2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 #include <linux/of_device.h>
38 #include "spi-pxa2xx.h"
40 MODULE_AUTHOR("Stephen Street");
41 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
42 MODULE_LICENSE("GPL");
43 MODULE_ALIAS("platform:pxa2xx-spi");
45 #define TIMOUT_DFLT 1000
48 * for testing SSCR1 changes that require SSP restart, basically
49 * everything except the service and interrupt enables, the pxa270 developer
50 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
51 * list, but the PXA255 dev man says all bits without really meaning the
52 * service and interrupt enables
54 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
59 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
62 | QUARK_X1000_SSCR1_EFWR \
63 | QUARK_X1000_SSCR1_RFT \
64 | QUARK_X1000_SSCR1_TFT \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
68 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
69 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
70 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
71 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
72 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
74 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
75 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
76 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
77 #define LPSS_CAPS_CS_EN_SHIFT 9
78 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
81 /* LPSS offset from drv_data->ioaddr */
83 /* Register offsets from drv_data->lpss_base or -1 */
92 /* Chip select control */
93 unsigned cs_sel_shift
;
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms
[] = {
105 .reg_capabilities
= -1,
107 .tx_threshold_lo
= 160,
108 .tx_threshold_hi
= 224,
115 .reg_capabilities
= -1,
117 .tx_threshold_lo
= 160,
118 .tx_threshold_hi
= 224,
125 .reg_capabilities
= -1,
127 .tx_threshold_lo
= 160,
128 .tx_threshold_hi
= 224,
130 .cs_sel_mask
= 1 << 2,
138 .reg_capabilities
= -1,
140 .tx_threshold_lo
= 32,
141 .tx_threshold_hi
= 56,
148 .reg_capabilities
= 0xfc,
150 .tx_threshold_lo
= 16,
151 .tx_threshold_hi
= 48,
153 .cs_sel_mask
= 3 << 8,
160 .reg_capabilities
= 0xfc,
162 .tx_threshold_lo
= 32,
163 .tx_threshold_hi
= 56,
165 .cs_sel_mask
= 3 << 8,
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data
*drv_data
)
172 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
175 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
177 switch (drv_data
->ssp_type
) {
190 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
192 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
195 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
197 switch (drv_data
->ssp_type
) {
198 case QUARK_X1000_SSP
:
199 return QUARK_X1000_SSCR1_CHANGE_MASK
;
201 return CE4100_SSCR1_CHANGE_MASK
;
203 return SSCR1_CHANGE_MASK
;
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
210 switch (drv_data
->ssp_type
) {
211 case QUARK_X1000_SSP
:
212 return RX_THRESH_QUARK_X1000_DFLT
;
214 return RX_THRESH_CE4100_DFLT
;
216 return RX_THRESH_DFLT
;
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
224 switch (drv_data
->ssp_type
) {
225 case QUARK_X1000_SSP
:
226 mask
= QUARK_X1000_SSSR_TFL_MASK
;
229 mask
= CE4100_SSSR_TFL_MASK
;
232 mask
= SSSR_TFL_MASK
;
236 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
244 switch (drv_data
->ssp_type
) {
245 case QUARK_X1000_SSP
:
246 mask
= QUARK_X1000_SSCR1_RFT
;
249 mask
= CE4100_SSCR1_RFT
;
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
259 u32
*sccr1_reg
, u32 threshold
)
261 switch (drv_data
->ssp_type
) {
262 case QUARK_X1000_SSP
:
263 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
266 *sccr1_reg
|= CE4100_SSCR1_RxTresh(threshold
);
269 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
274 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
275 u32 clk_div
, u8 bits
)
277 switch (drv_data
->ssp_type
) {
278 case QUARK_X1000_SSP
:
280 | QUARK_X1000_SSCR0_Motorola
281 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
286 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
288 | (bits
> 16 ? SSCR0_EDSS
: 0);
293 * Read and write LPSS SSP private registers. Caller must first check that
294 * is_lpss_ssp() returns true before these can be called.
296 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
298 WARN_ON(!drv_data
->lpss_base
);
299 return readl(drv_data
->lpss_base
+ offset
);
302 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
303 unsigned offset
, u32 value
)
305 WARN_ON(!drv_data
->lpss_base
);
306 writel(value
, drv_data
->lpss_base
+ offset
);
310 * lpss_ssp_setup - perform LPSS SSP specific setup
311 * @drv_data: pointer to the driver private data
313 * Perform LPSS SSP specific setup. This function must be called first if
314 * one is going to use LPSS SSP private registers.
316 static void lpss_ssp_setup(struct driver_data
*drv_data
)
318 const struct lpss_config
*config
;
321 config
= lpss_get_config(drv_data
);
322 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
324 /* Enable software chip select control */
325 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
326 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
327 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
328 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
330 /* Enable multiblock DMA transfers */
331 if (drv_data
->controller_info
->enable_dma
) {
332 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
334 if (config
->reg_general
>= 0) {
335 value
= __lpss_ssp_read_priv(drv_data
,
336 config
->reg_general
);
337 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
338 __lpss_ssp_write_priv(drv_data
,
339 config
->reg_general
, value
);
344 static void lpss_ssp_select_cs(struct spi_device
*spi
,
345 const struct lpss_config
*config
)
347 struct driver_data
*drv_data
=
348 spi_controller_get_devdata(spi
->controller
);
351 if (!config
->cs_sel_mask
)
354 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
356 cs
= spi
->chip_select
;
357 cs
<<= config
->cs_sel_shift
;
358 if (cs
!= (value
& config
->cs_sel_mask
)) {
360 * When switching another chip select output active the
361 * output must be selected first and wait 2 ssp_clk cycles
362 * before changing state to active. Otherwise a short
363 * glitch will occur on the previous chip select since
364 * output select is latched but state control is not.
366 value
&= ~config
->cs_sel_mask
;
368 __lpss_ssp_write_priv(drv_data
,
369 config
->reg_cs_ctrl
, value
);
371 (drv_data
->controller
->max_speed_hz
/ 2));
375 static void lpss_ssp_cs_control(struct spi_device
*spi
, bool enable
)
377 struct driver_data
*drv_data
=
378 spi_controller_get_devdata(spi
->controller
);
379 const struct lpss_config
*config
;
382 config
= lpss_get_config(drv_data
);
385 lpss_ssp_select_cs(spi
, config
);
387 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
389 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
391 value
|= LPSS_CS_CONTROL_CS_HIGH
;
392 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
395 static void cs_assert(struct spi_device
*spi
)
397 struct chip_data
*chip
= spi_get_ctldata(spi
);
398 struct driver_data
*drv_data
=
399 spi_controller_get_devdata(spi
->controller
);
401 if (drv_data
->ssp_type
== CE4100_SSP
) {
402 pxa2xx_spi_write(drv_data
, SSSR
, chip
->frm
);
406 if (chip
->cs_control
) {
407 chip
->cs_control(PXA2XX_CS_ASSERT
);
411 if (chip
->gpiod_cs
) {
412 gpiod_set_value(chip
->gpiod_cs
, chip
->gpio_cs_inverted
);
416 if (is_lpss_ssp(drv_data
))
417 lpss_ssp_cs_control(spi
, true);
420 static void cs_deassert(struct spi_device
*spi
)
422 struct chip_data
*chip
= spi_get_ctldata(spi
);
423 struct driver_data
*drv_data
=
424 spi_controller_get_devdata(spi
->controller
);
425 unsigned long timeout
;
427 if (drv_data
->ssp_type
== CE4100_SSP
)
430 /* Wait until SSP becomes idle before deasserting the CS */
431 timeout
= jiffies
+ msecs_to_jiffies(10);
432 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
&&
433 !time_after(jiffies
, timeout
))
436 if (chip
->cs_control
) {
437 chip
->cs_control(PXA2XX_CS_DEASSERT
);
441 if (chip
->gpiod_cs
) {
442 gpiod_set_value(chip
->gpiod_cs
, !chip
->gpio_cs_inverted
);
446 if (is_lpss_ssp(drv_data
))
447 lpss_ssp_cs_control(spi
, false);
450 static void pxa2xx_spi_set_cs(struct spi_device
*spi
, bool level
)
458 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
460 unsigned long limit
= loops_per_jiffy
<< 1;
463 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
464 pxa2xx_spi_read(drv_data
, SSDR
);
465 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
466 write_SSSR_CS(drv_data
, SSSR_ROR
);
471 static int null_writer(struct driver_data
*drv_data
)
473 u8 n_bytes
= drv_data
->n_bytes
;
475 if (pxa2xx_spi_txfifo_full(drv_data
)
476 || (drv_data
->tx
== drv_data
->tx_end
))
479 pxa2xx_spi_write(drv_data
, SSDR
, 0);
480 drv_data
->tx
+= n_bytes
;
485 static int null_reader(struct driver_data
*drv_data
)
487 u8 n_bytes
= drv_data
->n_bytes
;
489 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
490 && (drv_data
->rx
< drv_data
->rx_end
)) {
491 pxa2xx_spi_read(drv_data
, SSDR
);
492 drv_data
->rx
+= n_bytes
;
495 return drv_data
->rx
== drv_data
->rx_end
;
498 static int u8_writer(struct driver_data
*drv_data
)
500 if (pxa2xx_spi_txfifo_full(drv_data
)
501 || (drv_data
->tx
== drv_data
->tx_end
))
504 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
510 static int u8_reader(struct driver_data
*drv_data
)
512 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
513 && (drv_data
->rx
< drv_data
->rx_end
)) {
514 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
518 return drv_data
->rx
== drv_data
->rx_end
;
521 static int u16_writer(struct driver_data
*drv_data
)
523 if (pxa2xx_spi_txfifo_full(drv_data
)
524 || (drv_data
->tx
== drv_data
->tx_end
))
527 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
533 static int u16_reader(struct driver_data
*drv_data
)
535 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
536 && (drv_data
->rx
< drv_data
->rx_end
)) {
537 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
541 return drv_data
->rx
== drv_data
->rx_end
;
544 static int u32_writer(struct driver_data
*drv_data
)
546 if (pxa2xx_spi_txfifo_full(drv_data
)
547 || (drv_data
->tx
== drv_data
->tx_end
))
550 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
556 static int u32_reader(struct driver_data
*drv_data
)
558 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
559 && (drv_data
->rx
< drv_data
->rx_end
)) {
560 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
564 return drv_data
->rx
== drv_data
->rx_end
;
567 static void reset_sccr1(struct driver_data
*drv_data
)
569 struct chip_data
*chip
=
570 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
573 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
574 switch (drv_data
->ssp_type
) {
575 case QUARK_X1000_SSP
:
576 sccr1_reg
&= ~QUARK_X1000_SSCR1_RFT
;
579 sccr1_reg
&= ~CE4100_SSCR1_RFT
;
582 sccr1_reg
&= ~SSCR1_RFT
;
585 sccr1_reg
|= chip
->threshold
;
586 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
589 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
591 /* Stop and reset SSP */
592 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
593 reset_sccr1(drv_data
);
594 if (!pxa25x_ssp_comp(drv_data
))
595 pxa2xx_spi_write(drv_data
, SSTO
, 0);
596 pxa2xx_spi_flush(drv_data
);
597 pxa2xx_spi_write(drv_data
, SSCR0
,
598 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
600 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
602 drv_data
->controller
->cur_msg
->status
= -EIO
;
603 spi_finalize_current_transfer(drv_data
->controller
);
606 static void int_transfer_complete(struct driver_data
*drv_data
)
608 /* Clear and disable interrupts */
609 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
610 reset_sccr1(drv_data
);
611 if (!pxa25x_ssp_comp(drv_data
))
612 pxa2xx_spi_write(drv_data
, SSTO
, 0);
614 spi_finalize_current_transfer(drv_data
->controller
);
617 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
619 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
620 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
622 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
624 if (irq_status
& SSSR_ROR
) {
625 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
629 if (irq_status
& SSSR_TUR
) {
630 int_error_stop(drv_data
, "interrupt_transfer: fifo underrun");
634 if (irq_status
& SSSR_TINT
) {
635 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
636 if (drv_data
->read(drv_data
)) {
637 int_transfer_complete(drv_data
);
642 /* Drain rx fifo, Fill tx fifo and prevent overruns */
644 if (drv_data
->read(drv_data
)) {
645 int_transfer_complete(drv_data
);
648 } while (drv_data
->write(drv_data
));
650 if (drv_data
->read(drv_data
)) {
651 int_transfer_complete(drv_data
);
655 if (drv_data
->tx
== drv_data
->tx_end
) {
659 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
660 sccr1_reg
&= ~SSCR1_TIE
;
663 * PXA25x_SSP has no timeout, set up rx threshould for the
664 * remaining RX bytes.
666 if (pxa25x_ssp_comp(drv_data
)) {
669 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
671 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
672 switch (drv_data
->n_bytes
) {
681 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
682 if (rx_thre
> bytes_left
)
683 rx_thre
= bytes_left
;
685 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
687 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
690 /* We did something */
694 static void handle_bad_msg(struct driver_data
*drv_data
)
696 pxa2xx_spi_write(drv_data
, SSCR0
,
697 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
698 pxa2xx_spi_write(drv_data
, SSCR1
,
699 pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
);
700 if (!pxa25x_ssp_comp(drv_data
))
701 pxa2xx_spi_write(drv_data
, SSTO
, 0);
702 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
704 dev_err(&drv_data
->pdev
->dev
,
705 "bad message state in interrupt handler\n");
708 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
710 struct driver_data
*drv_data
= dev_id
;
712 u32 mask
= drv_data
->mask_sr
;
716 * The IRQ might be shared with other peripherals so we must first
717 * check that are we RPM suspended or not. If we are we assume that
718 * the IRQ was not for us (we shouldn't be RPM suspended when the
719 * interrupt is enabled).
721 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
725 * If the device is not yet in RPM suspended state and we get an
726 * interrupt that is meant for another device, check if status bits
727 * are all set to one. That means that the device is already
730 status
= pxa2xx_spi_read(drv_data
, SSSR
);
734 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
736 /* Ignore possible writes if we don't need to write */
737 if (!(sccr1_reg
& SSCR1_TIE
))
740 /* Ignore RX timeout interrupt if it is disabled */
741 if (!(sccr1_reg
& SSCR1_TINTE
))
744 if (!(status
& mask
))
747 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
& ~drv_data
->int_cr1
);
748 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
750 if (!drv_data
->controller
->cur_msg
) {
751 handle_bad_msg(drv_data
);
756 return drv_data
->transfer_handler(drv_data
);
760 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
761 * input frequency by fractions of 2^24. It also has a divider by 5.
763 * There are formulas to get baud rate value for given input frequency and
764 * divider parameters, such as DDS_CLK_RATE and SCR:
768 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
769 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
771 * DDS_CLK_RATE either 2^n or 2^n / 5.
772 * SCR is in range 0 .. 255
774 * Divisor = 5^i * 2^j * 2 * k
775 * i = [0, 1] i = 1 iff j = 0 or j > 3
776 * j = [0, 23] j = 0 iff i = 1
778 * Special case: j = 0, i = 1: Divisor = 2 / 5
780 * Accordingly to the specification the recommended values for DDS_CLK_RATE
782 * Case 1: 2^n, n = [0, 23]
783 * Case 2: 2^24 * 2 / 5 (0x666666)
784 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
786 * In all cases the lowest possible value is better.
788 * The function calculates parameters for all cases and chooses the one closest
789 * to the asked baud rate.
791 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
793 unsigned long xtal
= 200000000;
794 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
797 unsigned long fref1
= fref
/ 2; /* case 1 */
798 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
800 unsigned long q
, q1
, q2
;
806 /* Set initial value for DDS_CLK_RATE */
807 mul
= (1 << 24) >> 1;
809 /* Calculate initial quot */
810 q1
= DIV_ROUND_UP(fref1
, rate
);
812 /* Scale q1 if it's too big */
814 /* Scale q1 to range [1, 512] */
815 scale
= fls_long(q1
- 1);
821 /* Round the result if we have a remainder */
825 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
830 /* Get the remainder */
831 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
835 q2
= DIV_ROUND_UP(fref2
, rate
);
836 r2
= abs(fref2
/ q2
- rate
);
839 * Choose the best between two: less remainder we have the better. We
840 * can't go case 2 if q2 is greater than 256 since SCR register can
841 * hold only values 0 .. 255.
843 if (r2
>= r1
|| q2
> 256) {
844 /* case 1 is better */
848 /* case 2 is better */
851 mul
= (1 << 24) * 2 / 5;
854 /* Check case 3 only if the divisor is big enough */
855 if (fref
/ rate
>= 80) {
859 /* Calculate initial quot */
860 q1
= DIV_ROUND_UP(fref
, rate
);
863 /* Get the remainder */
864 fssp
= (u64
)fref
* m
;
865 do_div(fssp
, 1 << 24);
866 r1
= abs(fssp
- rate
);
868 /* Choose this one if it suits better */
870 /* case 3 is better */
880 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
882 unsigned long ssp_clk
= drv_data
->controller
->max_speed_hz
;
883 const struct ssp_device
*ssp
= drv_data
->ssp
;
885 rate
= min_t(int, ssp_clk
, rate
);
888 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
889 * that the SSP transmission rate can be greater than the device rate
891 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
892 return (DIV_ROUND_UP(ssp_clk
, 2 * rate
) - 1) & 0xff;
894 return (DIV_ROUND_UP(ssp_clk
, rate
) - 1) & 0xfff;
897 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
900 struct chip_data
*chip
=
901 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
902 unsigned int clk_div
;
904 switch (drv_data
->ssp_type
) {
905 case QUARK_X1000_SSP
:
906 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
909 clk_div
= ssp_get_clk_div(drv_data
, rate
);
915 static bool pxa2xx_spi_can_dma(struct spi_controller
*controller
,
916 struct spi_device
*spi
,
917 struct spi_transfer
*xfer
)
919 struct chip_data
*chip
= spi_get_ctldata(spi
);
921 return chip
->enable_dma
&&
922 xfer
->len
<= MAX_DMA_LEN
&&
923 xfer
->len
>= chip
->dma_burst_size
;
926 static int pxa2xx_spi_transfer_one(struct spi_controller
*controller
,
927 struct spi_device
*spi
,
928 struct spi_transfer
*transfer
)
930 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
931 struct spi_message
*message
= controller
->cur_msg
;
932 struct chip_data
*chip
= spi_get_ctldata(message
->spi
);
933 u32 dma_thresh
= chip
->dma_threshold
;
934 u32 dma_burst
= chip
->dma_burst_size
;
935 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
944 /* Check if we can DMA this transfer */
945 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
947 /* reject already-mapped transfers; PIO won't always work */
948 if (message
->is_dma_mapped
949 || transfer
->rx_dma
|| transfer
->tx_dma
) {
950 dev_err(&drv_data
->pdev
->dev
,
951 "Mapped transfer length of %u is greater than %d\n",
952 transfer
->len
, MAX_DMA_LEN
);
956 /* warn ... we force this to PIO mode */
957 dev_warn_ratelimited(&message
->spi
->dev
,
958 "DMA disabled for transfer length %ld greater than %d\n",
959 (long)transfer
->len
, MAX_DMA_LEN
);
962 /* Setup the transfer state based on the type of transfer */
963 if (pxa2xx_spi_flush(drv_data
) == 0) {
964 dev_err(&drv_data
->pdev
->dev
, "Flush failed\n");
967 drv_data
->n_bytes
= chip
->n_bytes
;
968 drv_data
->tx
= (void *)transfer
->tx_buf
;
969 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
970 drv_data
->rx
= transfer
->rx_buf
;
971 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
972 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
973 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
975 /* Change speed and bit per word on a per transfer */
976 bits
= transfer
->bits_per_word
;
977 speed
= transfer
->speed_hz
;
979 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
982 drv_data
->n_bytes
= 1;
983 drv_data
->read
= drv_data
->read
!= null_reader
?
984 u8_reader
: null_reader
;
985 drv_data
->write
= drv_data
->write
!= null_writer
?
986 u8_writer
: null_writer
;
987 } else if (bits
<= 16) {
988 drv_data
->n_bytes
= 2;
989 drv_data
->read
= drv_data
->read
!= null_reader
?
990 u16_reader
: null_reader
;
991 drv_data
->write
= drv_data
->write
!= null_writer
?
992 u16_writer
: null_writer
;
993 } else if (bits
<= 32) {
994 drv_data
->n_bytes
= 4;
995 drv_data
->read
= drv_data
->read
!= null_reader
?
996 u32_reader
: null_reader
;
997 drv_data
->write
= drv_data
->write
!= null_writer
?
998 u32_writer
: null_writer
;
1001 * if bits/word is changed in dma mode, then must check the
1002 * thresholds and burst also
1004 if (chip
->enable_dma
) {
1005 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1009 dev_warn_ratelimited(&message
->spi
->dev
,
1010 "DMA burst size reduced to match bits_per_word\n");
1013 dma_mapped
= controller
->can_dma
&&
1014 controller
->can_dma(controller
, message
->spi
, transfer
) &&
1015 controller
->cur_msg_mapped
;
1018 /* Ensure we have the correct interrupt handler */
1019 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1021 err
= pxa2xx_spi_dma_prepare(drv_data
, transfer
);
1025 /* Clear status and start DMA engine */
1026 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1027 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1029 pxa2xx_spi_dma_start(drv_data
);
1031 /* Ensure we have the correct interrupt handler */
1032 drv_data
->transfer_handler
= interrupt_transfer
;
1035 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1036 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1039 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1040 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1041 if (!pxa25x_ssp_comp(drv_data
))
1042 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1043 controller
->max_speed_hz
1044 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1045 dma_mapped
? "DMA" : "PIO");
1047 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1048 controller
->max_speed_hz
/ 2
1049 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1050 dma_mapped
? "DMA" : "PIO");
1052 if (is_lpss_ssp(drv_data
)) {
1053 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1054 != chip
->lpss_rx_threshold
)
1055 pxa2xx_spi_write(drv_data
, SSIRF
,
1056 chip
->lpss_rx_threshold
);
1057 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1058 != chip
->lpss_tx_threshold
)
1059 pxa2xx_spi_write(drv_data
, SSITF
,
1060 chip
->lpss_tx_threshold
);
1063 if (is_quark_x1000_ssp(drv_data
) &&
1064 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1065 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1067 /* see if we need to reload the config registers */
1068 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1069 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1070 != (cr1
& change_mask
)) {
1071 /* stop the SSP, and update the other bits */
1072 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1073 if (!pxa25x_ssp_comp(drv_data
))
1074 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1075 /* first set CR1 without interrupt and service enables */
1076 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1077 /* restart the SSP */
1078 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1081 if (!pxa25x_ssp_comp(drv_data
))
1082 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1085 if (drv_data
->ssp_type
== MMP2_SSP
) {
1086 u8 tx_level
= (pxa2xx_spi_read(drv_data
, SSSR
)
1087 & SSSR_TFL_MASK
) >> 8;
1090 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1091 dev_warn(&spi
->dev
, "%d bytes of garbage in TXFIFO!\n",
1093 if (tx_level
> transfer
->len
)
1094 tx_level
= transfer
->len
;
1095 drv_data
->tx
+= tx_level
;
1099 if (spi_controller_is_slave(controller
)) {
1100 while (drv_data
->write(drv_data
))
1102 if (drv_data
->gpiod_ready
) {
1103 gpiod_set_value(drv_data
->gpiod_ready
, 1);
1105 gpiod_set_value(drv_data
->gpiod_ready
, 0);
1110 * Release the data by enabling service requests and interrupts,
1111 * without changing any mode bits
1113 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1118 static int pxa2xx_spi_slave_abort(struct spi_controller
*controller
)
1120 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1122 /* Stop and reset SSP */
1123 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1124 reset_sccr1(drv_data
);
1125 if (!pxa25x_ssp_comp(drv_data
))
1126 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1127 pxa2xx_spi_flush(drv_data
);
1128 pxa2xx_spi_write(drv_data
, SSCR0
,
1129 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1131 dev_dbg(&drv_data
->pdev
->dev
, "transfer aborted\n");
1133 drv_data
->controller
->cur_msg
->status
= -EINTR
;
1134 spi_finalize_current_transfer(drv_data
->controller
);
1139 static void pxa2xx_spi_handle_err(struct spi_controller
*controller
,
1140 struct spi_message
*msg
)
1142 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1144 /* Disable the SSP */
1145 pxa2xx_spi_write(drv_data
, SSCR0
,
1146 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1147 /* Clear and disable interrupts and service requests */
1148 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1149 pxa2xx_spi_write(drv_data
, SSCR1
,
1150 pxa2xx_spi_read(drv_data
, SSCR1
)
1151 & ~(drv_data
->int_cr1
| drv_data
->dma_cr1
));
1152 if (!pxa25x_ssp_comp(drv_data
))
1153 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1156 * Stop the DMA if running. Note DMA callback handler may have unset
1157 * the dma_running already, which is fine as stopping is not needed
1158 * then but we shouldn't rely this flag for anything else than
1159 * stopping. For instance to differentiate between PIO and DMA
1162 if (atomic_read(&drv_data
->dma_running
))
1163 pxa2xx_spi_dma_stop(drv_data
);
1166 static int pxa2xx_spi_unprepare_transfer(struct spi_controller
*controller
)
1168 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1170 /* Disable the SSP now */
1171 pxa2xx_spi_write(drv_data
, SSCR0
,
1172 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1177 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1178 struct pxa2xx_spi_chip
*chip_info
)
1180 struct driver_data
*drv_data
=
1181 spi_controller_get_devdata(spi
->controller
);
1182 struct gpio_desc
*gpiod
;
1188 if (drv_data
->cs_gpiods
) {
1189 gpiod
= drv_data
->cs_gpiods
[spi
->chip_select
];
1191 chip
->gpiod_cs
= gpiod
;
1192 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1193 gpiod_set_value(gpiod
, chip
->gpio_cs_inverted
);
1199 if (chip_info
== NULL
)
1202 /* NOTE: setup() can be called multiple times, possibly with
1203 * different chip_info, release previously requested GPIO
1205 if (chip
->gpiod_cs
) {
1206 gpiod_put(chip
->gpiod_cs
);
1207 chip
->gpiod_cs
= NULL
;
1210 /* If (*cs_control) is provided, ignore GPIO chip select */
1211 if (chip_info
->cs_control
) {
1212 chip
->cs_control
= chip_info
->cs_control
;
1216 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1217 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1219 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1220 chip_info
->gpio_cs
);
1224 gpiod
= gpio_to_desc(chip_info
->gpio_cs
);
1225 chip
->gpiod_cs
= gpiod
;
1226 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1228 err
= gpiod_direction_output(gpiod
, !chip
->gpio_cs_inverted
);
1234 static int setup(struct spi_device
*spi
)
1236 struct pxa2xx_spi_chip
*chip_info
;
1237 struct chip_data
*chip
;
1238 const struct lpss_config
*config
;
1239 struct driver_data
*drv_data
=
1240 spi_controller_get_devdata(spi
->controller
);
1241 uint tx_thres
, tx_hi_thres
, rx_thres
;
1243 switch (drv_data
->ssp_type
) {
1244 case QUARK_X1000_SSP
:
1245 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1247 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1250 tx_thres
= TX_THRESH_CE4100_DFLT
;
1252 rx_thres
= RX_THRESH_CE4100_DFLT
;
1260 config
= lpss_get_config(drv_data
);
1261 tx_thres
= config
->tx_threshold_lo
;
1262 tx_hi_thres
= config
->tx_threshold_hi
;
1263 rx_thres
= config
->rx_threshold
;
1267 if (spi_controller_is_slave(drv_data
->controller
)) {
1271 tx_thres
= TX_THRESH_DFLT
;
1272 rx_thres
= RX_THRESH_DFLT
;
1277 /* Only alloc on first setup */
1278 chip
= spi_get_ctldata(spi
);
1280 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1284 if (drv_data
->ssp_type
== CE4100_SSP
) {
1285 if (spi
->chip_select
> 4) {
1287 "failed setup: cs number must not be > 4.\n");
1292 chip
->frm
= spi
->chip_select
;
1294 chip
->enable_dma
= drv_data
->controller_info
->enable_dma
;
1295 chip
->timeout
= TIMOUT_DFLT
;
1298 /* protocol drivers may change the chip settings, so...
1299 * if chip_info exists, use it */
1300 chip_info
= spi
->controller_data
;
1302 /* chip_info isn't always needed */
1305 if (chip_info
->timeout
)
1306 chip
->timeout
= chip_info
->timeout
;
1307 if (chip_info
->tx_threshold
)
1308 tx_thres
= chip_info
->tx_threshold
;
1309 if (chip_info
->tx_hi_threshold
)
1310 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1311 if (chip_info
->rx_threshold
)
1312 rx_thres
= chip_info
->rx_threshold
;
1313 chip
->dma_threshold
= 0;
1314 if (chip_info
->enable_loopback
)
1315 chip
->cr1
= SSCR1_LBM
;
1317 if (spi_controller_is_slave(drv_data
->controller
)) {
1318 chip
->cr1
|= SSCR1_SCFR
;
1319 chip
->cr1
|= SSCR1_SCLKDIR
;
1320 chip
->cr1
|= SSCR1_SFRMDIR
;
1321 chip
->cr1
|= SSCR1_SPH
;
1324 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1325 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1326 | SSITF_TxHiThresh(tx_hi_thres
);
1328 /* set dma burst and threshold outside of chip_info path so that if
1329 * chip_info goes away after setting chip->enable_dma, the
1330 * burst and threshold can still respond to changes in bits_per_word */
1331 if (chip
->enable_dma
) {
1332 /* set up legal burst and threshold for dma */
1333 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1335 &chip
->dma_burst_size
,
1336 &chip
->dma_threshold
)) {
1338 "in setup: DMA burst size reduced to match bits_per_word\n");
1342 switch (drv_data
->ssp_type
) {
1343 case QUARK_X1000_SSP
:
1344 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1345 & QUARK_X1000_SSCR1_RFT
)
1346 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1347 & QUARK_X1000_SSCR1_TFT
);
1350 chip
->threshold
= (CE4100_SSCR1_RxTresh(rx_thres
) & CE4100_SSCR1_RFT
) |
1351 (CE4100_SSCR1_TxTresh(tx_thres
) & CE4100_SSCR1_TFT
);
1354 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1355 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1359 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1360 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1361 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1363 if (spi
->mode
& SPI_LOOP
)
1364 chip
->cr1
|= SSCR1_LBM
;
1366 if (spi
->bits_per_word
<= 8) {
1368 chip
->read
= u8_reader
;
1369 chip
->write
= u8_writer
;
1370 } else if (spi
->bits_per_word
<= 16) {
1372 chip
->read
= u16_reader
;
1373 chip
->write
= u16_writer
;
1374 } else if (spi
->bits_per_word
<= 32) {
1376 chip
->read
= u32_reader
;
1377 chip
->write
= u32_writer
;
1380 spi_set_ctldata(spi
, chip
);
1382 if (drv_data
->ssp_type
== CE4100_SSP
)
1385 return setup_cs(spi
, chip
, chip_info
);
1388 static void cleanup(struct spi_device
*spi
)
1390 struct chip_data
*chip
= spi_get_ctldata(spi
);
1391 struct driver_data
*drv_data
=
1392 spi_controller_get_devdata(spi
->controller
);
1397 if (drv_data
->ssp_type
!= CE4100_SSP
&& !drv_data
->cs_gpiods
&&
1399 gpiod_put(chip
->gpiod_cs
);
1404 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1405 { "INT33C0", LPSS_LPT_SSP
},
1406 { "INT33C1", LPSS_LPT_SSP
},
1407 { "INT3430", LPSS_LPT_SSP
},
1408 { "INT3431", LPSS_LPT_SSP
},
1409 { "80860F0E", LPSS_BYT_SSP
},
1410 { "8086228E", LPSS_BSW_SSP
},
1413 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1416 * PCI IDs of compound devices that integrate both host controller and private
1417 * integrated DMA engine. Please note these are not used in module
1418 * autoloading and probing in this module but matching the LPSS SSP type.
1420 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1422 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1423 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1425 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1426 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1428 { PCI_VDEVICE(INTEL
, 0xa2a9), LPSS_SPT_SSP
},
1429 { PCI_VDEVICE(INTEL
, 0xa2aa), LPSS_SPT_SSP
},
1431 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1432 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1433 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1435 { PCI_VDEVICE(INTEL
, 0x1ac2), LPSS_BXT_SSP
},
1436 { PCI_VDEVICE(INTEL
, 0x1ac4), LPSS_BXT_SSP
},
1437 { PCI_VDEVICE(INTEL
, 0x1ac6), LPSS_BXT_SSP
},
1439 { PCI_VDEVICE(INTEL
, 0x31c2), LPSS_BXT_SSP
},
1440 { PCI_VDEVICE(INTEL
, 0x31c4), LPSS_BXT_SSP
},
1441 { PCI_VDEVICE(INTEL
, 0x31c6), LPSS_BXT_SSP
},
1443 { PCI_VDEVICE(INTEL
, 0x34aa), LPSS_CNL_SSP
},
1444 { PCI_VDEVICE(INTEL
, 0x34ab), LPSS_CNL_SSP
},
1445 { PCI_VDEVICE(INTEL
, 0x34fb), LPSS_CNL_SSP
},
1447 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1448 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1449 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1451 { PCI_VDEVICE(INTEL
, 0x9daa), LPSS_CNL_SSP
},
1452 { PCI_VDEVICE(INTEL
, 0x9dab), LPSS_CNL_SSP
},
1453 { PCI_VDEVICE(INTEL
, 0x9dfb), LPSS_CNL_SSP
},
1455 { PCI_VDEVICE(INTEL
, 0xa32a), LPSS_CNL_SSP
},
1456 { PCI_VDEVICE(INTEL
, 0xa32b), LPSS_CNL_SSP
},
1457 { PCI_VDEVICE(INTEL
, 0xa37b), LPSS_CNL_SSP
},
1461 static const struct of_device_id pxa2xx_spi_of_match
[] = {
1462 { .compatible
= "marvell,mmp2-ssp", .data
= (void *)MMP2_SSP
},
1465 MODULE_DEVICE_TABLE(of
, pxa2xx_spi_of_match
);
1469 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1474 if (adev
&& adev
->pnp
.unique_id
&&
1475 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1480 #else /* !CONFIG_ACPI */
1482 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1487 #endif /* CONFIG_ACPI */
1492 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1494 return param
== chan
->device
->dev
;
1497 #endif /* CONFIG_PCI */
1499 static struct pxa2xx_spi_controller
*
1500 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1502 struct pxa2xx_spi_controller
*pdata
;
1503 struct acpi_device
*adev
;
1504 struct ssp_device
*ssp
;
1505 struct resource
*res
;
1506 const struct acpi_device_id
*adev_id
= NULL
;
1507 const struct pci_device_id
*pcidev_id
= NULL
;
1508 const struct of_device_id
*of_id
= NULL
;
1509 enum pxa_ssp_type type
;
1511 adev
= ACPI_COMPANION(&pdev
->dev
);
1513 if (pdev
->dev
.of_node
)
1514 of_id
= of_match_device(pdev
->dev
.driver
->of_match_table
,
1516 else if (dev_is_pci(pdev
->dev
.parent
))
1517 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
,
1518 to_pci_dev(pdev
->dev
.parent
));
1520 adev_id
= acpi_match_device(pdev
->dev
.driver
->acpi_match_table
,
1526 type
= (enum pxa_ssp_type
)adev_id
->driver_data
;
1528 type
= (enum pxa_ssp_type
)pcidev_id
->driver_data
;
1530 type
= (enum pxa_ssp_type
)of_id
->data
;
1534 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1538 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1544 ssp
->phys_base
= res
->start
;
1545 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1546 if (IS_ERR(ssp
->mmio_base
))
1551 pdata
->tx_param
= pdev
->dev
.parent
;
1552 pdata
->rx_param
= pdev
->dev
.parent
;
1553 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1557 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1558 ssp
->irq
= platform_get_irq(pdev
, 0);
1561 ssp
->port_id
= pxa2xx_spi_get_port_id(adev
);
1563 pdata
->is_slave
= of_property_read_bool(pdev
->dev
.of_node
, "spi-slave");
1564 pdata
->num_chipselect
= 1;
1565 pdata
->enable_dma
= true;
1570 static int pxa2xx_spi_fw_translate_cs(struct spi_controller
*controller
,
1573 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1575 if (has_acpi_companion(&drv_data
->pdev
->dev
)) {
1576 switch (drv_data
->ssp_type
) {
1578 * For Atoms the ACPI DeviceSelection used by the Windows
1579 * driver starts from 1 instead of 0 so translate it here
1580 * to match what Linux expects.
1594 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1596 struct device
*dev
= &pdev
->dev
;
1597 struct pxa2xx_spi_controller
*platform_info
;
1598 struct spi_controller
*controller
;
1599 struct driver_data
*drv_data
;
1600 struct ssp_device
*ssp
;
1601 const struct lpss_config
*config
;
1605 platform_info
= dev_get_platdata(dev
);
1606 if (!platform_info
) {
1607 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1608 if (!platform_info
) {
1609 dev_err(&pdev
->dev
, "missing platform data\n");
1614 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1616 ssp
= &platform_info
->ssp
;
1618 if (!ssp
->mmio_base
) {
1619 dev_err(&pdev
->dev
, "failed to get ssp\n");
1623 if (platform_info
->is_slave
)
1624 controller
= spi_alloc_slave(dev
, sizeof(struct driver_data
));
1626 controller
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1629 dev_err(&pdev
->dev
, "cannot alloc spi_controller\n");
1633 drv_data
= spi_controller_get_devdata(controller
);
1634 drv_data
->controller
= controller
;
1635 drv_data
->controller_info
= platform_info
;
1636 drv_data
->pdev
= pdev
;
1637 drv_data
->ssp
= ssp
;
1639 controller
->dev
.of_node
= pdev
->dev
.of_node
;
1640 /* the spi->mode bits understood by this driver: */
1641 controller
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1643 controller
->bus_num
= ssp
->port_id
;
1644 controller
->dma_alignment
= DMA_ALIGNMENT
;
1645 controller
->cleanup
= cleanup
;
1646 controller
->setup
= setup
;
1647 controller
->set_cs
= pxa2xx_spi_set_cs
;
1648 controller
->transfer_one
= pxa2xx_spi_transfer_one
;
1649 controller
->slave_abort
= pxa2xx_spi_slave_abort
;
1650 controller
->handle_err
= pxa2xx_spi_handle_err
;
1651 controller
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1652 controller
->fw_translate_cs
= pxa2xx_spi_fw_translate_cs
;
1653 controller
->auto_runtime_pm
= true;
1654 controller
->flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
;
1656 drv_data
->ssp_type
= ssp
->type
;
1658 drv_data
->ioaddr
= ssp
->mmio_base
;
1659 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1660 if (pxa25x_ssp_comp(drv_data
)) {
1661 switch (drv_data
->ssp_type
) {
1662 case QUARK_X1000_SSP
:
1663 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1666 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1670 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1671 drv_data
->dma_cr1
= 0;
1672 drv_data
->clear_sr
= SSSR_ROR
;
1673 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1675 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1676 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1677 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1678 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1679 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
1680 | SSSR_ROR
| SSSR_TUR
;
1683 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1686 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1687 goto out_error_controller_alloc
;
1690 /* Setup DMA if requested */
1691 if (platform_info
->enable_dma
) {
1692 status
= pxa2xx_spi_dma_setup(drv_data
);
1694 dev_dbg(dev
, "no DMA channels available, using PIO\n");
1695 platform_info
->enable_dma
= false;
1697 controller
->can_dma
= pxa2xx_spi_can_dma
;
1698 controller
->max_dma_len
= MAX_DMA_LEN
;
1702 /* Enable SOC clock */
1703 status
= clk_prepare_enable(ssp
->clk
);
1705 goto out_error_dma_irq_alloc
;
1707 controller
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1709 /* Load default SSP configuration */
1710 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1711 switch (drv_data
->ssp_type
) {
1712 case QUARK_X1000_SSP
:
1713 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
) |
1714 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1715 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1717 /* using the Motorola SPI protocol and use 8 bit frame */
1718 tmp
= QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8);
1719 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1722 tmp
= CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT
) |
1723 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT
);
1724 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1725 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1726 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1730 if (spi_controller_is_slave(controller
)) {
1738 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1739 SSCR1_TxTresh(TX_THRESH_DFLT
);
1741 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1742 tmp
= SSCR0_Motorola
| SSCR0_DataSize(8);
1743 if (!spi_controller_is_slave(controller
))
1744 tmp
|= SSCR0_SCR(2);
1745 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1749 if (!pxa25x_ssp_comp(drv_data
))
1750 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1752 if (!is_quark_x1000_ssp(drv_data
))
1753 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1755 if (is_lpss_ssp(drv_data
)) {
1756 lpss_ssp_setup(drv_data
);
1757 config
= lpss_get_config(drv_data
);
1758 if (config
->reg_capabilities
>= 0) {
1759 tmp
= __lpss_ssp_read_priv(drv_data
,
1760 config
->reg_capabilities
);
1761 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1762 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1763 platform_info
->num_chipselect
= ffz(tmp
);
1764 } else if (config
->cs_num
) {
1765 platform_info
->num_chipselect
= config
->cs_num
;
1768 controller
->num_chipselect
= platform_info
->num_chipselect
;
1770 count
= gpiod_count(&pdev
->dev
, "cs");
1774 controller
->num_chipselect
= max_t(int, count
,
1775 controller
->num_chipselect
);
1777 drv_data
->cs_gpiods
= devm_kcalloc(&pdev
->dev
,
1778 controller
->num_chipselect
, sizeof(struct gpio_desc
*),
1780 if (!drv_data
->cs_gpiods
) {
1782 goto out_error_clock_enabled
;
1785 for (i
= 0; i
< controller
->num_chipselect
; i
++) {
1786 struct gpio_desc
*gpiod
;
1788 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1789 if (IS_ERR(gpiod
)) {
1790 /* Means use native chip select */
1791 if (PTR_ERR(gpiod
) == -ENOENT
)
1794 status
= PTR_ERR(gpiod
);
1795 goto out_error_clock_enabled
;
1797 drv_data
->cs_gpiods
[i
] = gpiod
;
1802 if (platform_info
->is_slave
) {
1803 drv_data
->gpiod_ready
= devm_gpiod_get_optional(dev
,
1804 "ready", GPIOD_OUT_LOW
);
1805 if (IS_ERR(drv_data
->gpiod_ready
)) {
1806 status
= PTR_ERR(drv_data
->gpiod_ready
);
1807 goto out_error_clock_enabled
;
1811 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1812 pm_runtime_use_autosuspend(&pdev
->dev
);
1813 pm_runtime_set_active(&pdev
->dev
);
1814 pm_runtime_enable(&pdev
->dev
);
1816 /* Register with the SPI framework */
1817 platform_set_drvdata(pdev
, drv_data
);
1818 status
= devm_spi_register_controller(&pdev
->dev
, controller
);
1820 dev_err(&pdev
->dev
, "problem registering spi controller\n");
1821 goto out_error_clock_enabled
;
1826 out_error_clock_enabled
:
1827 pm_runtime_put_noidle(&pdev
->dev
);
1828 pm_runtime_disable(&pdev
->dev
);
1829 clk_disable_unprepare(ssp
->clk
);
1831 out_error_dma_irq_alloc
:
1832 pxa2xx_spi_dma_release(drv_data
);
1833 free_irq(ssp
->irq
, drv_data
);
1835 out_error_controller_alloc
:
1836 spi_controller_put(controller
);
1841 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1843 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1844 struct ssp_device
*ssp
;
1848 ssp
= drv_data
->ssp
;
1850 pm_runtime_get_sync(&pdev
->dev
);
1852 /* Disable the SSP at the peripheral and SOC level */
1853 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1854 clk_disable_unprepare(ssp
->clk
);
1857 if (drv_data
->controller_info
->enable_dma
)
1858 pxa2xx_spi_dma_release(drv_data
);
1860 pm_runtime_put_noidle(&pdev
->dev
);
1861 pm_runtime_disable(&pdev
->dev
);
1864 free_irq(ssp
->irq
, drv_data
);
1872 #ifdef CONFIG_PM_SLEEP
1873 static int pxa2xx_spi_suspend(struct device
*dev
)
1875 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1876 struct ssp_device
*ssp
= drv_data
->ssp
;
1879 status
= spi_controller_suspend(drv_data
->controller
);
1882 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1884 if (!pm_runtime_suspended(dev
))
1885 clk_disable_unprepare(ssp
->clk
);
1890 static int pxa2xx_spi_resume(struct device
*dev
)
1892 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1893 struct ssp_device
*ssp
= drv_data
->ssp
;
1896 /* Enable the SSP clock */
1897 if (!pm_runtime_suspended(dev
)) {
1898 status
= clk_prepare_enable(ssp
->clk
);
1903 /* Start the queue running */
1904 return spi_controller_resume(drv_data
->controller
);
1909 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1911 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1913 clk_disable_unprepare(drv_data
->ssp
->clk
);
1917 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1919 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1922 status
= clk_prepare_enable(drv_data
->ssp
->clk
);
1927 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1928 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1929 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1930 pxa2xx_spi_runtime_resume
, NULL
)
1933 static struct platform_driver driver
= {
1935 .name
= "pxa2xx-spi",
1936 .pm
= &pxa2xx_spi_pm_ops
,
1937 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
1938 .of_match_table
= of_match_ptr(pxa2xx_spi_of_match
),
1940 .probe
= pxa2xx_spi_probe
,
1941 .remove
= pxa2xx_spi_remove
,
1944 static int __init
pxa2xx_spi_init(void)
1946 return platform_driver_register(&driver
);
1948 subsys_initcall(pxa2xx_spi_init
);
1950 static void __exit
pxa2xx_spi_exit(void)
1952 platform_driver_unregister(&driver
);
1954 module_exit(pxa2xx_spi_exit
);