2 * Marvell 88SE64xx/88SE94xx main function
4 * Copyright 2007 Red Hat, Inc.
5 * Copyright 2008 Marvell. <kewei@marvell.com>
6 * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
8 * This file is licensed under GPLv2.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; version 2 of the
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
28 static int mvs_find_tag(struct mvs_info
*mvi
, struct sas_task
*task
, u32
*tag
)
30 if (task
->lldd_task
) {
31 struct mvs_slot_info
*slot
;
32 slot
= task
->lldd_task
;
33 *tag
= slot
->slot_tag
;
39 void mvs_tag_clear(struct mvs_info
*mvi
, u32 tag
)
41 void *bitmap
= mvi
->tags
;
42 clear_bit(tag
, bitmap
);
45 void mvs_tag_free(struct mvs_info
*mvi
, u32 tag
)
47 mvs_tag_clear(mvi
, tag
);
50 void mvs_tag_set(struct mvs_info
*mvi
, unsigned int tag
)
52 void *bitmap
= mvi
->tags
;
56 inline int mvs_tag_alloc(struct mvs_info
*mvi
, u32
*tag_out
)
58 unsigned int index
, tag
;
59 void *bitmap
= mvi
->tags
;
61 index
= find_first_zero_bit(bitmap
, mvi
->tags_num
);
63 if (tag
>= mvi
->tags_num
)
64 return -SAS_QUEUE_FULL
;
65 mvs_tag_set(mvi
, tag
);
70 void mvs_tag_init(struct mvs_info
*mvi
)
73 for (i
= 0; i
< mvi
->tags_num
; ++i
)
74 mvs_tag_clear(mvi
, i
);
77 static struct mvs_info
*mvs_find_dev_mvi(struct domain_device
*dev
)
79 unsigned long i
= 0, j
= 0, hi
= 0;
80 struct sas_ha_struct
*sha
= dev
->port
->ha
;
81 struct mvs_info
*mvi
= NULL
;
82 struct asd_sas_phy
*phy
;
84 while (sha
->sas_port
[i
]) {
85 if (sha
->sas_port
[i
] == dev
->port
) {
86 phy
= container_of(sha
->sas_port
[i
]->phy_list
.next
,
87 struct asd_sas_phy
, port_phy_el
);
89 while (sha
->sas_phy
[j
]) {
90 if (sha
->sas_phy
[j
] == phy
)
98 hi
= j
/((struct mvs_prv_info
*)sha
->lldd_ha
)->n_phy
;
99 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[hi
];
105 static int mvs_find_dev_phyno(struct domain_device
*dev
, int *phyno
)
107 unsigned long i
= 0, j
= 0, n
= 0, num
= 0;
108 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
109 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
110 struct sas_ha_struct
*sha
= dev
->port
->ha
;
112 while (sha
->sas_port
[i
]) {
113 if (sha
->sas_port
[i
] == dev
->port
) {
114 struct asd_sas_phy
*phy
;
115 list_for_each_entry(phy
,
116 &sha
->sas_port
[i
]->phy_list
, port_phy_el
) {
118 while (sha
->sas_phy
[j
]) {
119 if (sha
->sas_phy
[j
] == phy
)
123 phyno
[n
] = (j
>= mvi
->chip
->n_phy
) ?
124 (j
- mvi
->chip
->n_phy
) : j
;
135 struct mvs_device
*mvs_find_dev_by_reg_set(struct mvs_info
*mvi
,
139 for (dev_no
= 0; dev_no
< MVS_MAX_DEVICES
; dev_no
++) {
140 if (mvi
->devices
[dev_no
].taskfileset
== MVS_ID_NOT_MAPPED
)
143 if (mvi
->devices
[dev_no
].taskfileset
== reg_set
)
144 return &mvi
->devices
[dev_no
];
149 static inline void mvs_free_reg_set(struct mvs_info
*mvi
,
150 struct mvs_device
*dev
)
153 mv_printk("device has been free.\n");
156 if (dev
->taskfileset
== MVS_ID_NOT_MAPPED
)
158 MVS_CHIP_DISP
->free_reg_set(mvi
, &dev
->taskfileset
);
161 static inline u8
mvs_assign_reg_set(struct mvs_info
*mvi
,
162 struct mvs_device
*dev
)
164 if (dev
->taskfileset
!= MVS_ID_NOT_MAPPED
)
166 return MVS_CHIP_DISP
->assign_reg_set(mvi
, &dev
->taskfileset
);
169 void mvs_phys_reset(struct mvs_info
*mvi
, u32 phy_mask
, int hard
)
172 for_each_phy(phy_mask
, phy_mask
, no
) {
175 MVS_CHIP_DISP
->phy_reset(mvi
, no
, hard
);
179 int mvs_phy_control(struct asd_sas_phy
*sas_phy
, enum phy_func func
,
182 int rc
= 0, phy_id
= sas_phy
->id
;
184 struct sas_ha_struct
*sha
= sas_phy
->ha
;
185 struct mvs_info
*mvi
= NULL
;
187 while (sha
->sas_phy
[i
]) {
188 if (sha
->sas_phy
[i
] == sas_phy
)
192 hi
= i
/((struct mvs_prv_info
*)sha
->lldd_ha
)->n_phy
;
193 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[hi
];
196 case PHY_FUNC_SET_LINK_RATE
:
197 MVS_CHIP_DISP
->phy_set_link_rate(mvi
, phy_id
, funcdata
);
200 case PHY_FUNC_HARD_RESET
:
201 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_id
);
202 if (tmp
& PHY_RST_HARD
)
204 MVS_CHIP_DISP
->phy_reset(mvi
, phy_id
, MVS_HARD_RESET
);
207 case PHY_FUNC_LINK_RESET
:
208 MVS_CHIP_DISP
->phy_enable(mvi
, phy_id
);
209 MVS_CHIP_DISP
->phy_reset(mvi
, phy_id
, MVS_SOFT_RESET
);
212 case PHY_FUNC_DISABLE
:
213 MVS_CHIP_DISP
->phy_disable(mvi
, phy_id
);
215 case PHY_FUNC_RELEASE_SPINUP_HOLD
:
223 void mvs_set_sas_addr(struct mvs_info
*mvi
, int port_id
, u32 off_lo
,
224 u32 off_hi
, u64 sas_addr
)
226 u32 lo
= (u32
)sas_addr
;
227 u32 hi
= (u32
)(sas_addr
>>32);
229 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, port_id
, off_lo
);
230 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, port_id
, lo
);
231 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, port_id
, off_hi
);
232 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, port_id
, hi
);
235 static void mvs_bytes_dmaed(struct mvs_info
*mvi
, int i
)
237 struct mvs_phy
*phy
= &mvi
->phy
[i
];
238 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
239 struct sas_ha_struct
*sas_ha
;
240 if (!phy
->phy_attached
)
243 if (!(phy
->att_dev_info
& PORT_DEV_TRGT_MASK
)
244 && phy
->phy_type
& PORT_TYPE_SAS
) {
249 sas_ha
->notify_phy_event(sas_phy
, PHYE_OOB_DONE
);
252 struct sas_phy
*sphy
= sas_phy
->phy
;
254 sphy
->negotiated_linkrate
= sas_phy
->linkrate
;
255 sphy
->minimum_linkrate
= phy
->minimum_linkrate
;
256 sphy
->minimum_linkrate_hw
= SAS_LINK_RATE_1_5_GBPS
;
257 sphy
->maximum_linkrate
= phy
->maximum_linkrate
;
258 sphy
->maximum_linkrate_hw
= MVS_CHIP_DISP
->phy_max_link_rate();
261 if (phy
->phy_type
& PORT_TYPE_SAS
) {
262 struct sas_identify_frame
*id
;
264 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
265 id
->dev_type
= phy
->identify
.device_type
;
266 id
->initiator_bits
= SAS_PROTOCOL_ALL
;
267 id
->target_bits
= phy
->identify
.target_port_protocols
;
269 /* direct attached SAS device */
270 if (phy
->att_dev_info
& PORT_SSP_TRGT_MASK
) {
271 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_PHY_STAT
);
272 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, i
, 0x00);
274 } else if (phy
->phy_type
& PORT_TYPE_SATA
) {
277 mv_dprintk("phy %d byte dmaded.\n", i
+ mvi
->id
* mvi
->chip
->n_phy
);
279 sas_phy
->frame_rcvd_size
= phy
->frame_rcvd_size
;
281 mvi
->sas
->notify_port_event(sas_phy
,
285 void mvs_scan_start(struct Scsi_Host
*shost
)
288 unsigned short core_nr
;
289 struct mvs_info
*mvi
;
290 struct sas_ha_struct
*sha
= SHOST_TO_SAS_HA(shost
);
291 struct mvs_prv_info
*mvs_prv
= sha
->lldd_ha
;
293 core_nr
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->n_host
;
295 for (j
= 0; j
< core_nr
; j
++) {
296 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[j
];
297 for (i
= 0; i
< mvi
->chip
->n_phy
; ++i
)
298 mvs_bytes_dmaed(mvi
, i
);
300 mvs_prv
->scan_finished
= 1;
303 int mvs_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
305 struct sas_ha_struct
*sha
= SHOST_TO_SAS_HA(shost
);
306 struct mvs_prv_info
*mvs_prv
= sha
->lldd_ha
;
308 if (mvs_prv
->scan_finished
== 0)
315 static int mvs_task_prep_smp(struct mvs_info
*mvi
,
316 struct mvs_task_exec_info
*tei
)
319 struct sas_ha_struct
*sha
= mvi
->sas
;
320 struct sas_task
*task
= tei
->task
;
321 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
322 struct domain_device
*dev
= task
->dev
;
323 struct asd_sas_port
*sas_port
= dev
->port
;
324 struct sas_phy
*sphy
= dev
->phy
;
325 struct asd_sas_phy
*sas_phy
= sha
->sas_phy
[sphy
->number
];
326 struct scatterlist
*sg_req
, *sg_resp
;
327 u32 req_len
, resp_len
, tag
= tei
->tag
;
330 dma_addr_t buf_tmp_dma
;
332 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
333 u32 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
336 * DMA-map SMP request, response buffers
338 sg_req
= &task
->smp_task
.smp_req
;
339 elem
= dma_map_sg(mvi
->dev
, sg_req
, 1, DMA_TO_DEVICE
);
342 req_len
= sg_dma_len(sg_req
);
344 sg_resp
= &task
->smp_task
.smp_resp
;
345 elem
= dma_map_sg(mvi
->dev
, sg_resp
, 1, DMA_FROM_DEVICE
);
350 resp_len
= SB_RFB_MAX
;
352 /* must be in dwords */
353 if ((req_len
& 0x3) || (resp_len
& 0x3)) {
359 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
362 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */
364 buf_tmp_dma
= slot
->buf_dma
;
366 hdr
->cmd_tbl
= cpu_to_le64(sg_dma_address(sg_req
));
368 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
370 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
372 buf_tmp
+= MVS_OAF_SZ
;
373 buf_tmp_dma
+= MVS_OAF_SZ
;
375 /* region 3: PRD table *********************************** */
378 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
382 i
= MVS_CHIP_DISP
->prd_size() * tei
->n_elem
;
386 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
387 slot
->response
= buf_tmp
;
388 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
389 if (mvi
->flags
& MVF_FLAG_SOC
)
390 hdr
->reserved
[0] = 0;
393 * Fill in TX ring and command slot header
395 slot
->tx
= mvi
->tx_prod
;
396 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32((TXQ_CMD_SMP
<< TXQ_CMD_SHIFT
) |
398 (MVS_PHY_ID
<< TXQ_PHY_SHIFT
));
401 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | ((req_len
- 4) / 4));
402 hdr
->tags
= cpu_to_le32(tag
);
405 /* generate open address frame hdr (first 12 bytes) */
406 /* initiator, SMP, ftype 1h */
407 buf_oaf
[0] = (1 << 7) | (PROTOCOL_SMP
<< 4) | 0x01;
408 buf_oaf
[1] = min(sas_port
->linkrate
, dev
->linkrate
) & 0xf;
409 *(u16
*)(buf_oaf
+ 2) = 0xFFFF; /* SAS SPEC */
410 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
412 /* fill in PRD (scatter/gather) table, if any */
413 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
418 dma_unmap_sg(mvi
->dev
, &tei
->task
->smp_task
.smp_resp
, 1,
421 dma_unmap_sg(mvi
->dev
, &tei
->task
->smp_task
.smp_req
, 1,
426 static u32
mvs_get_ncq_tag(struct sas_task
*task
, u32
*tag
)
428 struct ata_queued_cmd
*qc
= task
->uldd_task
;
431 if (qc
->tf
.command
== ATA_CMD_FPDMA_WRITE
||
432 qc
->tf
.command
== ATA_CMD_FPDMA_READ
||
433 qc
->tf
.command
== ATA_CMD_FPDMA_RECV
||
434 qc
->tf
.command
== ATA_CMD_FPDMA_SEND
||
435 qc
->tf
.command
== ATA_CMD_NCQ_NON_DATA
) {
444 static int mvs_task_prep_ata(struct mvs_info
*mvi
,
445 struct mvs_task_exec_info
*tei
)
447 struct sas_task
*task
= tei
->task
;
448 struct domain_device
*dev
= task
->dev
;
449 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
450 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
451 struct asd_sas_port
*sas_port
= dev
->port
;
452 struct mvs_slot_info
*slot
;
454 u32 tag
= tei
->tag
, hdr_tag
;
457 u8
*buf_cmd
, *buf_oaf
;
458 dma_addr_t buf_tmp_dma
;
459 u32 i
, req_len
, resp_len
;
460 const u32 max_resp_len
= SB_RFB_MAX
;
462 if (mvs_assign_reg_set(mvi
, mvi_dev
) == MVS_ID_NOT_MAPPED
) {
463 mv_dprintk("Have not enough regiset for dev %d.\n",
467 slot
= &mvi
->slot_info
[tag
];
468 slot
->tx
= mvi
->tx_prod
;
469 del_q
= TXQ_MODE_I
| tag
|
470 (TXQ_CMD_STP
<< TXQ_CMD_SHIFT
) |
471 ((sas_port
->phy_mask
& TXQ_PHY_MASK
) << TXQ_PHY_SHIFT
) |
472 (mvi_dev
->taskfileset
<< TXQ_SRS_SHIFT
);
473 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(del_q
);
475 if (task
->data_dir
== DMA_FROM_DEVICE
)
476 flags
= (MVS_CHIP_DISP
->prd_count() << MCH_PRD_LEN_SHIFT
);
478 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
480 if (task
->ata_task
.use_ncq
)
482 if (dev
->sata_dev
.class == ATA_DEV_ATAPI
) {
483 if (task
->ata_task
.fis
.command
!= ATA_CMD_ID_ATAPI
)
487 hdr
->flags
= cpu_to_le32(flags
);
489 if (task
->ata_task
.use_ncq
&& mvs_get_ncq_tag(task
, &hdr_tag
))
490 task
->ata_task
.fis
.sector_count
|= (u8
) (hdr_tag
<< 3);
494 hdr
->tags
= cpu_to_le32(hdr_tag
);
496 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
499 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
502 /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
503 buf_cmd
= buf_tmp
= slot
->buf
;
504 buf_tmp_dma
= slot
->buf_dma
;
506 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
508 buf_tmp
+= MVS_ATA_CMD_SZ
;
509 buf_tmp_dma
+= MVS_ATA_CMD_SZ
;
511 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
512 /* used for STP. unused for SATA? */
514 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
516 buf_tmp
+= MVS_OAF_SZ
;
517 buf_tmp_dma
+= MVS_OAF_SZ
;
519 /* region 3: PRD table ********************************************* */
523 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
526 i
= MVS_CHIP_DISP
->prd_size() * MVS_CHIP_DISP
->prd_count();
531 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
532 slot
->response
= buf_tmp
;
533 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
534 if (mvi
->flags
& MVF_FLAG_SOC
)
535 hdr
->reserved
[0] = 0;
537 req_len
= sizeof(struct host_to_dev_fis
);
538 resp_len
= MVS_SLOT_BUF_SZ
- MVS_ATA_CMD_SZ
-
539 sizeof(struct mvs_err_info
) - i
;
541 /* request, response lengths */
542 resp_len
= min(resp_len
, max_resp_len
);
543 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
545 if (likely(!task
->ata_task
.device_control_reg_update
))
546 task
->ata_task
.fis
.flags
|= 0x80; /* C=1: update ATA cmd reg */
547 /* fill in command FIS and ATAPI CDB */
548 memcpy(buf_cmd
, &task
->ata_task
.fis
, sizeof(struct host_to_dev_fis
));
549 if (dev
->sata_dev
.class == ATA_DEV_ATAPI
)
550 memcpy(buf_cmd
+ STP_ATAPI_CMD
,
551 task
->ata_task
.atapi_packet
, 16);
553 /* generate open address frame hdr (first 12 bytes) */
554 /* initiator, STP, ftype 1h */
555 buf_oaf
[0] = (1 << 7) | (PROTOCOL_STP
<< 4) | 0x1;
556 buf_oaf
[1] = min(sas_port
->linkrate
, dev
->linkrate
) & 0xf;
557 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(mvi_dev
->device_id
+ 1);
558 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
560 /* fill in PRD (scatter/gather) table, if any */
561 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
563 if (task
->data_dir
== DMA_FROM_DEVICE
)
564 MVS_CHIP_DISP
->dma_fix(mvi
, sas_port
->phy_mask
,
565 TRASH_BUCKET_SIZE
, tei
->n_elem
, buf_prd
);
570 static int mvs_task_prep_ssp(struct mvs_info
*mvi
,
571 struct mvs_task_exec_info
*tei
, int is_tmf
,
572 struct mvs_tmf_task
*tmf
)
574 struct sas_task
*task
= tei
->task
;
575 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
576 struct mvs_port
*port
= tei
->port
;
577 struct domain_device
*dev
= task
->dev
;
578 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
579 struct asd_sas_port
*sas_port
= dev
->port
;
580 struct mvs_slot_info
*slot
;
582 struct ssp_frame_hdr
*ssp_hdr
;
584 u8
*buf_cmd
, *buf_oaf
, fburst
= 0;
585 dma_addr_t buf_tmp_dma
;
587 u32 resp_len
, req_len
, i
, tag
= tei
->tag
;
588 const u32 max_resp_len
= SB_RFB_MAX
;
591 slot
= &mvi
->slot_info
[tag
];
593 phy_mask
= ((port
->wide_port_phymap
) ? port
->wide_port_phymap
:
594 sas_port
->phy_mask
) & TXQ_PHY_MASK
;
596 slot
->tx
= mvi
->tx_prod
;
597 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(TXQ_MODE_I
| tag
|
598 (TXQ_CMD_SSP
<< TXQ_CMD_SHIFT
) |
599 (phy_mask
<< TXQ_PHY_SHIFT
));
602 if (task
->ssp_task
.enable_first_burst
) {
607 flags
|= (MCH_SSP_FR_TASK
<< MCH_SSP_FR_TYPE_SHIFT
);
609 flags
|= (MCH_SSP_FR_CMD
<< MCH_SSP_FR_TYPE_SHIFT
);
611 hdr
->flags
= cpu_to_le32(flags
| (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
));
612 hdr
->tags
= cpu_to_le32(tag
);
613 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
616 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
619 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
620 buf_cmd
= buf_tmp
= slot
->buf
;
621 buf_tmp_dma
= slot
->buf_dma
;
623 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
625 buf_tmp
+= MVS_SSP_CMD_SZ
;
626 buf_tmp_dma
+= MVS_SSP_CMD_SZ
;
628 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
630 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
632 buf_tmp
+= MVS_OAF_SZ
;
633 buf_tmp_dma
+= MVS_OAF_SZ
;
635 /* region 3: PRD table ********************************************* */
638 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
642 i
= MVS_CHIP_DISP
->prd_size() * tei
->n_elem
;
646 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
647 slot
->response
= buf_tmp
;
648 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
649 if (mvi
->flags
& MVF_FLAG_SOC
)
650 hdr
->reserved
[0] = 0;
652 resp_len
= MVS_SLOT_BUF_SZ
- MVS_SSP_CMD_SZ
- MVS_OAF_SZ
-
653 sizeof(struct mvs_err_info
) - i
;
654 resp_len
= min(resp_len
, max_resp_len
);
656 req_len
= sizeof(struct ssp_frame_hdr
) + 28;
658 /* request, response lengths */
659 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
661 /* generate open address frame hdr (first 12 bytes) */
662 /* initiator, SSP, ftype 1h */
663 buf_oaf
[0] = (1 << 7) | (PROTOCOL_SSP
<< 4) | 0x1;
664 buf_oaf
[1] = min(sas_port
->linkrate
, dev
->linkrate
) & 0xf;
665 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(mvi_dev
->device_id
+ 1);
666 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
668 /* fill in SSP frame header (Command Table.SSP frame header) */
669 ssp_hdr
= (struct ssp_frame_hdr
*)buf_cmd
;
672 ssp_hdr
->frame_type
= SSP_TASK
;
674 ssp_hdr
->frame_type
= SSP_COMMAND
;
676 memcpy(ssp_hdr
->hashed_dest_addr
, dev
->hashed_sas_addr
,
677 HASHED_SAS_ADDR_SIZE
);
678 memcpy(ssp_hdr
->hashed_src_addr
,
679 dev
->hashed_sas_addr
, HASHED_SAS_ADDR_SIZE
);
680 ssp_hdr
->tag
= cpu_to_be16(tag
);
682 /* fill in IU for TASK and Command Frame */
683 buf_cmd
+= sizeof(*ssp_hdr
);
684 memcpy(buf_cmd
, &task
->ssp_task
.LUN
, 8);
686 if (ssp_hdr
->frame_type
!= SSP_TASK
) {
687 buf_cmd
[9] = fburst
| task
->ssp_task
.task_attr
|
688 (task
->ssp_task
.task_prio
<< 3);
689 memcpy(buf_cmd
+ 12, task
->ssp_task
.cmd
->cmnd
,
690 task
->ssp_task
.cmd
->cmd_len
);
692 buf_cmd
[10] = tmf
->tmf
;
697 (tmf
->tag_of_task_to_be_managed
>> 8) & 0xff;
699 tmf
->tag_of_task_to_be_managed
& 0xff;
705 /* fill in PRD (scatter/gather) table, if any */
706 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
710 #define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == SAS_PHY_UNUSED)))
711 static int mvs_task_prep(struct sas_task
*task
, struct mvs_info
*mvi
, int is_tmf
,
712 struct mvs_tmf_task
*tmf
, int *pass
)
714 struct domain_device
*dev
= task
->dev
;
715 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
716 struct mvs_task_exec_info tei
;
717 struct mvs_slot_info
*slot
;
718 u32 tag
= 0xdeadbeef, n_elem
= 0;
722 struct task_status_struct
*tsm
= &task
->task_status
;
724 tsm
->resp
= SAS_TASK_UNDELIVERED
;
725 tsm
->stat
= SAS_PHY_DOWN
;
727 * libsas will use dev->port, should
728 * not call task_done for sata
730 if (dev
->dev_type
!= SAS_SATA_DEV
)
731 task
->task_done(task
);
735 if (DEV_IS_GONE(mvi_dev
)) {
737 mv_dprintk("device %d not ready.\n",
740 mv_dprintk("device %016llx not ready.\n",
741 SAS_ADDR(dev
->sas_addr
));
746 tei
.port
= dev
->port
->lldd_port
;
747 if (tei
.port
&& !tei
.port
->port_attached
&& !tmf
) {
748 if (sas_protocol_ata(task
->task_proto
)) {
749 struct task_status_struct
*ts
= &task
->task_status
;
750 mv_dprintk("SATA/STP port %d does not attach"
751 "device.\n", dev
->port
->id
);
752 ts
->resp
= SAS_TASK_COMPLETE
;
753 ts
->stat
= SAS_PHY_DOWN
;
755 task
->task_done(task
);
758 struct task_status_struct
*ts
= &task
->task_status
;
759 mv_dprintk("SAS port %d does not attach"
760 "device.\n", dev
->port
->id
);
761 ts
->resp
= SAS_TASK_UNDELIVERED
;
762 ts
->stat
= SAS_PHY_DOWN
;
763 task
->task_done(task
);
768 if (!sas_protocol_ata(task
->task_proto
)) {
769 if (task
->num_scatter
) {
770 n_elem
= dma_map_sg(mvi
->dev
,
780 n_elem
= task
->num_scatter
;
783 rc
= mvs_tag_alloc(mvi
, &tag
);
787 slot
= &mvi
->slot_info
[tag
];
789 task
->lldd_task
= NULL
;
790 slot
->n_elem
= n_elem
;
791 slot
->slot_tag
= tag
;
793 slot
->buf
= dma_pool_zalloc(mvi
->dma_pool
, GFP_ATOMIC
, &slot
->buf_dma
);
800 tei
.hdr
= &mvi
->slot
[tag
];
803 switch (task
->task_proto
) {
804 case SAS_PROTOCOL_SMP
:
805 rc
= mvs_task_prep_smp(mvi
, &tei
);
807 case SAS_PROTOCOL_SSP
:
808 rc
= mvs_task_prep_ssp(mvi
, &tei
, is_tmf
, tmf
);
810 case SAS_PROTOCOL_SATA
:
811 case SAS_PROTOCOL_STP
:
812 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
813 rc
= mvs_task_prep_ata(mvi
, &tei
);
816 dev_printk(KERN_ERR
, mvi
->dev
,
817 "unknown sas_task proto: 0x%x\n",
824 mv_dprintk("rc is %x\n", rc
);
825 goto err_out_slot_buf
;
828 slot
->port
= tei
.port
;
829 task
->lldd_task
= slot
;
830 list_add_tail(&slot
->entry
, &tei
.port
->list
);
831 spin_lock(&task
->task_state_lock
);
832 task
->task_state_flags
|= SAS_TASK_AT_INITIATOR
;
833 spin_unlock(&task
->task_state_lock
);
835 mvi_dev
->running_req
++;
837 mvi
->tx_prod
= (mvi
->tx_prod
+ 1) & (MVS_CHIP_SLOT_SZ
- 1);
842 dma_pool_free(mvi
->dma_pool
, slot
->buf
, slot
->buf_dma
);
844 mvs_tag_free(mvi
, tag
);
847 dev_printk(KERN_ERR
, mvi
->dev
, "mvsas prep failed[%d]!\n", rc
);
848 if (!sas_protocol_ata(task
->task_proto
))
850 dma_unmap_sg(mvi
->dev
, task
->scatter
, n_elem
,
856 static int mvs_task_exec(struct sas_task
*task
, gfp_t gfp_flags
,
857 struct completion
*completion
, int is_tmf
,
858 struct mvs_tmf_task
*tmf
)
860 struct mvs_info
*mvi
= NULL
;
863 unsigned long flags
= 0;
865 mvi
= ((struct mvs_device
*)task
->dev
->lldd_dev
)->mvi_info
;
867 spin_lock_irqsave(&mvi
->lock
, flags
);
868 rc
= mvs_task_prep(task
, mvi
, is_tmf
, tmf
, &pass
);
870 dev_printk(KERN_ERR
, mvi
->dev
, "mvsas exec failed[%d]!\n", rc
);
873 MVS_CHIP_DISP
->start_delivery(mvi
, (mvi
->tx_prod
- 1) &
874 (MVS_CHIP_SLOT_SZ
- 1));
875 spin_unlock_irqrestore(&mvi
->lock
, flags
);
880 int mvs_queue_command(struct sas_task
*task
, gfp_t gfp_flags
)
882 return mvs_task_exec(task
, gfp_flags
, NULL
, 0, NULL
);
885 static void mvs_slot_free(struct mvs_info
*mvi
, u32 rx_desc
)
887 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
888 mvs_tag_clear(mvi
, slot_idx
);
891 static void mvs_slot_task_free(struct mvs_info
*mvi
, struct sas_task
*task
,
892 struct mvs_slot_info
*slot
, u32 slot_idx
)
898 if (!sas_protocol_ata(task
->task_proto
))
900 dma_unmap_sg(mvi
->dev
, task
->scatter
,
901 slot
->n_elem
, task
->data_dir
);
903 switch (task
->task_proto
) {
904 case SAS_PROTOCOL_SMP
:
905 dma_unmap_sg(mvi
->dev
, &task
->smp_task
.smp_resp
, 1,
907 dma_unmap_sg(mvi
->dev
, &task
->smp_task
.smp_req
, 1,
911 case SAS_PROTOCOL_SATA
:
912 case SAS_PROTOCOL_STP
:
913 case SAS_PROTOCOL_SSP
:
920 dma_pool_free(mvi
->dma_pool
, slot
->buf
, slot
->buf_dma
);
923 list_del_init(&slot
->entry
);
924 task
->lldd_task
= NULL
;
927 slot
->slot_tag
= 0xFFFFFFFF;
928 mvs_slot_free(mvi
, slot_idx
);
931 static void mvs_update_wideport(struct mvs_info
*mvi
, int phy_no
)
933 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
934 struct mvs_port
*port
= phy
->port
;
937 for_each_phy(port
->wide_port_phymap
, j
, no
) {
939 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, no
,
941 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, no
,
942 port
->wide_port_phymap
);
944 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, no
,
946 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, no
,
952 static u32
mvs_is_phy_ready(struct mvs_info
*mvi
, int i
)
955 struct mvs_phy
*phy
= &mvi
->phy
[i
];
956 struct mvs_port
*port
= phy
->port
;
958 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, i
);
959 if ((tmp
& PHY_READY_MASK
) && !(phy
->irq_status
& PHYEV_POOF
)) {
961 phy
->phy_attached
= 1;
966 if (phy
->phy_type
& PORT_TYPE_SAS
) {
967 port
->wide_port_phymap
&= ~(1U << i
);
968 if (!port
->wide_port_phymap
)
969 port
->port_attached
= 0;
970 mvs_update_wideport(mvi
, i
);
971 } else if (phy
->phy_type
& PORT_TYPE_SATA
)
972 port
->port_attached
= 0;
974 phy
->phy_attached
= 0;
975 phy
->phy_type
&= ~(PORT_TYPE_SAS
| PORT_TYPE_SATA
);
980 static void *mvs_get_d2h_reg(struct mvs_info
*mvi
, int i
, void *buf
)
982 u32
*s
= (u32
*) buf
;
987 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG3
);
988 s
[3] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
990 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG2
);
991 s
[2] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
993 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG1
);
994 s
[1] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
996 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG0
);
997 s
[0] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
999 if (((s
[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8
*)&s
[3] == 0x01))
1000 s
[1] = 0x00EB1401 | (*((u8
*)&s
[1] + 3) & 0x10);
1005 static u32
mvs_is_sig_fis_received(u32 irq_status
)
1007 return irq_status
& PHYEV_SIG_FIS
;
1010 static void mvs_sig_remove_timer(struct mvs_phy
*phy
)
1012 if (phy
->timer
.function
)
1013 del_timer(&phy
->timer
);
1014 phy
->timer
.function
= NULL
;
1017 void mvs_update_phyinfo(struct mvs_info
*mvi
, int i
, int get_st
)
1019 struct mvs_phy
*phy
= &mvi
->phy
[i
];
1020 struct sas_identify_frame
*id
;
1022 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
1025 phy
->irq_status
= MVS_CHIP_DISP
->read_port_irq_stat(mvi
, i
);
1026 phy
->phy_status
= mvs_is_phy_ready(mvi
, i
);
1029 if (phy
->phy_status
) {
1031 struct asd_sas_phy
*sas_phy
= &mvi
->phy
[i
].sas_phy
;
1033 oob_done
= MVS_CHIP_DISP
->oob_done(mvi
, i
);
1035 MVS_CHIP_DISP
->fix_phy_info(mvi
, i
, id
);
1036 if (phy
->phy_type
& PORT_TYPE_SATA
) {
1037 phy
->identify
.target_port_protocols
= SAS_PROTOCOL_STP
;
1038 if (mvs_is_sig_fis_received(phy
->irq_status
)) {
1039 mvs_sig_remove_timer(phy
);
1040 phy
->phy_attached
= 1;
1041 phy
->att_dev_sas_addr
=
1042 i
+ mvi
->id
* mvi
->chip
->n_phy
;
1044 sas_phy
->oob_mode
= SATA_OOB_MODE
;
1045 phy
->frame_rcvd_size
=
1046 sizeof(struct dev_to_host_fis
);
1047 mvs_get_d2h_reg(mvi
, i
, id
);
1050 dev_printk(KERN_DEBUG
, mvi
->dev
,
1051 "Phy%d : No sig fis\n", i
);
1052 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(mvi
, i
);
1053 MVS_CHIP_DISP
->write_port_irq_mask(mvi
, i
,
1054 tmp
| PHYEV_SIG_FIS
);
1055 phy
->phy_attached
= 0;
1056 phy
->phy_type
&= ~PORT_TYPE_SATA
;
1059 } else if (phy
->phy_type
& PORT_TYPE_SAS
1060 || phy
->att_dev_info
& PORT_SSP_INIT_MASK
) {
1061 phy
->phy_attached
= 1;
1062 phy
->identify
.device_type
=
1063 phy
->att_dev_info
& PORT_DEV_TYPE_MASK
;
1065 if (phy
->identify
.device_type
== SAS_END_DEVICE
)
1066 phy
->identify
.target_port_protocols
=
1068 else if (phy
->identify
.device_type
!= SAS_PHY_UNUSED
)
1069 phy
->identify
.target_port_protocols
=
1072 sas_phy
->oob_mode
= SAS_OOB_MODE
;
1073 phy
->frame_rcvd_size
=
1074 sizeof(struct sas_identify_frame
);
1076 memcpy(sas_phy
->attached_sas_addr
,
1077 &phy
->att_dev_sas_addr
, SAS_ADDR_SIZE
);
1079 if (MVS_CHIP_DISP
->phy_work_around
)
1080 MVS_CHIP_DISP
->phy_work_around(mvi
, i
);
1082 mv_dprintk("phy %d attach dev info is %x\n",
1083 i
+ mvi
->id
* mvi
->chip
->n_phy
, phy
->att_dev_info
);
1084 mv_dprintk("phy %d attach sas addr is %llx\n",
1085 i
+ mvi
->id
* mvi
->chip
->n_phy
, phy
->att_dev_sas_addr
);
1088 MVS_CHIP_DISP
->write_port_irq_stat(mvi
, i
, phy
->irq_status
);
1091 static void mvs_port_notify_formed(struct asd_sas_phy
*sas_phy
, int lock
)
1093 struct sas_ha_struct
*sas_ha
= sas_phy
->ha
;
1094 struct mvs_info
*mvi
= NULL
; int i
= 0, hi
;
1095 struct mvs_phy
*phy
= sas_phy
->lldd_phy
;
1096 struct asd_sas_port
*sas_port
= sas_phy
->port
;
1097 struct mvs_port
*port
;
1098 unsigned long flags
= 0;
1102 while (sas_ha
->sas_phy
[i
]) {
1103 if (sas_ha
->sas_phy
[i
] == sas_phy
)
1107 hi
= i
/((struct mvs_prv_info
*)sas_ha
->lldd_ha
)->n_phy
;
1108 mvi
= ((struct mvs_prv_info
*)sas_ha
->lldd_ha
)->mvi
[hi
];
1109 if (i
>= mvi
->chip
->n_phy
)
1110 port
= &mvi
->port
[i
- mvi
->chip
->n_phy
];
1112 port
= &mvi
->port
[i
];
1114 spin_lock_irqsave(&mvi
->lock
, flags
);
1115 port
->port_attached
= 1;
1117 sas_port
->lldd_port
= port
;
1118 if (phy
->phy_type
& PORT_TYPE_SAS
) {
1119 port
->wide_port_phymap
= sas_port
->phy_mask
;
1120 mv_printk("set wide port phy map %x\n", sas_port
->phy_mask
);
1121 mvs_update_wideport(mvi
, sas_phy
->id
);
1123 /* direct attached SAS device */
1124 if (phy
->att_dev_info
& PORT_SSP_TRGT_MASK
) {
1125 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_PHY_STAT
);
1126 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, i
, 0x04);
1130 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1133 static void mvs_port_notify_deformed(struct asd_sas_phy
*sas_phy
, int lock
)
1135 struct domain_device
*dev
;
1136 struct mvs_phy
*phy
= sas_phy
->lldd_phy
;
1137 struct mvs_info
*mvi
= phy
->mvi
;
1138 struct asd_sas_port
*port
= sas_phy
->port
;
1141 while (phy
!= &mvi
->phy
[phy_no
]) {
1143 if (phy_no
>= MVS_MAX_PHYS
)
1146 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
)
1147 mvs_do_release_task(phy
->mvi
, phy_no
, dev
);
1152 void mvs_port_formed(struct asd_sas_phy
*sas_phy
)
1154 mvs_port_notify_formed(sas_phy
, 1);
1157 void mvs_port_deformed(struct asd_sas_phy
*sas_phy
)
1159 mvs_port_notify_deformed(sas_phy
, 1);
1162 static struct mvs_device
*mvs_alloc_dev(struct mvs_info
*mvi
)
1165 for (dev
= 0; dev
< MVS_MAX_DEVICES
; dev
++) {
1166 if (mvi
->devices
[dev
].dev_type
== SAS_PHY_UNUSED
) {
1167 mvi
->devices
[dev
].device_id
= dev
;
1168 return &mvi
->devices
[dev
];
1172 if (dev
== MVS_MAX_DEVICES
)
1173 mv_printk("max support %d devices, ignore ..\n",
1179 static void mvs_free_dev(struct mvs_device
*mvi_dev
)
1181 u32 id
= mvi_dev
->device_id
;
1182 memset(mvi_dev
, 0, sizeof(*mvi_dev
));
1183 mvi_dev
->device_id
= id
;
1184 mvi_dev
->dev_type
= SAS_PHY_UNUSED
;
1185 mvi_dev
->dev_status
= MVS_DEV_NORMAL
;
1186 mvi_dev
->taskfileset
= MVS_ID_NOT_MAPPED
;
1189 static int mvs_dev_found_notify(struct domain_device
*dev
, int lock
)
1191 unsigned long flags
= 0;
1193 struct mvs_info
*mvi
= NULL
;
1194 struct domain_device
*parent_dev
= dev
->parent
;
1195 struct mvs_device
*mvi_device
;
1197 mvi
= mvs_find_dev_mvi(dev
);
1200 spin_lock_irqsave(&mvi
->lock
, flags
);
1202 mvi_device
= mvs_alloc_dev(mvi
);
1207 dev
->lldd_dev
= mvi_device
;
1208 mvi_device
->dev_status
= MVS_DEV_NORMAL
;
1209 mvi_device
->dev_type
= dev
->dev_type
;
1210 mvi_device
->mvi_info
= mvi
;
1211 mvi_device
->sas_device
= dev
;
1212 if (parent_dev
&& DEV_IS_EXPANDER(parent_dev
->dev_type
)) {
1214 u8 phy_num
= parent_dev
->ex_dev
.num_phys
;
1216 for (phy_id
= 0; phy_id
< phy_num
; phy_id
++) {
1217 phy
= &parent_dev
->ex_dev
.ex_phy
[phy_id
];
1218 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1219 SAS_ADDR(dev
->sas_addr
)) {
1220 mvi_device
->attached_phy
= phy_id
;
1225 if (phy_id
== phy_num
) {
1226 mv_printk("Error: no attached dev:%016llx"
1228 SAS_ADDR(dev
->sas_addr
),
1229 SAS_ADDR(parent_dev
->sas_addr
));
1236 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1240 int mvs_dev_found(struct domain_device
*dev
)
1242 return mvs_dev_found_notify(dev
, 1);
1245 static void mvs_dev_gone_notify(struct domain_device
*dev
)
1247 unsigned long flags
= 0;
1248 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
1249 struct mvs_info
*mvi
;
1252 mv_dprintk("found dev has gone.\n");
1256 mvi
= mvi_dev
->mvi_info
;
1258 spin_lock_irqsave(&mvi
->lock
, flags
);
1260 mv_dprintk("found dev[%d:%x] is gone.\n",
1261 mvi_dev
->device_id
, mvi_dev
->dev_type
);
1262 mvs_release_task(mvi
, dev
);
1263 mvs_free_reg_set(mvi
, mvi_dev
);
1264 mvs_free_dev(mvi_dev
);
1266 dev
->lldd_dev
= NULL
;
1267 mvi_dev
->sas_device
= NULL
;
1269 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1273 void mvs_dev_gone(struct domain_device
*dev
)
1275 mvs_dev_gone_notify(dev
);
1278 static void mvs_task_done(struct sas_task
*task
)
1280 if (!del_timer(&task
->slow_task
->timer
))
1282 complete(&task
->slow_task
->completion
);
1285 static void mvs_tmf_timedout(struct timer_list
*t
)
1287 struct sas_task_slow
*slow
= from_timer(slow
, t
, timer
);
1288 struct sas_task
*task
= slow
->task
;
1290 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
1291 complete(&task
->slow_task
->completion
);
1294 #define MVS_TASK_TIMEOUT 20
1295 static int mvs_exec_internal_tmf_task(struct domain_device
*dev
,
1296 void *parameter
, u32 para_len
, struct mvs_tmf_task
*tmf
)
1299 struct sas_task
*task
= NULL
;
1301 for (retry
= 0; retry
< 3; retry
++) {
1302 task
= sas_alloc_slow_task(GFP_KERNEL
);
1307 task
->task_proto
= dev
->tproto
;
1309 memcpy(&task
->ssp_task
, parameter
, para_len
);
1310 task
->task_done
= mvs_task_done
;
1312 task
->slow_task
->timer
.function
= mvs_tmf_timedout
;
1313 task
->slow_task
->timer
.expires
= jiffies
+ MVS_TASK_TIMEOUT
*HZ
;
1314 add_timer(&task
->slow_task
->timer
);
1316 res
= mvs_task_exec(task
, GFP_KERNEL
, NULL
, 1, tmf
);
1319 del_timer(&task
->slow_task
->timer
);
1320 mv_printk("executing internal task failed:%d\n", res
);
1324 wait_for_completion(&task
->slow_task
->completion
);
1325 res
= TMF_RESP_FUNC_FAILED
;
1326 /* Even TMF timed out, return direct. */
1327 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
1328 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
1329 mv_printk("TMF task[%x] timeout.\n", tmf
->tmf
);
1334 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1335 task
->task_status
.stat
== SAM_STAT_GOOD
) {
1336 res
= TMF_RESP_FUNC_COMPLETE
;
1340 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1341 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
1342 /* no error, but return the number of bytes of
1344 res
= task
->task_status
.residual
;
1348 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1349 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
1350 mv_dprintk("blocked task error.\n");
1354 mv_dprintk(" task to dev %016llx response: 0x%x "
1356 SAS_ADDR(dev
->sas_addr
),
1357 task
->task_status
.resp
,
1358 task
->task_status
.stat
);
1359 sas_free_task(task
);
1365 BUG_ON(retry
== 3 && task
!= NULL
);
1366 sas_free_task(task
);
1370 static int mvs_debug_issue_ssp_tmf(struct domain_device
*dev
,
1371 u8
*lun
, struct mvs_tmf_task
*tmf
)
1373 struct sas_ssp_task ssp_task
;
1374 if (!(dev
->tproto
& SAS_PROTOCOL_SSP
))
1375 return TMF_RESP_FUNC_ESUPP
;
1377 memcpy(ssp_task
.LUN
, lun
, 8);
1379 return mvs_exec_internal_tmf_task(dev
, &ssp_task
,
1380 sizeof(ssp_task
), tmf
);
1384 /* Standard mandates link reset for ATA (type 0)
1385 and hard reset for SSP (type 1) , only for RECOVERY */
1386 static int mvs_debug_I_T_nexus_reset(struct domain_device
*dev
)
1389 struct sas_phy
*phy
= sas_get_local_phy(dev
);
1390 int reset_type
= (dev
->dev_type
== SAS_SATA_DEV
||
1391 (dev
->tproto
& SAS_PROTOCOL_STP
)) ? 0 : 1;
1392 rc
= sas_phy_reset(phy
, reset_type
);
1393 sas_put_local_phy(phy
);
1398 /* mandatory SAM-3 */
1399 int mvs_lu_reset(struct domain_device
*dev
, u8
*lun
)
1401 unsigned long flags
;
1402 int rc
= TMF_RESP_FUNC_FAILED
;
1403 struct mvs_tmf_task tmf_task
;
1404 struct mvs_device
* mvi_dev
= dev
->lldd_dev
;
1405 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1407 tmf_task
.tmf
= TMF_LU_RESET
;
1408 mvi_dev
->dev_status
= MVS_DEV_EH
;
1409 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1410 if (rc
== TMF_RESP_FUNC_COMPLETE
) {
1411 spin_lock_irqsave(&mvi
->lock
, flags
);
1412 mvs_release_task(mvi
, dev
);
1413 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1415 /* If failed, fall-through I_T_Nexus reset */
1416 mv_printk("%s for device[%x]:rc= %d\n", __func__
,
1417 mvi_dev
->device_id
, rc
);
1421 int mvs_I_T_nexus_reset(struct domain_device
*dev
)
1423 unsigned long flags
;
1424 int rc
= TMF_RESP_FUNC_FAILED
;
1425 struct mvs_device
* mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1426 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1428 if (mvi_dev
->dev_status
!= MVS_DEV_EH
)
1429 return TMF_RESP_FUNC_COMPLETE
;
1431 mvi_dev
->dev_status
= MVS_DEV_NORMAL
;
1432 rc
= mvs_debug_I_T_nexus_reset(dev
);
1433 mv_printk("%s for device[%x]:rc= %d\n",
1434 __func__
, mvi_dev
->device_id
, rc
);
1436 spin_lock_irqsave(&mvi
->lock
, flags
);
1437 mvs_release_task(mvi
, dev
);
1438 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1442 /* optional SAM-3 */
1443 int mvs_query_task(struct sas_task
*task
)
1446 struct scsi_lun lun
;
1447 struct mvs_tmf_task tmf_task
;
1448 int rc
= TMF_RESP_FUNC_FAILED
;
1450 if (task
->lldd_task
&& task
->task_proto
& SAS_PROTOCOL_SSP
) {
1451 struct scsi_cmnd
* cmnd
= (struct scsi_cmnd
*)task
->uldd_task
;
1452 struct domain_device
*dev
= task
->dev
;
1453 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1454 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1456 int_to_scsilun(cmnd
->device
->lun
, &lun
);
1457 rc
= mvs_find_tag(mvi
, task
, &tag
);
1459 rc
= TMF_RESP_FUNC_FAILED
;
1463 tmf_task
.tmf
= TMF_QUERY_TASK
;
1464 tmf_task
.tag_of_task_to_be_managed
= cpu_to_le16(tag
);
1466 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
.scsi_lun
, &tmf_task
);
1468 /* The task is still in Lun, release it then */
1469 case TMF_RESP_FUNC_SUCC
:
1470 /* The task is not in Lun or failed, reset the phy */
1471 case TMF_RESP_FUNC_FAILED
:
1472 case TMF_RESP_FUNC_COMPLETE
:
1476 mv_printk("%s:rc= %d\n", __func__
, rc
);
1480 /* mandatory SAM-3, still need free task/slot info */
1481 int mvs_abort_task(struct sas_task
*task
)
1483 struct scsi_lun lun
;
1484 struct mvs_tmf_task tmf_task
;
1485 struct domain_device
*dev
= task
->dev
;
1486 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1487 struct mvs_info
*mvi
;
1488 int rc
= TMF_RESP_FUNC_FAILED
;
1489 unsigned long flags
;
1493 mv_printk("Device has removed\n");
1494 return TMF_RESP_FUNC_FAILED
;
1497 mvi
= mvi_dev
->mvi_info
;
1499 spin_lock_irqsave(&task
->task_state_lock
, flags
);
1500 if (task
->task_state_flags
& SAS_TASK_STATE_DONE
) {
1501 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
1502 rc
= TMF_RESP_FUNC_COMPLETE
;
1505 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
1506 mvi_dev
->dev_status
= MVS_DEV_EH
;
1507 if (task
->lldd_task
&& task
->task_proto
& SAS_PROTOCOL_SSP
) {
1508 struct scsi_cmnd
* cmnd
= (struct scsi_cmnd
*)task
->uldd_task
;
1510 int_to_scsilun(cmnd
->device
->lun
, &lun
);
1511 rc
= mvs_find_tag(mvi
, task
, &tag
);
1513 mv_printk("No such tag in %s\n", __func__
);
1514 rc
= TMF_RESP_FUNC_FAILED
;
1518 tmf_task
.tmf
= TMF_ABORT_TASK
;
1519 tmf_task
.tag_of_task_to_be_managed
= cpu_to_le16(tag
);
1521 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
.scsi_lun
, &tmf_task
);
1523 /* if successful, clear the task and callback forwards.*/
1524 if (rc
== TMF_RESP_FUNC_COMPLETE
) {
1526 struct mvs_slot_info
*slot
;
1528 if (task
->lldd_task
) {
1529 slot
= task
->lldd_task
;
1530 slot_no
= (u32
) (slot
- mvi
->slot_info
);
1531 spin_lock_irqsave(&mvi
->lock
, flags
);
1532 mvs_slot_complete(mvi
, slot_no
, 1);
1533 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1537 } else if (task
->task_proto
& SAS_PROTOCOL_SATA
||
1538 task
->task_proto
& SAS_PROTOCOL_STP
) {
1539 if (SAS_SATA_DEV
== dev
->dev_type
) {
1540 struct mvs_slot_info
*slot
= task
->lldd_task
;
1541 u32 slot_idx
= (u32
)(slot
- mvi
->slot_info
);
1542 mv_dprintk("mvs_abort_task() mvi=%p task=%p "
1543 "slot=%p slot_idx=x%x\n",
1544 mvi
, task
, slot
, slot_idx
);
1545 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
1546 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1547 rc
= TMF_RESP_FUNC_COMPLETE
;
1553 if (rc
!= TMF_RESP_FUNC_COMPLETE
)
1554 mv_printk("%s:rc= %d\n", __func__
, rc
);
1558 int mvs_abort_task_set(struct domain_device
*dev
, u8
*lun
)
1560 int rc
= TMF_RESP_FUNC_FAILED
;
1561 struct mvs_tmf_task tmf_task
;
1563 tmf_task
.tmf
= TMF_ABORT_TASK_SET
;
1564 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1569 int mvs_clear_aca(struct domain_device
*dev
, u8
*lun
)
1571 int rc
= TMF_RESP_FUNC_FAILED
;
1572 struct mvs_tmf_task tmf_task
;
1574 tmf_task
.tmf
= TMF_CLEAR_ACA
;
1575 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1580 int mvs_clear_task_set(struct domain_device
*dev
, u8
*lun
)
1582 int rc
= TMF_RESP_FUNC_FAILED
;
1583 struct mvs_tmf_task tmf_task
;
1585 tmf_task
.tmf
= TMF_CLEAR_TASK_SET
;
1586 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1591 static int mvs_sata_done(struct mvs_info
*mvi
, struct sas_task
*task
,
1592 u32 slot_idx
, int err
)
1594 struct mvs_device
*mvi_dev
= task
->dev
->lldd_dev
;
1595 struct task_status_struct
*tstat
= &task
->task_status
;
1596 struct ata_task_resp
*resp
= (struct ata_task_resp
*)tstat
->buf
;
1597 int stat
= SAM_STAT_GOOD
;
1600 resp
->frame_len
= sizeof(struct dev_to_host_fis
);
1601 memcpy(&resp
->ending_fis
[0],
1602 SATA_RECEIVED_D2H_FIS(mvi_dev
->taskfileset
),
1603 sizeof(struct dev_to_host_fis
));
1604 tstat
->buf_valid_size
= sizeof(*resp
);
1605 if (unlikely(err
)) {
1606 if (unlikely(err
& CMD_ISS_STPD
))
1607 stat
= SAS_OPEN_REJECT
;
1609 stat
= SAS_PROTO_RESPONSE
;
1615 static void mvs_set_sense(u8
*buffer
, int len
, int d_sense
,
1616 int key
, int asc
, int ascq
)
1618 memset(buffer
, 0, len
);
1621 /* Descriptor format */
1623 mv_printk("Length %d of sense buffer too small to "
1624 "fit sense %x:%x:%x", len
, key
, asc
, ascq
);
1627 buffer
[0] = 0x72; /* Response Code */
1629 buffer
[1] = key
; /* Sense Key */
1631 buffer
[2] = asc
; /* ASC */
1633 buffer
[3] = ascq
; /* ASCQ */
1636 mv_printk("Length %d of sense buffer too small to "
1637 "fit sense %x:%x:%x", len
, key
, asc
, ascq
);
1640 buffer
[0] = 0x70; /* Response Code */
1642 buffer
[2] = key
; /* Sense Key */
1644 buffer
[7] = 0x0a; /* Additional Sense Length */
1646 buffer
[12] = asc
; /* ASC */
1648 buffer
[13] = ascq
; /* ASCQ */
1654 static void mvs_fill_ssp_resp_iu(struct ssp_response_iu
*iu
,
1655 u8 key
, u8 asc
, u8 asc_q
)
1658 iu
->response_data_len
= 0;
1659 iu
->sense_data_len
= 17;
1661 mvs_set_sense(iu
->sense_data
, 17, 0,
1665 static int mvs_slot_err(struct mvs_info
*mvi
, struct sas_task
*task
,
1668 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1670 u32 err_dw0
= le32_to_cpu(*(u32
*)slot
->response
);
1671 u32 err_dw1
= le32_to_cpu(*((u32
*)slot
->response
+ 1));
1673 enum mvs_port_type type
= PORT_TYPE_SAS
;
1675 if (err_dw0
& CMD_ISS_STPD
)
1676 MVS_CHIP_DISP
->issue_stop(mvi
, type
, tfs
);
1678 MVS_CHIP_DISP
->command_active(mvi
, slot_idx
);
1680 stat
= SAM_STAT_CHECK_CONDITION
;
1681 switch (task
->task_proto
) {
1682 case SAS_PROTOCOL_SSP
:
1684 stat
= SAS_ABORTED_TASK
;
1685 if ((err_dw0
& NO_DEST
) || err_dw1
& bit(31)) {
1686 struct ssp_response_iu
*iu
= slot
->response
+
1687 sizeof(struct mvs_err_info
);
1688 mvs_fill_ssp_resp_iu(iu
, NOT_READY
, 0x04, 01);
1689 sas_ssp_task_response(mvi
->dev
, task
, iu
);
1690 stat
= SAM_STAT_CHECK_CONDITION
;
1692 if (err_dw1
& bit(31))
1693 mv_printk("reuse same slot, retry command.\n");
1696 case SAS_PROTOCOL_SMP
:
1697 stat
= SAM_STAT_CHECK_CONDITION
;
1700 case SAS_PROTOCOL_SATA
:
1701 case SAS_PROTOCOL_STP
:
1702 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
1704 task
->ata_task
.use_ncq
= 0;
1705 stat
= SAS_PROTO_RESPONSE
;
1706 mvs_sata_done(mvi
, task
, slot_idx
, err_dw0
);
1716 int mvs_slot_complete(struct mvs_info
*mvi
, u32 rx_desc
, u32 flags
)
1718 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
1719 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1720 struct sas_task
*task
= slot
->task
;
1721 struct mvs_device
*mvi_dev
= NULL
;
1722 struct task_status_struct
*tstat
;
1723 struct domain_device
*dev
;
1727 enum exec_status sts
;
1729 if (unlikely(!task
|| !task
->lldd_task
|| !task
->dev
))
1732 tstat
= &task
->task_status
;
1734 mvi_dev
= dev
->lldd_dev
;
1736 spin_lock(&task
->task_state_lock
);
1737 task
->task_state_flags
&=
1738 ~(SAS_TASK_STATE_PENDING
| SAS_TASK_AT_INITIATOR
);
1739 task
->task_state_flags
|= SAS_TASK_STATE_DONE
;
1741 aborted
= task
->task_state_flags
& SAS_TASK_STATE_ABORTED
;
1742 spin_unlock(&task
->task_state_lock
);
1744 memset(tstat
, 0, sizeof(*tstat
));
1745 tstat
->resp
= SAS_TASK_COMPLETE
;
1747 if (unlikely(aborted
)) {
1748 tstat
->stat
= SAS_ABORTED_TASK
;
1749 if (mvi_dev
&& mvi_dev
->running_req
)
1750 mvi_dev
->running_req
--;
1751 if (sas_protocol_ata(task
->task_proto
))
1752 mvs_free_reg_set(mvi
, mvi_dev
);
1754 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1758 /* when no device attaching, go ahead and complete by error handling*/
1759 if (unlikely(!mvi_dev
|| flags
)) {
1761 mv_dprintk("port has not device.\n");
1762 tstat
->stat
= SAS_PHY_DOWN
;
1767 * error info record present; slot->response is 32 bit aligned but may
1768 * not be 64 bit aligned, so check for zero in two 32 bit reads
1770 if (unlikely((rx_desc
& RXQ_ERR
)
1771 && (*((u32
*)slot
->response
)
1772 || *(((u32
*)slot
->response
) + 1)))) {
1773 mv_dprintk("port %d slot %d rx_desc %X has error info"
1774 "%016llX.\n", slot
->port
->sas_port
.id
, slot_idx
,
1775 rx_desc
, get_unaligned_le64(slot
->response
));
1776 tstat
->stat
= mvs_slot_err(mvi
, task
, slot_idx
);
1777 tstat
->resp
= SAS_TASK_COMPLETE
;
1781 switch (task
->task_proto
) {
1782 case SAS_PROTOCOL_SSP
:
1783 /* hw says status == 0, datapres == 0 */
1784 if (rx_desc
& RXQ_GOOD
) {
1785 tstat
->stat
= SAM_STAT_GOOD
;
1786 tstat
->resp
= SAS_TASK_COMPLETE
;
1788 /* response frame present */
1789 else if (rx_desc
& RXQ_RSP
) {
1790 struct ssp_response_iu
*iu
= slot
->response
+
1791 sizeof(struct mvs_err_info
);
1792 sas_ssp_task_response(mvi
->dev
, task
, iu
);
1794 tstat
->stat
= SAM_STAT_CHECK_CONDITION
;
1797 case SAS_PROTOCOL_SMP
: {
1798 struct scatterlist
*sg_resp
= &task
->smp_task
.smp_resp
;
1799 tstat
->stat
= SAM_STAT_GOOD
;
1800 to
= kmap_atomic(sg_page(sg_resp
));
1801 memcpy(to
+ sg_resp
->offset
,
1802 slot
->response
+ sizeof(struct mvs_err_info
),
1803 sg_dma_len(sg_resp
));
1808 case SAS_PROTOCOL_SATA
:
1809 case SAS_PROTOCOL_STP
:
1810 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
: {
1811 tstat
->stat
= mvs_sata_done(mvi
, task
, slot_idx
, 0);
1816 tstat
->stat
= SAM_STAT_CHECK_CONDITION
;
1819 if (!slot
->port
->port_attached
) {
1820 mv_dprintk("port %d has removed.\n", slot
->port
->sas_port
.id
);
1821 tstat
->stat
= SAS_PHY_DOWN
;
1826 if (mvi_dev
&& mvi_dev
->running_req
) {
1827 mvi_dev
->running_req
--;
1828 if (sas_protocol_ata(task
->task_proto
) && !mvi_dev
->running_req
)
1829 mvs_free_reg_set(mvi
, mvi_dev
);
1831 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1834 spin_unlock(&mvi
->lock
);
1835 if (task
->task_done
)
1836 task
->task_done(task
);
1838 spin_lock(&mvi
->lock
);
1843 void mvs_do_release_task(struct mvs_info
*mvi
,
1844 int phy_no
, struct domain_device
*dev
)
1847 struct mvs_phy
*phy
;
1848 struct mvs_port
*port
;
1849 struct mvs_slot_info
*slot
, *slot2
;
1851 phy
= &mvi
->phy
[phy_no
];
1855 /* clean cmpl queue in case request is already finished */
1856 mvs_int_rx(mvi
, false);
1860 list_for_each_entry_safe(slot
, slot2
, &port
->list
, entry
) {
1861 struct sas_task
*task
;
1862 slot_idx
= (u32
) (slot
- mvi
->slot_info
);
1865 if (dev
&& task
->dev
!= dev
)
1868 mv_printk("Release slot [%x] tag[%x], task [%p]:\n",
1869 slot_idx
, slot
->slot_tag
, task
);
1870 MVS_CHIP_DISP
->command_active(mvi
, slot_idx
);
1872 mvs_slot_complete(mvi
, slot_idx
, 1);
1876 void mvs_release_task(struct mvs_info
*mvi
,
1877 struct domain_device
*dev
)
1879 int i
, phyno
[WIDE_PORT_MAX_PHY
], num
;
1880 num
= mvs_find_dev_phyno(dev
, phyno
);
1881 for (i
= 0; i
< num
; i
++)
1882 mvs_do_release_task(mvi
, phyno
[i
], dev
);
1885 static void mvs_phy_disconnected(struct mvs_phy
*phy
)
1887 phy
->phy_attached
= 0;
1888 phy
->att_dev_info
= 0;
1889 phy
->att_dev_sas_addr
= 0;
1892 static void mvs_work_queue(struct work_struct
*work
)
1894 struct delayed_work
*dw
= container_of(work
, struct delayed_work
, work
);
1895 struct mvs_wq
*mwq
= container_of(dw
, struct mvs_wq
, work_q
);
1896 struct mvs_info
*mvi
= mwq
->mvi
;
1897 unsigned long flags
;
1898 u32 phy_no
= (unsigned long) mwq
->data
;
1899 struct sas_ha_struct
*sas_ha
= mvi
->sas
;
1900 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
1901 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
1903 spin_lock_irqsave(&mvi
->lock
, flags
);
1904 if (mwq
->handler
& PHY_PLUG_EVENT
) {
1906 if (phy
->phy_event
& PHY_PLUG_OUT
) {
1909 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_no
);
1910 phy
->phy_event
&= ~PHY_PLUG_OUT
;
1911 if (!(tmp
& PHY_READY_MASK
)) {
1912 sas_phy_disconnected(sas_phy
);
1913 mvs_phy_disconnected(phy
);
1914 sas_ha
->notify_phy_event(sas_phy
,
1915 PHYE_LOSS_OF_SIGNAL
);
1916 mv_dprintk("phy%d Removed Device\n", phy_no
);
1918 MVS_CHIP_DISP
->detect_porttype(mvi
, phy_no
);
1919 mvs_update_phyinfo(mvi
, phy_no
, 1);
1920 mvs_bytes_dmaed(mvi
, phy_no
);
1921 mvs_port_notify_formed(sas_phy
, 0);
1922 mv_dprintk("phy%d Attached Device\n", phy_no
);
1925 } else if (mwq
->handler
& EXP_BRCT_CHG
) {
1926 phy
->phy_event
&= ~EXP_BRCT_CHG
;
1927 sas_ha
->notify_port_event(sas_phy
,
1928 PORTE_BROADCAST_RCVD
);
1929 mv_dprintk("phy%d Got Broadcast Change\n", phy_no
);
1931 list_del(&mwq
->entry
);
1932 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1936 static int mvs_handle_event(struct mvs_info
*mvi
, void *data
, int handler
)
1941 mwq
= kmalloc(sizeof(struct mvs_wq
), GFP_ATOMIC
);
1945 mwq
->handler
= handler
;
1946 MV_INIT_DELAYED_WORK(&mwq
->work_q
, mvs_work_queue
, mwq
);
1947 list_add_tail(&mwq
->entry
, &mvi
->wq_list
);
1948 schedule_delayed_work(&mwq
->work_q
, HZ
* 2);
1955 static void mvs_sig_time_out(struct timer_list
*t
)
1957 struct mvs_phy
*phy
= from_timer(phy
, t
, timer
);
1958 struct mvs_info
*mvi
= phy
->mvi
;
1961 for (phy_no
= 0; phy_no
< mvi
->chip
->n_phy
; phy_no
++) {
1962 if (&mvi
->phy
[phy_no
] == phy
) {
1963 mv_dprintk("Get signature time out, reset phy %d\n",
1964 phy_no
+mvi
->id
*mvi
->chip
->n_phy
);
1965 MVS_CHIP_DISP
->phy_reset(mvi
, phy_no
, MVS_HARD_RESET
);
1970 void mvs_int_port(struct mvs_info
*mvi
, int phy_no
, u32 events
)
1973 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
1975 phy
->irq_status
= MVS_CHIP_DISP
->read_port_irq_stat(mvi
, phy_no
);
1976 MVS_CHIP_DISP
->write_port_irq_stat(mvi
, phy_no
, phy
->irq_status
);
1977 mv_dprintk("phy %d ctrl sts=0x%08X.\n", phy_no
+mvi
->id
*mvi
->chip
->n_phy
,
1978 MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_no
));
1979 mv_dprintk("phy %d irq sts = 0x%08X\n", phy_no
+mvi
->id
*mvi
->chip
->n_phy
,
1983 * events is port event now ,
1984 * we need check the interrupt status which belongs to per port.
1987 if (phy
->irq_status
& PHYEV_DCDR_ERR
) {
1988 mv_dprintk("phy %d STP decoding error.\n",
1989 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
1992 if (phy
->irq_status
& PHYEV_POOF
) {
1994 if (!(phy
->phy_event
& PHY_PLUG_OUT
)) {
1995 int dev_sata
= phy
->phy_type
& PORT_TYPE_SATA
;
1997 mvs_do_release_task(mvi
, phy_no
, NULL
);
1998 phy
->phy_event
|= PHY_PLUG_OUT
;
1999 MVS_CHIP_DISP
->clear_srs_irq(mvi
, 0, 1);
2000 mvs_handle_event(mvi
,
2001 (void *)(unsigned long)phy_no
,
2003 ready
= mvs_is_phy_ready(mvi
, phy_no
);
2004 if (ready
|| dev_sata
) {
2005 if (MVS_CHIP_DISP
->stp_reset
)
2006 MVS_CHIP_DISP
->stp_reset(mvi
,
2009 MVS_CHIP_DISP
->phy_reset(mvi
,
2010 phy_no
, MVS_SOFT_RESET
);
2016 if (phy
->irq_status
& PHYEV_COMWAKE
) {
2017 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(mvi
, phy_no
);
2018 MVS_CHIP_DISP
->write_port_irq_mask(mvi
, phy_no
,
2019 tmp
| PHYEV_SIG_FIS
);
2020 if (phy
->timer
.function
== NULL
) {
2021 phy
->timer
.function
= mvs_sig_time_out
;
2022 phy
->timer
.expires
= jiffies
+ 5*HZ
;
2023 add_timer(&phy
->timer
);
2026 if (phy
->irq_status
& (PHYEV_SIG_FIS
| PHYEV_ID_DONE
)) {
2027 phy
->phy_status
= mvs_is_phy_ready(mvi
, phy_no
);
2028 mv_dprintk("notify plug in on phy[%d]\n", phy_no
);
2029 if (phy
->phy_status
) {
2031 MVS_CHIP_DISP
->detect_porttype(mvi
, phy_no
);
2032 if (phy
->phy_type
& PORT_TYPE_SATA
) {
2033 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(
2035 tmp
&= ~PHYEV_SIG_FIS
;
2036 MVS_CHIP_DISP
->write_port_irq_mask(mvi
,
2039 mvs_update_phyinfo(mvi
, phy_no
, 0);
2040 if (phy
->phy_type
& PORT_TYPE_SAS
) {
2041 MVS_CHIP_DISP
->phy_reset(mvi
, phy_no
, MVS_PHY_TUNE
);
2045 mvs_bytes_dmaed(mvi
, phy_no
);
2046 /* whether driver is going to handle hot plug */
2047 if (phy
->phy_event
& PHY_PLUG_OUT
) {
2048 mvs_port_notify_formed(&phy
->sas_phy
, 0);
2049 phy
->phy_event
&= ~PHY_PLUG_OUT
;
2052 mv_dprintk("plugin interrupt but phy%d is gone\n",
2053 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
2055 } else if (phy
->irq_status
& PHYEV_BROAD_CH
) {
2056 mv_dprintk("phy %d broadcast change.\n",
2057 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
2058 mvs_handle_event(mvi
, (void *)(unsigned long)phy_no
,
2063 int mvs_int_rx(struct mvs_info
*mvi
, bool self_clear
)
2065 u32 rx_prod_idx
, rx_desc
;
2068 /* the first dword in the RX ring is special: it contains
2069 * a mirror of the hardware's RX producer index, so that
2070 * we don't have to stall the CPU reading that register.
2071 * The actual RX ring is offset by one dword, due to this.
2073 rx_prod_idx
= mvi
->rx_cons
;
2074 mvi
->rx_cons
= le32_to_cpu(mvi
->rx
[0]);
2075 if (mvi
->rx_cons
== 0xfff) /* h/w hasn't touched RX ring yet */
2078 /* The CMPL_Q may come late, read from register and try again
2079 * note: if coalescing is enabled,
2080 * it will need to read from register every time for sure
2082 if (unlikely(mvi
->rx_cons
== rx_prod_idx
))
2083 mvi
->rx_cons
= MVS_CHIP_DISP
->rx_update(mvi
) & RX_RING_SZ_MASK
;
2085 if (mvi
->rx_cons
== rx_prod_idx
)
2088 while (mvi
->rx_cons
!= rx_prod_idx
) {
2089 /* increment our internal RX consumer pointer */
2090 rx_prod_idx
= (rx_prod_idx
+ 1) & (MVS_RX_RING_SZ
- 1);
2091 rx_desc
= le32_to_cpu(mvi
->rx
[rx_prod_idx
+ 1]);
2093 if (likely(rx_desc
& RXQ_DONE
))
2094 mvs_slot_complete(mvi
, rx_desc
, 0);
2095 if (rx_desc
& RXQ_ATTN
) {
2097 } else if (rx_desc
& RXQ_ERR
) {
2098 if (!(rx_desc
& RXQ_DONE
))
2099 mvs_slot_complete(mvi
, rx_desc
, 0);
2100 } else if (rx_desc
& RXQ_SLOT_RESET
) {
2101 mvs_slot_free(mvi
, rx_desc
);
2105 if (attn
&& self_clear
)
2106 MVS_CHIP_DISP
->int_full(mvi
);
2110 int mvs_gpio_write(struct sas_ha_struct
*sha
, u8 reg_type
, u8 reg_index
,
2111 u8 reg_count
, u8
*write_data
)
2113 struct mvs_prv_info
*mvs_prv
= sha
->lldd_ha
;
2114 struct mvs_info
*mvi
= mvs_prv
->mvi
[0];
2116 if (MVS_CHIP_DISP
->gpio_write
) {
2117 return MVS_CHIP_DISP
->gpio_write(mvs_prv
, reg_type
,
2118 reg_index
, reg_count
, write_data
);