Linux 5.1.15
[linux/fpc-iii.git] / drivers / spi / spi-fsl-dspi.c
blob53335ccc98f61812d30e78eea8e036b28314cfe0
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kernel.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regmap.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/spi-fsl-dspi.h>
28 #include <linux/spi/spi_bitbang.h>
29 #include <linux/time.h>
31 #define DRIVER_NAME "fsl-dspi"
33 #ifdef CONFIG_M5441x
34 #define DSPI_FIFO_SIZE 16
35 #else
36 #define DSPI_FIFO_SIZE 4
37 #endif
38 #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
40 #define SPI_MCR 0x00
41 #define SPI_MCR_MASTER (1 << 31)
42 #define SPI_MCR_PCSIS (0x3F << 16)
43 #define SPI_MCR_CLR_TXF (1 << 11)
44 #define SPI_MCR_CLR_RXF (1 << 10)
45 #define SPI_MCR_XSPI (1 << 3)
47 #define SPI_TCR 0x08
48 #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
50 #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
51 #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
52 #define SPI_CTAR_CPOL(x) ((x) << 26)
53 #define SPI_CTAR_CPHA(x) ((x) << 25)
54 #define SPI_CTAR_LSBFE(x) ((x) << 24)
55 #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
56 #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
57 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
58 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
59 #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
60 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
61 #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
62 #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
63 #define SPI_CTAR_SCALE_BITS 0xf
65 #define SPI_CTAR0_SLAVE 0x0c
67 #define SPI_SR 0x2c
68 #define SPI_SR_EOQF 0x10000000
69 #define SPI_SR_TCFQF 0x80000000
70 #define SPI_SR_CLEAR 0x9aaf0000
72 #define SPI_RSER_TFFFE BIT(25)
73 #define SPI_RSER_TFFFD BIT(24)
74 #define SPI_RSER_RFDFE BIT(17)
75 #define SPI_RSER_RFDFD BIT(16)
77 #define SPI_RSER 0x30
78 #define SPI_RSER_EOQFE 0x10000000
79 #define SPI_RSER_TCFQE 0x80000000
81 #define SPI_PUSHR 0x34
82 #define SPI_PUSHR_CMD_CONT (1 << 15)
83 #define SPI_PUSHR_CONT (SPI_PUSHR_CMD_CONT << 16)
84 #define SPI_PUSHR_CMD_CTAS(x) (((x) & 0x0003) << 12)
85 #define SPI_PUSHR_CTAS(x) (SPI_PUSHR_CMD_CTAS(x) << 16)
86 #define SPI_PUSHR_CMD_EOQ (1 << 11)
87 #define SPI_PUSHR_EOQ (SPI_PUSHR_CMD_EOQ << 16)
88 #define SPI_PUSHR_CMD_CTCNT (1 << 10)
89 #define SPI_PUSHR_CTCNT (SPI_PUSHR_CMD_CTCNT << 16)
90 #define SPI_PUSHR_CMD_PCS(x) ((1 << x) & 0x003f)
91 #define SPI_PUSHR_PCS(x) (SPI_PUSHR_CMD_PCS(x) << 16)
92 #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
94 #define SPI_PUSHR_SLAVE 0x34
96 #define SPI_POPR 0x38
97 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
99 #define SPI_TXFR0 0x3c
100 #define SPI_TXFR1 0x40
101 #define SPI_TXFR2 0x44
102 #define SPI_TXFR3 0x48
103 #define SPI_RXFR0 0x7c
104 #define SPI_RXFR1 0x80
105 #define SPI_RXFR2 0x84
106 #define SPI_RXFR3 0x88
108 #define SPI_CTARE(x) (0x11c + (((x) & 0x3) * 4))
109 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
110 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
112 #define SPI_SREX 0x13c
114 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
115 #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
116 #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
117 #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
119 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
120 #define SPI_FRAME_EBITS_MASK SPI_CTARE_FMSZE(1)
122 /* Register offsets for regmap_pushr */
123 #define PUSHR_CMD 0x0
124 #define PUSHR_TX 0x2
126 #define SPI_CS_INIT 0x01
127 #define SPI_CS_ASSERT 0x02
128 #define SPI_CS_DROP 0x04
130 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
132 struct chip_data {
133 u32 ctar_val;
134 u16 void_write_data;
137 enum dspi_trans_mode {
138 DSPI_EOQ_MODE = 0,
139 DSPI_TCFQ_MODE,
140 DSPI_DMA_MODE,
143 struct fsl_dspi_devtype_data {
144 enum dspi_trans_mode trans_mode;
145 u8 max_clock_factor;
146 bool xspi_mode;
149 static const struct fsl_dspi_devtype_data vf610_data = {
150 .trans_mode = DSPI_DMA_MODE,
151 .max_clock_factor = 2,
154 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
155 .trans_mode = DSPI_TCFQ_MODE,
156 .max_clock_factor = 8,
157 .xspi_mode = true,
160 static const struct fsl_dspi_devtype_data ls2085a_data = {
161 .trans_mode = DSPI_TCFQ_MODE,
162 .max_clock_factor = 8,
165 static const struct fsl_dspi_devtype_data coldfire_data = {
166 .trans_mode = DSPI_EOQ_MODE,
167 .max_clock_factor = 8,
170 struct fsl_dspi_dma {
171 /* Length of transfer in words of DSPI_FIFO_SIZE */
172 u32 curr_xfer_len;
174 u32 *tx_dma_buf;
175 struct dma_chan *chan_tx;
176 dma_addr_t tx_dma_phys;
177 struct completion cmd_tx_complete;
178 struct dma_async_tx_descriptor *tx_desc;
180 u32 *rx_dma_buf;
181 struct dma_chan *chan_rx;
182 dma_addr_t rx_dma_phys;
183 struct completion cmd_rx_complete;
184 struct dma_async_tx_descriptor *rx_desc;
187 struct fsl_dspi {
188 struct spi_master *master;
189 struct platform_device *pdev;
191 struct regmap *regmap;
192 struct regmap *regmap_pushr;
193 int irq;
194 struct clk *clk;
196 struct spi_transfer *cur_transfer;
197 struct spi_message *cur_msg;
198 struct chip_data *cur_chip;
199 size_t len;
200 const void *tx;
201 void *rx;
202 void *rx_end;
203 u16 void_write_data;
204 u16 tx_cmd;
205 u8 bits_per_word;
206 u8 bytes_per_word;
207 const struct fsl_dspi_devtype_data *devtype_data;
209 wait_queue_head_t waitq;
210 u32 waitflags;
212 struct fsl_dspi_dma *dma;
215 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
217 u32 txdata = 0;
219 if (dspi->tx) {
220 if (dspi->bytes_per_word == 1)
221 txdata = *(u8 *)dspi->tx;
222 else if (dspi->bytes_per_word == 2)
223 txdata = *(u16 *)dspi->tx;
224 else /* dspi->bytes_per_word == 4 */
225 txdata = *(u32 *)dspi->tx;
226 dspi->tx += dspi->bytes_per_word;
228 dspi->len -= dspi->bytes_per_word;
229 return txdata;
232 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
234 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
236 if (spi_controller_is_slave(dspi->master))
237 return data;
239 if (dspi->len > 0)
240 cmd |= SPI_PUSHR_CMD_CONT;
241 return cmd << 16 | data;
244 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
246 if (!dspi->rx)
247 return;
249 /* Mask of undefined bits */
250 rxdata &= (1 << dspi->bits_per_word) - 1;
252 if (dspi->bytes_per_word == 1)
253 *(u8 *)dspi->rx = rxdata;
254 else if (dspi->bytes_per_word == 2)
255 *(u16 *)dspi->rx = rxdata;
256 else /* dspi->bytes_per_word == 4 */
257 *(u32 *)dspi->rx = rxdata;
258 dspi->rx += dspi->bytes_per_word;
261 static void dspi_tx_dma_callback(void *arg)
263 struct fsl_dspi *dspi = arg;
264 struct fsl_dspi_dma *dma = dspi->dma;
266 complete(&dma->cmd_tx_complete);
269 static void dspi_rx_dma_callback(void *arg)
271 struct fsl_dspi *dspi = arg;
272 struct fsl_dspi_dma *dma = dspi->dma;
273 int i;
275 if (dspi->rx) {
276 for (i = 0; i < dma->curr_xfer_len; i++)
277 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
280 complete(&dma->cmd_rx_complete);
283 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
285 struct fsl_dspi_dma *dma = dspi->dma;
286 struct device *dev = &dspi->pdev->dev;
287 int time_left;
288 int i;
290 for (i = 0; i < dma->curr_xfer_len; i++)
291 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
293 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
294 dma->tx_dma_phys,
295 dma->curr_xfer_len *
296 DMA_SLAVE_BUSWIDTH_4_BYTES,
297 DMA_MEM_TO_DEV,
298 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
299 if (!dma->tx_desc) {
300 dev_err(dev, "Not able to get desc for DMA xfer\n");
301 return -EIO;
304 dma->tx_desc->callback = dspi_tx_dma_callback;
305 dma->tx_desc->callback_param = dspi;
306 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
307 dev_err(dev, "DMA submit failed\n");
308 return -EINVAL;
311 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
312 dma->rx_dma_phys,
313 dma->curr_xfer_len *
314 DMA_SLAVE_BUSWIDTH_4_BYTES,
315 DMA_DEV_TO_MEM,
316 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
317 if (!dma->rx_desc) {
318 dev_err(dev, "Not able to get desc for DMA xfer\n");
319 return -EIO;
322 dma->rx_desc->callback = dspi_rx_dma_callback;
323 dma->rx_desc->callback_param = dspi;
324 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
325 dev_err(dev, "DMA submit failed\n");
326 return -EINVAL;
329 reinit_completion(&dspi->dma->cmd_rx_complete);
330 reinit_completion(&dspi->dma->cmd_tx_complete);
332 dma_async_issue_pending(dma->chan_rx);
333 dma_async_issue_pending(dma->chan_tx);
335 if (spi_controller_is_slave(dspi->master)) {
336 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
337 return 0;
340 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
341 DMA_COMPLETION_TIMEOUT);
342 if (time_left == 0) {
343 dev_err(dev, "DMA tx timeout\n");
344 dmaengine_terminate_all(dma->chan_tx);
345 dmaengine_terminate_all(dma->chan_rx);
346 return -ETIMEDOUT;
349 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
350 DMA_COMPLETION_TIMEOUT);
351 if (time_left == 0) {
352 dev_err(dev, "DMA rx timeout\n");
353 dmaengine_terminate_all(dma->chan_tx);
354 dmaengine_terminate_all(dma->chan_rx);
355 return -ETIMEDOUT;
358 return 0;
361 static int dspi_dma_xfer(struct fsl_dspi *dspi)
363 struct fsl_dspi_dma *dma = dspi->dma;
364 struct device *dev = &dspi->pdev->dev;
365 struct spi_message *message = dspi->cur_msg;
366 int curr_remaining_bytes;
367 int bytes_per_buffer;
368 int ret = 0;
370 curr_remaining_bytes = dspi->len;
371 bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
372 while (curr_remaining_bytes) {
373 /* Check if current transfer fits the DMA buffer */
374 dma->curr_xfer_len = curr_remaining_bytes
375 / dspi->bytes_per_word;
376 if (dma->curr_xfer_len > bytes_per_buffer)
377 dma->curr_xfer_len = bytes_per_buffer;
379 ret = dspi_next_xfer_dma_submit(dspi);
380 if (ret) {
381 dev_err(dev, "DMA transfer failed\n");
382 goto exit;
384 } else {
385 const int len =
386 dma->curr_xfer_len * dspi->bytes_per_word;
387 curr_remaining_bytes -= len;
388 message->actual_length += len;
389 if (curr_remaining_bytes < 0)
390 curr_remaining_bytes = 0;
394 exit:
395 return ret;
398 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
400 struct fsl_dspi_dma *dma;
401 struct dma_slave_config cfg;
402 struct device *dev = &dspi->pdev->dev;
403 int ret;
405 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
406 if (!dma)
407 return -ENOMEM;
409 dma->chan_rx = dma_request_slave_channel(dev, "rx");
410 if (!dma->chan_rx) {
411 dev_err(dev, "rx dma channel not available\n");
412 ret = -ENODEV;
413 return ret;
416 dma->chan_tx = dma_request_slave_channel(dev, "tx");
417 if (!dma->chan_tx) {
418 dev_err(dev, "tx dma channel not available\n");
419 ret = -ENODEV;
420 goto err_tx_channel;
423 dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
424 &dma->tx_dma_phys, GFP_KERNEL);
425 if (!dma->tx_dma_buf) {
426 ret = -ENOMEM;
427 goto err_tx_dma_buf;
430 dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
431 &dma->rx_dma_phys, GFP_KERNEL);
432 if (!dma->rx_dma_buf) {
433 ret = -ENOMEM;
434 goto err_rx_dma_buf;
437 cfg.src_addr = phy_addr + SPI_POPR;
438 cfg.dst_addr = phy_addr + SPI_PUSHR;
439 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441 cfg.src_maxburst = 1;
442 cfg.dst_maxburst = 1;
444 cfg.direction = DMA_DEV_TO_MEM;
445 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
446 if (ret) {
447 dev_err(dev, "can't configure rx dma channel\n");
448 ret = -EINVAL;
449 goto err_slave_config;
452 cfg.direction = DMA_MEM_TO_DEV;
453 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
454 if (ret) {
455 dev_err(dev, "can't configure tx dma channel\n");
456 ret = -EINVAL;
457 goto err_slave_config;
460 dspi->dma = dma;
461 init_completion(&dma->cmd_tx_complete);
462 init_completion(&dma->cmd_rx_complete);
464 return 0;
466 err_slave_config:
467 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
468 dma->rx_dma_buf, dma->rx_dma_phys);
469 err_rx_dma_buf:
470 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
471 dma->tx_dma_buf, dma->tx_dma_phys);
472 err_tx_dma_buf:
473 dma_release_channel(dma->chan_tx);
474 err_tx_channel:
475 dma_release_channel(dma->chan_rx);
477 devm_kfree(dev, dma);
478 dspi->dma = NULL;
480 return ret;
483 static void dspi_release_dma(struct fsl_dspi *dspi)
485 struct fsl_dspi_dma *dma = dspi->dma;
486 struct device *dev = &dspi->pdev->dev;
488 if (dma) {
489 if (dma->chan_tx) {
490 dma_unmap_single(dev, dma->tx_dma_phys,
491 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
492 dma_release_channel(dma->chan_tx);
495 if (dma->chan_rx) {
496 dma_unmap_single(dev, dma->rx_dma_phys,
497 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
498 dma_release_channel(dma->chan_rx);
503 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
504 unsigned long clkrate)
506 /* Valid baud rate pre-scaler values */
507 int pbr_tbl[4] = {2, 3, 5, 7};
508 int brs[16] = { 2, 4, 6, 8,
509 16, 32, 64, 128,
510 256, 512, 1024, 2048,
511 4096, 8192, 16384, 32768 };
512 int scale_needed, scale, minscale = INT_MAX;
513 int i, j;
515 scale_needed = clkrate / speed_hz;
516 if (clkrate % speed_hz)
517 scale_needed++;
519 for (i = 0; i < ARRAY_SIZE(brs); i++)
520 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
521 scale = brs[i] * pbr_tbl[j];
522 if (scale >= scale_needed) {
523 if (scale < minscale) {
524 minscale = scale;
525 *br = i;
526 *pbr = j;
528 break;
532 if (minscale == INT_MAX) {
533 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
534 speed_hz, clkrate);
535 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
536 *br = ARRAY_SIZE(brs) - 1;
540 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
541 unsigned long clkrate)
543 int pscale_tbl[4] = {1, 3, 5, 7};
544 int scale_needed, scale, minscale = INT_MAX;
545 int i, j;
546 u32 remainder;
548 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
549 &remainder);
550 if (remainder)
551 scale_needed++;
553 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
554 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
555 scale = pscale_tbl[i] * (2 << j);
556 if (scale >= scale_needed) {
557 if (scale < minscale) {
558 minscale = scale;
559 *psc = i;
560 *sc = j;
562 break;
566 if (minscale == INT_MAX) {
567 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
568 delay_ns, clkrate);
569 *psc = ARRAY_SIZE(pscale_tbl) - 1;
570 *sc = SPI_CTAR_SCALE_BITS;
574 static void fifo_write(struct fsl_dspi *dspi)
576 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
579 static void cmd_fifo_write(struct fsl_dspi *dspi)
581 u16 cmd = dspi->tx_cmd;
583 if (dspi->len > 0)
584 cmd |= SPI_PUSHR_CMD_CONT;
585 regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
588 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
590 regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
593 static void dspi_tcfq_write(struct fsl_dspi *dspi)
595 /* Clear transfer count */
596 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
598 if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
599 /* Write two TX FIFO entries first, and then the corresponding
600 * CMD FIFO entry.
602 u32 data = dspi_pop_tx(dspi);
604 if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE(1)) {
605 /* LSB */
606 tx_fifo_write(dspi, data & 0xFFFF);
607 tx_fifo_write(dspi, data >> 16);
608 } else {
609 /* MSB */
610 tx_fifo_write(dspi, data >> 16);
611 tx_fifo_write(dspi, data & 0xFFFF);
613 cmd_fifo_write(dspi);
614 } else {
615 /* Write one entry to both TX FIFO and CMD FIFO
616 * simultaneously.
618 fifo_write(dspi);
622 static u32 fifo_read(struct fsl_dspi *dspi)
624 u32 rxdata = 0;
626 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
627 return rxdata;
630 static void dspi_tcfq_read(struct fsl_dspi *dspi)
632 dspi_push_rx(dspi, fifo_read(dspi));
635 static void dspi_eoq_write(struct fsl_dspi *dspi)
637 int fifo_size = DSPI_FIFO_SIZE;
638 u16 xfer_cmd = dspi->tx_cmd;
640 /* Fill TX FIFO with as many transfers as possible */
641 while (dspi->len && fifo_size--) {
642 dspi->tx_cmd = xfer_cmd;
643 /* Request EOQF for last transfer in FIFO */
644 if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
645 dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
646 /* Clear transfer count for first transfer in FIFO */
647 if (fifo_size == (DSPI_FIFO_SIZE - 1))
648 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
649 /* Write combined TX FIFO and CMD FIFO entry */
650 fifo_write(dspi);
654 static void dspi_eoq_read(struct fsl_dspi *dspi)
656 int fifo_size = DSPI_FIFO_SIZE;
658 /* Read one FIFO entry at and push to rx buffer */
659 while ((dspi->rx < dspi->rx_end) && fifo_size--)
660 dspi_push_rx(dspi, fifo_read(dspi));
663 static int dspi_transfer_one_message(struct spi_master *master,
664 struct spi_message *message)
666 struct fsl_dspi *dspi = spi_master_get_devdata(master);
667 struct spi_device *spi = message->spi;
668 struct spi_transfer *transfer;
669 int status = 0;
670 enum dspi_trans_mode trans_mode;
672 message->actual_length = 0;
674 list_for_each_entry(transfer, &message->transfers, transfer_list) {
675 dspi->cur_transfer = transfer;
676 dspi->cur_msg = message;
677 dspi->cur_chip = spi_get_ctldata(spi);
678 /* Prepare command word for CMD FIFO */
679 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
680 SPI_PUSHR_CMD_PCS(spi->chip_select);
681 if (list_is_last(&dspi->cur_transfer->transfer_list,
682 &dspi->cur_msg->transfers)) {
683 /* Leave PCS activated after last transfer when
684 * cs_change is set.
686 if (transfer->cs_change)
687 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
688 } else {
689 /* Keep PCS active between transfers in same message
690 * when cs_change is not set, and de-activate PCS
691 * between transfers in the same message when
692 * cs_change is set.
694 if (!transfer->cs_change)
695 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
698 dspi->void_write_data = dspi->cur_chip->void_write_data;
700 dspi->tx = transfer->tx_buf;
701 dspi->rx = transfer->rx_buf;
702 dspi->rx_end = dspi->rx + transfer->len;
703 dspi->len = transfer->len;
704 /* Validated transfer specific frame size (defaults applied) */
705 dspi->bits_per_word = transfer->bits_per_word;
706 if (transfer->bits_per_word <= 8)
707 dspi->bytes_per_word = 1;
708 else if (transfer->bits_per_word <= 16)
709 dspi->bytes_per_word = 2;
710 else
711 dspi->bytes_per_word = 4;
713 regmap_update_bits(dspi->regmap, SPI_MCR,
714 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
715 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
716 regmap_write(dspi->regmap, SPI_CTAR(0),
717 dspi->cur_chip->ctar_val |
718 SPI_FRAME_BITS(transfer->bits_per_word));
719 if (dspi->devtype_data->xspi_mode)
720 regmap_write(dspi->regmap, SPI_CTARE(0),
721 SPI_FRAME_EBITS(transfer->bits_per_word)
722 | SPI_CTARE_DTCP(1));
724 trans_mode = dspi->devtype_data->trans_mode;
725 switch (trans_mode) {
726 case DSPI_EOQ_MODE:
727 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
728 dspi_eoq_write(dspi);
729 break;
730 case DSPI_TCFQ_MODE:
731 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
732 dspi_tcfq_write(dspi);
733 break;
734 case DSPI_DMA_MODE:
735 regmap_write(dspi->regmap, SPI_RSER,
736 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
737 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
738 status = dspi_dma_xfer(dspi);
739 break;
740 default:
741 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
742 trans_mode);
743 status = -EINVAL;
744 goto out;
747 if (trans_mode != DSPI_DMA_MODE) {
748 if (wait_event_interruptible(dspi->waitq,
749 dspi->waitflags))
750 dev_err(&dspi->pdev->dev,
751 "wait transfer complete fail!\n");
752 dspi->waitflags = 0;
755 if (transfer->delay_usecs)
756 udelay(transfer->delay_usecs);
759 out:
760 message->status = status;
761 spi_finalize_current_message(master);
763 return status;
766 static int dspi_setup(struct spi_device *spi)
768 struct chip_data *chip;
769 struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
770 struct fsl_dspi_platform_data *pdata;
771 u32 cs_sck_delay = 0, sck_cs_delay = 0;
772 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
773 unsigned char pasc = 0, asc = 0;
774 unsigned long clkrate;
776 /* Only alloc on first setup */
777 chip = spi_get_ctldata(spi);
778 if (chip == NULL) {
779 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
780 if (!chip)
781 return -ENOMEM;
784 pdata = dev_get_platdata(&dspi->pdev->dev);
786 if (!pdata) {
787 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
788 &cs_sck_delay);
790 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
791 &sck_cs_delay);
792 } else {
793 cs_sck_delay = pdata->cs_sck_delay;
794 sck_cs_delay = pdata->sck_cs_delay;
797 chip->void_write_data = 0;
799 clkrate = clk_get_rate(dspi->clk);
800 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
802 /* Set PCS to SCK delay scale values */
803 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
805 /* Set After SCK delay scale values */
806 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
808 chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
809 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0);
811 if (!spi_controller_is_slave(dspi->master)) {
812 chip->ctar_val |= SPI_CTAR_LSBFE(spi->mode &
813 SPI_LSB_FIRST ? 1 : 0)
814 | SPI_CTAR_PCSSCK(pcssck)
815 | SPI_CTAR_CSSCK(cssck)
816 | SPI_CTAR_PASC(pasc)
817 | SPI_CTAR_ASC(asc)
818 | SPI_CTAR_PBR(pbr)
819 | SPI_CTAR_BR(br);
822 spi_set_ctldata(spi, chip);
824 return 0;
827 static void dspi_cleanup(struct spi_device *spi)
829 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
831 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
832 spi->master->bus_num, spi->chip_select);
834 kfree(chip);
837 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
839 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
840 struct spi_message *msg = dspi->cur_msg;
841 enum dspi_trans_mode trans_mode;
842 u32 spi_sr, spi_tcr;
843 u16 spi_tcnt;
845 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
846 regmap_write(dspi->regmap, SPI_SR, spi_sr);
849 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
850 /* Get transfer counter (in number of SPI transfers). It was
851 * reset to 0 when transfer(s) were started.
853 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
854 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
855 /* Update total number of bytes that were transferred */
856 msg->actual_length += spi_tcnt * dspi->bytes_per_word;
858 trans_mode = dspi->devtype_data->trans_mode;
859 switch (trans_mode) {
860 case DSPI_EOQ_MODE:
861 dspi_eoq_read(dspi);
862 break;
863 case DSPI_TCFQ_MODE:
864 dspi_tcfq_read(dspi);
865 break;
866 default:
867 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
868 trans_mode);
869 return IRQ_HANDLED;
872 if (!dspi->len) {
873 dspi->waitflags = 1;
874 wake_up_interruptible(&dspi->waitq);
875 } else {
876 switch (trans_mode) {
877 case DSPI_EOQ_MODE:
878 dspi_eoq_write(dspi);
879 break;
880 case DSPI_TCFQ_MODE:
881 dspi_tcfq_write(dspi);
882 break;
883 default:
884 dev_err(&dspi->pdev->dev,
885 "unsupported trans_mode %u\n",
886 trans_mode);
891 return IRQ_HANDLED;
894 static const struct of_device_id fsl_dspi_dt_ids[] = {
895 { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
896 { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
897 { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
898 { /* sentinel */ }
900 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
902 #ifdef CONFIG_PM_SLEEP
903 static int dspi_suspend(struct device *dev)
905 struct spi_master *master = dev_get_drvdata(dev);
906 struct fsl_dspi *dspi = spi_master_get_devdata(master);
908 spi_master_suspend(master);
909 clk_disable_unprepare(dspi->clk);
911 pinctrl_pm_select_sleep_state(dev);
913 return 0;
916 static int dspi_resume(struct device *dev)
918 struct spi_master *master = dev_get_drvdata(dev);
919 struct fsl_dspi *dspi = spi_master_get_devdata(master);
920 int ret;
922 pinctrl_pm_select_default_state(dev);
924 ret = clk_prepare_enable(dspi->clk);
925 if (ret)
926 return ret;
927 spi_master_resume(master);
929 return 0;
931 #endif /* CONFIG_PM_SLEEP */
933 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
935 static const struct regmap_range dspi_volatile_ranges[] = {
936 regmap_reg_range(SPI_MCR, SPI_TCR),
937 regmap_reg_range(SPI_SR, SPI_SR),
938 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
941 static const struct regmap_access_table dspi_volatile_table = {
942 .yes_ranges = dspi_volatile_ranges,
943 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
946 static const struct regmap_config dspi_regmap_config = {
947 .reg_bits = 32,
948 .val_bits = 32,
949 .reg_stride = 4,
950 .max_register = 0x88,
951 .volatile_table = &dspi_volatile_table,
954 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
955 regmap_reg_range(SPI_MCR, SPI_TCR),
956 regmap_reg_range(SPI_SR, SPI_SR),
957 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
958 regmap_reg_range(SPI_SREX, SPI_SREX),
961 static const struct regmap_access_table dspi_xspi_volatile_table = {
962 .yes_ranges = dspi_xspi_volatile_ranges,
963 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
966 static const struct regmap_config dspi_xspi_regmap_config[] = {
968 .reg_bits = 32,
969 .val_bits = 32,
970 .reg_stride = 4,
971 .max_register = 0x13c,
972 .volatile_table = &dspi_xspi_volatile_table,
975 .name = "pushr",
976 .reg_bits = 16,
977 .val_bits = 16,
978 .reg_stride = 2,
979 .max_register = 0x2,
983 static void dspi_init(struct fsl_dspi *dspi)
985 unsigned int mcr = SPI_MCR_PCSIS |
986 (dspi->devtype_data->xspi_mode ? SPI_MCR_XSPI : 0);
988 if (!spi_controller_is_slave(dspi->master))
989 mcr |= SPI_MCR_MASTER;
991 regmap_write(dspi->regmap, SPI_MCR, mcr);
992 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
993 if (dspi->devtype_data->xspi_mode)
994 regmap_write(dspi->regmap, SPI_CTARE(0),
995 SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
998 static int dspi_probe(struct platform_device *pdev)
1000 struct device_node *np = pdev->dev.of_node;
1001 struct spi_master *master;
1002 struct fsl_dspi *dspi;
1003 struct resource *res;
1004 const struct regmap_config *regmap_config;
1005 void __iomem *base;
1006 struct fsl_dspi_platform_data *pdata;
1007 int ret = 0, cs_num, bus_num;
1009 master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1010 if (!master)
1011 return -ENOMEM;
1013 dspi = spi_master_get_devdata(master);
1014 dspi->pdev = pdev;
1015 dspi->master = master;
1017 master->transfer = NULL;
1018 master->setup = dspi_setup;
1019 master->transfer_one_message = dspi_transfer_one_message;
1020 master->dev.of_node = pdev->dev.of_node;
1022 master->cleanup = dspi_cleanup;
1023 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1025 pdata = dev_get_platdata(&pdev->dev);
1026 if (pdata) {
1027 master->num_chipselect = pdata->cs_num;
1028 master->bus_num = pdata->bus_num;
1030 dspi->devtype_data = &coldfire_data;
1031 } else {
1033 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1034 if (ret < 0) {
1035 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1036 goto out_master_put;
1038 master->num_chipselect = cs_num;
1040 ret = of_property_read_u32(np, "bus-num", &bus_num);
1041 if (ret < 0) {
1042 dev_err(&pdev->dev, "can't get bus-num\n");
1043 goto out_master_put;
1045 master->bus_num = bus_num;
1047 if (of_property_read_bool(np, "spi-slave"))
1048 master->slave = true;
1050 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1051 if (!dspi->devtype_data) {
1052 dev_err(&pdev->dev, "can't get devtype_data\n");
1053 ret = -EFAULT;
1054 goto out_master_put;
1058 if (dspi->devtype_data->xspi_mode)
1059 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1060 else
1061 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1063 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1064 base = devm_ioremap_resource(&pdev->dev, res);
1065 if (IS_ERR(base)) {
1066 ret = PTR_ERR(base);
1067 goto out_master_put;
1070 if (dspi->devtype_data->xspi_mode)
1071 regmap_config = &dspi_xspi_regmap_config[0];
1072 else
1073 regmap_config = &dspi_regmap_config;
1074 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1075 if (IS_ERR(dspi->regmap)) {
1076 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1077 PTR_ERR(dspi->regmap));
1078 ret = PTR_ERR(dspi->regmap);
1079 goto out_master_put;
1082 if (dspi->devtype_data->xspi_mode) {
1083 dspi->regmap_pushr = devm_regmap_init_mmio(
1084 &pdev->dev, base + SPI_PUSHR,
1085 &dspi_xspi_regmap_config[1]);
1086 if (IS_ERR(dspi->regmap_pushr)) {
1087 dev_err(&pdev->dev,
1088 "failed to init pushr regmap: %ld\n",
1089 PTR_ERR(dspi->regmap_pushr));
1090 ret = PTR_ERR(dspi->regmap_pushr);
1091 goto out_master_put;
1095 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1096 if (IS_ERR(dspi->clk)) {
1097 ret = PTR_ERR(dspi->clk);
1098 dev_err(&pdev->dev, "unable to get clock\n");
1099 goto out_master_put;
1101 ret = clk_prepare_enable(dspi->clk);
1102 if (ret)
1103 goto out_master_put;
1105 dspi_init(dspi);
1106 dspi->irq = platform_get_irq(pdev, 0);
1107 if (dspi->irq < 0) {
1108 dev_err(&pdev->dev, "can't get platform irq\n");
1109 ret = dspi->irq;
1110 goto out_clk_put;
1113 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1114 IRQF_SHARED, pdev->name, dspi);
1115 if (ret < 0) {
1116 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1117 goto out_clk_put;
1120 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1121 ret = dspi_request_dma(dspi, res->start);
1122 if (ret < 0) {
1123 dev_err(&pdev->dev, "can't get dma channels\n");
1124 goto out_clk_put;
1128 master->max_speed_hz =
1129 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1131 init_waitqueue_head(&dspi->waitq);
1132 platform_set_drvdata(pdev, master);
1134 ret = spi_register_master(master);
1135 if (ret != 0) {
1136 dev_err(&pdev->dev, "Problem registering DSPI master\n");
1137 goto out_clk_put;
1140 return ret;
1142 out_clk_put:
1143 clk_disable_unprepare(dspi->clk);
1144 out_master_put:
1145 spi_master_put(master);
1147 return ret;
1150 static int dspi_remove(struct platform_device *pdev)
1152 struct spi_master *master = platform_get_drvdata(pdev);
1153 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1155 /* Disconnect from the SPI framework */
1156 dspi_release_dma(dspi);
1157 clk_disable_unprepare(dspi->clk);
1158 spi_unregister_master(dspi->master);
1160 return 0;
1163 static struct platform_driver fsl_dspi_driver = {
1164 .driver.name = DRIVER_NAME,
1165 .driver.of_match_table = fsl_dspi_dt_ids,
1166 .driver.owner = THIS_MODULE,
1167 .driver.pm = &dspi_pm,
1168 .probe = dspi_probe,
1169 .remove = dspi_remove,
1171 module_platform_driver(fsl_dspi_driver);
1173 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1174 MODULE_LICENSE("GPL");
1175 MODULE_ALIAS("platform:" DRIVER_NAME);