arg
)
556 struct MPT3SAS_ADAPTER
*ioc
= (struct MPT3SAS_ADAPTER
*)arg
;
557 struct pci_dev
*pdev
;
565 pci_stop_and_remove_bus_device_locked(pdev
);
570 * _base_fault_reset_work - workq handling ioc fault conditions
571 * @work: input argument, used to derive ioc
576 _base_fault_reset_work(struct work_struct
*work
)
578 struct MPT3SAS_ADAPTER
*ioc
=
579 container_of(work
, struct MPT3SAS_ADAPTER
, fault_reset_work
.work
);
583 struct task_struct
*p
;
586 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
587 if (ioc
->shost_recovery
|| ioc
->pci_error_recovery
)
589 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
591 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
592 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_MASK
) {
593 ioc_err(ioc
, "SAS host is non-operational !!!!\n");
595 /* It may be possible that EEH recovery can resolve some of
596 * pci bus failure issues rather removing the dead ioc function
597 * by considering controller is in a non-operational state. So
598 * here priority is given to the EEH recovery. If it doesn't
599 * not resolve this issue, mpt3sas driver will consider this
600 * controller to non-operational state and remove the dead ioc
603 if (ioc
->non_operational_loop
++ < 5) {
604 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
,
610 * Call _scsih_flush_pending_cmds callback so that we flush all
611 * pending commands back to OS. This call is required to aovid
612 * deadlock at block layer. Dead IOC will fail to do diag reset,
613 * and this call is safe since dead ioc will never return any
614 * command back from HW.
616 ioc
->schedule_dead_ioc_flush_running_cmds(ioc
);
618 * Set remove_host flag early since kernel thread will
619 * take some time to execute.
621 ioc
->remove_host
= 1;
622 /*Remove the Dead Host */
623 p
= kthread_run(mpt3sas_remove_dead_ioc_func
, ioc
,
624 "%s_dead_ioc_%d", ioc
->driver_name
, ioc
->id
);
626 ioc_err(ioc
, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
629 ioc_err(ioc
, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
631 return; /* don't rearm timer */
634 ioc
->non_operational_loop
= 0;
636 if ((doorbell
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
) {
637 rc
= mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
638 ioc_warn(ioc
, "%s: hard reset: %s\n",
639 __func__
, rc
== 0 ? "success" : "failed");
640 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
641 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
642 mpt3sas_base_fault_info(ioc
, doorbell
&
643 MPI2_DOORBELL_DATA_MASK
);
644 if (rc
&& (doorbell
& MPI2_IOC_STATE_MASK
) !=
645 MPI2_IOC_STATE_OPERATIONAL
)
646 return; /* don't rearm timer */
649 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
651 if (ioc
->fault_reset_work_q
)
652 queue_delayed_work(ioc
->fault_reset_work_q
,
653 &ioc
->fault_reset_work
,
654 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
655 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
659 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
660 * @ioc: per adapter object
665 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
669 if (ioc
->fault_reset_work_q
)
672 /* initialize fault polling */
674 INIT_DELAYED_WORK(&ioc
->fault_reset_work
, _base_fault_reset_work
);
675 snprintf(ioc
->fault_reset_work_q_name
,
676 sizeof(ioc
->fault_reset_work_q_name
), "poll_%s%d_status",
677 ioc
->driver_name
, ioc
->id
);
678 ioc
->fault_reset_work_q
=
679 create_singlethread_workqueue(ioc
->fault_reset_work_q_name
);
680 if (!ioc
->fault_reset_work_q
) {
681 ioc_err(ioc
, "%s: failed (line=%d)\n", __func__
, __LINE__
);
684 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
685 if (ioc
->fault_reset_work_q
)
686 queue_delayed_work(ioc
->fault_reset_work_q
,
687 &ioc
->fault_reset_work
,
688 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
689 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
693 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
694 * @ioc: per adapter object
699 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
702 struct workqueue_struct
*wq
;
704 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
705 wq
= ioc
->fault_reset_work_q
;
706 ioc
->fault_reset_work_q
= NULL
;
707 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
709 if (!cancel_delayed_work_sync(&ioc
->fault_reset_work
))
711 destroy_workqueue(wq
);
716 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
717 * @ioc: per adapter object
718 * @fault_code: fault code
721 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER
*ioc
, u16 fault_code
)
723 ioc_err(ioc
, "fault_state(0x%04x)!\n", fault_code
);
727 * mpt3sas_halt_firmware - halt's mpt controller firmware
728 * @ioc: per adapter object
730 * For debugging timeout related issues. Writing 0xCOFFEE00
731 * to the doorbell register will halt controller firmware. With
732 * the purpose to stop both driver and firmware, the enduser can
733 * obtain a ring buffer from controller UART.
736 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER
*ioc
)
740 if (!ioc
->fwfault_debug
)
745 doorbell
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
746 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
747 mpt3sas_base_fault_info(ioc
, doorbell
);
749 writel(0xC0FFEE00, &ioc
->chip
->Doorbell
);
750 ioc_err(ioc
, "Firmware is halted due to command timeout\n");
753 if (ioc
->fwfault_debug
== 2)
757 panic("panic in %s\n", __func__
);
761 * _base_sas_ioc_info - verbose translation of the ioc status
762 * @ioc: per adapter object
763 * @mpi_reply: reply mf payload returned from firmware
764 * @request_hdr: request mf
767 _base_sas_ioc_info(struct MPT3SAS_ADAPTER
*ioc
, MPI2DefaultReply_t
*mpi_reply
,
768 MPI2RequestHeader_t
*request_hdr
)
770 u16 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) &
774 char *func_str
= NULL
;
776 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
777 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
||
778 request_hdr
->Function
== MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH
||
779 request_hdr
->Function
== MPI2_FUNCTION_EVENT_NOTIFICATION
)
782 if (ioc_status
== MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
)
785 switch (ioc_status
) {
787 /****************************************************************************
788 * Common IOCStatus values for all replies
789 ****************************************************************************/
791 case MPI2_IOCSTATUS_INVALID_FUNCTION
:
792 desc
= "invalid function";
794 case MPI2_IOCSTATUS_BUSY
:
797 case MPI2_IOCSTATUS_INVALID_SGL
:
798 desc
= "invalid sgl";
800 case MPI2_IOCSTATUS_INTERNAL_ERROR
:
801 desc
= "internal error";
803 case MPI2_IOCSTATUS_INVALID_VPID
:
804 desc
= "invalid vpid";
806 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES
:
807 desc
= "insufficient resources";
809 case MPI2_IOCSTATUS_INSUFFICIENT_POWER
:
810 desc
= "insufficient power";
812 case MPI2_IOCSTATUS_INVALID_FIELD
:
813 desc
= "invalid field";
815 case MPI2_IOCSTATUS_INVALID_STATE
:
816 desc
= "invalid state";
818 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED
:
819 desc
= "op state not supported";
822 /****************************************************************************
823 * Config IOCStatus values
824 ****************************************************************************/
826 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION
:
827 desc
= "config invalid action";
829 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE
:
830 desc
= "config invalid type";
832 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
:
833 desc
= "config invalid page";
835 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA
:
836 desc
= "config invalid data";
838 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS
:
839 desc
= "config no defaults";
841 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT
:
842 desc
= "config cant commit";
845 /****************************************************************************
847 ****************************************************************************/
849 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR
:
850 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE
:
851 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE
:
852 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN
:
853 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN
:
854 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR
:
855 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR
:
856 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED
:
857 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH
:
858 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED
:
859 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED
:
860 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED
:
863 /****************************************************************************
864 * For use by SCSI Initiator and SCSI Target end-to-end data protection
865 ****************************************************************************/
867 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR
:
868 desc
= "eedp guard error";
870 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR
:
871 desc
= "eedp ref tag error";
873 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR
:
874 desc
= "eedp app tag error";
877 /****************************************************************************
879 ****************************************************************************/
881 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX
:
882 desc
= "target invalid io index";
884 case MPI2_IOCSTATUS_TARGET_ABORTED
:
885 desc
= "target aborted";
887 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE
:
888 desc
= "target no conn retryable";
890 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION
:
891 desc
= "target no connection";
893 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH
:
894 desc
= "target xfer count mismatch";
896 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR
:
897 desc
= "target data offset error";
899 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA
:
900 desc
= "target too much write data";
902 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT
:
903 desc
= "target iu too short";
905 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT
:
906 desc
= "target ack nak timeout";
908 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED
:
909 desc
= "target nak received";
912 /****************************************************************************
913 * Serial Attached SCSI values
914 ****************************************************************************/
916 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED
:
917 desc
= "smp request failed";
919 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN
:
920 desc
= "smp data overrun";
923 /****************************************************************************
924 * Diagnostic Buffer Post / Diagnostic Release values
925 ****************************************************************************/
927 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED
:
928 desc
= "diagnostic released";
937 switch (request_hdr
->Function
) {
938 case MPI2_FUNCTION_CONFIG
:
939 frame_sz
= sizeof(Mpi2ConfigRequest_t
) + ioc
->sge_size
;
940 func_str
= "config_page";
942 case MPI2_FUNCTION_SCSI_TASK_MGMT
:
943 frame_sz
= sizeof(Mpi2SCSITaskManagementRequest_t
);
944 func_str
= "task_mgmt";
946 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL
:
947 frame_sz
= sizeof(Mpi2SasIoUnitControlRequest_t
);
948 func_str
= "sas_iounit_ctl";
950 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR
:
951 frame_sz
= sizeof(Mpi2SepRequest_t
);
952 func_str
= "enclosure";
954 case MPI2_FUNCTION_IOC_INIT
:
955 frame_sz
= sizeof(Mpi2IOCInitRequest_t
);
956 func_str
= "ioc_init";
958 case MPI2_FUNCTION_PORT_ENABLE
:
959 frame_sz
= sizeof(Mpi2PortEnableRequest_t
);
960 func_str
= "port_enable";
962 case MPI2_FUNCTION_SMP_PASSTHROUGH
:
963 frame_sz
= sizeof(Mpi2SmpPassthroughRequest_t
) + ioc
->sge_size
;
964 func_str
= "smp_passthru";
966 case MPI2_FUNCTION_NVME_ENCAPSULATED
:
967 frame_sz
= sizeof(Mpi26NVMeEncapsulatedRequest_t
) +
969 func_str
= "nvme_encapsulated";
973 func_str
= "unknown";
977 ioc_warn(ioc
, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
978 desc
, ioc_status
, request_hdr
, func_str
);
980 _debug_dump_mf(request_hdr
, frame_sz
/4);
984 * _base_display_event_data - verbose translation of firmware asyn events
985 * @ioc: per adapter object
986 * @mpi_reply: reply mf payload returned from firmware
989 _base_display_event_data(struct MPT3SAS_ADAPTER
*ioc
,
990 Mpi2EventNotificationReply_t
*mpi_reply
)
995 if (!(ioc
->logging_level
& MPT_DEBUG_EVENTS
))
998 event
= le16_to_cpu(mpi_reply
->Event
);
1001 case MPI2_EVENT_LOG_DATA
:
1004 case MPI2_EVENT_STATE_CHANGE
:
1005 desc
= "Status Change";
1007 case MPI2_EVENT_HARD_RESET_RECEIVED
:
1008 desc
= "Hard Reset Received";
1010 case MPI2_EVENT_EVENT_CHANGE
:
1011 desc
= "Event Change";
1013 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
:
1014 desc
= "Device Status Change";
1016 case MPI2_EVENT_IR_OPERATION_STATUS
:
1017 if (!ioc
->hide_ir_msg
)
1018 desc
= "IR Operation Status";
1020 case MPI2_EVENT_SAS_DISCOVERY
:
1022 Mpi2EventDataSasDiscovery_t
*event_data
=
1023 (Mpi2EventDataSasDiscovery_t
*)mpi_reply
->EventData
;
1024 ioc_info(ioc
, "Discovery: (%s)",
1025 event_data
->ReasonCode
== MPI2_EVENT_SAS_DISC_RC_STARTED
?
1027 if (event_data
->DiscoveryStatus
)
1028 pr_cont(" discovery_status(0x%08x)",
1029 le32_to_cpu(event_data
->DiscoveryStatus
));
1033 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
:
1034 desc
= "SAS Broadcast Primitive";
1036 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE
:
1037 desc
= "SAS Init Device Status Change";
1039 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW
:
1040 desc
= "SAS Init Table Overflow";
1042 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
:
1043 desc
= "SAS Topology Change List";
1045 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
:
1046 desc
= "SAS Enclosure Device Status Change";
1048 case MPI2_EVENT_IR_VOLUME
:
1049 if (!ioc
->hide_ir_msg
)
1052 case MPI2_EVENT_IR_PHYSICAL_DISK
:
1053 if (!ioc
->hide_ir_msg
)
1054 desc
= "IR Physical Disk";
1056 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
:
1057 if (!ioc
->hide_ir_msg
)
1058 desc
= "IR Configuration Change List";
1060 case MPI2_EVENT_LOG_ENTRY_ADDED
:
1061 if (!ioc
->hide_ir_msg
)
1062 desc
= "Log Entry Added";
1064 case MPI2_EVENT_TEMP_THRESHOLD
:
1065 desc
= "Temperature Threshold";
1067 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
:
1068 desc
= "Cable Event";
1070 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
:
1071 desc
= "SAS Device Discovery Error";
1073 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
:
1074 desc
= "PCIE Device Status Change";
1076 case MPI2_EVENT_PCIE_ENUMERATION
:
1078 Mpi26EventDataPCIeEnumeration_t
*event_data
=
1079 (Mpi26EventDataPCIeEnumeration_t
*)mpi_reply
->EventData
;
1080 ioc_info(ioc
, "PCIE Enumeration: (%s)",
1081 event_data
->ReasonCode
== MPI26_EVENT_PCIE_ENUM_RC_STARTED
?
1083 if (event_data
->EnumerationStatus
)
1084 pr_cont("enumeration_status(0x%08x)",
1085 le32_to_cpu(event_data
->EnumerationStatus
));
1089 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
:
1090 desc
= "PCIE Topology Change List";
1097 ioc_info(ioc
, "%s\n", desc
);
1101 * _base_sas_log_info - verbose translation of firmware log info
1102 * @ioc: per adapter object
1103 * @log_info: log info
1106 _base_sas_log_info(struct MPT3SAS_ADAPTER
*ioc
, u32 log_info
)
1108 union loginfo_type
{
1117 union loginfo_type sas_loginfo
;
1118 char *originator_str
= NULL
;
1120 sas_loginfo
.loginfo
= log_info
;
1121 if (sas_loginfo
.dw
.bus_type
!= 3 /*SAS*/)
1124 /* each nexus loss loginfo */
1125 if (log_info
== 0x31170000)
1128 /* eat the loginfos associated with task aborts */
1129 if (ioc
->ignore_loginfos
&& (log_info
== 0x30050000 || log_info
==
1130 0x31140000 || log_info
== 0x31130000))
1133 switch (sas_loginfo
.dw
.originator
) {
1135 originator_str
= "IOP";
1138 originator_str
= "PL";
1141 if (!ioc
->hide_ir_msg
)
1142 originator_str
= "IR";
1144 originator_str
= "WarpDrive";
1148 ioc_warn(ioc
, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1150 originator_str
, sas_loginfo
.dw
.code
, sas_loginfo
.dw
.subcode
);
1154 * _base_display_reply_info -
1155 * @ioc: per adapter object
1156 * @smid: system request message index
1157 * @msix_index: MSIX table index supplied by the OS
1158 * @reply: reply message frame(lower 32bit addr)
1161 _base_display_reply_info(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1164 MPI2DefaultReply_t
*mpi_reply
;
1168 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1169 if (unlikely(!mpi_reply
)) {
1170 ioc_err(ioc
, "mpi_reply not valid at %s:%d/%s()!\n",
1171 __FILE__
, __LINE__
, __func__
);
1174 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
);
1176 if ((ioc_status
& MPI2_IOCSTATUS_MASK
) &&
1177 (ioc
->logging_level
& MPT_DEBUG_REPLY
)) {
1178 _base_sas_ioc_info(ioc
, mpi_reply
,
1179 mpt3sas_base_get_msg_frame(ioc
, smid
));
1182 if (ioc_status
& MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE
) {
1183 loginfo
= le32_to_cpu(mpi_reply
->IOCLogInfo
);
1184 _base_sas_log_info(ioc
, loginfo
);
1187 if (ioc_status
|| loginfo
) {
1188 ioc_status
&= MPI2_IOCSTATUS_MASK
;
1189 mpt3sas_trigger_mpi(ioc
, ioc_status
, loginfo
);
1194 * mpt3sas_base_done - base internal command completion routine
1195 * @ioc: per adapter object
1196 * @smid: system request message index
1197 * @msix_index: MSIX table index supplied by the OS
1198 * @reply: reply message frame(lower 32bit addr)
1201 * 1 meaning mf should be freed from _base_interrupt
1202 * 0 means the mf is freed from this function.
1205 mpt3sas_base_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1208 MPI2DefaultReply_t
*mpi_reply
;
1210 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1211 if (mpi_reply
&& mpi_reply
->Function
== MPI2_FUNCTION_EVENT_ACK
)
1212 return mpt3sas_check_for_pending_internal_cmds(ioc
, smid
);
1214 if (ioc
->base_cmds
.status
== MPT3_CMD_NOT_USED
)
1217 ioc
->base_cmds
.status
|= MPT3_CMD_COMPLETE
;
1219 ioc
->base_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
1220 memcpy(ioc
->base_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
1222 ioc
->base_cmds
.status
&= ~MPT3_CMD_PENDING
;
1224 complete(&ioc
->base_cmds
.done
);
1229 * _base_async_event - main callback handler for firmware asyn events
1230 * @ioc: per adapter object
1231 * @msix_index: MSIX table index supplied by the OS
1232 * @reply: reply message frame(lower 32bit addr)
1235 * 1 meaning mf should be freed from _base_interrupt
1236 * 0 means the mf is freed from this function.
1239 _base_async_event(struct MPT3SAS_ADAPTER
*ioc
, u8 msix_index
, u32 reply
)
1241 Mpi2EventNotificationReply_t
*mpi_reply
;
1242 Mpi2EventAckRequest_t
*ack_request
;
1244 struct _event_ack_list
*delayed_event_ack
;
1246 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1249 if (mpi_reply
->Function
!= MPI2_FUNCTION_EVENT_NOTIFICATION
)
1252 _base_display_event_data(ioc
, mpi_reply
);
1254 if (!(mpi_reply
->AckRequired
& MPI2_EVENT_NOTIFICATION_ACK_REQUIRED
))
1256 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
1258 delayed_event_ack
= kzalloc(sizeof(*delayed_event_ack
),
1260 if (!delayed_event_ack
)
1262 INIT_LIST_HEAD(&delayed_event_ack
->list
);
1263 delayed_event_ack
->Event
= mpi_reply
->Event
;
1264 delayed_event_ack
->EventContext
= mpi_reply
->EventContext
;
1265 list_add_tail(&delayed_event_ack
->list
,
1266 &ioc
->delayed_event_ack_list
);
1268 ioc_info(ioc
, "DELAYED: EVENT ACK: event (0x%04x)\n",
1269 le16_to_cpu(mpi_reply
->Event
)));
1273 ack_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
1274 memset(ack_request
, 0, sizeof(Mpi2EventAckRequest_t
));
1275 ack_request
->Function
= MPI2_FUNCTION_EVENT_ACK
;
1276 ack_request
->Event
= mpi_reply
->Event
;
1277 ack_request
->EventContext
= mpi_reply
->EventContext
;
1278 ack_request
->VF_ID
= 0; /* TODO */
1279 ack_request
->VP_ID
= 0;
1280 mpt3sas_base_put_smid_default(ioc
, smid
);
1284 /* scsih callback handler */
1285 mpt3sas_scsih_event_callback(ioc
, msix_index
, reply
);
1287 /* ctl callback handler */
1288 mpt3sas_ctl_event_callback(ioc
, msix_index
, reply
);
1293 static struct scsiio_tracker
*
1294 _get_st_from_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1296 struct scsi_cmnd
*cmd
;
1298 if (WARN_ON(!smid
) ||
1299 WARN_ON(smid
>= ioc
->hi_priority_smid
))
1302 cmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
1304 return scsi_cmd_priv(cmd
);
1310 * _base_get_cb_idx - obtain the callback index
1311 * @ioc: per adapter object
1312 * @smid: system request message index
1314 * Return: callback index.
1317 _base_get_cb_idx(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1320 u16 ctl_smid
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
+ 1;
1323 if (smid
< ioc
->hi_priority_smid
) {
1324 struct scsiio_tracker
*st
;
1326 if (smid
< ctl_smid
) {
1327 st
= _get_st_from_smid(ioc
, smid
);
1329 cb_idx
= st
->cb_idx
;
1330 } else if (smid
== ctl_smid
)
1331 cb_idx
= ioc
->ctl_cb_idx
;
1332 } else if (smid
< ioc
->internal_smid
) {
1333 i
= smid
- ioc
->hi_priority_smid
;
1334 cb_idx
= ioc
->hpr_lookup
[i
].cb_idx
;
1335 } else if (smid
<= ioc
->hba_queue_depth
) {
1336 i
= smid
- ioc
->internal_smid
;
1337 cb_idx
= ioc
->internal_lookup
[i
].cb_idx
;
1343 * _base_mask_interrupts - disable interrupts
1344 * @ioc: per adapter object
1346 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1349 _base_mask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1353 ioc
->mask_interrupts
= 1;
1354 him_register
= ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1355 him_register
|= MPI2_HIM_DIM
+ MPI2_HIM_RIM
+ MPI2_HIM_RESET_IRQ_MASK
;
1356 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1357 ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1361 * _base_unmask_interrupts - enable interrupts
1362 * @ioc: per adapter object
1364 * Enabling only Reply Interrupts
1367 _base_unmask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1371 him_register
= ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1372 him_register
&= ~MPI2_HIM_RIM
;
1373 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1374 ioc
->mask_interrupts
= 0;
1377 union reply_descriptor
{
1386 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1387 * @irq: irq number (not used)
1388 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1390 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1393 _base_interrupt(int irq
, void *bus_id
)
1395 struct adapter_reply_queue
*reply_q
= bus_id
;
1396 union reply_descriptor rd
;
1398 u8 request_desript_type
;
1402 u8 msix_index
= reply_q
->msix_index
;
1403 struct MPT3SAS_ADAPTER
*ioc
= reply_q
->ioc
;
1404 Mpi2ReplyDescriptorsUnion_t
*rpf
;
1407 if (ioc
->mask_interrupts
)
1410 if (!atomic_add_unless(&reply_q
->busy
, 1, 1))
1413 rpf
= &reply_q
->reply_post_free
[reply_q
->reply_post_host_index
];
1414 request_desript_type
= rpf
->Default
.ReplyFlags
1415 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1416 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
) {
1417 atomic_dec(&reply_q
->busy
);
1424 rd
.word
= le64_to_cpu(rpf
->Words
);
1425 if (rd
.u
.low
== UINT_MAX
|| rd
.u
.high
== UINT_MAX
)
1428 smid
= le16_to_cpu(rpf
->Default
.DescriptorTypeDependent1
);
1429 if (request_desript_type
==
1430 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS
||
1431 request_desript_type
==
1432 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS
||
1433 request_desript_type
==
1434 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS
) {
1435 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1436 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1437 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1438 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1441 mpt3sas_base_free_smid(ioc
, smid
);
1443 } else if (request_desript_type
==
1444 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY
) {
1445 reply
= le32_to_cpu(
1446 rpf
->AddressReply
.ReplyFrameAddress
);
1447 if (reply
> ioc
->reply_dma_max_address
||
1448 reply
< ioc
->reply_dma_min_address
)
1451 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1452 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1453 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1454 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1457 _base_display_reply_info(ioc
,
1458 smid
, msix_index
, reply
);
1460 mpt3sas_base_free_smid(ioc
,
1464 _base_async_event(ioc
, msix_index
, reply
);
1467 /* reply free queue handling */
1469 ioc
->reply_free_host_index
=
1470 (ioc
->reply_free_host_index
==
1471 (ioc
->reply_free_queue_depth
- 1)) ?
1472 0 : ioc
->reply_free_host_index
+ 1;
1473 ioc
->reply_free
[ioc
->reply_free_host_index
] =
1475 if (ioc
->is_mcpu_endpoint
)
1476 _base_clone_reply_to_sys_mem(ioc
,
1478 ioc
->reply_free_host_index
);
1479 writel(ioc
->reply_free_host_index
,
1480 &ioc
->chip
->ReplyFreeHostIndex
);
1484 rpf
->Words
= cpu_to_le64(ULLONG_MAX
);
1485 reply_q
->reply_post_host_index
=
1486 (reply_q
->reply_post_host_index
==
1487 (ioc
->reply_post_queue_depth
- 1)) ? 0 :
1488 reply_q
->reply_post_host_index
+ 1;
1489 request_desript_type
=
1490 reply_q
->reply_post_free
[reply_q
->reply_post_host_index
].
1491 Default
.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1493 /* Update the reply post host index after continuously
1494 * processing the threshold number of Reply Descriptors.
1495 * So that FW can find enough entries to post the Reply
1496 * Descriptors in the reply descriptor post queue.
1498 if (completed_cmds
> ioc
->hba_queue_depth
/3) {
1499 if (ioc
->combined_reply_queue
) {
1500 writel(reply_q
->reply_post_host_index
|
1501 ((msix_index
& 7) <<
1502 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1503 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1505 writel(reply_q
->reply_post_host_index
|
1507 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1508 &ioc
->chip
->ReplyPostHostIndex
);
1512 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
)
1514 if (!reply_q
->reply_post_host_index
)
1515 rpf
= reply_q
->reply_post_free
;
1522 if (!completed_cmds
) {
1523 atomic_dec(&reply_q
->busy
);
1527 if (ioc
->is_warpdrive
) {
1528 writel(reply_q
->reply_post_host_index
,
1529 ioc
->reply_post_host_index
[msix_index
]);
1530 atomic_dec(&reply_q
->busy
);
1534 /* Update Reply Post Host Index.
1535 * For those HBA's which support combined reply queue feature
1536 * 1. Get the correct Supplemental Reply Post Host Index Register.
1537 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1538 * Index Register address bank i.e replyPostRegisterIndex[],
1539 * 2. Then update this register with new reply host index value
1540 * in ReplyPostIndex field and the MSIxIndex field with
1541 * msix_index value reduced to a value between 0 and 7,
1542 * using a modulo 8 operation. Since each Supplemental Reply Post
1543 * Host Index Register supports 8 MSI-X vectors.
1545 * For other HBA's just update the Reply Post Host Index register with
1546 * new reply host index value in ReplyPostIndex Field and msix_index
1547 * value in MSIxIndex field.
1549 if (ioc
->combined_reply_queue
)
1550 writel(reply_q
->reply_post_host_index
| ((msix_index
& 7) <<
1551 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1552 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1554 writel(reply_q
->reply_post_host_index
| (msix_index
<<
1555 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1556 &ioc
->chip
->ReplyPostHostIndex
);
1557 atomic_dec(&reply_q
->busy
);
1562 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1563 * @ioc: per adapter object
1565 * Return: Whether or not MSI/X is enabled.
1568 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER
*ioc
)
1570 return (ioc
->facts
.IOCCapabilities
&
1571 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX
) && ioc
->msix_enable
;
1575 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1576 * @ioc: per adapter object
1577 * Context: non ISR conext
1579 * Called when a Task Management request has completed.
1582 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER
*ioc
)
1584 struct adapter_reply_queue
*reply_q
;
1586 /* If MSIX capability is turned off
1587 * then multi-queues are not enabled
1589 if (!_base_is_controller_msix_enabled(ioc
))
1592 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
1593 if (ioc
->shost_recovery
|| ioc
->remove_host
||
1594 ioc
->pci_error_recovery
)
1596 /* TMs are on msix_index == 0 */
1597 if (reply_q
->msix_index
== 0)
1599 synchronize_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
1604 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1605 * @cb_idx: callback index
1608 mpt3sas_base_release_callback_handler(u8 cb_idx
)
1610 mpt_callbacks
[cb_idx
] = NULL
;
1614 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1615 * @cb_func: callback function
1617 * Return: Index of @cb_func.
1620 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func
)
1624 for (cb_idx
= MPT_MAX_CALLBACKS
-1; cb_idx
; cb_idx
--)
1625 if (mpt_callbacks
[cb_idx
] == NULL
)
1628 mpt_callbacks
[cb_idx
] = cb_func
;
1633 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1636 mpt3sas_base_initialize_callback_handler(void)
1640 for (cb_idx
= 0; cb_idx
< MPT_MAX_CALLBACKS
; cb_idx
++)
1641 mpt3sas_base_release_callback_handler(cb_idx
);
1646 * _base_build_zero_len_sge - build zero length sg entry
1647 * @ioc: per adapter object
1648 * @paddr: virtual address for SGE
1650 * Create a zero length scatter gather entry to insure the IOCs hardware has
1651 * something to use if the target device goes brain dead and tries
1652 * to send data even when none is asked for.
1655 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
1657 u32 flags_length
= (u32
)((MPI2_SGE_FLAGS_LAST_ELEMENT
|
1658 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
|
1659 MPI2_SGE_FLAGS_SIMPLE_ELEMENT
) <<
1660 MPI2_SGE_FLAGS_SHIFT
);
1661 ioc
->base_add_sg_single(paddr
, flags_length
, -1);
1665 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1666 * @paddr: virtual address for SGE
1667 * @flags_length: SGE flags and data transfer length
1668 * @dma_addr: Physical address
1671 _base_add_sg_single_32(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1673 Mpi2SGESimple32_t
*sgel
= paddr
;
1675 flags_length
|= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING
|
1676 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1677 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1678 sgel
->Address
= cpu_to_le32(dma_addr
);
1683 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1684 * @paddr: virtual address for SGE
1685 * @flags_length: SGE flags and data transfer length
1686 * @dma_addr: Physical address
1689 _base_add_sg_single_64(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1691 Mpi2SGESimple64_t
*sgel
= paddr
;
1693 flags_length
|= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING
|
1694 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1695 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1696 sgel
->Address
= cpu_to_le64(dma_addr
);
1700 * _base_get_chain_buffer_tracker - obtain chain tracker
1701 * @ioc: per adapter object
1702 * @scmd: SCSI commands of the IO request
1704 * Return: chain tracker from chain_lookup table using key as
1705 * smid and smid's chain_offset.
1707 static struct chain_tracker
*
1708 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER
*ioc
,
1709 struct scsi_cmnd
*scmd
)
1711 struct chain_tracker
*chain_req
;
1712 struct scsiio_tracker
*st
= scsi_cmd_priv(scmd
);
1713 u16 smid
= st
->smid
;
1715 atomic_read(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
1717 if (chain_offset
== ioc
->chains_needed_per_io
)
1720 chain_req
= &ioc
->chain_lookup
[smid
- 1].chains_per_smid
[chain_offset
];
1721 atomic_inc(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
1727 * _base_build_sg - build generic sg
1728 * @ioc: per adapter object
1729 * @psge: virtual address for SGE
1730 * @data_out_dma: physical address for WRITES
1731 * @data_out_sz: data xfer size for WRITES
1732 * @data_in_dma: physical address for READS
1733 * @data_in_sz: data xfer size for READS
1736 _base_build_sg(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
1737 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
1742 if (!data_out_sz
&& !data_in_sz
) {
1743 _base_build_zero_len_sge(ioc
, psge
);
1747 if (data_out_sz
&& data_in_sz
) {
1748 /* WRITE sgel first */
1749 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1750 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
1751 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1752 ioc
->base_add_sg_single(psge
, sgl_flags
|
1753 data_out_sz
, data_out_dma
);
1756 psge
+= ioc
->sge_size
;
1758 /* READ sgel last */
1759 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1760 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1761 MPI2_SGE_FLAGS_END_OF_LIST
);
1762 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1763 ioc
->base_add_sg_single(psge
, sgl_flags
|
1764 data_in_sz
, data_in_dma
);
1765 } else if (data_out_sz
) /* WRITE */ {
1766 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1767 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1768 MPI2_SGE_FLAGS_END_OF_LIST
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
1769 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1770 ioc
->base_add_sg_single(psge
, sgl_flags
|
1771 data_out_sz
, data_out_dma
);
1772 } else if (data_in_sz
) /* READ */ {
1773 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1774 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1775 MPI2_SGE_FLAGS_END_OF_LIST
);
1776 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1777 ioc
->base_add_sg_single(psge
, sgl_flags
|
1778 data_in_sz
, data_in_dma
);
1782 /* IEEE format sgls */
1785 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1786 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1787 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
1788 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
1789 * used to describe a larger data buffer. If the data buffer is too large to
1790 * describe using the two PRP entriess inside the NVMe message, then PRP1
1791 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1792 * list located elsewhere in memory to describe the remaining data memory
1793 * segments. The PRP list will be contiguous.
1795 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
1796 * consists of a list of PRP entries to describe a number of noncontigous
1797 * physical memory segments as a single memory buffer, just as a SGL does. Note
1798 * however, that this function is only used by the IOCTL call, so the memory
1799 * given will be guaranteed to be contiguous. There is no need to translate
1800 * non-contiguous SGL into a PRP in this case. All PRPs will describe
1801 * contiguous space that is one page size each.
1803 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
1804 * a PRP list pointer or a PRP element, depending upon the command. PRP2
1805 * contains the second PRP element if the memory being described fits within 2
1806 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1808 * A PRP list pointer contains the address of a PRP list, structured as a linear
1809 * array of PRP entries. Each PRP entry in this list describes a segment of
1812 * Each 64-bit PRP entry comprises an address and an offset field. The address
1813 * always points at the beginning of a 4KB physical memory page, and the offset
1814 * describes where within that 4KB page the memory segment begins. Only the
1815 * first element in a PRP list may contain a non-zero offest, implying that all
1816 * memory segments following the first begin at the start of a 4KB page.
1818 * Each PRP element normally describes 4KB of physical memory, with exceptions
1819 * for the first and last elements in the list. If the memory being described
1820 * by the list begins at a non-zero offset within the first 4KB page, then the
1821 * first PRP element will contain a non-zero offset indicating where the region
1822 * begins within the 4KB page. The last memory segment may end before the end
1823 * of the 4KB segment, depending upon the overall size of the memory being
1824 * described by the PRP list.
1826 * Since PRP entries lack any indication of size, the overall data buffer length
1827 * is used to determine where the end of the data memory buffer is located, and
1828 * how many PRP entries are required to describe it.
1830 * @ioc: per adapter object
1831 * @smid: system request message index for getting asscociated SGL
1832 * @nvme_encap_request: the NVMe request msg frame pointer
1833 * @data_out_dma: physical address for WRITES
1834 * @data_out_sz: data xfer size for WRITES
1835 * @data_in_dma: physical address for READS
1836 * @data_in_sz: data xfer size for READS
1839 _base_build_nvme_prp(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
1840 Mpi26NVMeEncapsulatedRequest_t
*nvme_encap_request
,
1841 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
1844 int prp_size
= NVME_PRP_SIZE
;
1845 __le64
*prp_entry
, *prp1_entry
, *prp2_entry
;
1847 dma_addr_t prp_entry_dma
, prp_page_dma
, dma_addr
;
1848 u32 offset
, entry_len
;
1849 u32 page_mask_result
, page_mask
;
1851 struct mpt3sas_nvme_cmd
*nvme_cmd
=
1852 (void *)nvme_encap_request
->NVMe_Command
;
1855 * Not all commands require a data transfer. If no data, just return
1856 * without constructing any PRP.
1858 if (!data_in_sz
&& !data_out_sz
)
1860 prp1_entry
= &nvme_cmd
->prp1
;
1861 prp2_entry
= &nvme_cmd
->prp2
;
1862 prp_entry
= prp1_entry
;
1864 * For the PRP entries, use the specially allocated buffer of
1865 * contiguous memory.
1867 prp_page
= (__le64
*)mpt3sas_base_get_pcie_sgl(ioc
, smid
);
1868 prp_page_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
1871 * Check if we are within 1 entry of a page boundary we don't
1872 * want our first entry to be a PRP List entry.
1874 page_mask
= ioc
->page_size
- 1;
1875 page_mask_result
= (uintptr_t)((u8
*)prp_page
+ prp_size
) & page_mask
;
1876 if (!page_mask_result
) {
1877 /* Bump up to next page boundary. */
1878 prp_page
= (__le64
*)((u8
*)prp_page
+ prp_size
);
1879 prp_page_dma
= prp_page_dma
+ prp_size
;
1883 * Set PRP physical pointer, which initially points to the current PRP
1886 prp_entry_dma
= prp_page_dma
;
1888 /* Get physical address and length of the data buffer. */
1890 dma_addr
= data_in_dma
;
1891 length
= data_in_sz
;
1893 dma_addr
= data_out_dma
;
1894 length
= data_out_sz
;
1897 /* Loop while the length is not zero. */
1900 * Check if we need to put a list pointer here if we are at
1901 * page boundary - prp_size (8 bytes).
1903 page_mask_result
= (prp_entry_dma
+ prp_size
) & page_mask
;
1904 if (!page_mask_result
) {
1906 * This is the last entry in a PRP List, so we need to
1907 * put a PRP list pointer here. What this does is:
1908 * - bump the current memory pointer to the next
1909 * address, which will be the next full page.
1910 * - set the PRP Entry to point to that page. This
1911 * is now the PRP List pointer.
1912 * - bump the PRP Entry pointer the start of the
1913 * next page. Since all of this PRP memory is
1914 * contiguous, no need to get a new page - it's
1915 * just the next address.
1918 *prp_entry
= cpu_to_le64(prp_entry_dma
);
1922 /* Need to handle if entry will be part of a page. */
1923 offset
= dma_addr
& page_mask
;
1924 entry_len
= ioc
->page_size
- offset
;
1926 if (prp_entry
== prp1_entry
) {
1928 * Must fill in the first PRP pointer (PRP1) before
1931 *prp1_entry
= cpu_to_le64(dma_addr
);
1934 * Now point to the second PRP entry within the
1937 prp_entry
= prp2_entry
;
1938 } else if (prp_entry
== prp2_entry
) {
1940 * Should the PRP2 entry be a PRP List pointer or just
1941 * a regular PRP pointer? If there is more than one
1942 * more page of data, must use a PRP List pointer.
1944 if (length
> ioc
->page_size
) {
1946 * PRP2 will contain a PRP List pointer because
1947 * more PRP's are needed with this command. The
1948 * list will start at the beginning of the
1949 * contiguous buffer.
1951 *prp2_entry
= cpu_to_le64(prp_entry_dma
);
1954 * The next PRP Entry will be the start of the
1957 prp_entry
= prp_page
;
1960 * After this, the PRP Entries are complete.
1961 * This command uses 2 PRP's and no PRP list.
1963 *prp2_entry
= cpu_to_le64(dma_addr
);
1967 * Put entry in list and bump the addresses.
1969 * After PRP1 and PRP2 are filled in, this will fill in
1970 * all remaining PRP entries in a PRP List, one per
1971 * each time through the loop.
1973 *prp_entry
= cpu_to_le64(dma_addr
);
1979 * Bump the phys address of the command's data buffer by the
1982 dma_addr
+= entry_len
;
1984 /* Decrement length accounting for last partial page. */
1985 if (entry_len
> length
)
1988 length
-= entry_len
;
1993 * base_make_prp_nvme -
1994 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1996 * @ioc: per adapter object
1997 * @scmd: SCSI command from the mid-layer
1998 * @mpi_request: mpi request
2000 * @sge_count: scatter gather element count.
2002 * Return: true: PRPs are built
2003 * false: IEEE SGLs needs to be built
2006 base_make_prp_nvme(struct MPT3SAS_ADAPTER
*ioc
,
2007 struct scsi_cmnd
*scmd
,
2008 Mpi25SCSIIORequest_t
*mpi_request
,
2009 u16 smid
, int sge_count
)
2011 int sge_len
, num_prp_in_chain
= 0;
2012 Mpi25IeeeSgeChain64_t
*main_chain_element
, *ptr_first_sgl
;
2014 dma_addr_t msg_dma
, sge_addr
, offset
;
2015 u32 page_mask
, page_mask_result
;
2016 struct scatterlist
*sg_scmd
;
2018 int data_len
= scsi_bufflen(scmd
);
2021 nvme_pg_size
= max_t(u32
, ioc
->page_size
, NVME_PRP_PAGE_SIZE
);
2023 * Nvme has a very convoluted prp format. One prp is required
2024 * for each page or partial page. Driver need to split up OS sg_list
2025 * entries if it is longer than one page or cross a page
2026 * boundary. Driver also have to insert a PRP list pointer entry as
2027 * the last entry in each physical page of the PRP list.
2029 * NOTE: The first PRP "entry" is actually placed in the first
2030 * SGL entry in the main message as IEEE 64 format. The 2nd
2031 * entry in the main message is the chain element, and the rest
2032 * of the PRP entries are built in the contiguous pcie buffer.
2034 page_mask
= nvme_pg_size
- 1;
2037 * Native SGL is needed.
2038 * Put a chain element in main message frame that points to the first
2041 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2045 /* Set main message chain element pointer */
2046 main_chain_element
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2048 * For NVMe the chain element needs to be the 2nd SG entry in the main
2051 main_chain_element
= (Mpi25IeeeSgeChain64_t
*)
2052 ((u8
*)main_chain_element
+ sizeof(MPI25_IEEE_SGE_CHAIN64
));
2055 * For the PRP entries, use the specially allocated buffer of
2056 * contiguous memory. Normal chain buffers can't be used
2057 * because each chain buffer would need to be the size of an OS
2060 curr_buff
= mpt3sas_base_get_pcie_sgl(ioc
, smid
);
2061 msg_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
2063 main_chain_element
->Address
= cpu_to_le64(msg_dma
);
2064 main_chain_element
->NextChainOffset
= 0;
2065 main_chain_element
->Flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2066 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2067 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP
;
2069 /* Build first prp, sge need not to be page aligned*/
2070 ptr_first_sgl
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2071 sg_scmd
= scsi_sglist(scmd
);
2072 sge_addr
= sg_dma_address(sg_scmd
);
2073 sge_len
= sg_dma_len(sg_scmd
);
2075 offset
= sge_addr
& page_mask
;
2076 first_prp_len
= nvme_pg_size
- offset
;
2078 ptr_first_sgl
->Address
= cpu_to_le64(sge_addr
);
2079 ptr_first_sgl
->Length
= cpu_to_le32(first_prp_len
);
2081 data_len
-= first_prp_len
;
2083 if (sge_len
> first_prp_len
) {
2084 sge_addr
+= first_prp_len
;
2085 sge_len
-= first_prp_len
;
2086 } else if (data_len
&& (sge_len
== first_prp_len
)) {
2087 sg_scmd
= sg_next(sg_scmd
);
2088 sge_addr
= sg_dma_address(sg_scmd
);
2089 sge_len
= sg_dma_len(sg_scmd
);
2093 offset
= sge_addr
& page_mask
;
2095 /* Put PRP pointer due to page boundary*/
2096 page_mask_result
= (uintptr_t)(curr_buff
+ 1) & page_mask
;
2097 if (unlikely(!page_mask_result
)) {
2098 scmd_printk(KERN_NOTICE
,
2099 scmd
, "page boundary curr_buff: 0x%p\n",
2102 *curr_buff
= cpu_to_le64(msg_dma
);
2107 *curr_buff
= cpu_to_le64(sge_addr
);
2112 sge_addr
+= nvme_pg_size
;
2113 sge_len
-= nvme_pg_size
;
2114 data_len
-= nvme_pg_size
;
2122 sg_scmd
= sg_next(sg_scmd
);
2123 sge_addr
= sg_dma_address(sg_scmd
);
2124 sge_len
= sg_dma_len(sg_scmd
);
2127 main_chain_element
->Length
=
2128 cpu_to_le32(num_prp_in_chain
* sizeof(u64
));
2133 base_is_prp_possible(struct MPT3SAS_ADAPTER
*ioc
,
2134 struct _pcie_device
*pcie_device
, struct scsi_cmnd
*scmd
, int sge_count
)
2136 u32 data_length
= 0;
2137 bool build_prp
= true;
2139 data_length
= scsi_bufflen(scmd
);
2141 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2144 if ((data_length
<= NVME_PRP_PAGE_SIZE
*4) && (sge_count
<= 2))
2151 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2152 * determine if the driver needs to build a native SGL. If so, that native
2153 * SGL is built in the special contiguous buffers allocated especially for
2154 * PCIe SGL creation. If the driver will not build a native SGL, return
2155 * TRUE and a normal IEEE SGL will be built. Currently this routine
2157 * @ioc: per adapter object
2158 * @mpi_request: mf request pointer
2159 * @smid: system request message index
2160 * @scmd: scsi command
2161 * @pcie_device: points to the PCIe device's info
2163 * Return: 0 if native SGL was built, 1 if no SGL was built
2166 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER
*ioc
,
2167 Mpi25SCSIIORequest_t
*mpi_request
, u16 smid
, struct scsi_cmnd
*scmd
,
2168 struct _pcie_device
*pcie_device
)
2172 /* Get the SG list pointer and info. */
2173 sges_left
= scsi_dma_map(scmd
);
2174 if (sges_left
< 0) {
2175 sdev_printk(KERN_ERR
, scmd
->device
,
2176 "scsi_dma_map failed: request for %d bytes!\n",
2177 scsi_bufflen(scmd
));
2181 /* Check if we need to build a native SG list. */
2182 if (base_is_prp_possible(ioc
, pcie_device
,
2183 scmd
, sges_left
) == 0) {
2184 /* We built a native SG list, just return. */
2189 * Build native NVMe PRP.
2191 base_make_prp_nvme(ioc
, scmd
, mpi_request
,
2196 scsi_dma_unmap(scmd
);
2201 * _base_add_sg_single_ieee - add sg element for IEEE format
2202 * @paddr: virtual address for SGE
2204 * @chain_offset: number of 128 byte elements from start of segment
2205 * @length: data transfer length
2206 * @dma_addr: Physical address
2209 _base_add_sg_single_ieee(void *paddr
, u8 flags
, u8 chain_offset
, u32 length
,
2210 dma_addr_t dma_addr
)
2212 Mpi25IeeeSgeChain64_t
*sgel
= paddr
;
2214 sgel
->Flags
= flags
;
2215 sgel
->NextChainOffset
= chain_offset
;
2216 sgel
->Length
= cpu_to_le32(length
);
2217 sgel
->Address
= cpu_to_le64(dma_addr
);
2221 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2222 * @ioc: per adapter object
2223 * @paddr: virtual address for SGE
2225 * Create a zero length scatter gather entry to insure the IOCs hardware has
2226 * something to use if the target device goes brain dead and tries
2227 * to send data even when none is asked for.
2230 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
2232 u8 sgl_flags
= (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2233 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2234 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
);
2236 _base_add_sg_single_ieee(paddr
, sgl_flags
, 0, 0, -1);
2240 * _base_build_sg_scmd - main sg creation routine
2241 * pcie_device is unused here!
2242 * @ioc: per adapter object
2243 * @scmd: scsi command
2244 * @smid: system request message index
2245 * @unused: unused pcie_device pointer
2248 * The main routine that builds scatter gather table from a given
2249 * scsi request sent via the .queuecommand main handler.
2251 * Return: 0 success, anything else error
2254 _base_build_sg_scmd(struct MPT3SAS_ADAPTER
*ioc
,
2255 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*unused
)
2257 Mpi2SCSIIORequest_t
*mpi_request
;
2258 dma_addr_t chain_dma
;
2259 struct scatterlist
*sg_scmd
;
2260 void *sg_local
, *chain
;
2265 u32 sges_in_segment
;
2267 u32 sgl_flags_last_element
;
2268 u32 sgl_flags_end_buffer
;
2269 struct chain_tracker
*chain_req
;
2271 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2273 /* init scatter gather flags */
2274 sgl_flags
= MPI2_SGE_FLAGS_SIMPLE_ELEMENT
;
2275 if (scmd
->sc_data_direction
== DMA_TO_DEVICE
)
2276 sgl_flags
|= MPI2_SGE_FLAGS_HOST_TO_IOC
;
2277 sgl_flags_last_element
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
)
2278 << MPI2_SGE_FLAGS_SHIFT
;
2279 sgl_flags_end_buffer
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
|
2280 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
)
2281 << MPI2_SGE_FLAGS_SHIFT
;
2282 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2284 sg_scmd
= scsi_sglist(scmd
);
2285 sges_left
= scsi_dma_map(scmd
);
2286 if (sges_left
< 0) {
2287 sdev_printk(KERN_ERR
, scmd
->device
,
2288 "scsi_dma_map failed: request for %d bytes!\n",
2289 scsi_bufflen(scmd
));
2293 sg_local
= &mpi_request
->SGL
;
2294 sges_in_segment
= ioc
->max_sges_in_main_message
;
2295 if (sges_left
<= sges_in_segment
)
2296 goto fill_in_last_segment
;
2298 mpi_request
->ChainOffset
= (offsetof(Mpi2SCSIIORequest_t
, SGL
) +
2299 (sges_in_segment
* ioc
->sge_size
))/4;
2301 /* fill in main message segment when there is a chain following */
2302 while (sges_in_segment
) {
2303 if (sges_in_segment
== 1)
2304 ioc
->base_add_sg_single(sg_local
,
2305 sgl_flags_last_element
| sg_dma_len(sg_scmd
),
2306 sg_dma_address(sg_scmd
));
2308 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2309 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2310 sg_scmd
= sg_next(sg_scmd
);
2311 sg_local
+= ioc
->sge_size
;
2316 /* initializing the chain flags and pointers */
2317 chain_flags
= MPI2_SGE_FLAGS_CHAIN_ELEMENT
<< MPI2_SGE_FLAGS_SHIFT
;
2318 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2321 chain
= chain_req
->chain_buffer
;
2322 chain_dma
= chain_req
->chain_buffer_dma
;
2324 sges_in_segment
= (sges_left
<=
2325 ioc
->max_sges_in_chain_message
) ? sges_left
:
2326 ioc
->max_sges_in_chain_message
;
2327 chain_offset
= (sges_left
== sges_in_segment
) ?
2328 0 : (sges_in_segment
* ioc
->sge_size
)/4;
2329 chain_length
= sges_in_segment
* ioc
->sge_size
;
2331 chain_offset
= chain_offset
<<
2332 MPI2_SGE_CHAIN_OFFSET_SHIFT
;
2333 chain_length
+= ioc
->sge_size
;
2335 ioc
->base_add_sg_single(sg_local
, chain_flags
| chain_offset
|
2336 chain_length
, chain_dma
);
2339 goto fill_in_last_segment
;
2341 /* fill in chain segments */
2342 while (sges_in_segment
) {
2343 if (sges_in_segment
== 1)
2344 ioc
->base_add_sg_single(sg_local
,
2345 sgl_flags_last_element
|
2346 sg_dma_len(sg_scmd
),
2347 sg_dma_address(sg_scmd
));
2349 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2350 sg_dma_len(sg_scmd
),
2351 sg_dma_address(sg_scmd
));
2352 sg_scmd
= sg_next(sg_scmd
);
2353 sg_local
+= ioc
->sge_size
;
2358 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2361 chain
= chain_req
->chain_buffer
;
2362 chain_dma
= chain_req
->chain_buffer_dma
;
2366 fill_in_last_segment
:
2368 /* fill the last segment */
2371 ioc
->base_add_sg_single(sg_local
, sgl_flags_end_buffer
|
2372 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2374 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2375 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2376 sg_scmd
= sg_next(sg_scmd
);
2377 sg_local
+= ioc
->sge_size
;
2385 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2386 * @ioc: per adapter object
2387 * @scmd: scsi command
2388 * @smid: system request message index
2389 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2390 * constructed on need.
2393 * The main routine that builds scatter gather table from a given
2394 * scsi request sent via the .queuecommand main handler.
2396 * Return: 0 success, anything else error
2399 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER
*ioc
,
2400 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*pcie_device
)
2402 Mpi25SCSIIORequest_t
*mpi_request
;
2403 dma_addr_t chain_dma
;
2404 struct scatterlist
*sg_scmd
;
2405 void *sg_local
, *chain
;
2409 u32 sges_in_segment
;
2410 u8 simple_sgl_flags
;
2411 u8 simple_sgl_flags_last
;
2413 struct chain_tracker
*chain_req
;
2415 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2417 /* init scatter gather flags */
2418 simple_sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2419 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2420 simple_sgl_flags_last
= simple_sgl_flags
|
2421 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2422 chain_sgl_flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2423 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2425 /* Check if we need to build a native SG list. */
2426 if ((pcie_device
) && (_base_check_pcie_native_sgl(ioc
, mpi_request
,
2427 smid
, scmd
, pcie_device
) == 0)) {
2428 /* We built a native SG list, just return. */
2432 sg_scmd
= scsi_sglist(scmd
);
2433 sges_left
= scsi_dma_map(scmd
);
2434 if (sges_left
< 0) {
2435 sdev_printk(KERN_ERR
, scmd
->device
,
2436 "scsi_dma_map failed: request for %d bytes!\n",
2437 scsi_bufflen(scmd
));
2441 sg_local
= &mpi_request
->SGL
;
2442 sges_in_segment
= (ioc
->request_sz
-
2443 offsetof(Mpi25SCSIIORequest_t
, SGL
))/ioc
->sge_size_ieee
;
2444 if (sges_left
<= sges_in_segment
)
2445 goto fill_in_last_segment
;
2447 mpi_request
->ChainOffset
= (sges_in_segment
- 1 /* chain element */) +
2448 (offsetof(Mpi25SCSIIORequest_t
, SGL
)/ioc
->sge_size_ieee
);
2450 /* fill in main message segment when there is a chain following */
2451 while (sges_in_segment
> 1) {
2452 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2453 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2454 sg_scmd
= sg_next(sg_scmd
);
2455 sg_local
+= ioc
->sge_size_ieee
;
2460 /* initializing the pointers */
2461 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2464 chain
= chain_req
->chain_buffer
;
2465 chain_dma
= chain_req
->chain_buffer_dma
;
2467 sges_in_segment
= (sges_left
<=
2468 ioc
->max_sges_in_chain_message
) ? sges_left
:
2469 ioc
->max_sges_in_chain_message
;
2470 chain_offset
= (sges_left
== sges_in_segment
) ?
2471 0 : sges_in_segment
;
2472 chain_length
= sges_in_segment
* ioc
->sge_size_ieee
;
2474 chain_length
+= ioc
->sge_size_ieee
;
2475 _base_add_sg_single_ieee(sg_local
, chain_sgl_flags
,
2476 chain_offset
, chain_length
, chain_dma
);
2480 goto fill_in_last_segment
;
2482 /* fill in chain segments */
2483 while (sges_in_segment
) {
2484 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2485 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2486 sg_scmd
= sg_next(sg_scmd
);
2487 sg_local
+= ioc
->sge_size_ieee
;
2492 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2495 chain
= chain_req
->chain_buffer
;
2496 chain_dma
= chain_req
->chain_buffer_dma
;
2500 fill_in_last_segment
:
2502 /* fill the last segment */
2503 while (sges_left
> 0) {
2505 _base_add_sg_single_ieee(sg_local
,
2506 simple_sgl_flags_last
, 0, sg_dma_len(sg_scmd
),
2507 sg_dma_address(sg_scmd
));
2509 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2510 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2511 sg_scmd
= sg_next(sg_scmd
);
2512 sg_local
+= ioc
->sge_size_ieee
;
2520 * _base_build_sg_ieee - build generic sg for IEEE format
2521 * @ioc: per adapter object
2522 * @psge: virtual address for SGE
2523 * @data_out_dma: physical address for WRITES
2524 * @data_out_sz: data xfer size for WRITES
2525 * @data_in_dma: physical address for READS
2526 * @data_in_sz: data xfer size for READS
2529 _base_build_sg_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
2530 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
2535 if (!data_out_sz
&& !data_in_sz
) {
2536 _base_build_zero_len_sge_ieee(ioc
, psge
);
2540 if (data_out_sz
&& data_in_sz
) {
2541 /* WRITE sgel first */
2542 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2543 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2544 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2548 psge
+= ioc
->sge_size_ieee
;
2550 /* READ sgel last */
2551 sgl_flags
|= MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2552 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2554 } else if (data_out_sz
) /* WRITE */ {
2555 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2556 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2557 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2558 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2560 } else if (data_in_sz
) /* READ */ {
2561 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2562 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2563 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2564 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2569 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2572 * _base_config_dma_addressing - set dma addressing
2573 * @ioc: per adapter object
2574 * @pdev: PCI device struct
2576 * Return: 0 for success, non-zero for failure.
2579 _base_config_dma_addressing(struct MPT3SAS_ADAPTER
*ioc
, struct pci_dev
*pdev
)
2581 u64 required_mask
, coherent_mask
;
2584 if (ioc
->is_mcpu_endpoint
)
2587 required_mask
= dma_get_required_mask(&pdev
->dev
);
2588 if (sizeof(dma_addr_t
) == 4 || required_mask
== 32)
2592 coherent_mask
= DMA_BIT_MASK(64);
2594 coherent_mask
= DMA_BIT_MASK(32);
2596 if (dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64)) ||
2597 dma_set_coherent_mask(&pdev
->dev
, coherent_mask
))
2600 ioc
->base_add_sg_single
= &_base_add_sg_single_64
;
2601 ioc
->sge_size
= sizeof(Mpi2SGESimple64_t
);
2606 if (dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32)))
2609 ioc
->base_add_sg_single
= &_base_add_sg_single_32
;
2610 ioc
->sge_size
= sizeof(Mpi2SGESimple32_t
);
2614 ioc_info(ioc
, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2615 ioc
->dma_mask
, convert_to_kb(s
.totalram
));
2621 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER
*ioc
,
2622 struct pci_dev
*pdev
)
2624 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
2625 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32)))
2632 * _base_check_enable_msix - checks MSIX capabable.
2633 * @ioc: per adapter object
2635 * Check to see if card is capable of MSIX, and set number
2636 * of available msix vectors
2639 _base_check_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2642 u16 message_control
;
2644 /* Check whether controller SAS2008 B0 controller,
2645 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2647 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
&&
2648 ioc
->pdev
->revision
== SAS2_PCI_DEVICE_B0_REVISION
) {
2652 base
= pci_find_capability(ioc
->pdev
, PCI_CAP_ID_MSIX
);
2654 dfailprintk(ioc
, ioc_info(ioc
, "msix not supported\n"));
2658 /* get msix vector count */
2659 /* NUMA_IO not supported for older controllers */
2660 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2004
||
2661 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
||
2662 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_1
||
2663 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_2
||
2664 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_3
||
2665 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_1
||
2666 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_2
)
2667 ioc
->msix_vector_count
= 1;
2669 pci_read_config_word(ioc
->pdev
, base
+ 2, &message_control
);
2670 ioc
->msix_vector_count
= (message_control
& 0x3FF) + 1;
2672 dinitprintk(ioc
, ioc_info(ioc
, "msix is supported, vector_count(%d)\n",
2673 ioc
->msix_vector_count
));
2678 * _base_free_irq - free irq
2679 * @ioc: per adapter object
2681 * Freeing respective reply_queue from the list.
2684 _base_free_irq(struct MPT3SAS_ADAPTER
*ioc
)
2686 struct adapter_reply_queue
*reply_q
, *next
;
2688 if (list_empty(&ioc
->reply_queue_list
))
2691 list_for_each_entry_safe(reply_q
, next
, &ioc
->reply_queue_list
, list
) {
2692 list_del(&reply_q
->list
);
2693 free_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
),
2700 * _base_request_irq - request irq
2701 * @ioc: per adapter object
2702 * @index: msix index into vector table
2704 * Inserting respective reply_queue into the list.
2707 _base_request_irq(struct MPT3SAS_ADAPTER
*ioc
, u8 index
)
2709 struct pci_dev
*pdev
= ioc
->pdev
;
2710 struct adapter_reply_queue
*reply_q
;
2713 reply_q
= kzalloc(sizeof(struct adapter_reply_queue
), GFP_KERNEL
);
2715 ioc_err(ioc
, "unable to allocate memory %zu!\n",
2716 sizeof(struct adapter_reply_queue
));
2720 reply_q
->msix_index
= index
;
2722 atomic_set(&reply_q
->busy
, 0);
2723 if (ioc
->msix_enable
)
2724 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d-msix%d",
2725 ioc
->driver_name
, ioc
->id
, index
);
2727 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d",
2728 ioc
->driver_name
, ioc
->id
);
2729 r
= request_irq(pci_irq_vector(pdev
, index
), _base_interrupt
,
2730 IRQF_SHARED
, reply_q
->name
, reply_q
);
2732 pr_err("%s: unable to allocate interrupt %d!\n",
2733 reply_q
->name
, pci_irq_vector(pdev
, index
));
2738 INIT_LIST_HEAD(&reply_q
->list
);
2739 list_add_tail(&reply_q
->list
, &ioc
->reply_queue_list
);
2744 * _base_assign_reply_queues - assigning msix index for each cpu
2745 * @ioc: per adapter object
2747 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2749 * It would nice if we could call irq_set_affinity, however it is not
2750 * an exported symbol
2753 _base_assign_reply_queues(struct MPT3SAS_ADAPTER
*ioc
)
2755 unsigned int cpu
, nr_cpus
, nr_msix
, index
= 0;
2756 struct adapter_reply_queue
*reply_q
;
2758 if (!_base_is_controller_msix_enabled(ioc
))
2761 memset(ioc
->cpu_msix_table
, 0, ioc
->cpu_msix_table_sz
);
2763 nr_cpus
= num_online_cpus();
2764 nr_msix
= ioc
->reply_queue_count
= min(ioc
->reply_queue_count
,
2765 ioc
->facts
.MaxMSIxVectors
);
2769 if (smp_affinity_enable
) {
2770 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
2771 const cpumask_t
*mask
= pci_irq_get_affinity(ioc
->pdev
,
2772 reply_q
->msix_index
);
2774 ioc_warn(ioc
, "no affinity for msi %x\n",
2775 reply_q
->msix_index
);
2779 for_each_cpu_and(cpu
, mask
, cpu_online_mask
) {
2780 if (cpu
>= ioc
->cpu_msix_table_sz
)
2782 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
2787 cpu
= cpumask_first(cpu_online_mask
);
2789 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
2791 unsigned int i
, group
= nr_cpus
/ nr_msix
;
2796 if (index
< nr_cpus
% nr_msix
)
2799 for (i
= 0 ; i
< group
; i
++) {
2800 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
2801 cpu
= cpumask_next(cpu
, cpu_online_mask
);
2808 * _base_disable_msix - disables msix
2809 * @ioc: per adapter object
2813 _base_disable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2815 if (!ioc
->msix_enable
)
2817 pci_disable_msix(ioc
->pdev
);
2818 ioc
->msix_enable
= 0;
2822 * _base_enable_msix - enables msix, failback to io_apic
2823 * @ioc: per adapter object
2827 _base_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2830 int i
, local_max_msix_vectors
;
2832 unsigned int irq_flags
= PCI_IRQ_MSIX
;
2834 if (msix_disable
== -1 || msix_disable
== 0)
2840 if (_base_check_enable_msix(ioc
) != 0)
2843 ioc
->reply_queue_count
= min_t(int, ioc
->cpu_count
,
2844 ioc
->msix_vector_count
);
2846 ioc_info(ioc
, "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n",
2847 ioc
->msix_vector_count
, ioc
->cpu_count
, max_msix_vectors
);
2849 if (!ioc
->rdpq_array_enable
&& max_msix_vectors
== -1)
2850 local_max_msix_vectors
= (reset_devices
) ? 1 : 8;
2852 local_max_msix_vectors
= max_msix_vectors
;
2854 if (local_max_msix_vectors
> 0)
2855 ioc
->reply_queue_count
= min_t(int, local_max_msix_vectors
,
2856 ioc
->reply_queue_count
);
2857 else if (local_max_msix_vectors
== 0)
2860 if (ioc
->msix_vector_count
< ioc
->cpu_count
)
2861 smp_affinity_enable
= 0;
2863 if (smp_affinity_enable
)
2864 irq_flags
|= PCI_IRQ_AFFINITY
;
2866 r
= pci_alloc_irq_vectors(ioc
->pdev
, 1, ioc
->reply_queue_count
,
2870 ioc_info(ioc
, "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2875 ioc
->msix_enable
= 1;
2876 ioc
->reply_queue_count
= r
;
2877 for (i
= 0; i
< ioc
->reply_queue_count
; i
++) {
2878 r
= _base_request_irq(ioc
, i
);
2880 _base_free_irq(ioc
);
2881 _base_disable_msix(ioc
);
2888 /* failback to io_apic interrupt routing */
2891 ioc
->reply_queue_count
= 1;
2892 r
= pci_alloc_irq_vectors(ioc
->pdev
, 1, 1, PCI_IRQ_LEGACY
);
2895 ioc_info(ioc
, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2898 r
= _base_request_irq(ioc
, 0);
2904 * mpt3sas_base_unmap_resources - free controller resources
2905 * @ioc: per adapter object
2908 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER
*ioc
)
2910 struct pci_dev
*pdev
= ioc
->pdev
;
2912 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
2914 _base_free_irq(ioc
);
2915 _base_disable_msix(ioc
);
2917 kfree(ioc
->replyPostRegisterIndex
);
2918 ioc
->replyPostRegisterIndex
= NULL
;
2921 if (ioc
->chip_phys
) {
2926 if (pci_is_enabled(pdev
)) {
2927 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
2928 pci_disable_pcie_error_reporting(pdev
);
2929 pci_disable_device(pdev
);
2934 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2935 * @ioc: per adapter object
2937 * Return: 0 for success, non-zero for failure.
2940 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER
*ioc
)
2942 struct pci_dev
*pdev
= ioc
->pdev
;
2947 phys_addr_t chip_phys
= 0;
2948 struct adapter_reply_queue
*reply_q
;
2950 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
2952 ioc
->bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
2953 if (pci_enable_device_mem(pdev
)) {
2954 ioc_warn(ioc
, "pci_enable_device_mem: failed\n");
2960 if (pci_request_selected_regions(pdev
, ioc
->bars
,
2961 ioc
->driver_name
)) {
2962 ioc_warn(ioc
, "pci_request_selected_regions: failed\n");
2968 /* AER (Advanced Error Reporting) hooks */
2969 pci_enable_pcie_error_reporting(pdev
);
2971 pci_set_master(pdev
);
2974 if (_base_config_dma_addressing(ioc
, pdev
) != 0) {
2975 ioc_warn(ioc
, "no suitable DMA mask for %s\n", pci_name(pdev
));
2980 for (i
= 0, memap_sz
= 0, pio_sz
= 0; (i
< DEVICE_COUNT_RESOURCE
) &&
2981 (!memap_sz
|| !pio_sz
); i
++) {
2982 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
2985 pio_chip
= (u64
)pci_resource_start(pdev
, i
);
2986 pio_sz
= pci_resource_len(pdev
, i
);
2987 } else if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
2990 ioc
->chip_phys
= pci_resource_start(pdev
, i
);
2991 chip_phys
= ioc
->chip_phys
;
2992 memap_sz
= pci_resource_len(pdev
, i
);
2993 ioc
->chip
= ioremap(ioc
->chip_phys
, memap_sz
);
2997 if (ioc
->chip
== NULL
) {
2998 ioc_err(ioc
, "unable to map adapter memory! or resource not found\n");
3003 _base_mask_interrupts(ioc
);
3005 r
= _base_get_ioc_facts(ioc
);
3009 if (!ioc
->rdpq_array_enable_assigned
) {
3010 ioc
->rdpq_array_enable
= ioc
->rdpq_array_capable
;
3011 ioc
->rdpq_array_enable_assigned
= 1;
3014 r
= _base_enable_msix(ioc
);
3018 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3019 * revision HBAs and also only when reply queue count is greater than 8
3021 if (ioc
->combined_reply_queue
) {
3022 /* Determine the Supplemental Reply Post Host Index Registers
3023 * Addresse. Supplemental Reply Post Host Index Registers
3024 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3025 * each register is at offset bytes of
3026 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3028 ioc
->replyPostRegisterIndex
= kcalloc(
3029 ioc
->combined_reply_index_count
,
3030 sizeof(resource_size_t
*), GFP_KERNEL
);
3031 if (!ioc
->replyPostRegisterIndex
) {
3033 ioc_warn(ioc
, "allocation for reply Post Register Index failed!!!\n"));
3038 for (i
= 0; i
< ioc
->combined_reply_index_count
; i
++) {
3039 ioc
->replyPostRegisterIndex
[i
] = (resource_size_t
*)
3040 ((u8 __force
*)&ioc
->chip
->Doorbell
+
3041 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET
+
3042 (i
* MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET
));
3046 if (ioc
->is_warpdrive
) {
3047 ioc
->reply_post_host_index
[0] = (resource_size_t __iomem
*)
3048 &ioc
->chip
->ReplyPostHostIndex
;
3050 for (i
= 1; i
< ioc
->cpu_msix_table_sz
; i
++)
3051 ioc
->reply_post_host_index
[i
] =
3052 (resource_size_t __iomem
*)
3053 ((u8 __iomem
*)&ioc
->chip
->Doorbell
+ (0x4000 + ((i
- 1)
3057 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
)
3058 pr_info("%s: %s enabled: IRQ %d\n",
3060 ioc
->msix_enable
? "PCI-MSI-X" : "IO-APIC",
3061 pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
3063 ioc_info(ioc
, "iomem(%pap), mapped(0x%p), size(%d)\n",
3064 &chip_phys
, ioc
->chip
, memap_sz
);
3065 ioc_info(ioc
, "ioport(0x%016llx), size(%d)\n",
3066 (unsigned long long)pio_chip
, pio_sz
);
3068 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3069 pci_save_state(pdev
);
3073 mpt3sas_base_unmap_resources(ioc
);
3078 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3079 * @ioc: per adapter object
3080 * @smid: system request message index(smid zero is invalid)
3082 * Return: virt pointer to message frame.
3085 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3087 return (void *)(ioc
->request
+ (smid
* ioc
->request_sz
));
3091 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3092 * @ioc: per adapter object
3093 * @smid: system request message index
3095 * Return: virt pointer to sense buffer.
3098 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3100 return (void *)(ioc
->sense
+ ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
3104 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3105 * @ioc: per adapter object
3106 * @smid: system request message index
3108 * Return: phys pointer to the low 32bit address of the sense buffer.
3111 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3113 return cpu_to_le32(ioc
->sense_dma
+ ((smid
- 1) *
3114 SCSI_SENSE_BUFFERSIZE
));
3118 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3119 * @ioc: per adapter object
3120 * @smid: system request message index
3122 * Return: virt pointer to a PCIe SGL.
3125 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3127 return (void *)(ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl
);
3131 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3132 * @ioc: per adapter object
3133 * @smid: system request message index
3135 * Return: phys pointer to the address of the PCIe buffer.
3138 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3140 return ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl_dma
;
3144 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3145 * @ioc: per adapter object
3146 * @phys_addr: lower 32 physical addr of the reply
3148 * Converts 32bit lower physical addr into a virt address.
3151 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER
*ioc
, u32 phys_addr
)
3155 return ioc
->reply
+ (phys_addr
- (u32
)ioc
->reply_dma
);
3159 _base_get_msix_index(struct MPT3SAS_ADAPTER
*ioc
)
3161 return ioc
->cpu_msix_table
[raw_smp_processor_id()];
3165 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3166 * @ioc: per adapter object
3167 * @cb_idx: callback index
3169 * Return: smid (zero is invalid)
3172 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3174 unsigned long flags
;
3175 struct request_tracker
*request
;
3178 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3179 if (list_empty(&ioc
->internal_free_list
)) {
3180 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3181 ioc_err(ioc
, "%s: smid not available\n", __func__
);
3185 request
= list_entry(ioc
->internal_free_list
.next
,
3186 struct request_tracker
, tracker_list
);
3187 request
->cb_idx
= cb_idx
;
3188 smid
= request
->smid
;
3189 list_del(&request
->tracker_list
);
3190 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3195 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3196 * @ioc: per adapter object
3197 * @cb_idx: callback index
3198 * @scmd: pointer to scsi command object
3200 * Return: smid (zero is invalid)
3203 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
,
3204 struct scsi_cmnd
*scmd
)
3206 struct scsiio_tracker
*request
= scsi_cmd_priv(scmd
);
3207 unsigned int tag
= scmd
->request
->tag
;
3211 request
->cb_idx
= cb_idx
;
3212 request
->msix_io
= _base_get_msix_index(ioc
);
3213 request
->smid
= smid
;
3214 INIT_LIST_HEAD(&request
->chain_list
);
3219 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3220 * @ioc: per adapter object
3221 * @cb_idx: callback index
3223 * Return: smid (zero is invalid)
3226 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3228 unsigned long flags
;
3229 struct request_tracker
*request
;
3232 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3233 if (list_empty(&ioc
->hpr_free_list
)) {
3234 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3238 request
= list_entry(ioc
->hpr_free_list
.next
,
3239 struct request_tracker
, tracker_list
);
3240 request
->cb_idx
= cb_idx
;
3241 smid
= request
->smid
;
3242 list_del(&request
->tracker_list
);
3243 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3248 _base_recovery_check(struct MPT3SAS_ADAPTER
*ioc
)
3251 * See _wait_for_commands_to_complete() call with regards to this code.
3253 if (ioc
->shost_recovery
&& ioc
->pending_io_count
) {
3254 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
3255 if (ioc
->pending_io_count
== 0)
3256 wake_up(&ioc
->reset_wq
);
3260 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER
*ioc
,
3261 struct scsiio_tracker
*st
)
3263 if (WARN_ON(st
->smid
== 0))
3267 atomic_set(&ioc
->chain_lookup
[st
->smid
- 1].chain_offset
, 0);
3272 * mpt3sas_base_free_smid - put smid back on free_list
3273 * @ioc: per adapter object
3274 * @smid: system request message index
3277 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3279 unsigned long flags
;
3282 if (smid
< ioc
->hi_priority_smid
) {
3283 struct scsiio_tracker
*st
;
3286 st
= _get_st_from_smid(ioc
, smid
);
3288 _base_recovery_check(ioc
);
3292 /* Clear MPI request frame */
3293 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
3294 memset(request
, 0, ioc
->request_sz
);
3296 mpt3sas_base_clear_st(ioc
, st
);
3297 _base_recovery_check(ioc
);
3301 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3302 if (smid
< ioc
->internal_smid
) {
3304 i
= smid
- ioc
->hi_priority_smid
;
3305 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
3306 list_add(&ioc
->hpr_lookup
[i
].tracker_list
, &ioc
->hpr_free_list
);
3307 } else if (smid
<= ioc
->hba_queue_depth
) {
3308 /* internal queue */
3309 i
= smid
- ioc
->internal_smid
;
3310 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
3311 list_add(&ioc
->internal_lookup
[i
].tracker_list
,
3312 &ioc
->internal_free_list
);
3314 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3318 * _base_mpi_ep_writeq - 32 bit write to MMIO
3320 * @addr: address in MMIO space
3321 * @writeq_lock: spin lock
3323 * This special handling for MPI EP to take care of 32 bit
3324 * environment where its not quarenteed to send the entire word
3328 _base_mpi_ep_writeq(__u64 b
, volatile void __iomem
*addr
,
3329 spinlock_t
*writeq_lock
)
3331 unsigned long flags
;
3333 spin_lock_irqsave(writeq_lock
, flags
);
3334 __raw_writel((u32
)(b
), addr
);
3335 __raw_writel((u32
)(b
>> 32), (addr
+ 4));
3337 spin_unlock_irqrestore(writeq_lock
, flags
);
3341 * _base_writeq - 64 bit write to MMIO
3343 * @addr: address in MMIO space
3344 * @writeq_lock: spin lock
3346 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3347 * care of 32 bit environment where its not quarenteed to send the entire word
3350 #if defined(writeq) && defined(CONFIG_64BIT)
3352 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3355 __raw_writeq(b
, addr
);
3360 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3362 _base_mpi_ep_writeq(b
, addr
, writeq_lock
);
3367 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3368 * @ioc: per adapter object
3369 * @smid: system request message index
3370 * @handle: device handle
3373 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
3375 Mpi2RequestDescriptorUnion_t descriptor
;
3376 u64
*request
= (u64
*)&descriptor
;
3377 void *mpi_req_iomem
;
3378 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3380 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
3381 mpi_req_iomem
= (void __force
*)ioc
->chip
+
3382 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
3383 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3385 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3386 descriptor
.SCSIIO
.MSIxIndex
= _base_get_msix_index(ioc
);
3387 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3388 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3389 descriptor
.SCSIIO
.LMID
= 0;
3390 _base_mpi_ep_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3391 &ioc
->scsi_lookup_lock
);
3395 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3396 * @ioc: per adapter object
3397 * @smid: system request message index
3398 * @handle: device handle
3401 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
3403 Mpi2RequestDescriptorUnion_t descriptor
;
3404 u64
*request
= (u64
*)&descriptor
;
3407 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3408 descriptor
.SCSIIO
.MSIxIndex
= _base_get_msix_index(ioc
);
3409 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3410 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3411 descriptor
.SCSIIO
.LMID
= 0;
3412 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3413 &ioc
->scsi_lookup_lock
);
3417 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3418 * @ioc: per adapter object
3419 * @smid: system request message index
3420 * @handle: device handle
3423 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3426 Mpi2RequestDescriptorUnion_t descriptor
;
3427 u64
*request
= (u64
*)&descriptor
;
3429 descriptor
.SCSIIO
.RequestFlags
=
3430 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO
;
3431 descriptor
.SCSIIO
.MSIxIndex
= _base_get_msix_index(ioc
);
3432 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3433 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3434 descriptor
.SCSIIO
.LMID
= 0;
3435 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3436 &ioc
->scsi_lookup_lock
);
3440 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3441 * @ioc: per adapter object
3442 * @smid: system request message index
3443 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3446 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3449 Mpi2RequestDescriptorUnion_t descriptor
;
3450 void *mpi_req_iomem
;
3453 if (ioc
->is_mcpu_endpoint
) {
3454 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3456 /* TBD 256 is offset within sys register. */
3457 mpi_req_iomem
= (void __force
*)ioc
->chip
3458 + MPI_FRAME_START_OFFSET
3459 + (smid
* ioc
->request_sz
);
3460 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3464 request
= (u64
*)&descriptor
;
3466 descriptor
.HighPriority
.RequestFlags
=
3467 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
3468 descriptor
.HighPriority
.MSIxIndex
= msix_task
;
3469 descriptor
.HighPriority
.SMID
= cpu_to_le16(smid
);
3470 descriptor
.HighPriority
.LMID
= 0;
3471 descriptor
.HighPriority
.Reserved1
= 0;
3472 if (ioc
->is_mcpu_endpoint
)
3473 _base_mpi_ep_writeq(*request
,
3474 &ioc
->chip
->RequestDescriptorPostLow
,
3475 &ioc
->scsi_lookup_lock
);
3477 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3478 &ioc
->scsi_lookup_lock
);
3482 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3484 * @ioc: per adapter object
3485 * @smid: system request message index
3488 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3490 Mpi2RequestDescriptorUnion_t descriptor
;
3491 u64
*request
= (u64
*)&descriptor
;
3493 descriptor
.Default
.RequestFlags
=
3494 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED
;
3495 descriptor
.Default
.MSIxIndex
= _base_get_msix_index(ioc
);
3496 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
3497 descriptor
.Default
.LMID
= 0;
3498 descriptor
.Default
.DescriptorTypeDependent
= 0;
3499 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3500 &ioc
->scsi_lookup_lock
);
3504 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3505 * @ioc: per adapter object
3506 * @smid: system request message index
3509 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3511 Mpi2RequestDescriptorUnion_t descriptor
;
3512 void *mpi_req_iomem
;
3515 if (ioc
->is_mcpu_endpoint
) {
3516 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3518 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
3519 /* TBD 256 is offset within sys register */
3520 mpi_req_iomem
= (void __force
*)ioc
->chip
+
3521 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
3522 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3525 request
= (u64
*)&descriptor
;
3526 descriptor
.Default
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
3527 descriptor
.Default
.MSIxIndex
= _base_get_msix_index(ioc
);
3528 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
3529 descriptor
.Default
.LMID
= 0;
3530 descriptor
.Default
.DescriptorTypeDependent
= 0;
3531 if (ioc
->is_mcpu_endpoint
)
3532 _base_mpi_ep_writeq(*request
,
3533 &ioc
->chip
->RequestDescriptorPostLow
,
3534 &ioc
->scsi_lookup_lock
);
3536 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3537 &ioc
->scsi_lookup_lock
);
3541 * _base_display_OEMs_branding - Display branding string
3542 * @ioc: per adapter object
3545 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER
*ioc
)
3547 if (ioc
->pdev
->subsystem_vendor
!= PCI_VENDOR_ID_INTEL
)
3550 switch (ioc
->pdev
->subsystem_vendor
) {
3551 case PCI_VENDOR_ID_INTEL
:
3552 switch (ioc
->pdev
->device
) {
3553 case MPI2_MFGPAGE_DEVID_SAS2008
:
3554 switch (ioc
->pdev
->subsystem_device
) {
3555 case MPT2SAS_INTEL_RMS2LL080_SSDID
:
3556 ioc_info(ioc
, "%s\n",
3557 MPT2SAS_INTEL_RMS2LL080_BRANDING
);
3559 case MPT2SAS_INTEL_RMS2LL040_SSDID
:
3560 ioc_info(ioc
, "%s\n",
3561 MPT2SAS_INTEL_RMS2LL040_BRANDING
);
3563 case MPT2SAS_INTEL_SSD910_SSDID
:
3564 ioc_info(ioc
, "%s\n",
3565 MPT2SAS_INTEL_SSD910_BRANDING
);
3568 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3569 ioc
->pdev
->subsystem_device
);
3573 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
3574 switch (ioc
->pdev
->subsystem_device
) {
3575 case MPT2SAS_INTEL_RS25GB008_SSDID
:
3576 ioc_info(ioc
, "%s\n",
3577 MPT2SAS_INTEL_RS25GB008_BRANDING
);
3579 case MPT2SAS_INTEL_RMS25JB080_SSDID
:
3580 ioc_info(ioc
, "%s\n",
3581 MPT2SAS_INTEL_RMS25JB080_BRANDING
);
3583 case MPT2SAS_INTEL_RMS25JB040_SSDID
:
3584 ioc_info(ioc
, "%s\n",
3585 MPT2SAS_INTEL_RMS25JB040_BRANDING
);
3587 case MPT2SAS_INTEL_RMS25KB080_SSDID
:
3588 ioc_info(ioc
, "%s\n",
3589 MPT2SAS_INTEL_RMS25KB080_BRANDING
);
3591 case MPT2SAS_INTEL_RMS25KB040_SSDID
:
3592 ioc_info(ioc
, "%s\n",
3593 MPT2SAS_INTEL_RMS25KB040_BRANDING
);
3595 case MPT2SAS_INTEL_RMS25LB040_SSDID
:
3596 ioc_info(ioc
, "%s\n",
3597 MPT2SAS_INTEL_RMS25LB040_BRANDING
);
3599 case MPT2SAS_INTEL_RMS25LB080_SSDID
:
3600 ioc_info(ioc
, "%s\n",
3601 MPT2SAS_INTEL_RMS25LB080_BRANDING
);
3604 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3605 ioc
->pdev
->subsystem_device
);
3609 case MPI25_MFGPAGE_DEVID_SAS3008
:
3610 switch (ioc
->pdev
->subsystem_device
) {
3611 case MPT3SAS_INTEL_RMS3JC080_SSDID
:
3612 ioc_info(ioc
, "%s\n",
3613 MPT3SAS_INTEL_RMS3JC080_BRANDING
);
3616 case MPT3SAS_INTEL_RS3GC008_SSDID
:
3617 ioc_info(ioc
, "%s\n",
3618 MPT3SAS_INTEL_RS3GC008_BRANDING
);
3620 case MPT3SAS_INTEL_RS3FC044_SSDID
:
3621 ioc_info(ioc
, "%s\n",
3622 MPT3SAS_INTEL_RS3FC044_BRANDING
);
3624 case MPT3SAS_INTEL_RS3UC080_SSDID
:
3625 ioc_info(ioc
, "%s\n",
3626 MPT3SAS_INTEL_RS3UC080_BRANDING
);
3629 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3630 ioc
->pdev
->subsystem_device
);
3635 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3636 ioc
->pdev
->subsystem_device
);
3640 case PCI_VENDOR_ID_DELL
:
3641 switch (ioc
->pdev
->device
) {
3642 case MPI2_MFGPAGE_DEVID_SAS2008
:
3643 switch (ioc
->pdev
->subsystem_device
) {
3644 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID
:
3645 ioc_info(ioc
, "%s\n",
3646 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING
);
3648 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID
:
3649 ioc_info(ioc
, "%s\n",
3650 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING
);
3652 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID
:
3653 ioc_info(ioc
, "%s\n",
3654 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING
);
3656 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID
:
3657 ioc_info(ioc
, "%s\n",
3658 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING
);
3660 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID
:
3661 ioc_info(ioc
, "%s\n",
3662 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING
);
3664 case MPT2SAS_DELL_PERC_H200_SSDID
:
3665 ioc_info(ioc
, "%s\n",
3666 MPT2SAS_DELL_PERC_H200_BRANDING
);
3668 case MPT2SAS_DELL_6GBPS_SAS_SSDID
:
3669 ioc_info(ioc
, "%s\n",
3670 MPT2SAS_DELL_6GBPS_SAS_BRANDING
);
3673 ioc_info(ioc
, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3674 ioc
->pdev
->subsystem_device
);
3678 case MPI25_MFGPAGE_DEVID_SAS3008
:
3679 switch (ioc
->pdev
->subsystem_device
) {
3680 case MPT3SAS_DELL_12G_HBA_SSDID
:
3681 ioc_info(ioc
, "%s\n",
3682 MPT3SAS_DELL_12G_HBA_BRANDING
);
3685 ioc_info(ioc
, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3686 ioc
->pdev
->subsystem_device
);
3691 ioc_info(ioc
, "Dell HBA: Subsystem ID: 0x%X\n",
3692 ioc
->pdev
->subsystem_device
);
3696 case PCI_VENDOR_ID_CISCO
:
3697 switch (ioc
->pdev
->device
) {
3698 case MPI25_MFGPAGE_DEVID_SAS3008
:
3699 switch (ioc
->pdev
->subsystem_device
) {
3700 case MPT3SAS_CISCO_12G_8E_HBA_SSDID
:
3701 ioc_info(ioc
, "%s\n",
3702 MPT3SAS_CISCO_12G_8E_HBA_BRANDING
);
3704 case MPT3SAS_CISCO_12G_8I_HBA_SSDID
:
3705 ioc_info(ioc
, "%s\n",
3706 MPT3SAS_CISCO_12G_8I_HBA_BRANDING
);
3708 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
3709 ioc_info(ioc
, "%s\n",
3710 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
3713 ioc_info(ioc
, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3714 ioc
->pdev
->subsystem_device
);
3718 case MPI25_MFGPAGE_DEVID_SAS3108_1
:
3719 switch (ioc
->pdev
->subsystem_device
) {
3720 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
3721 ioc_info(ioc
, "%s\n",
3722 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
3724 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID
:
3725 ioc_info(ioc
, "%s\n",
3726 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
);
3729 ioc_info(ioc
, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3730 ioc
->pdev
->subsystem_device
);
3735 ioc_info(ioc
, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3736 ioc
->pdev
->subsystem_device
);
3740 case MPT2SAS_HP_3PAR_SSVID
:
3741 switch (ioc
->pdev
->device
) {
3742 case MPI2_MFGPAGE_DEVID_SAS2004
:
3743 switch (ioc
->pdev
->subsystem_device
) {
3744 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID
:
3745 ioc_info(ioc
, "%s\n",
3746 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING
);
3749 ioc_info(ioc
, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3750 ioc
->pdev
->subsystem_device
);
3754 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
3755 switch (ioc
->pdev
->subsystem_device
) {
3756 case MPT2SAS_HP_2_4_INTERNAL_SSDID
:
3757 ioc_info(ioc
, "%s\n",
3758 MPT2SAS_HP_2_4_INTERNAL_BRANDING
);
3760 case MPT2SAS_HP_2_4_EXTERNAL_SSDID
:
3761 ioc_info(ioc
, "%s\n",
3762 MPT2SAS_HP_2_4_EXTERNAL_BRANDING
);
3764 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID
:
3765 ioc_info(ioc
, "%s\n",
3766 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING
);
3768 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID
:
3769 ioc_info(ioc
, "%s\n",
3770 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING
);
3773 ioc_info(ioc
, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3774 ioc
->pdev
->subsystem_device
);
3779 ioc_info(ioc
, "HP SAS HBA: Subsystem ID: 0x%X\n",
3780 ioc
->pdev
->subsystem_device
);
3789 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3790 * version from FW Image Header.
3791 * @ioc: per adapter object
3793 * Return: 0 for success, non-zero for failure.
3796 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER
*ioc
)
3798 Mpi2FWImageHeader_t
*FWImgHdr
;
3799 Mpi25FWUploadRequest_t
*mpi_request
;
3800 Mpi2FWUploadReply_t mpi_reply
;
3802 void *fwpkg_data
= NULL
;
3803 dma_addr_t fwpkg_data_dma
;
3804 u16 smid
, ioc_status
;
3807 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
3809 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
3810 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
3814 data_length
= sizeof(Mpi2FWImageHeader_t
);
3815 fwpkg_data
= dma_alloc_coherent(&ioc
->pdev
->dev
, data_length
,
3816 &fwpkg_data_dma
, GFP_KERNEL
);
3818 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
3819 __FILE__
, __LINE__
, __func__
);
3823 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
3825 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
3830 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
3831 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
3832 ioc
->base_cmds
.smid
= smid
;
3833 memset(mpi_request
, 0, sizeof(Mpi25FWUploadRequest_t
));
3834 mpi_request
->Function
= MPI2_FUNCTION_FW_UPLOAD
;
3835 mpi_request
->ImageType
= MPI2_FW_UPLOAD_ITYPE_FW_FLASH
;
3836 mpi_request
->ImageSize
= cpu_to_le32(data_length
);
3837 ioc
->build_sg(ioc
, &mpi_request
->SGL
, 0, 0, fwpkg_data_dma
,
3839 init_completion(&ioc
->base_cmds
.done
);
3840 mpt3sas_base_put_smid_default(ioc
, smid
);
3841 /* Wait for 15 seconds */
3842 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
3843 FW_IMG_HDR_READ_TIMEOUT
*HZ
);
3844 ioc_info(ioc
, "%s: complete\n", __func__
);
3845 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
3846 ioc_err(ioc
, "%s: timeout\n", __func__
);
3847 _debug_dump_mf(mpi_request
,
3848 sizeof(Mpi25FWUploadRequest_t
)/4);
3851 memset(&mpi_reply
, 0, sizeof(Mpi2FWUploadReply_t
));
3852 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
) {
3853 memcpy(&mpi_reply
, ioc
->base_cmds
.reply
,
3854 sizeof(Mpi2FWUploadReply_t
));
3855 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
3856 MPI2_IOCSTATUS_MASK
;
3857 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
3858 FWImgHdr
= (Mpi2FWImageHeader_t
*)fwpkg_data
;
3859 if (FWImgHdr
->PackageVersion
.Word
) {
3860 ioc_info(ioc
, "FW Package Version (%02d.%02d.%02d.%02d)\n",
3861 FWImgHdr
->PackageVersion
.Struct
.Major
,
3862 FWImgHdr
->PackageVersion
.Struct
.Minor
,
3863 FWImgHdr
->PackageVersion
.Struct
.Unit
,
3864 FWImgHdr
->PackageVersion
.Struct
.Dev
);
3867 _debug_dump_mf(&mpi_reply
,
3868 sizeof(Mpi2FWUploadReply_t
)/4);
3872 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
3875 dma_free_coherent(&ioc
->pdev
->dev
, data_length
, fwpkg_data
,
3881 * _base_display_ioc_capabilities - Disply IOC's capabilities.
3882 * @ioc: per adapter object
3885 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER
*ioc
)
3889 u32 iounit_pg1_flags
;
3892 bios_version
= le32_to_cpu(ioc
->bios_pg3
.BiosVersion
);
3893 strncpy(desc
, ioc
->manu_pg0
.ChipName
, 16);
3894 ioc_info(ioc
, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3896 (ioc
->facts
.FWVersion
.Word
& 0xFF000000) >> 24,
3897 (ioc
->facts
.FWVersion
.Word
& 0x00FF0000) >> 16,
3898 (ioc
->facts
.FWVersion
.Word
& 0x0000FF00) >> 8,
3899 ioc
->facts
.FWVersion
.Word
& 0x000000FF,
3900 ioc
->pdev
->revision
,
3901 (bios_version
& 0xFF000000) >> 24,
3902 (bios_version
& 0x00FF0000) >> 16,
3903 (bios_version
& 0x0000FF00) >> 8,
3904 bios_version
& 0x000000FF);
3906 _base_display_OEMs_branding(ioc
);
3908 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
3909 pr_info("%sNVMe", i
? "," : "");
3913 ioc_info(ioc
, "Protocol=(");
3915 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR
) {
3916 pr_cont("Initiator");
3920 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET
) {
3921 pr_cont("%sTarget", i
? "," : "");
3926 pr_cont("), Capabilities=(");
3928 if (!ioc
->hide_ir_msg
) {
3929 if (ioc
->facts
.IOCCapabilities
&
3930 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
) {
3936 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_TLR
) {
3937 pr_cont("%sTLR", i
? "," : "");
3941 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_MULTICAST
) {
3942 pr_cont("%sMulticast", i
? "," : "");
3946 if (ioc
->facts
.IOCCapabilities
&
3947 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET
) {
3948 pr_cont("%sBIDI Target", i
? "," : "");
3952 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_EEDP
) {
3953 pr_cont("%sEEDP", i
? "," : "");
3957 if (ioc
->facts
.IOCCapabilities
&
3958 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER
) {
3959 pr_cont("%sSnapshot Buffer", i
? "," : "");
3963 if (ioc
->facts
.IOCCapabilities
&
3964 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER
) {
3965 pr_cont("%sDiag Trace Buffer", i
? "," : "");
3969 if (ioc
->facts
.IOCCapabilities
&
3970 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER
) {
3971 pr_cont("%sDiag Extended Buffer", i
? "," : "");
3975 if (ioc
->facts
.IOCCapabilities
&
3976 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
) {
3977 pr_cont("%sTask Set Full", i
? "," : "");
3981 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
3982 if (!(iounit_pg1_flags
& MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE
)) {
3983 pr_cont("%sNCQ", i
? "," : "");
3991 * mpt3sas_base_update_missing_delay - change the missing delay timers
3992 * @ioc: per adapter object
3993 * @device_missing_delay: amount of time till device is reported missing
3994 * @io_missing_delay: interval IO is returned when there is a missing device
3996 * Passed on the command line, this function will modify the device missing
3997 * delay, as well as the io missing delay. This should be called at driver
4001 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER
*ioc
,
4002 u16 device_missing_delay
, u8 io_missing_delay
)
4004 u16 dmd
, dmd_new
, dmd_orignal
;
4005 u8 io_missing_delay_original
;
4007 Mpi2SasIOUnitPage1_t
*sas_iounit_pg1
= NULL
;
4008 Mpi2ConfigReply_t mpi_reply
;
4012 mpt3sas_config_get_number_hba_phys(ioc
, &num_phys
);
4016 sz
= offsetof(Mpi2SasIOUnitPage1_t
, PhyData
) + (num_phys
*
4017 sizeof(Mpi2SasIOUnit1PhyData_t
));
4018 sas_iounit_pg1
= kzalloc(sz
, GFP_KERNEL
);
4019 if (!sas_iounit_pg1
) {
4020 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4021 __FILE__
, __LINE__
, __func__
);
4024 if ((mpt3sas_config_get_sas_iounit_pg1(ioc
, &mpi_reply
,
4025 sas_iounit_pg1
, sz
))) {
4026 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4027 __FILE__
, __LINE__
, __func__
);
4030 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4031 MPI2_IOCSTATUS_MASK
;
4032 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4033 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4034 __FILE__
, __LINE__
, __func__
);
4038 /* device missing delay */
4039 dmd
= sas_iounit_pg1
->ReportDeviceMissingDelay
;
4040 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4041 dmd
= (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4043 dmd
= dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4045 if (device_missing_delay
> 0x7F) {
4046 dmd
= (device_missing_delay
> 0x7F0) ? 0x7F0 :
4047 device_missing_delay
;
4049 dmd
|= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
;
4051 dmd
= device_missing_delay
;
4052 sas_iounit_pg1
->ReportDeviceMissingDelay
= dmd
;
4054 /* io missing delay */
4055 io_missing_delay_original
= sas_iounit_pg1
->IODeviceMissingDelay
;
4056 sas_iounit_pg1
->IODeviceMissingDelay
= io_missing_delay
;
4058 if (!mpt3sas_config_set_sas_iounit_pg1(ioc
, &mpi_reply
, sas_iounit_pg1
,
4060 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4062 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4065 dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4066 ioc_info(ioc
, "device_missing_delay: old(%d), new(%d)\n",
4067 dmd_orignal
, dmd_new
);
4068 ioc_info(ioc
, "ioc_missing_delay: old(%d), new(%d)\n",
4069 io_missing_delay_original
,
4071 ioc
->device_missing_delay
= dmd_new
;
4072 ioc
->io_missing_delay
= io_missing_delay
;
4076 kfree(sas_iounit_pg1
);
4080 * _base_static_config_pages - static start of day config pages
4081 * @ioc: per adapter object
4084 _base_static_config_pages(struct MPT3SAS_ADAPTER
*ioc
)
4086 Mpi2ConfigReply_t mpi_reply
;
4087 u32 iounit_pg1_flags
;
4089 ioc
->nvme_abort_timeout
= 30;
4090 mpt3sas_config_get_manufacturing_pg0(ioc
, &mpi_reply
, &ioc
->manu_pg0
);
4091 if (ioc
->ir_firmware
)
4092 mpt3sas_config_get_manufacturing_pg10(ioc
, &mpi_reply
,
4096 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4097 * flag unset in NVDATA.
4099 mpt3sas_config_get_manufacturing_pg11(ioc
, &mpi_reply
, &ioc
->manu_pg11
);
4100 if (!ioc
->is_gen35_ioc
&& ioc
->manu_pg11
.EEDPTagMode
== 0) {
4101 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4103 ioc
->manu_pg11
.EEDPTagMode
&= ~0x3;
4104 ioc
->manu_pg11
.EEDPTagMode
|= 0x1;
4105 mpt3sas_config_set_manufacturing_pg11(ioc
, &mpi_reply
,
4108 if (ioc
->manu_pg11
.AddlFlags2
& NVME_TASK_MNGT_CUSTOM_MASK
)
4109 ioc
->tm_custom_handling
= 1;
4111 ioc
->tm_custom_handling
= 0;
4112 if (ioc
->manu_pg11
.NVMeAbortTO
< NVME_TASK_ABORT_MIN_TIMEOUT
)
4113 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MIN_TIMEOUT
;
4114 else if (ioc
->manu_pg11
.NVMeAbortTO
>
4115 NVME_TASK_ABORT_MAX_TIMEOUT
)
4116 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MAX_TIMEOUT
;
4118 ioc
->nvme_abort_timeout
= ioc
->manu_pg11
.NVMeAbortTO
;
4121 mpt3sas_config_get_bios_pg2(ioc
, &mpi_reply
, &ioc
->bios_pg2
);
4122 mpt3sas_config_get_bios_pg3(ioc
, &mpi_reply
, &ioc
->bios_pg3
);
4123 mpt3sas_config_get_ioc_pg8(ioc
, &mpi_reply
, &ioc
->ioc_pg8
);
4124 mpt3sas_config_get_iounit_pg0(ioc
, &mpi_reply
, &ioc
->iounit_pg0
);
4125 mpt3sas_config_get_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
4126 mpt3sas_config_get_iounit_pg8(ioc
, &mpi_reply
, &ioc
->iounit_pg8
);
4127 _base_display_ioc_capabilities(ioc
);
4130 * Enable task_set_full handling in iounit_pg1 when the
4131 * facts capabilities indicate that its supported.
4133 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
4134 if ((ioc
->facts
.IOCCapabilities
&
4135 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
))
4137 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
4140 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
4141 ioc
->iounit_pg1
.Flags
= cpu_to_le32(iounit_pg1_flags
);
4142 mpt3sas_config_set_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
4144 if (ioc
->iounit_pg8
.NumSensors
)
4145 ioc
->temp_sensors_count
= ioc
->iounit_pg8
.NumSensors
;
4149 * mpt3sas_free_enclosure_list - release memory
4150 * @ioc: per adapter object
4152 * Free memory allocated during encloure add.
4155 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER
*ioc
)
4157 struct _enclosure_node
*enclosure_dev
, *enclosure_dev_next
;
4159 /* Free enclosure list */
4160 list_for_each_entry_safe(enclosure_dev
,
4161 enclosure_dev_next
, &ioc
->enclosure_list
, list
) {
4162 list_del(&enclosure_dev
->list
);
4163 kfree(enclosure_dev
);
4168 * _base_release_memory_pools - release memory
4169 * @ioc: per adapter object
4171 * Free memory allocated from _base_allocate_memory_pools.
4174 _base_release_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
4178 struct chain_tracker
*ct
;
4179 struct reply_post_struct
*rps
;
4181 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
4184 dma_free_coherent(&ioc
->pdev
->dev
, ioc
->request_dma_sz
,
4185 ioc
->request
, ioc
->request_dma
);
4187 ioc_info(ioc
, "request_pool(0x%p): free\n",
4189 ioc
->request
= NULL
;
4193 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
4194 dma_pool_destroy(ioc
->sense_dma_pool
);
4196 ioc_info(ioc
, "sense_pool(0x%p): free\n",
4202 dma_pool_free(ioc
->reply_dma_pool
, ioc
->reply
, ioc
->reply_dma
);
4203 dma_pool_destroy(ioc
->reply_dma_pool
);
4205 ioc_info(ioc
, "reply_pool(0x%p): free\n",
4210 if (ioc
->reply_free
) {
4211 dma_pool_free(ioc
->reply_free_dma_pool
, ioc
->reply_free
,
4212 ioc
->reply_free_dma
);
4213 dma_pool_destroy(ioc
->reply_free_dma_pool
);
4215 ioc_info(ioc
, "reply_free_pool(0x%p): free\n",
4217 ioc
->reply_free
= NULL
;
4220 if (ioc
->reply_post
) {
4222 rps
= &ioc
->reply_post
[i
];
4223 if (rps
->reply_post_free
) {
4225 ioc
->reply_post_free_dma_pool
,
4226 rps
->reply_post_free
,
4227 rps
->reply_post_free_dma
);
4229 ioc_info(ioc
, "reply_post_free_pool(0x%p): free\n",
4230 rps
->reply_post_free
));
4231 rps
->reply_post_free
= NULL
;
4233 } while (ioc
->rdpq_array_enable
&&
4234 (++i
< ioc
->reply_queue_count
));
4235 if (ioc
->reply_post_free_array
&&
4236 ioc
->rdpq_array_enable
) {
4237 dma_pool_free(ioc
->reply_post_free_array_dma_pool
,
4238 ioc
->reply_post_free_array
,
4239 ioc
->reply_post_free_array_dma
);
4240 ioc
->reply_post_free_array
= NULL
;
4242 dma_pool_destroy(ioc
->reply_post_free_array_dma_pool
);
4243 dma_pool_destroy(ioc
->reply_post_free_dma_pool
);
4244 kfree(ioc
->reply_post
);
4247 if (ioc
->pcie_sgl_dma_pool
) {
4248 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4249 dma_pool_free(ioc
->pcie_sgl_dma_pool
,
4250 ioc
->pcie_sg_lookup
[i
].pcie_sgl
,
4251 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
4253 if (ioc
->pcie_sgl_dma_pool
)
4254 dma_pool_destroy(ioc
->pcie_sgl_dma_pool
);
4257 if (ioc
->config_page
) {
4259 ioc_info(ioc
, "config_page(0x%p): free\n",
4261 dma_free_coherent(&ioc
->pdev
->dev
, ioc
->config_page_sz
,
4262 ioc
->config_page
, ioc
->config_page_dma
);
4265 kfree(ioc
->hpr_lookup
);
4266 kfree(ioc
->internal_lookup
);
4267 if (ioc
->chain_lookup
) {
4268 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4269 for (j
= ioc
->chains_per_prp_buffer
;
4270 j
< ioc
->chains_needed_per_io
; j
++) {
4271 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
4272 if (ct
&& ct
->chain_buffer
)
4273 dma_pool_free(ioc
->chain_dma_pool
,
4275 ct
->chain_buffer_dma
);
4277 kfree(ioc
->chain_lookup
[i
].chains_per_smid
);
4279 dma_pool_destroy(ioc
->chain_dma_pool
);
4280 kfree(ioc
->chain_lookup
);
4281 ioc
->chain_lookup
= NULL
;
4286 * is_MSB_are_same - checks whether all reply queues in a set are
4287 * having same upper 32bits in their base memory address.
4288 * @reply_pool_start_address: Base address of a reply queue set
4289 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4291 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4292 * memory address, else 0.
4296 is_MSB_are_same(long reply_pool_start_address
, u32 pool_sz
)
4298 long reply_pool_end_address
;
4300 reply_pool_end_address
= reply_pool_start_address
+ pool_sz
;
4302 if (upper_32_bits(reply_pool_start_address
) ==
4303 upper_32_bits(reply_pool_end_address
))
4310 * _base_allocate_memory_pools - allocate start of day memory pools
4311 * @ioc: per adapter object
4313 * Return: 0 success, anything else error.
4316 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
4318 struct mpt3sas_facts
*facts
;
4319 u16 max_sge_elements
;
4320 u16 chains_needed_per_io
;
4321 u32 sz
, total_sz
, reply_post_free_sz
, reply_post_free_array_sz
;
4323 u16 max_request_credit
, nvme_blocks_needed
;
4324 unsigned short sg_tablesize
;
4327 struct chain_tracker
*ct
;
4329 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
4333 facts
= &ioc
->facts
;
4335 /* command line tunables for max sgl entries */
4336 if (max_sgl_entries
!= -1)
4337 sg_tablesize
= max_sgl_entries
;
4339 if (ioc
->hba_mpi_version_belonged
== MPI2_VERSION
)
4340 sg_tablesize
= MPT2SAS_SG_DEPTH
;
4342 sg_tablesize
= MPT3SAS_SG_DEPTH
;
4345 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4347 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
4348 MPT_KDUMP_MIN_PHYS_SEGMENTS
);
4350 if (ioc
->is_mcpu_endpoint
)
4351 ioc
->shost
->sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
4353 if (sg_tablesize
< MPT_MIN_PHYS_SEGMENTS
)
4354 sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
4355 else if (sg_tablesize
> MPT_MAX_PHYS_SEGMENTS
) {
4356 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
4358 ioc_warn(ioc
, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
4359 sg_tablesize
, MPT_MAX_PHYS_SEGMENTS
);
4361 ioc
->shost
->sg_tablesize
= sg_tablesize
;
4364 ioc
->internal_depth
= min_t(int, (facts
->HighPriorityCredit
+ (5)),
4365 (facts
->RequestCredit
/ 4));
4366 if (ioc
->internal_depth
< INTERNAL_CMDS_COUNT
) {
4367 if (facts
->RequestCredit
<= (INTERNAL_CMDS_COUNT
+
4368 INTERNAL_SCSIIO_CMDS_COUNT
)) {
4369 ioc_err(ioc
, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
4370 facts
->RequestCredit
);
4373 ioc
->internal_depth
= 10;
4376 ioc
->hi_priority_depth
= ioc
->internal_depth
- (5);
4377 /* command line tunables for max controller queue depth */
4378 if (max_queue_depth
!= -1 && max_queue_depth
!= 0) {
4379 max_request_credit
= min_t(u16
, max_queue_depth
+
4380 ioc
->internal_depth
, facts
->RequestCredit
);
4381 if (max_request_credit
> MAX_HBA_QUEUE_DEPTH
)
4382 max_request_credit
= MAX_HBA_QUEUE_DEPTH
;
4383 } else if (reset_devices
)
4384 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
4385 (MPT3SAS_KDUMP_SCSI_IO_DEPTH
+ ioc
->internal_depth
));
4387 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
4388 MAX_HBA_QUEUE_DEPTH
);
4390 /* Firmware maintains additional facts->HighPriorityCredit number of
4391 * credits for HiPriprity Request messages, so hba queue depth will be
4392 * sum of max_request_credit and high priority queue depth.
4394 ioc
->hba_queue_depth
= max_request_credit
+ ioc
->hi_priority_depth
;
4396 /* request frame size */
4397 ioc
->request_sz
= facts
->IOCRequestFrameSize
* 4;
4399 /* reply frame size */
4400 ioc
->reply_sz
= facts
->ReplyFrameSize
* 4;
4402 /* chain segment size */
4403 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
4404 if (facts
->IOCMaxChainSegmentSize
)
4405 ioc
->chain_segment_sz
=
4406 facts
->IOCMaxChainSegmentSize
*
4409 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4410 ioc
->chain_segment_sz
= DEFAULT_NUM_FWCHAIN_ELEMTS
*
4413 ioc
->chain_segment_sz
= ioc
->request_sz
;
4415 /* calculate the max scatter element size */
4416 sge_size
= max_t(u16
, ioc
->sge_size
, ioc
->sge_size_ieee
);
4420 /* calculate number of sg elements left over in the 1st frame */
4421 max_sge_elements
= ioc
->request_sz
- ((sizeof(Mpi2SCSIIORequest_t
) -
4422 sizeof(Mpi2SGEIOUnion_t
)) + sge_size
);
4423 ioc
->max_sges_in_main_message
= max_sge_elements
/sge_size
;
4425 /* now do the same for a chain buffer */
4426 max_sge_elements
= ioc
->chain_segment_sz
- sge_size
;
4427 ioc
->max_sges_in_chain_message
= max_sge_elements
/sge_size
;
4430 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4432 chains_needed_per_io
= ((ioc
->shost
->sg_tablesize
-
4433 ioc
->max_sges_in_main_message
)/ioc
->max_sges_in_chain_message
)
4435 if (chains_needed_per_io
> facts
->MaxChainDepth
) {
4436 chains_needed_per_io
= facts
->MaxChainDepth
;
4437 ioc
->shost
->sg_tablesize
= min_t(u16
,
4438 ioc
->max_sges_in_main_message
+ (ioc
->max_sges_in_chain_message
4439 * chains_needed_per_io
), ioc
->shost
->sg_tablesize
);
4441 ioc
->chains_needed_per_io
= chains_needed_per_io
;
4443 /* reply free queue sizing - taking into account for 64 FW events */
4444 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
4446 /* mCPU manage single counters for simplicity */
4447 if (ioc
->is_mcpu_endpoint
)
4448 ioc
->reply_post_queue_depth
= ioc
->reply_free_queue_depth
;
4450 /* calculate reply descriptor post queue depth */
4451 ioc
->reply_post_queue_depth
= ioc
->hba_queue_depth
+
4452 ioc
->reply_free_queue_depth
+ 1;
4453 /* align the reply post queue on the next 16 count boundary */
4454 if (ioc
->reply_post_queue_depth
% 16)
4455 ioc
->reply_post_queue_depth
+= 16 -
4456 (ioc
->reply_post_queue_depth
% 16);
4459 if (ioc
->reply_post_queue_depth
>
4460 facts
->MaxReplyDescriptorPostQueueDepth
) {
4461 ioc
->reply_post_queue_depth
=
4462 facts
->MaxReplyDescriptorPostQueueDepth
-
4463 (facts
->MaxReplyDescriptorPostQueueDepth
% 16);
4464 ioc
->hba_queue_depth
=
4465 ((ioc
->reply_post_queue_depth
- 64) / 2) - 1;
4466 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
4470 ioc_info(ioc
, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n",
4471 ioc
->max_sges_in_main_message
,
4472 ioc
->max_sges_in_chain_message
,
4473 ioc
->shost
->sg_tablesize
,
4474 ioc
->chains_needed_per_io
));
4476 /* reply post queue, 16 byte align */
4477 reply_post_free_sz
= ioc
->reply_post_queue_depth
*
4478 sizeof(Mpi2DefaultReplyDescriptor_t
);
4480 sz
= reply_post_free_sz
;
4481 if (_base_is_controller_msix_enabled(ioc
) && !ioc
->rdpq_array_enable
)
4482 sz
*= ioc
->reply_queue_count
;
4484 ioc
->reply_post
= kcalloc((ioc
->rdpq_array_enable
) ?
4485 (ioc
->reply_queue_count
):1,
4486 sizeof(struct reply_post_struct
), GFP_KERNEL
);
4488 if (!ioc
->reply_post
) {
4489 ioc_err(ioc
, "reply_post_free pool: kcalloc failed\n");
4492 ioc
->reply_post_free_dma_pool
= dma_pool_create("reply_post_free pool",
4493 &ioc
->pdev
->dev
, sz
, 16, 0);
4494 if (!ioc
->reply_post_free_dma_pool
) {
4495 ioc_err(ioc
, "reply_post_free pool: dma_pool_create failed\n");
4500 ioc
->reply_post
[i
].reply_post_free
=
4501 dma_pool_zalloc(ioc
->reply_post_free_dma_pool
,
4503 &ioc
->reply_post
[i
].reply_post_free_dma
);
4504 if (!ioc
->reply_post
[i
].reply_post_free
) {
4505 ioc_err(ioc
, "reply_post_free pool: dma_pool_alloc failed\n");
4509 ioc_info(ioc
, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4510 ioc
->reply_post
[i
].reply_post_free
,
4511 ioc
->reply_post_queue_depth
,
4514 ioc_info(ioc
, "reply_post_free_dma = (0x%llx)\n",
4515 (u64
)ioc
->reply_post
[i
].reply_post_free_dma
));
4517 } while (ioc
->rdpq_array_enable
&& (++i
< ioc
->reply_queue_count
));
4519 if (ioc
->dma_mask
== 64) {
4520 if (_base_change_consistent_dma_mask(ioc
, ioc
->pdev
) != 0) {
4521 ioc_warn(ioc
, "no suitable consistent DMA mask for %s\n",
4522 pci_name(ioc
->pdev
));
4527 ioc
->scsiio_depth
= ioc
->hba_queue_depth
-
4528 ioc
->hi_priority_depth
- ioc
->internal_depth
;
4530 /* set the scsi host can_queue depth
4531 * with some internal commands that could be outstanding
4533 ioc
->shost
->can_queue
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
;
4535 ioc_info(ioc
, "scsi host: can_queue depth (%d)\n",
4536 ioc
->shost
->can_queue
));
4539 /* contiguous pool for request and chains, 16 byte align, one extra "
4542 ioc
->chain_depth
= ioc
->chains_needed_per_io
* ioc
->scsiio_depth
;
4543 sz
= ((ioc
->scsiio_depth
+ 1) * ioc
->request_sz
);
4545 /* hi-priority queue */
4546 sz
+= (ioc
->hi_priority_depth
* ioc
->request_sz
);
4548 /* internal queue */
4549 sz
+= (ioc
->internal_depth
* ioc
->request_sz
);
4551 ioc
->request_dma_sz
= sz
;
4552 ioc
->request
= dma_alloc_coherent(&ioc
->pdev
->dev
, sz
,
4553 &ioc
->request_dma
, GFP_KERNEL
);
4554 if (!ioc
->request
) {
4555 ioc_err(ioc
, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
4556 ioc
->hba_queue_depth
, ioc
->chains_needed_per_io
,
4557 ioc
->request_sz
, sz
/ 1024);
4558 if (ioc
->scsiio_depth
< MPT3SAS_SAS_QUEUE_DEPTH
)
4561 ioc
->hba_queue_depth
-= retry_sz
;
4562 _base_release_memory_pools(ioc
);
4563 goto retry_allocation
;
4567 ioc_err(ioc
, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
4568 ioc
->hba_queue_depth
, ioc
->chains_needed_per_io
,
4569 ioc
->request_sz
, sz
/ 1024);
4571 /* hi-priority queue */
4572 ioc
->hi_priority
= ioc
->request
+ ((ioc
->scsiio_depth
+ 1) *
4574 ioc
->hi_priority_dma
= ioc
->request_dma
+ ((ioc
->scsiio_depth
+ 1) *
4577 /* internal queue */
4578 ioc
->internal
= ioc
->hi_priority
+ (ioc
->hi_priority_depth
*
4580 ioc
->internal_dma
= ioc
->hi_priority_dma
+ (ioc
->hi_priority_depth
*
4584 ioc_info(ioc
, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4585 ioc
->request
, ioc
->hba_queue_depth
,
4587 (ioc
->hba_queue_depth
* ioc
->request_sz
) / 1024));
4590 ioc_info(ioc
, "request pool: dma(0x%llx)\n",
4591 (unsigned long long)ioc
->request_dma
));
4595 ioc_info(ioc
, "scsiio(0x%p): depth(%d)\n",
4596 ioc
->request
, ioc
->scsiio_depth
));
4598 ioc
->chain_depth
= min_t(u32
, ioc
->chain_depth
, MAX_CHAIN_DEPTH
);
4599 sz
= ioc
->scsiio_depth
* sizeof(struct chain_lookup
);
4600 ioc
->chain_lookup
= kzalloc(sz
, GFP_KERNEL
);
4601 if (!ioc
->chain_lookup
) {
4602 ioc_err(ioc
, "chain_lookup: __get_free_pages failed\n");
4606 sz
= ioc
->chains_needed_per_io
* sizeof(struct chain_tracker
);
4607 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4608 ioc
->chain_lookup
[i
].chains_per_smid
= kzalloc(sz
, GFP_KERNEL
);
4609 if (!ioc
->chain_lookup
[i
].chains_per_smid
) {
4610 ioc_err(ioc
, "chain_lookup: kzalloc failed\n");
4615 /* initialize hi-priority queue smid's */
4616 ioc
->hpr_lookup
= kcalloc(ioc
->hi_priority_depth
,
4617 sizeof(struct request_tracker
), GFP_KERNEL
);
4618 if (!ioc
->hpr_lookup
) {
4619 ioc_err(ioc
, "hpr_lookup: kcalloc failed\n");
4622 ioc
->hi_priority_smid
= ioc
->scsiio_depth
+ 1;
4624 ioc_info(ioc
, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4626 ioc
->hi_priority_depth
, ioc
->hi_priority_smid
));
4628 /* initialize internal queue smid's */
4629 ioc
->internal_lookup
= kcalloc(ioc
->internal_depth
,
4630 sizeof(struct request_tracker
), GFP_KERNEL
);
4631 if (!ioc
->internal_lookup
) {
4632 ioc_err(ioc
, "internal_lookup: kcalloc failed\n");
4635 ioc
->internal_smid
= ioc
->hi_priority_smid
+ ioc
->hi_priority_depth
;
4637 ioc_info(ioc
, "internal(0x%p): depth(%d), start smid(%d)\n",
4639 ioc
->internal_depth
, ioc
->internal_smid
));
4641 * The number of NVMe page sized blocks needed is:
4642 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4643 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4644 * that is placed in the main message frame. 8 is the size of each PRP
4645 * entry or PRP list pointer entry. 8 is subtracted from page_size
4646 * because of the PRP list pointer entry at the end of a page, so this
4647 * is not counted as a PRP entry. The 1 added page is a round up.
4649 * To avoid allocation failures due to the amount of memory that could
4650 * be required for NVMe PRP's, only each set of NVMe blocks will be
4651 * contiguous, so a new set is allocated for each possible I/O.
4653 ioc
->chains_per_prp_buffer
= 0;
4654 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
4655 nvme_blocks_needed
=
4656 (ioc
->shost
->sg_tablesize
* NVME_PRP_SIZE
) - 1;
4657 nvme_blocks_needed
/= (ioc
->page_size
- NVME_PRP_SIZE
);
4658 nvme_blocks_needed
++;
4660 sz
= sizeof(struct pcie_sg_list
) * ioc
->scsiio_depth
;
4661 ioc
->pcie_sg_lookup
= kzalloc(sz
, GFP_KERNEL
);
4662 if (!ioc
->pcie_sg_lookup
) {
4663 ioc_info(ioc
, "PCIe SGL lookup: kzalloc failed\n");
4666 sz
= nvme_blocks_needed
* ioc
->page_size
;
4667 ioc
->pcie_sgl_dma_pool
=
4668 dma_pool_create("PCIe SGL pool", &ioc
->pdev
->dev
, sz
, 16, 0);
4669 if (!ioc
->pcie_sgl_dma_pool
) {
4670 ioc_info(ioc
, "PCIe SGL pool: dma_pool_create failed\n");
4674 ioc
->chains_per_prp_buffer
= sz
/ioc
->chain_segment_sz
;
4675 ioc
->chains_per_prp_buffer
= min(ioc
->chains_per_prp_buffer
,
4676 ioc
->chains_needed_per_io
);
4678 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4679 ioc
->pcie_sg_lookup
[i
].pcie_sgl
= dma_pool_alloc(
4680 ioc
->pcie_sgl_dma_pool
, GFP_KERNEL
,
4681 &ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
4682 if (!ioc
->pcie_sg_lookup
[i
].pcie_sgl
) {
4683 ioc_info(ioc
, "PCIe SGL pool: dma_pool_alloc failed\n");
4686 for (j
= 0; j
< ioc
->chains_per_prp_buffer
; j
++) {
4687 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
4689 ioc
->pcie_sg_lookup
[i
].pcie_sgl
+
4690 (j
* ioc
->chain_segment_sz
);
4691 ct
->chain_buffer_dma
=
4692 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
+
4693 (j
* ioc
->chain_segment_sz
);
4698 ioc_info(ioc
, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
4699 ioc
->scsiio_depth
, sz
,
4700 (sz
* ioc
->scsiio_depth
) / 1024));
4702 ioc_info(ioc
, "Number of chains can fit in a PRP page(%d)\n",
4703 ioc
->chains_per_prp_buffer
));
4704 total_sz
+= sz
* ioc
->scsiio_depth
;
4707 ioc
->chain_dma_pool
= dma_pool_create("chain pool", &ioc
->pdev
->dev
,
4708 ioc
->chain_segment_sz
, 16, 0);
4709 if (!ioc
->chain_dma_pool
) {
4710 ioc_err(ioc
, "chain_dma_pool: dma_pool_create failed\n");
4713 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4714 for (j
= ioc
->chains_per_prp_buffer
;
4715 j
< ioc
->chains_needed_per_io
; j
++) {
4716 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
4717 ct
->chain_buffer
= dma_pool_alloc(
4718 ioc
->chain_dma_pool
, GFP_KERNEL
,
4719 &ct
->chain_buffer_dma
);
4720 if (!ct
->chain_buffer
) {
4721 ioc_err(ioc
, "chain_lookup: pci_pool_alloc failed\n");
4722 _base_release_memory_pools(ioc
);
4726 total_sz
+= ioc
->chain_segment_sz
;
4730 ioc_info(ioc
, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4731 ioc
->chain_depth
, ioc
->chain_segment_sz
,
4732 (ioc
->chain_depth
* ioc
->chain_segment_sz
) / 1024));
4734 /* sense buffers, 4 byte align */
4735 sz
= ioc
->scsiio_depth
* SCSI_SENSE_BUFFERSIZE
;
4736 ioc
->sense_dma_pool
= dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
4738 if (!ioc
->sense_dma_pool
) {
4739 ioc_err(ioc
, "sense pool: dma_pool_create failed\n");
4742 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
4745 ioc_err(ioc
, "sense pool: dma_pool_alloc failed\n");
4748 /* sense buffer requires to be in same 4 gb region.
4749 * Below function will check the same.
4750 * In case of failure, new pci pool will be created with updated
4751 * alignment. Older allocation and pool will be destroyed.
4752 * Alignment will be used such a way that next allocation if
4753 * success, will always meet same 4gb region requirement.
4754 * Actual requirement is not alignment, but we need start and end of
4755 * DMA address must have same upper 32 bit address.
4757 if (!is_MSB_are_same((long)ioc
->sense
, sz
)) {
4758 //Release Sense pool & Reallocate
4759 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
4760 dma_pool_destroy(ioc
->sense_dma_pool
);
4763 ioc
->sense_dma_pool
=
4764 dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
4765 roundup_pow_of_two(sz
), 0);
4766 if (!ioc
->sense_dma_pool
) {
4767 ioc_err(ioc
, "sense pool: pci_pool_create failed\n");
4770 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
4773 ioc_err(ioc
, "sense pool: pci_pool_alloc failed\n");
4778 ioc_info(ioc
, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4779 ioc
->sense
, ioc
->scsiio_depth
,
4780 SCSI_SENSE_BUFFERSIZE
, sz
/ 1024));
4782 ioc_info(ioc
, "sense_dma(0x%llx)\n",
4783 (unsigned long long)ioc
->sense_dma
));
4786 /* reply pool, 4 byte align */
4787 sz
= ioc
->reply_free_queue_depth
* ioc
->reply_sz
;
4788 ioc
->reply_dma_pool
= dma_pool_create("reply pool", &ioc
->pdev
->dev
, sz
,
4790 if (!ioc
->reply_dma_pool
) {
4791 ioc_err(ioc
, "reply pool: dma_pool_create failed\n");
4794 ioc
->reply
= dma_pool_alloc(ioc
->reply_dma_pool
, GFP_KERNEL
,
4797 ioc_err(ioc
, "reply pool: dma_pool_alloc failed\n");
4800 ioc
->reply_dma_min_address
= (u32
)(ioc
->reply_dma
);
4801 ioc
->reply_dma_max_address
= (u32
)(ioc
->reply_dma
) + sz
;
4803 ioc_info(ioc
, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4804 ioc
->reply
, ioc
->reply_free_queue_depth
,
4805 ioc
->reply_sz
, sz
/ 1024));
4807 ioc_info(ioc
, "reply_dma(0x%llx)\n",
4808 (unsigned long long)ioc
->reply_dma
));
4811 /* reply free queue, 16 byte align */
4812 sz
= ioc
->reply_free_queue_depth
* 4;
4813 ioc
->reply_free_dma_pool
= dma_pool_create("reply_free pool",
4814 &ioc
->pdev
->dev
, sz
, 16, 0);
4815 if (!ioc
->reply_free_dma_pool
) {
4816 ioc_err(ioc
, "reply_free pool: dma_pool_create failed\n");
4819 ioc
->reply_free
= dma_pool_zalloc(ioc
->reply_free_dma_pool
, GFP_KERNEL
,
4820 &ioc
->reply_free_dma
);
4821 if (!ioc
->reply_free
) {
4822 ioc_err(ioc
, "reply_free pool: dma_pool_alloc failed\n");
4826 ioc_info(ioc
, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4827 ioc
->reply_free
, ioc
->reply_free_queue_depth
,
4830 ioc_info(ioc
, "reply_free_dma (0x%llx)\n",
4831 (unsigned long long)ioc
->reply_free_dma
));
4834 if (ioc
->rdpq_array_enable
) {
4835 reply_post_free_array_sz
= ioc
->reply_queue_count
*
4836 sizeof(Mpi2IOCInitRDPQArrayEntry
);
4837 ioc
->reply_post_free_array_dma_pool
=
4838 dma_pool_create("reply_post_free_array pool",
4839 &ioc
->pdev
->dev
, reply_post_free_array_sz
, 16, 0);
4840 if (!ioc
->reply_post_free_array_dma_pool
) {
4842 ioc_info(ioc
, "reply_post_free_array pool: dma_pool_create failed\n"));
4845 ioc
->reply_post_free_array
=
4846 dma_pool_alloc(ioc
->reply_post_free_array_dma_pool
,
4847 GFP_KERNEL
, &ioc
->reply_post_free_array_dma
);
4848 if (!ioc
->reply_post_free_array
) {
4850 ioc_info(ioc
, "reply_post_free_array pool: dma_pool_alloc failed\n"));
4854 ioc
->config_page_sz
= 512;
4855 ioc
->config_page
= dma_alloc_coherent(&ioc
->pdev
->dev
,
4856 ioc
->config_page_sz
, &ioc
->config_page_dma
, GFP_KERNEL
);
4857 if (!ioc
->config_page
) {
4858 ioc_err(ioc
, "config page: dma_pool_alloc failed\n");
4862 ioc_info(ioc
, "config page(0x%p): size(%d)\n",
4863 ioc
->config_page
, ioc
->config_page_sz
));
4865 ioc_info(ioc
, "config_page_dma(0x%llx)\n",
4866 (unsigned long long)ioc
->config_page_dma
));
4867 total_sz
+= ioc
->config_page_sz
;
4869 ioc_info(ioc
, "Allocated physical memory: size(%d kB)\n",
4871 ioc_info(ioc
, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4872 ioc
->shost
->can_queue
, facts
->RequestCredit
);
4873 ioc_info(ioc
, "Scatter Gather Elements per IO(%d)\n",
4874 ioc
->shost
->sg_tablesize
);
4882 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4883 * @ioc: Pointer to MPT_ADAPTER structure
4884 * @cooked: Request raw or cooked IOC state
4886 * Return: all IOC Doorbell register bits if cooked==0, else just the
4887 * Doorbell bits in MPI_IOC_STATE_MASK.
4890 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int cooked
)
4894 s
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
4895 sc
= s
& MPI2_IOC_STATE_MASK
;
4896 return cooked
? sc
: s
;
4900 * _base_wait_on_iocstate - waiting on a particular ioc state
4902 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4903 * @timeout: timeout in second
4905 * Return: 0 for success, non-zero for failure.
4908 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER
*ioc
, u32 ioc_state
, int timeout
)
4914 cntdn
= 1000 * timeout
;
4916 current_state
= mpt3sas_base_get_iocstate(ioc
, 1);
4917 if (current_state
== ioc_state
)
4919 if (count
&& current_state
== MPI2_IOC_STATE_FAULT
)
4922 usleep_range(1000, 1500);
4926 return current_state
;
4930 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4931 * a write to the doorbell)
4932 * @ioc: per adapter object
4934 * Return: 0 for success, non-zero for failure.
4936 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4939 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
);
4942 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
4948 cntdn
= 1000 * timeout
;
4950 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
4951 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
4953 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
4954 __func__
, count
, timeout
));
4958 usleep_range(1000, 1500);
4962 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
4963 __func__
, count
, int_status
);
4968 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
4974 cntdn
= 2000 * timeout
;
4976 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
4977 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
4979 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
4980 __func__
, count
, timeout
));
4988 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
4989 __func__
, count
, int_status
);
4995 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
4996 * @ioc: per adapter object
4997 * @timeout: timeout in second
4999 * Return: 0 for success, non-zero for failure.
5001 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5005 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5012 cntdn
= 1000 * timeout
;
5014 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
5015 if (!(int_status
& MPI2_HIS_SYS2IOC_DB_STATUS
)) {
5017 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
5018 __func__
, count
, timeout
));
5020 } else if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
5021 doorbell
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
5022 if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
5023 MPI2_IOC_STATE_FAULT
) {
5024 mpt3sas_base_fault_info(ioc
, doorbell
);
5027 } else if (int_status
== 0xFFFFFFFF)
5030 usleep_range(1000, 1500);
5035 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5036 __func__
, count
, int_status
);
5041 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5042 * @ioc: per adapter object
5043 * @timeout: timeout in second
5045 * Return: 0 for success, non-zero for failure.
5048 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5054 cntdn
= 1000 * timeout
;
5056 doorbell_reg
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
5057 if (!(doorbell_reg
& MPI2_DOORBELL_USED
)) {
5059 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
5060 __func__
, count
, timeout
));
5064 usleep_range(1000, 1500);
5068 ioc_err(ioc
, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5069 __func__
, count
, doorbell_reg
);
5074 * _base_send_ioc_reset - send doorbell reset
5075 * @ioc: per adapter object
5076 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5077 * @timeout: timeout in second
5079 * Return: 0 for success, non-zero for failure.
5082 _base_send_ioc_reset(struct MPT3SAS_ADAPTER
*ioc
, u8 reset_type
, int timeout
)
5087 if (reset_type
!= MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
) {
5088 ioc_err(ioc
, "%s: unknown reset_type\n", __func__
);
5092 if (!(ioc
->facts
.IOCCapabilities
&
5093 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY
))
5096 ioc_info(ioc
, "sending message unit reset !!\n");
5098 writel(reset_type
<< MPI2_DOORBELL_FUNCTION_SHIFT
,
5099 &ioc
->chip
->Doorbell
);
5100 if ((_base_wait_for_doorbell_ack(ioc
, 15))) {
5104 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
5106 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
5107 __func__
, ioc_state
);
5112 ioc_info(ioc
, "message unit reset: %s\n",
5113 r
== 0 ? "SUCCESS" : "FAILED");
5118 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5119 * @ioc: per adapter object
5120 * @wait_count: timeout in seconds
5122 * Return: Waits up to timeout seconds for the IOC to
5123 * become operational. Returns 0 if IOC is present
5124 * and operational; otherwise returns -EFAULT.
5128 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5130 int wait_state_count
= 0;
5134 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 1);
5135 if (ioc_state
== MPI2_IOC_STATE_OPERATIONAL
)
5138 ioc_info(ioc
, "%s: waiting for operational state(count=%d)\n",
5139 __func__
, ++wait_state_count
);
5140 } while (--timeout
);
5142 ioc_err(ioc
, "%s: failed due to ioc not operational\n", __func__
);
5145 if (wait_state_count
)
5146 ioc_info(ioc
, "ioc is operational\n");
5151 * _base_handshake_req_reply_wait - send request thru doorbell interface
5152 * @ioc: per adapter object
5153 * @request_bytes: request length
5154 * @request: pointer having request payload
5155 * @reply_bytes: reply length
5156 * @reply: pointer to reply payload
5157 * @timeout: timeout in second
5159 * Return: 0 for success, non-zero for failure.
5162 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER
*ioc
, int request_bytes
,
5163 u32
*request
, int reply_bytes
, u16
*reply
, int timeout
)
5165 MPI2DefaultReply_t
*default_reply
= (MPI2DefaultReply_t
*)reply
;
5170 /* make sure doorbell is not in use */
5171 if ((ioc
->base_readl(&ioc
->chip
->Doorbell
) & MPI2_DOORBELL_USED
)) {
5172 ioc_err(ioc
, "doorbell is in use (line=%d)\n", __LINE__
);
5176 /* clear pending doorbell interrupts from previous state changes */
5177 if (ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
) &
5178 MPI2_HIS_IOC2SYS_DB_STATUS
)
5179 writel(0, &ioc
->chip
->HostInterruptStatus
);
5181 /* send message to ioc */
5182 writel(((MPI2_FUNCTION_HANDSHAKE
<<MPI2_DOORBELL_FUNCTION_SHIFT
) |
5183 ((request_bytes
/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT
)),
5184 &ioc
->chip
->Doorbell
);
5186 if ((_base_spin_on_doorbell_int(ioc
, 5))) {
5187 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5191 writel(0, &ioc
->chip
->HostInterruptStatus
);
5193 if ((_base_wait_for_doorbell_ack(ioc
, 5))) {
5194 ioc_err(ioc
, "doorbell handshake ack failed (line=%d)\n",
5199 /* send message 32-bits at a time */
5200 for (i
= 0, failed
= 0; i
< request_bytes
/4 && !failed
; i
++) {
5201 writel(cpu_to_le32(request
[i
]), &ioc
->chip
->Doorbell
);
5202 if ((_base_wait_for_doorbell_ack(ioc
, 5)))
5207 ioc_err(ioc
, "doorbell handshake sending request failed (line=%d)\n",
5212 /* now wait for the reply */
5213 if ((_base_wait_for_doorbell_int(ioc
, timeout
))) {
5214 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5219 /* read the first two 16-bits, it gives the total length of the reply */
5220 reply
[0] = le16_to_cpu(ioc
->base_readl(&ioc
->chip
->Doorbell
)
5221 & MPI2_DOORBELL_DATA_MASK
);
5222 writel(0, &ioc
->chip
->HostInterruptStatus
);
5223 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
5224 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5228 reply
[1] = le16_to_cpu(ioc
->base_readl(&ioc
->chip
->Doorbell
)
5229 & MPI2_DOORBELL_DATA_MASK
);
5230 writel(0, &ioc
->chip
->HostInterruptStatus
);
5232 for (i
= 2; i
< default_reply
->MsgLength
* 2; i
++) {
5233 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
5234 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5238 if (i
>= reply_bytes
/2) /* overflow case */
5239 ioc
->base_readl(&ioc
->chip
->Doorbell
);
5241 reply
[i
] = le16_to_cpu(
5242 ioc
->base_readl(&ioc
->chip
->Doorbell
)
5243 & MPI2_DOORBELL_DATA_MASK
);
5244 writel(0, &ioc
->chip
->HostInterruptStatus
);
5247 _base_wait_for_doorbell_int(ioc
, 5);
5248 if (_base_wait_for_doorbell_not_used(ioc
, 5) != 0) {
5250 ioc_info(ioc
, "doorbell is in use (line=%d)\n",
5253 writel(0, &ioc
->chip
->HostInterruptStatus
);
5255 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
5256 mfp
= (__le32
*)reply
;
5257 pr_info("\toffset:data\n");
5258 for (i
= 0; i
< reply_bytes
/4; i
++)
5259 pr_info("\t[0x%02x]:%08x\n", i
*4,
5260 le32_to_cpu(mfp
[i
]));
5266 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5267 * @ioc: per adapter object
5268 * @mpi_reply: the reply payload from FW
5269 * @mpi_request: the request payload sent to FW
5271 * The SAS IO Unit Control Request message allows the host to perform low-level
5272 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5273 * to obtain the IOC assigned device handles for a device if it has other
5274 * identifying information about the device, in addition allows the host to
5275 * remove IOC resources associated with the device.
5277 * Return: 0 for success, non-zero for failure.
5280 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER
*ioc
,
5281 Mpi2SasIoUnitControlReply_t
*mpi_reply
,
5282 Mpi2SasIoUnitControlRequest_t
*mpi_request
)
5289 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5291 mutex_lock(&ioc
->base_cmds
.mutex
);
5293 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
5294 ioc_err(ioc
, "%s: base_cmd in use\n", __func__
);
5299 rc
= mpt3sas_wait_for_ioc(ioc
, IOC_OPERATIONAL_WAIT_COUNT
);
5303 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
5305 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
5311 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
5312 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5313 ioc
->base_cmds
.smid
= smid
;
5314 memcpy(request
, mpi_request
, sizeof(Mpi2SasIoUnitControlRequest_t
));
5315 if (mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
5316 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
)
5317 ioc
->ioc_link_reset_in_progress
= 1;
5318 init_completion(&ioc
->base_cmds
.done
);
5319 mpt3sas_base_put_smid_default(ioc
, smid
);
5320 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
5321 msecs_to_jiffies(10000));
5322 if ((mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
5323 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
) &&
5324 ioc
->ioc_link_reset_in_progress
)
5325 ioc
->ioc_link_reset_in_progress
= 0;
5326 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5328 mpt3sas_base_check_cmd_timeout(ioc
,
5329 ioc
->base_cmds
.status
, mpi_request
,
5330 sizeof(Mpi2SasIoUnitControlRequest_t
)/4);
5331 goto issue_host_reset
;
5333 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
5334 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
5335 sizeof(Mpi2SasIoUnitControlReply_t
));
5337 memset(mpi_reply
, 0, sizeof(Mpi2SasIoUnitControlReply_t
));
5338 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5343 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
5344 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5347 mutex_unlock(&ioc
->base_cmds
.mutex
);
5352 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5353 * @ioc: per adapter object
5354 * @mpi_reply: the reply payload from FW
5355 * @mpi_request: the request payload sent to FW
5357 * The SCSI Enclosure Processor request message causes the IOC to
5358 * communicate with SES devices to control LED status signals.
5360 * Return: 0 for success, non-zero for failure.
5363 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER
*ioc
,
5364 Mpi2SepReply_t
*mpi_reply
, Mpi2SepRequest_t
*mpi_request
)
5371 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5373 mutex_lock(&ioc
->base_cmds
.mutex
);
5375 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
5376 ioc_err(ioc
, "%s: base_cmd in use\n", __func__
);
5381 rc
= mpt3sas_wait_for_ioc(ioc
, IOC_OPERATIONAL_WAIT_COUNT
);
5385 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
5387 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
5393 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
5394 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5395 ioc
->base_cmds
.smid
= smid
;
5396 memcpy(request
, mpi_request
, sizeof(Mpi2SepReply_t
));
5397 init_completion(&ioc
->base_cmds
.done
);
5398 mpt3sas_base_put_smid_default(ioc
, smid
);
5399 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
5400 msecs_to_jiffies(10000));
5401 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5403 mpt3sas_base_check_cmd_timeout(ioc
,
5404 ioc
->base_cmds
.status
, mpi_request
,
5405 sizeof(Mpi2SepRequest_t
)/4);
5406 goto issue_host_reset
;
5408 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
5409 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
5410 sizeof(Mpi2SepReply_t
));
5412 memset(mpi_reply
, 0, sizeof(Mpi2SepReply_t
));
5413 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5418 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
5419 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5422 mutex_unlock(&ioc
->base_cmds
.mutex
);
5427 * _base_get_port_facts - obtain port facts reply and save in ioc
5428 * @ioc: per adapter object
5431 * Return: 0 for success, non-zero for failure.
5434 _base_get_port_facts(struct MPT3SAS_ADAPTER
*ioc
, int port
)
5436 Mpi2PortFactsRequest_t mpi_request
;
5437 Mpi2PortFactsReply_t mpi_reply
;
5438 struct mpt3sas_port_facts
*pfacts
;
5439 int mpi_reply_sz
, mpi_request_sz
, r
;
5441 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5443 mpi_reply_sz
= sizeof(Mpi2PortFactsReply_t
);
5444 mpi_request_sz
= sizeof(Mpi2PortFactsRequest_t
);
5445 memset(&mpi_request
, 0, mpi_request_sz
);
5446 mpi_request
.Function
= MPI2_FUNCTION_PORT_FACTS
;
5447 mpi_request
.PortNumber
= port
;
5448 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
5449 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
5452 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
5456 pfacts
= &ioc
->pfacts
[port
];
5457 memset(pfacts
, 0, sizeof(struct mpt3sas_port_facts
));
5458 pfacts
->PortNumber
= mpi_reply
.PortNumber
;
5459 pfacts
->VP_ID
= mpi_reply
.VP_ID
;
5460 pfacts
->VF_ID
= mpi_reply
.VF_ID
;
5461 pfacts
->MaxPostedCmdBuffers
=
5462 le16_to_cpu(mpi_reply
.MaxPostedCmdBuffers
);
5468 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5469 * @ioc: per adapter object
5472 * Return: 0 for success, non-zero for failure.
5475 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5480 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5482 if (ioc
->pci_error_recovery
) {
5484 ioc_info(ioc
, "%s: host in pci error recovery\n",
5489 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
5491 ioc_info(ioc
, "%s: ioc_state(0x%08x)\n",
5492 __func__
, ioc_state
));
5494 if (((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
) ||
5495 (ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
5498 if (ioc_state
& MPI2_DOORBELL_USED
) {
5499 dhsprintk(ioc
, ioc_info(ioc
, "unexpected doorbell active!\n"));
5500 goto issue_diag_reset
;
5503 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
5504 mpt3sas_base_fault_info(ioc
, ioc_state
&
5505 MPI2_DOORBELL_DATA_MASK
);
5506 goto issue_diag_reset
;
5509 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
5512 ioc_info(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
5513 __func__
, ioc_state
));
5518 rc
= _base_diag_reset(ioc
);
5523 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5524 * @ioc: per adapter object
5526 * Return: 0 for success, non-zero for failure.
5529 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
)
5531 Mpi2IOCFactsRequest_t mpi_request
;
5532 Mpi2IOCFactsReply_t mpi_reply
;
5533 struct mpt3sas_facts
*facts
;
5534 int mpi_reply_sz
, mpi_request_sz
, r
;
5536 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5538 r
= _base_wait_for_iocstate(ioc
, 10);
5541 ioc_info(ioc
, "%s: failed getting to correct state\n",
5545 mpi_reply_sz
= sizeof(Mpi2IOCFactsReply_t
);
5546 mpi_request_sz
= sizeof(Mpi2IOCFactsRequest_t
);
5547 memset(&mpi_request
, 0, mpi_request_sz
);
5548 mpi_request
.Function
= MPI2_FUNCTION_IOC_FACTS
;
5549 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
5550 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
5553 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
5557 facts
= &ioc
->facts
;
5558 memset(facts
, 0, sizeof(struct mpt3sas_facts
));
5559 facts
->MsgVersion
= le16_to_cpu(mpi_reply
.MsgVersion
);
5560 facts
->HeaderVersion
= le16_to_cpu(mpi_reply
.HeaderVersion
);
5561 facts
->VP_ID
= mpi_reply
.VP_ID
;
5562 facts
->VF_ID
= mpi_reply
.VF_ID
;
5563 facts
->IOCExceptions
= le16_to_cpu(mpi_reply
.IOCExceptions
);
5564 facts
->MaxChainDepth
= mpi_reply
.MaxChainDepth
;
5565 facts
->WhoInit
= mpi_reply
.WhoInit
;
5566 facts
->NumberOfPorts
= mpi_reply
.NumberOfPorts
;
5567 facts
->MaxMSIxVectors
= mpi_reply
.MaxMSIxVectors
;
5568 if (ioc
->msix_enable
&& (facts
->MaxMSIxVectors
<=
5569 MAX_COMBINED_MSIX_VECTORS(ioc
->is_gen35_ioc
)))
5570 ioc
->combined_reply_queue
= 0;
5571 facts
->RequestCredit
= le16_to_cpu(mpi_reply
.RequestCredit
);
5572 facts
->MaxReplyDescriptorPostQueueDepth
=
5573 le16_to_cpu(mpi_reply
.MaxReplyDescriptorPostQueueDepth
);
5574 facts
->ProductID
= le16_to_cpu(mpi_reply
.ProductID
);
5575 facts
->IOCCapabilities
= le32_to_cpu(mpi_reply
.IOCCapabilities
);
5576 if ((facts
->IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
))
5577 ioc
->ir_firmware
= 1;
5578 if ((facts
->IOCCapabilities
&
5579 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE
) && (!reset_devices
))
5580 ioc
->rdpq_array_capable
= 1;
5581 facts
->FWVersion
.Word
= le32_to_cpu(mpi_reply
.FWVersion
.Word
);
5582 facts
->IOCRequestFrameSize
=
5583 le16_to_cpu(mpi_reply
.IOCRequestFrameSize
);
5584 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
5585 facts
->IOCMaxChainSegmentSize
=
5586 le16_to_cpu(mpi_reply
.IOCMaxChainSegmentSize
);
5588 facts
->MaxInitiators
= le16_to_cpu(mpi_reply
.MaxInitiators
);
5589 facts
->MaxTargets
= le16_to_cpu(mpi_reply
.MaxTargets
);
5590 ioc
->shost
->max_id
= -1;
5591 facts
->MaxSasExpanders
= le16_to_cpu(mpi_reply
.MaxSasExpanders
);
5592 facts
->MaxEnclosures
= le16_to_cpu(mpi_reply
.MaxEnclosures
);
5593 facts
->ProtocolFlags
= le16_to_cpu(mpi_reply
.ProtocolFlags
);
5594 facts
->HighPriorityCredit
=
5595 le16_to_cpu(mpi_reply
.HighPriorityCredit
);
5596 facts
->ReplyFrameSize
= mpi_reply
.ReplyFrameSize
;
5597 facts
->MaxDevHandle
= le16_to_cpu(mpi_reply
.MaxDevHandle
);
5598 facts
->CurrentHostPageSize
= mpi_reply
.CurrentHostPageSize
;
5601 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5603 ioc
->page_size
= 1 << facts
->CurrentHostPageSize
;
5604 if (ioc
->page_size
== 1) {
5605 ioc_info(ioc
, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
5606 ioc
->page_size
= 1 << MPT3SAS_HOST_PAGE_SIZE_4K
;
5609 ioc_info(ioc
, "CurrentHostPageSize(%d)\n",
5610 facts
->CurrentHostPageSize
));
5613 ioc_info(ioc
, "hba queue depth(%d), max chains per io(%d)\n",
5614 facts
->RequestCredit
, facts
->MaxChainDepth
));
5616 ioc_info(ioc
, "request frame size(%d), reply frame size(%d)\n",
5617 facts
->IOCRequestFrameSize
* 4,
5618 facts
->ReplyFrameSize
* 4));
5623 * _base_send_ioc_init - send ioc_init to firmware
5624 * @ioc: per adapter object
5626 * Return: 0 for success, non-zero for failure.
5629 _base_send_ioc_init(struct MPT3SAS_ADAPTER
*ioc
)
5631 Mpi2IOCInitRequest_t mpi_request
;
5632 Mpi2IOCInitReply_t mpi_reply
;
5634 ktime_t current_time
;
5636 u32 reply_post_free_array_sz
= 0;
5638 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5640 memset(&mpi_request
, 0, sizeof(Mpi2IOCInitRequest_t
));
5641 mpi_request
.Function
= MPI2_FUNCTION_IOC_INIT
;
5642 mpi_request
.WhoInit
= MPI2_WHOINIT_HOST_DRIVER
;
5643 mpi_request
.VF_ID
= 0; /* TODO */
5644 mpi_request
.VP_ID
= 0;
5645 mpi_request
.MsgVersion
= cpu_to_le16(ioc
->hba_mpi_version_belonged
);
5646 mpi_request
.HeaderVersion
= cpu_to_le16(MPI2_HEADER_VERSION
);
5647 mpi_request
.HostPageSize
= MPT3SAS_HOST_PAGE_SIZE_4K
;
5649 if (_base_is_controller_msix_enabled(ioc
))
5650 mpi_request
.HostMSIxVectors
= ioc
->reply_queue_count
;
5651 mpi_request
.SystemRequestFrameSize
= cpu_to_le16(ioc
->request_sz
/4);
5652 mpi_request
.ReplyDescriptorPostQueueDepth
=
5653 cpu_to_le16(ioc
->reply_post_queue_depth
);
5654 mpi_request
.ReplyFreeQueueDepth
=
5655 cpu_to_le16(ioc
->reply_free_queue_depth
);
5657 mpi_request
.SenseBufferAddressHigh
=
5658 cpu_to_le32((u64
)ioc
->sense_dma
>> 32);
5659 mpi_request
.SystemReplyAddressHigh
=
5660 cpu_to_le32((u64
)ioc
->reply_dma
>> 32);
5661 mpi_request
.SystemRequestFrameBaseAddress
=
5662 cpu_to_le64((u64
)ioc
->request_dma
);
5663 mpi_request
.ReplyFreeQueueAddress
=
5664 cpu_to_le64((u64
)ioc
->reply_free_dma
);
5666 if (ioc
->rdpq_array_enable
) {
5667 reply_post_free_array_sz
= ioc
->reply_queue_count
*
5668 sizeof(Mpi2IOCInitRDPQArrayEntry
);
5669 memset(ioc
->reply_post_free_array
, 0, reply_post_free_array_sz
);
5670 for (i
= 0; i
< ioc
->reply_queue_count
; i
++)
5671 ioc
->reply_post_free_array
[i
].RDPQBaseAddress
=
5673 (u64
)ioc
->reply_post
[i
].reply_post_free_dma
);
5674 mpi_request
.MsgFlags
= MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE
;
5675 mpi_request
.ReplyDescriptorPostQueueAddress
=
5676 cpu_to_le64((u64
)ioc
->reply_post_free_array_dma
);
5678 mpi_request
.ReplyDescriptorPostQueueAddress
=
5679 cpu_to_le64((u64
)ioc
->reply_post
[0].reply_post_free_dma
);
5682 /* This time stamp specifies number of milliseconds
5683 * since epoch ~ midnight January 1, 1970.
5685 current_time
= ktime_get_real();
5686 mpi_request
.TimeStamp
= cpu_to_le64(ktime_to_ms(current_time
));
5688 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
5692 mfp
= (__le32
*)&mpi_request
;
5693 pr_info("\toffset:data\n");
5694 for (i
= 0; i
< sizeof(Mpi2IOCInitRequest_t
)/4; i
++)
5695 pr_info("\t[0x%02x]:%08x\n", i
*4,
5696 le32_to_cpu(mfp
[i
]));
5699 r
= _base_handshake_req_reply_wait(ioc
,
5700 sizeof(Mpi2IOCInitRequest_t
), (u32
*)&mpi_request
,
5701 sizeof(Mpi2IOCInitReply_t
), (u16
*)&mpi_reply
, 10);
5704 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
5708 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) & MPI2_IOCSTATUS_MASK
;
5709 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
||
5710 mpi_reply
.IOCLogInfo
) {
5711 ioc_err(ioc
, "%s: failed\n", __func__
);
5719 * mpt3sas_port_enable_done - command completion routine for port enable
5720 * @ioc: per adapter object
5721 * @smid: system request message index
5722 * @msix_index: MSIX table index supplied by the OS
5723 * @reply: reply message frame(lower 32bit addr)
5725 * Return: 1 meaning mf should be freed from _base_interrupt
5726 * 0 means the mf is freed from this function.
5729 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
5732 MPI2DefaultReply_t
*mpi_reply
;
5735 if (ioc
->port_enable_cmds
.status
== MPT3_CMD_NOT_USED
)
5738 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
5742 if (mpi_reply
->Function
!= MPI2_FUNCTION_PORT_ENABLE
)
5745 ioc
->port_enable_cmds
.status
&= ~MPT3_CMD_PENDING
;
5746 ioc
->port_enable_cmds
.status
|= MPT3_CMD_COMPLETE
;
5747 ioc
->port_enable_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
5748 memcpy(ioc
->port_enable_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
5749 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
5750 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
)
5751 ioc
->port_enable_failed
= 1;
5753 if (ioc
->is_driver_loading
) {
5754 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
5755 mpt3sas_port_enable_complete(ioc
);
5758 ioc
->start_scan_failed
= ioc_status
;
5759 ioc
->start_scan
= 0;
5763 complete(&ioc
->port_enable_cmds
.done
);
5768 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5769 * @ioc: per adapter object
5771 * Return: 0 for success, non-zero for failure.
5774 _base_send_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
5776 Mpi2PortEnableRequest_t
*mpi_request
;
5777 Mpi2PortEnableReply_t
*mpi_reply
;
5782 ioc_info(ioc
, "sending port enable !!\n");
5784 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
5785 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
5789 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
5791 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
5795 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
5796 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5797 ioc
->port_enable_cmds
.smid
= smid
;
5798 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
5799 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
5801 init_completion(&ioc
->port_enable_cmds
.done
);
5802 mpt3sas_base_put_smid_default(ioc
, smid
);
5803 wait_for_completion_timeout(&ioc
->port_enable_cmds
.done
, 300*HZ
);
5804 if (!(ioc
->port_enable_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5805 ioc_err(ioc
, "%s: timeout\n", __func__
);
5806 _debug_dump_mf(mpi_request
,
5807 sizeof(Mpi2PortEnableRequest_t
)/4);
5808 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_RESET
)
5815 mpi_reply
= ioc
->port_enable_cmds
.reply
;
5816 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
5817 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
5818 ioc_err(ioc
, "%s: failed with (ioc_status=0x%08x)\n",
5819 __func__
, ioc_status
);
5825 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
5826 ioc_info(ioc
, "port enable: %s\n", r
== 0 ? "SUCCESS" : "FAILED");
5831 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5832 * @ioc: per adapter object
5834 * Return: 0 for success, non-zero for failure.
5837 mpt3sas_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
5839 Mpi2PortEnableRequest_t
*mpi_request
;
5842 ioc_info(ioc
, "sending port enable !!\n");
5844 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
5845 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
5849 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
5851 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
5855 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
5856 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5857 ioc
->port_enable_cmds
.smid
= smid
;
5858 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
5859 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
5861 mpt3sas_base_put_smid_default(ioc
, smid
);
5866 * _base_determine_wait_on_discovery - desposition
5867 * @ioc: per adapter object
5869 * Decide whether to wait on discovery to complete. Used to either
5870 * locate boot device, or report volumes ahead of physical devices.
5872 * Return: 1 for wait, 0 for don't wait.
5875 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER
*ioc
)
5877 /* We wait for discovery to complete if IR firmware is loaded.
5878 * The sas topology events arrive before PD events, so we need time to
5879 * turn on the bit in ioc->pd_handles to indicate PD
5880 * Also, it maybe required to report Volumes ahead of physical
5881 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5883 if (ioc
->ir_firmware
)
5886 /* if no Bios, then we don't need to wait */
5887 if (!ioc
->bios_pg3
.BiosVersion
)
5890 /* Bios is present, then we drop down here.
5892 * If there any entries in the Bios Page 2, then we wait
5893 * for discovery to complete.
5896 /* Current Boot Device */
5897 if ((ioc
->bios_pg2
.CurrentBootDeviceForm
&
5898 MPI2_BIOSPAGE2_FORM_MASK
) ==
5899 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
5900 /* Request Boot Device */
5901 (ioc
->bios_pg2
.ReqBootDeviceForm
&
5902 MPI2_BIOSPAGE2_FORM_MASK
) ==
5903 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
5904 /* Alternate Request Boot Device */
5905 (ioc
->bios_pg2
.ReqAltBootDeviceForm
&
5906 MPI2_BIOSPAGE2_FORM_MASK
) ==
5907 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
)
5914 * _base_unmask_events - turn on notification for this event
5915 * @ioc: per adapter object
5916 * @event: firmware event
5918 * The mask is stored in ioc->event_masks.
5921 _base_unmask_events(struct MPT3SAS_ADAPTER
*ioc
, u16 event
)
5928 desired_event
= (1 << (event
% 32));
5931 ioc
->event_masks
[0] &= ~desired_event
;
5932 else if (event
< 64)
5933 ioc
->event_masks
[1] &= ~desired_event
;
5934 else if (event
< 96)
5935 ioc
->event_masks
[2] &= ~desired_event
;
5936 else if (event
< 128)
5937 ioc
->event_masks
[3] &= ~desired_event
;
5941 * _base_event_notification - send event notification
5942 * @ioc: per adapter object
5944 * Return: 0 for success, non-zero for failure.
5947 _base_event_notification(struct MPT3SAS_ADAPTER
*ioc
)
5949 Mpi2EventNotificationRequest_t
*mpi_request
;
5954 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5956 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
5957 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
5961 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
5963 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
5966 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
5967 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5968 ioc
->base_cmds
.smid
= smid
;
5969 memset(mpi_request
, 0, sizeof(Mpi2EventNotificationRequest_t
));
5970 mpi_request
->Function
= MPI2_FUNCTION_EVENT_NOTIFICATION
;
5971 mpi_request
->VF_ID
= 0; /* TODO */
5972 mpi_request
->VP_ID
= 0;
5973 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
5974 mpi_request
->EventMasks
[i
] =
5975 cpu_to_le32(ioc
->event_masks
[i
]);
5976 init_completion(&ioc
->base_cmds
.done
);
5977 mpt3sas_base_put_smid_default(ioc
, smid
);
5978 wait_for_completion_timeout(&ioc
->base_cmds
.done
, 30*HZ
);
5979 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5980 ioc_err(ioc
, "%s: timeout\n", __func__
);
5981 _debug_dump_mf(mpi_request
,
5982 sizeof(Mpi2EventNotificationRequest_t
)/4);
5983 if (ioc
->base_cmds
.status
& MPT3_CMD_RESET
)
5988 dinitprintk(ioc
, ioc_info(ioc
, "%s: complete\n", __func__
));
5989 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5994 * mpt3sas_base_validate_event_type - validating event types
5995 * @ioc: per adapter object
5996 * @event_type: firmware event
5998 * This will turn on firmware event notification when application
5999 * ask for that event. We don't mask events that are already enabled.
6002 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER
*ioc
, u32
*event_type
)
6005 u32 event_mask
, desired_event
;
6006 u8 send_update_to_fw
;
6008 for (i
= 0, send_update_to_fw
= 0; i
<
6009 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++) {
6010 event_mask
= ~event_type
[i
];
6012 for (j
= 0; j
< 32; j
++) {
6013 if (!(event_mask
& desired_event
) &&
6014 (ioc
->event_masks
[i
] & desired_event
)) {
6015 ioc
->event_masks
[i
] &= ~desired_event
;
6016 send_update_to_fw
= 1;
6018 desired_event
= (desired_event
<< 1);
6022 if (!send_update_to_fw
)
6025 mutex_lock(&ioc
->base_cmds
.mutex
);
6026 _base_event_notification(ioc
);
6027 mutex_unlock(&ioc
->base_cmds
.mutex
);
6031 * _base_diag_reset - the "big hammer" start of day reset
6032 * @ioc: per adapter object
6034 * Return: 0 for success, non-zero for failure.
6037 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
)
6039 u32 host_diagnostic
;
6044 ioc_info(ioc
, "sending diag reset !!\n");
6046 drsprintk(ioc
, ioc_info(ioc
, "clear interrupts\n"));
6050 /* Write magic sequence to WriteSequence register
6051 * Loop until in diagnostic mode
6053 drsprintk(ioc
, ioc_info(ioc
, "write magic sequence\n"));
6054 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6055 writel(MPI2_WRSEQ_1ST_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6056 writel(MPI2_WRSEQ_2ND_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6057 writel(MPI2_WRSEQ_3RD_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6058 writel(MPI2_WRSEQ_4TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6059 writel(MPI2_WRSEQ_5TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6060 writel(MPI2_WRSEQ_6TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6068 host_diagnostic
= ioc
->base_readl(&ioc
->chip
->HostDiagnostic
);
6070 ioc_info(ioc
, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6071 count
, host_diagnostic
));
6073 } while ((host_diagnostic
& MPI2_DIAG_DIAG_WRITE_ENABLE
) == 0);
6075 hcb_size
= ioc
->base_readl(&ioc
->chip
->HCBSize
);
6077 drsprintk(ioc
, ioc_info(ioc
, "diag reset: issued\n"));
6078 writel(host_diagnostic
| MPI2_DIAG_RESET_ADAPTER
,
6079 &ioc
->chip
->HostDiagnostic
);
6081 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6082 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC
/1000);
6084 /* Approximately 300 second max wait */
6085 for (count
= 0; count
< (300000000 /
6086 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
); count
++) {
6088 host_diagnostic
= ioc
->base_readl(&ioc
->chip
->HostDiagnostic
);
6090 if (host_diagnostic
== 0xFFFFFFFF)
6092 if (!(host_diagnostic
& MPI2_DIAG_RESET_ADAPTER
))
6095 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
/ 1000);
6098 if (host_diagnostic
& MPI2_DIAG_HCB_MODE
) {
6101 ioc_info(ioc
, "restart the adapter assuming the HCB Address points to good F/W\n"));
6102 host_diagnostic
&= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK
;
6103 host_diagnostic
|= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW
;
6104 writel(host_diagnostic
, &ioc
->chip
->HostDiagnostic
);
6106 drsprintk(ioc
, ioc_info(ioc
, "re-enable the HCDW\n"));
6107 writel(hcb_size
| MPI2_HCB_SIZE_HCB_ENABLE
,
6108 &ioc
->chip
->HCBSize
);
6111 drsprintk(ioc
, ioc_info(ioc
, "restart the adapter\n"));
6112 writel(host_diagnostic
& ~MPI2_DIAG_HOLD_IOC_RESET
,
6113 &ioc
->chip
->HostDiagnostic
);
6116 ioc_info(ioc
, "disable writes to the diagnostic register\n"));
6117 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6119 drsprintk(ioc
, ioc_info(ioc
, "Wait for FW to go to the READY state\n"));
6120 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, 20);
6122 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
6123 __func__
, ioc_state
);
6127 ioc_info(ioc
, "diag reset: SUCCESS\n");
6131 ioc_err(ioc
, "diag reset: FAILED\n");
6136 * _base_make_ioc_ready - put controller in READY state
6137 * @ioc: per adapter object
6138 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6140 * Return: 0 for success, non-zero for failure.
6143 _base_make_ioc_ready(struct MPT3SAS_ADAPTER
*ioc
, enum reset_type type
)
6149 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6151 if (ioc
->pci_error_recovery
)
6154 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6156 ioc_info(ioc
, "%s: ioc_state(0x%08x)\n",
6157 __func__
, ioc_state
));
6159 /* if in RESET state, it should move to READY state shortly */
6161 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_RESET
) {
6162 while ((ioc_state
& MPI2_IOC_STATE_MASK
) !=
6163 MPI2_IOC_STATE_READY
) {
6164 if (count
++ == 10) {
6165 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
6166 __func__
, ioc_state
);
6170 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6174 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
)
6177 if (ioc_state
& MPI2_DOORBELL_USED
) {
6178 dhsprintk(ioc
, ioc_info(ioc
, "unexpected doorbell active!\n"));
6179 goto issue_diag_reset
;
6182 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
6183 mpt3sas_base_fault_info(ioc
, ioc_state
&
6184 MPI2_DOORBELL_DATA_MASK
);
6185 goto issue_diag_reset
;
6188 if (type
== FORCE_BIG_HAMMER
)
6189 goto issue_diag_reset
;
6191 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
6192 if (!(_base_send_ioc_reset(ioc
,
6193 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
, 15))) {
6198 rc
= _base_diag_reset(ioc
);
6203 * _base_make_ioc_operational - put controller in OPERATIONAL state
6204 * @ioc: per adapter object
6206 * Return: 0 for success, non-zero for failure.
6209 _base_make_ioc_operational(struct MPT3SAS_ADAPTER
*ioc
)
6212 unsigned long flags
;
6215 struct _tr_list
*delayed_tr
, *delayed_tr_next
;
6216 struct _sc_list
*delayed_sc
, *delayed_sc_next
;
6217 struct _event_ack_list
*delayed_event_ack
, *delayed_event_ack_next
;
6219 struct adapter_reply_queue
*reply_q
;
6220 Mpi2ReplyDescriptorsUnion_t
*reply_post_free_contig
;
6222 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6224 /* clean the delayed target reset list */
6225 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
6226 &ioc
->delayed_tr_list
, list
) {
6227 list_del(&delayed_tr
->list
);
6232 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
6233 &ioc
->delayed_tr_volume_list
, list
) {
6234 list_del(&delayed_tr
->list
);
6238 list_for_each_entry_safe(delayed_sc
, delayed_sc_next
,
6239 &ioc
->delayed_sc_list
, list
) {
6240 list_del(&delayed_sc
->list
);
6244 list_for_each_entry_safe(delayed_event_ack
, delayed_event_ack_next
,
6245 &ioc
->delayed_event_ack_list
, list
) {
6246 list_del(&delayed_event_ack
->list
);
6247 kfree(delayed_event_ack
);
6250 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
6252 /* hi-priority queue */
6253 INIT_LIST_HEAD(&ioc
->hpr_free_list
);
6254 smid
= ioc
->hi_priority_smid
;
6255 for (i
= 0; i
< ioc
->hi_priority_depth
; i
++, smid
++) {
6256 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
6257 ioc
->hpr_lookup
[i
].smid
= smid
;
6258 list_add_tail(&ioc
->hpr_lookup
[i
].tracker_list
,
6259 &ioc
->hpr_free_list
);
6262 /* internal queue */
6263 INIT_LIST_HEAD(&ioc
->internal_free_list
);
6264 smid
= ioc
->internal_smid
;
6265 for (i
= 0; i
< ioc
->internal_depth
; i
++, smid
++) {
6266 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
6267 ioc
->internal_lookup
[i
].smid
= smid
;
6268 list_add_tail(&ioc
->internal_lookup
[i
].tracker_list
,
6269 &ioc
->internal_free_list
);
6272 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
6274 /* initialize Reply Free Queue */
6275 for (i
= 0, reply_address
= (u32
)ioc
->reply_dma
;
6276 i
< ioc
->reply_free_queue_depth
; i
++, reply_address
+=
6278 ioc
->reply_free
[i
] = cpu_to_le32(reply_address
);
6279 if (ioc
->is_mcpu_endpoint
)
6280 _base_clone_reply_to_sys_mem(ioc
,
6284 /* initialize reply queues */
6285 if (ioc
->is_driver_loading
)
6286 _base_assign_reply_queues(ioc
);
6288 /* initialize Reply Post Free Queue */
6290 reply_post_free_contig
= ioc
->reply_post
[0].reply_post_free
;
6291 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
6293 * If RDPQ is enabled, switch to the next allocation.
6294 * Otherwise advance within the contiguous region.
6296 if (ioc
->rdpq_array_enable
) {
6297 reply_q
->reply_post_free
=
6298 ioc
->reply_post
[index
++].reply_post_free
;
6300 reply_q
->reply_post_free
= reply_post_free_contig
;
6301 reply_post_free_contig
+= ioc
->reply_post_queue_depth
;
6304 reply_q
->reply_post_host_index
= 0;
6305 for (i
= 0; i
< ioc
->reply_post_queue_depth
; i
++)
6306 reply_q
->reply_post_free
[i
].Words
=
6307 cpu_to_le64(ULLONG_MAX
);
6308 if (!_base_is_controller_msix_enabled(ioc
))
6309 goto skip_init_reply_post_free_queue
;
6311 skip_init_reply_post_free_queue
:
6313 r
= _base_send_ioc_init(ioc
);
6317 /* initialize reply free host index */
6318 ioc
->reply_free_host_index
= ioc
->reply_free_queue_depth
- 1;
6319 writel(ioc
->reply_free_host_index
, &ioc
->chip
->ReplyFreeHostIndex
);
6321 /* initialize reply post host index */
6322 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
6323 if (ioc
->combined_reply_queue
)
6324 writel((reply_q
->msix_index
& 7)<<
6325 MPI2_RPHI_MSIX_INDEX_SHIFT
,
6326 ioc
->replyPostRegisterIndex
[reply_q
->msix_index
/8]);
6328 writel(reply_q
->msix_index
<<
6329 MPI2_RPHI_MSIX_INDEX_SHIFT
,
6330 &ioc
->chip
->ReplyPostHostIndex
);
6332 if (!_base_is_controller_msix_enabled(ioc
))
6333 goto skip_init_reply_post_host_index
;
6336 skip_init_reply_post_host_index
:
6338 _base_unmask_interrupts(ioc
);
6340 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
6341 r
= _base_display_fwpkg_version(ioc
);
6346 _base_static_config_pages(ioc
);
6347 r
= _base_event_notification(ioc
);
6351 if (ioc
->is_driver_loading
) {
6353 if (ioc
->is_warpdrive
&& ioc
->manu_pg10
.OEMIdentifier
6356 le32_to_cpu(ioc
->manu_pg10
.OEMSpecificFlags0
) &
6357 MFG_PAGE10_HIDE_SSDS_MASK
);
6358 if (hide_flag
!= MFG_PAGE10_HIDE_SSDS_MASK
)
6359 ioc
->mfg_pg10_hide_flag
= hide_flag
;
6362 ioc
->wait_for_discovery_to_complete
=
6363 _base_determine_wait_on_discovery(ioc
);
6365 return r
; /* scan_start and scan_finished support */
6368 r
= _base_send_port_enable(ioc
);
6376 * mpt3sas_base_free_resources - free resources controller resources
6377 * @ioc: per adapter object
6380 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER
*ioc
)
6382 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6384 /* synchronizing freeing resource with pci_access_mutex lock */
6385 mutex_lock(&ioc
->pci_access_mutex
);
6386 if (ioc
->chip_phys
&& ioc
->chip
) {
6387 _base_mask_interrupts(ioc
);
6388 ioc
->shost_recovery
= 1;
6389 _base_make_ioc_ready(ioc
, SOFT_RESET
);
6390 ioc
->shost_recovery
= 0;
6393 mpt3sas_base_unmap_resources(ioc
);
6394 mutex_unlock(&ioc
->pci_access_mutex
);
6399 * mpt3sas_base_attach - attach controller instance
6400 * @ioc: per adapter object
6402 * Return: 0 for success, non-zero for failure.
6405 mpt3sas_base_attach(struct MPT3SAS_ADAPTER
*ioc
)
6408 int cpu_id
, last_cpu_id
= 0;
6410 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6412 /* setup cpu_msix_table */
6413 ioc
->cpu_count
= num_online_cpus();
6414 for_each_online_cpu(cpu_id
)
6415 last_cpu_id
= cpu_id
;
6416 ioc
->cpu_msix_table_sz
= last_cpu_id
+ 1;
6417 ioc
->cpu_msix_table
= kzalloc(ioc
->cpu_msix_table_sz
, GFP_KERNEL
);
6418 ioc
->reply_queue_count
= 1;
6419 if (!ioc
->cpu_msix_table
) {
6421 ioc_info(ioc
, "allocation for cpu_msix_table failed!!!\n"));
6423 goto out_free_resources
;
6426 if (ioc
->is_warpdrive
) {
6427 ioc
->reply_post_host_index
= kcalloc(ioc
->cpu_msix_table_sz
,
6428 sizeof(resource_size_t
*), GFP_KERNEL
);
6429 if (!ioc
->reply_post_host_index
) {
6431 ioc_info(ioc
, "allocation for reply_post_host_index failed!!!\n"));
6433 goto out_free_resources
;
6437 ioc
->rdpq_array_enable_assigned
= 0;
6439 if (ioc
->is_aero_ioc
)
6440 ioc
->base_readl
= &_base_readl_aero
;
6442 ioc
->base_readl
= &_base_readl
;
6443 r
= mpt3sas_base_map_resources(ioc
);
6445 goto out_free_resources
;
6447 pci_set_drvdata(ioc
->pdev
, ioc
->shost
);
6448 r
= _base_get_ioc_facts(ioc
);
6450 goto out_free_resources
;
6452 switch (ioc
->hba_mpi_version_belonged
) {
6454 ioc
->build_sg_scmd
= &_base_build_sg_scmd
;
6455 ioc
->build_sg
= &_base_build_sg
;
6456 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge
;
6462 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6463 * Target Status - all require the IEEE formated scatter gather
6466 ioc
->build_sg_scmd
= &_base_build_sg_scmd_ieee
;
6467 ioc
->build_sg
= &_base_build_sg_ieee
;
6468 ioc
->build_nvme_prp
= &_base_build_nvme_prp
;
6469 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge_ieee
;
6470 ioc
->sge_size_ieee
= sizeof(Mpi2IeeeSgeSimple64_t
);
6475 if (ioc
->is_mcpu_endpoint
)
6476 ioc
->put_smid_scsi_io
= &_base_put_smid_mpi_ep_scsi_io
;
6478 ioc
->put_smid_scsi_io
= &_base_put_smid_scsi_io
;
6481 * These function pointers for other requests that don't
6482 * the require IEEE scatter gather elements.
6484 * For example Configuration Pages and SAS IOUNIT Control don't.
6486 ioc
->build_sg_mpi
= &_base_build_sg
;
6487 ioc
->build_zero_len_sge_mpi
= &_base_build_zero_len_sge
;
6489 r
= _base_make_ioc_ready(ioc
, SOFT_RESET
);
6491 goto out_free_resources
;
6493 ioc
->pfacts
= kcalloc(ioc
->facts
.NumberOfPorts
,
6494 sizeof(struct mpt3sas_port_facts
), GFP_KERNEL
);
6497 goto out_free_resources
;
6500 for (i
= 0 ; i
< ioc
->facts
.NumberOfPorts
; i
++) {
6501 r
= _base_get_port_facts(ioc
, i
);
6503 goto out_free_resources
;
6506 r
= _base_allocate_memory_pools(ioc
);
6508 goto out_free_resources
;
6510 init_waitqueue_head(&ioc
->reset_wq
);
6512 /* allocate memory pd handle bitmask list */
6513 ioc
->pd_handles_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
6514 if (ioc
->facts
.MaxDevHandle
% 8)
6515 ioc
->pd_handles_sz
++;
6516 ioc
->pd_handles
= kzalloc(ioc
->pd_handles_sz
,
6518 if (!ioc
->pd_handles
) {
6520 goto out_free_resources
;
6522 ioc
->blocking_handles
= kzalloc(ioc
->pd_handles_sz
,
6524 if (!ioc
->blocking_handles
) {
6526 goto out_free_resources
;
6529 /* allocate memory for pending OS device add list */
6530 ioc
->pend_os_device_add_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
6531 if (ioc
->facts
.MaxDevHandle
% 8)
6532 ioc
->pend_os_device_add_sz
++;
6533 ioc
->pend_os_device_add
= kzalloc(ioc
->pend_os_device_add_sz
,
6535 if (!ioc
->pend_os_device_add
)
6536 goto out_free_resources
;
6538 ioc
->device_remove_in_progress_sz
= ioc
->pend_os_device_add_sz
;
6539 ioc
->device_remove_in_progress
=
6540 kzalloc(ioc
->device_remove_in_progress_sz
, GFP_KERNEL
);
6541 if (!ioc
->device_remove_in_progress
)
6542 goto out_free_resources
;
6544 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
6546 /* base internal command bits */
6547 mutex_init(&ioc
->base_cmds
.mutex
);
6548 ioc
->base_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6549 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6551 /* port_enable command bits */
6552 ioc
->port_enable_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6553 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
6555 /* transport internal command bits */
6556 ioc
->transport_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6557 ioc
->transport_cmds
.status
= MPT3_CMD_NOT_USED
;
6558 mutex_init(&ioc
->transport_cmds
.mutex
);
6560 /* scsih internal command bits */
6561 ioc
->scsih_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6562 ioc
->scsih_cmds
.status
= MPT3_CMD_NOT_USED
;
6563 mutex_init(&ioc
->scsih_cmds
.mutex
);
6565 /* task management internal command bits */
6566 ioc
->tm_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6567 ioc
->tm_cmds
.status
= MPT3_CMD_NOT_USED
;
6568 mutex_init(&ioc
->tm_cmds
.mutex
);
6570 /* config page internal command bits */
6571 ioc
->config_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6572 ioc
->config_cmds
.status
= MPT3_CMD_NOT_USED
;
6573 mutex_init(&ioc
->config_cmds
.mutex
);
6575 /* ctl module internal command bits */
6576 ioc
->ctl_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
6577 ioc
->ctl_cmds
.sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
);
6578 ioc
->ctl_cmds
.status
= MPT3_CMD_NOT_USED
;
6579 mutex_init(&ioc
->ctl_cmds
.mutex
);
6581 if (!ioc
->base_cmds
.reply
|| !ioc
->port_enable_cmds
.reply
||
6582 !ioc
->transport_cmds
.reply
|| !ioc
->scsih_cmds
.reply
||
6583 !ioc
->tm_cmds
.reply
|| !ioc
->config_cmds
.reply
||
6584 !ioc
->ctl_cmds
.reply
|| !ioc
->ctl_cmds
.sense
) {
6586 goto out_free_resources
;
6589 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
6590 ioc
->event_masks
[i
] = -1;
6592 /* here we enable the events we care about */
6593 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DISCOVERY
);
6594 _base_unmask_events(ioc
, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
);
6595 _base_unmask_events(ioc
, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
);
6596 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
);
6597 _base_unmask_events(ioc
, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
);
6598 _base_unmask_events(ioc
, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
);
6599 _base_unmask_events(ioc
, MPI2_EVENT_IR_VOLUME
);
6600 _base_unmask_events(ioc
, MPI2_EVENT_IR_PHYSICAL_DISK
);
6601 _base_unmask_events(ioc
, MPI2_EVENT_IR_OPERATION_STATUS
);
6602 _base_unmask_events(ioc
, MPI2_EVENT_LOG_ENTRY_ADDED
);
6603 _base_unmask_events(ioc
, MPI2_EVENT_TEMP_THRESHOLD
);
6604 _base_unmask_events(ioc
, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
);
6605 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
);
6606 if (ioc
->hba_mpi_version_belonged
== MPI26_VERSION
) {
6607 if (ioc
->is_gen35_ioc
) {
6608 _base_unmask_events(ioc
,
6609 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
);
6610 _base_unmask_events(ioc
, MPI2_EVENT_PCIE_ENUMERATION
);
6611 _base_unmask_events(ioc
,
6612 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
);
6615 r
= _base_make_ioc_operational(ioc
);
6617 goto out_free_resources
;
6619 ioc
->non_operational_loop
= 0;
6620 ioc
->got_task_abort_from_ioctl
= 0;
6625 ioc
->remove_host
= 1;
6627 mpt3sas_base_free_resources(ioc
);
6628 _base_release_memory_pools(ioc
);
6629 pci_set_drvdata(ioc
->pdev
, NULL
);
6630 kfree(ioc
->cpu_msix_table
);
6631 if (ioc
->is_warpdrive
)
6632 kfree(ioc
->reply_post_host_index
);
6633 kfree(ioc
->pd_handles
);
6634 kfree(ioc
->blocking_handles
);
6635 kfree(ioc
->device_remove_in_progress
);
6636 kfree(ioc
->pend_os_device_add
);
6637 kfree(ioc
->tm_cmds
.reply
);
6638 kfree(ioc
->transport_cmds
.reply
);
6639 kfree(ioc
->scsih_cmds
.reply
);
6640 kfree(ioc
->config_cmds
.reply
);
6641 kfree(ioc
->base_cmds
.reply
);
6642 kfree(ioc
->port_enable_cmds
.reply
);
6643 kfree(ioc
->ctl_cmds
.reply
);
6644 kfree(ioc
->ctl_cmds
.sense
);
6646 ioc
->ctl_cmds
.reply
= NULL
;
6647 ioc
->base_cmds
.reply
= NULL
;
6648 ioc
->tm_cmds
.reply
= NULL
;
6649 ioc
->scsih_cmds
.reply
= NULL
;
6650 ioc
->transport_cmds
.reply
= NULL
;
6651 ioc
->config_cmds
.reply
= NULL
;
6658 * mpt3sas_base_detach - remove controller instance
6659 * @ioc: per adapter object
6662 mpt3sas_base_detach(struct MPT3SAS_ADAPTER
*ioc
)
6664 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6666 mpt3sas_base_stop_watchdog(ioc
);
6667 mpt3sas_base_free_resources(ioc
);
6668 _base_release_memory_pools(ioc
);
6669 mpt3sas_free_enclosure_list(ioc
);
6670 pci_set_drvdata(ioc
->pdev
, NULL
);
6671 kfree(ioc
->cpu_msix_table
);
6672 if (ioc
->is_warpdrive
)
6673 kfree(ioc
->reply_post_host_index
);
6674 kfree(ioc
->pd_handles
);
6675 kfree(ioc
->blocking_handles
);
6676 kfree(ioc
->device_remove_in_progress
);
6677 kfree(ioc
->pend_os_device_add
);
6679 kfree(ioc
->ctl_cmds
.reply
);
6680 kfree(ioc
->ctl_cmds
.sense
);
6681 kfree(ioc
->base_cmds
.reply
);
6682 kfree(ioc
->port_enable_cmds
.reply
);
6683 kfree(ioc
->tm_cmds
.reply
);
6684 kfree(ioc
->transport_cmds
.reply
);
6685 kfree(ioc
->scsih_cmds
.reply
);
6686 kfree(ioc
->config_cmds
.reply
);
6690 * _base_pre_reset_handler - pre reset handler
6691 * @ioc: per adapter object
6693 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER
*ioc
)
6695 mpt3sas_scsih_pre_reset_handler(ioc
);
6696 mpt3sas_ctl_pre_reset_handler(ioc
);
6697 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_PRE_RESET\n", __func__
));
6701 * _base_after_reset_handler - after reset handler
6702 * @ioc: per adapter object
6704 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER
*ioc
)
6706 mpt3sas_scsih_after_reset_handler(ioc
);
6707 mpt3sas_ctl_after_reset_handler(ioc
);
6708 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_AFTER_RESET\n", __func__
));
6709 if (ioc
->transport_cmds
.status
& MPT3_CMD_PENDING
) {
6710 ioc
->transport_cmds
.status
|= MPT3_CMD_RESET
;
6711 mpt3sas_base_free_smid(ioc
, ioc
->transport_cmds
.smid
);
6712 complete(&ioc
->transport_cmds
.done
);
6714 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
6715 ioc
->base_cmds
.status
|= MPT3_CMD_RESET
;
6716 mpt3sas_base_free_smid(ioc
, ioc
->base_cmds
.smid
);
6717 complete(&ioc
->base_cmds
.done
);
6719 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
6720 ioc
->port_enable_failed
= 1;
6721 ioc
->port_enable_cmds
.status
|= MPT3_CMD_RESET
;
6722 mpt3sas_base_free_smid(ioc
, ioc
->port_enable_cmds
.smid
);
6723 if (ioc
->is_driver_loading
) {
6724 ioc
->start_scan_failed
=
6725 MPI2_IOCSTATUS_INTERNAL_ERROR
;
6726 ioc
->start_scan
= 0;
6727 ioc
->port_enable_cmds
.status
=
6730 complete(&ioc
->port_enable_cmds
.done
);
6733 if (ioc
->config_cmds
.status
& MPT3_CMD_PENDING
) {
6734 ioc
->config_cmds
.status
|= MPT3_CMD_RESET
;
6735 mpt3sas_base_free_smid(ioc
, ioc
->config_cmds
.smid
);
6736 ioc
->config_cmds
.smid
= USHRT_MAX
;
6737 complete(&ioc
->config_cmds
.done
);
6742 * _base_reset_done_handler - reset done handler
6743 * @ioc: per adapter object
6745 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER
*ioc
)
6747 mpt3sas_scsih_reset_done_handler(ioc
);
6748 mpt3sas_ctl_reset_done_handler(ioc
);
6749 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_DONE_RESET\n", __func__
));
6753 * mpt3sas_wait_for_commands_to_complete - reset controller
6754 * @ioc: Pointer to MPT_ADAPTER structure
6756 * This function is waiting 10s for all pending commands to complete
6757 * prior to putting controller in reset.
6760 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER
*ioc
)
6764 ioc
->pending_io_count
= 0;
6766 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6767 if ((ioc_state
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
)
6770 /* pending command count */
6771 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
6773 if (!ioc
->pending_io_count
)
6776 /* wait for pending commands to complete */
6777 wait_event_timeout(ioc
->reset_wq
, ioc
->pending_io_count
== 0, 10 * HZ
);
6781 * mpt3sas_base_hard_reset_handler - reset controller
6782 * @ioc: Pointer to MPT_ADAPTER structure
6783 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6785 * Return: 0 for success, non-zero for failure.
6788 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER
*ioc
,
6789 enum reset_type type
)
6792 unsigned long flags
;
6794 u8 is_fault
= 0, is_trigger
= 0;
6796 dtmprintk(ioc
, ioc_info(ioc
, "%s: enter\n", __func__
));
6798 if (ioc
->pci_error_recovery
) {
6799 ioc_err(ioc
, "%s: pci error recovery reset\n", __func__
);
6804 if (mpt3sas_fwfault_debug
)
6805 mpt3sas_halt_firmware(ioc
);
6807 /* wait for an active reset in progress to complete */
6808 mutex_lock(&ioc
->reset_in_progress_mutex
);
6810 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
6811 ioc
->shost_recovery
= 1;
6812 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
6814 if ((ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
6815 MPT3_DIAG_BUFFER_IS_REGISTERED
) &&
6816 (!(ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
6817 MPT3_DIAG_BUFFER_IS_RELEASED
))) {
6819 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6820 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
6823 _base_pre_reset_handler(ioc
);
6824 mpt3sas_wait_for_commands_to_complete(ioc
);
6825 _base_mask_interrupts(ioc
);
6826 r
= _base_make_ioc_ready(ioc
, type
);
6829 _base_after_reset_handler(ioc
);
6831 /* If this hard reset is called while port enable is active, then
6832 * there is no reason to call make_ioc_operational
6834 if (ioc
->is_driver_loading
&& ioc
->port_enable_failed
) {
6835 ioc
->remove_host
= 1;
6839 r
= _base_get_ioc_facts(ioc
);
6843 if (ioc
->rdpq_array_enable
&& !ioc
->rdpq_array_capable
)
6844 panic("%s: Issue occurred with flashing controller firmware."
6845 "Please reboot the system and ensure that the correct"
6846 " firmware version is running\n", ioc
->name
);
6848 r
= _base_make_ioc_operational(ioc
);
6850 _base_reset_done_handler(ioc
);
6854 ioc_info(ioc
, "%s: %s\n",
6855 __func__
, r
== 0 ? "SUCCESS" : "FAILED"));
6857 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
6858 ioc
->shost_recovery
= 0;
6859 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
6860 ioc
->ioc_reset_count
++;
6861 mutex_unlock(&ioc
->reset_in_progress_mutex
);
6864 if ((r
== 0) && is_trigger
) {
6866 mpt3sas_trigger_master(ioc
, MASTER_TRIGGER_FW_FAULT
);
6868 mpt3sas_trigger_master(ioc
,
6869 MASTER_TRIGGER_ADAPTER_RESET
);
6871 dtmprintk(ioc
, ioc_info(ioc
, "%s: exit\n", __func__
));