Linux 5.1.15
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx.c
bloba1a63b617ae18b4824184646751c4c62fe286679
1 /*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 #include <linux/of_device.h>
38 #include "spi-pxa2xx.h"
40 MODULE_AUTHOR("Stephen Street");
41 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
42 MODULE_LICENSE("GPL");
43 MODULE_ALIAS("platform:pxa2xx-spi");
45 #define TIMOUT_DFLT 1000
48 * for testing SSCR1 changes that require SSP restart, basically
49 * everything except the service and interrupt enables, the pxa270 developer
50 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
51 * list, but the PXA255 dev man says all bits without really meaning the
52 * service and interrupt enables
54 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
59 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
62 | QUARK_X1000_SSCR1_EFWR \
63 | QUARK_X1000_SSCR1_RFT \
64 | QUARK_X1000_SSCR1_TFT \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
68 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
69 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
70 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
71 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
72 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
74 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
75 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
76 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
77 #define LPSS_CAPS_CS_EN_SHIFT 9
78 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
80 struct lpss_config {
81 /* LPSS offset from drv_data->ioaddr */
82 unsigned offset;
83 /* Register offsets from drv_data->lpss_base or -1 */
84 int reg_general;
85 int reg_ssp;
86 int reg_cs_ctrl;
87 int reg_capabilities;
88 /* FIFO thresholds */
89 u32 rx_threshold;
90 u32 tx_threshold_lo;
91 u32 tx_threshold_hi;
92 /* Chip select control */
93 unsigned cs_sel_shift;
94 unsigned cs_sel_mask;
95 unsigned cs_num;
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
100 { /* LPSS_LPT_SSP */
101 .offset = 0x800,
102 .reg_general = 0x08,
103 .reg_ssp = 0x0c,
104 .reg_cs_ctrl = 0x18,
105 .reg_capabilities = -1,
106 .rx_threshold = 64,
107 .tx_threshold_lo = 160,
108 .tx_threshold_hi = 224,
110 { /* LPSS_BYT_SSP */
111 .offset = 0x400,
112 .reg_general = 0x08,
113 .reg_ssp = 0x0c,
114 .reg_cs_ctrl = 0x18,
115 .reg_capabilities = -1,
116 .rx_threshold = 64,
117 .tx_threshold_lo = 160,
118 .tx_threshold_hi = 224,
120 { /* LPSS_BSW_SSP */
121 .offset = 0x400,
122 .reg_general = 0x08,
123 .reg_ssp = 0x0c,
124 .reg_cs_ctrl = 0x18,
125 .reg_capabilities = -1,
126 .rx_threshold = 64,
127 .tx_threshold_lo = 160,
128 .tx_threshold_hi = 224,
129 .cs_sel_shift = 2,
130 .cs_sel_mask = 1 << 2,
131 .cs_num = 2,
133 { /* LPSS_SPT_SSP */
134 .offset = 0x200,
135 .reg_general = -1,
136 .reg_ssp = 0x20,
137 .reg_cs_ctrl = 0x24,
138 .reg_capabilities = -1,
139 .rx_threshold = 1,
140 .tx_threshold_lo = 32,
141 .tx_threshold_hi = 56,
143 { /* LPSS_BXT_SSP */
144 .offset = 0x200,
145 .reg_general = -1,
146 .reg_ssp = 0x20,
147 .reg_cs_ctrl = 0x24,
148 .reg_capabilities = 0xfc,
149 .rx_threshold = 1,
150 .tx_threshold_lo = 16,
151 .tx_threshold_hi = 48,
152 .cs_sel_shift = 8,
153 .cs_sel_mask = 3 << 8,
155 { /* LPSS_CNL_SSP */
156 .offset = 0x200,
157 .reg_general = -1,
158 .reg_ssp = 0x20,
159 .reg_cs_ctrl = 0x24,
160 .reg_capabilities = 0xfc,
161 .rx_threshold = 1,
162 .tx_threshold_lo = 32,
163 .tx_threshold_hi = 56,
164 .cs_sel_shift = 8,
165 .cs_sel_mask = 3 << 8,
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
172 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
177 switch (drv_data->ssp_type) {
178 case LPSS_LPT_SSP:
179 case LPSS_BYT_SSP:
180 case LPSS_BSW_SSP:
181 case LPSS_SPT_SSP:
182 case LPSS_BXT_SSP:
183 case LPSS_CNL_SSP:
184 return true;
185 default:
186 return false;
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192 return drv_data->ssp_type == QUARK_X1000_SSP;
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
197 switch (drv_data->ssp_type) {
198 case QUARK_X1000_SSP:
199 return QUARK_X1000_SSCR1_CHANGE_MASK;
200 case CE4100_SSP:
201 return CE4100_SSCR1_CHANGE_MASK;
202 default:
203 return SSCR1_CHANGE_MASK;
207 static u32
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
210 switch (drv_data->ssp_type) {
211 case QUARK_X1000_SSP:
212 return RX_THRESH_QUARK_X1000_DFLT;
213 case CE4100_SSP:
214 return RX_THRESH_CE4100_DFLT;
215 default:
216 return RX_THRESH_DFLT;
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
222 u32 mask;
224 switch (drv_data->ssp_type) {
225 case QUARK_X1000_SSP:
226 mask = QUARK_X1000_SSSR_TFL_MASK;
227 break;
228 case CE4100_SSP:
229 mask = CE4100_SSSR_TFL_MASK;
230 break;
231 default:
232 mask = SSSR_TFL_MASK;
233 break;
236 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
240 u32 *sccr1_reg)
242 u32 mask;
244 switch (drv_data->ssp_type) {
245 case QUARK_X1000_SSP:
246 mask = QUARK_X1000_SSCR1_RFT;
247 break;
248 case CE4100_SSP:
249 mask = CE4100_SSCR1_RFT;
250 break;
251 default:
252 mask = SSCR1_RFT;
253 break;
255 *sccr1_reg &= ~mask;
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259 u32 *sccr1_reg, u32 threshold)
261 switch (drv_data->ssp_type) {
262 case QUARK_X1000_SSP:
263 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
264 break;
265 case CE4100_SSP:
266 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
267 break;
268 default:
269 *sccr1_reg |= SSCR1_RxTresh(threshold);
270 break;
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275 u32 clk_div, u8 bits)
277 switch (drv_data->ssp_type) {
278 case QUARK_X1000_SSP:
279 return clk_div
280 | QUARK_X1000_SSCR0_Motorola
281 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
282 | SSCR0_SSE;
283 default:
284 return clk_div
285 | SSCR0_Motorola
286 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
287 | SSCR0_SSE
288 | (bits > 16 ? SSCR0_EDSS : 0);
293 * Read and write LPSS SSP private registers. Caller must first check that
294 * is_lpss_ssp() returns true before these can be called.
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
298 WARN_ON(!drv_data->lpss_base);
299 return readl(drv_data->lpss_base + offset);
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303 unsigned offset, u32 value)
305 WARN_ON(!drv_data->lpss_base);
306 writel(value, drv_data->lpss_base + offset);
310 * lpss_ssp_setup - perform LPSS SSP specific setup
311 * @drv_data: pointer to the driver private data
313 * Perform LPSS SSP specific setup. This function must be called first if
314 * one is going to use LPSS SSP private registers.
316 static void lpss_ssp_setup(struct driver_data *drv_data)
318 const struct lpss_config *config;
319 u32 value;
321 config = lpss_get_config(drv_data);
322 drv_data->lpss_base = drv_data->ioaddr + config->offset;
324 /* Enable software chip select control */
325 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
330 /* Enable multiblock DMA transfers */
331 if (drv_data->controller_info->enable_dma) {
332 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
334 if (config->reg_general >= 0) {
335 value = __lpss_ssp_read_priv(drv_data,
336 config->reg_general);
337 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338 __lpss_ssp_write_priv(drv_data,
339 config->reg_general, value);
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345 const struct lpss_config *config)
347 struct driver_data *drv_data =
348 spi_controller_get_devdata(spi->controller);
349 u32 value, cs;
351 if (!config->cs_sel_mask)
352 return;
354 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
356 cs = spi->chip_select;
357 cs <<= config->cs_sel_shift;
358 if (cs != (value & config->cs_sel_mask)) {
360 * When switching another chip select output active the
361 * output must be selected first and wait 2 ssp_clk cycles
362 * before changing state to active. Otherwise a short
363 * glitch will occur on the previous chip select since
364 * output select is latched but state control is not.
366 value &= ~config->cs_sel_mask;
367 value |= cs;
368 __lpss_ssp_write_priv(drv_data,
369 config->reg_cs_ctrl, value);
370 ndelay(1000000000 /
371 (drv_data->controller->max_speed_hz / 2));
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
377 struct driver_data *drv_data =
378 spi_controller_get_devdata(spi->controller);
379 const struct lpss_config *config;
380 u32 value;
382 config = lpss_get_config(drv_data);
384 if (enable)
385 lpss_ssp_select_cs(spi, config);
387 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
388 if (enable)
389 value &= ~LPSS_CS_CONTROL_CS_HIGH;
390 else
391 value |= LPSS_CS_CONTROL_CS_HIGH;
392 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
395 static void cs_assert(struct spi_device *spi)
397 struct chip_data *chip = spi_get_ctldata(spi);
398 struct driver_data *drv_data =
399 spi_controller_get_devdata(spi->controller);
401 if (drv_data->ssp_type == CE4100_SSP) {
402 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
403 return;
406 if (chip->cs_control) {
407 chip->cs_control(PXA2XX_CS_ASSERT);
408 return;
411 if (chip->gpiod_cs) {
412 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
413 return;
416 if (is_lpss_ssp(drv_data))
417 lpss_ssp_cs_control(spi, true);
420 static void cs_deassert(struct spi_device *spi)
422 struct chip_data *chip = spi_get_ctldata(spi);
423 struct driver_data *drv_data =
424 spi_controller_get_devdata(spi->controller);
425 unsigned long timeout;
427 if (drv_data->ssp_type == CE4100_SSP)
428 return;
430 /* Wait until SSP becomes idle before deasserting the CS */
431 timeout = jiffies + msecs_to_jiffies(10);
432 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
433 !time_after(jiffies, timeout))
434 cpu_relax();
436 if (chip->cs_control) {
437 chip->cs_control(PXA2XX_CS_DEASSERT);
438 return;
441 if (chip->gpiod_cs) {
442 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
443 return;
446 if (is_lpss_ssp(drv_data))
447 lpss_ssp_cs_control(spi, false);
450 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
452 if (level)
453 cs_deassert(spi);
454 else
455 cs_assert(spi);
458 int pxa2xx_spi_flush(struct driver_data *drv_data)
460 unsigned long limit = loops_per_jiffy << 1;
462 do {
463 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
464 pxa2xx_spi_read(drv_data, SSDR);
465 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
466 write_SSSR_CS(drv_data, SSSR_ROR);
468 return limit;
471 static int null_writer(struct driver_data *drv_data)
473 u8 n_bytes = drv_data->n_bytes;
475 if (pxa2xx_spi_txfifo_full(drv_data)
476 || (drv_data->tx == drv_data->tx_end))
477 return 0;
479 pxa2xx_spi_write(drv_data, SSDR, 0);
480 drv_data->tx += n_bytes;
482 return 1;
485 static int null_reader(struct driver_data *drv_data)
487 u8 n_bytes = drv_data->n_bytes;
489 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
490 && (drv_data->rx < drv_data->rx_end)) {
491 pxa2xx_spi_read(drv_data, SSDR);
492 drv_data->rx += n_bytes;
495 return drv_data->rx == drv_data->rx_end;
498 static int u8_writer(struct driver_data *drv_data)
500 if (pxa2xx_spi_txfifo_full(drv_data)
501 || (drv_data->tx == drv_data->tx_end))
502 return 0;
504 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
505 ++drv_data->tx;
507 return 1;
510 static int u8_reader(struct driver_data *drv_data)
512 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
513 && (drv_data->rx < drv_data->rx_end)) {
514 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
515 ++drv_data->rx;
518 return drv_data->rx == drv_data->rx_end;
521 static int u16_writer(struct driver_data *drv_data)
523 if (pxa2xx_spi_txfifo_full(drv_data)
524 || (drv_data->tx == drv_data->tx_end))
525 return 0;
527 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
528 drv_data->tx += 2;
530 return 1;
533 static int u16_reader(struct driver_data *drv_data)
535 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
536 && (drv_data->rx < drv_data->rx_end)) {
537 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
538 drv_data->rx += 2;
541 return drv_data->rx == drv_data->rx_end;
544 static int u32_writer(struct driver_data *drv_data)
546 if (pxa2xx_spi_txfifo_full(drv_data)
547 || (drv_data->tx == drv_data->tx_end))
548 return 0;
550 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
551 drv_data->tx += 4;
553 return 1;
556 static int u32_reader(struct driver_data *drv_data)
558 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
559 && (drv_data->rx < drv_data->rx_end)) {
560 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
561 drv_data->rx += 4;
564 return drv_data->rx == drv_data->rx_end;
567 static void reset_sccr1(struct driver_data *drv_data)
569 struct chip_data *chip =
570 spi_get_ctldata(drv_data->controller->cur_msg->spi);
571 u32 sccr1_reg;
573 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
574 switch (drv_data->ssp_type) {
575 case QUARK_X1000_SSP:
576 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
577 break;
578 case CE4100_SSP:
579 sccr1_reg &= ~CE4100_SSCR1_RFT;
580 break;
581 default:
582 sccr1_reg &= ~SSCR1_RFT;
583 break;
585 sccr1_reg |= chip->threshold;
586 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
589 static void int_error_stop(struct driver_data *drv_data, const char* msg)
591 /* Stop and reset SSP */
592 write_SSSR_CS(drv_data, drv_data->clear_sr);
593 reset_sccr1(drv_data);
594 if (!pxa25x_ssp_comp(drv_data))
595 pxa2xx_spi_write(drv_data, SSTO, 0);
596 pxa2xx_spi_flush(drv_data);
597 pxa2xx_spi_write(drv_data, SSCR0,
598 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
600 dev_err(&drv_data->pdev->dev, "%s\n", msg);
602 drv_data->controller->cur_msg->status = -EIO;
603 spi_finalize_current_transfer(drv_data->controller);
606 static void int_transfer_complete(struct driver_data *drv_data)
608 /* Clear and disable interrupts */
609 write_SSSR_CS(drv_data, drv_data->clear_sr);
610 reset_sccr1(drv_data);
611 if (!pxa25x_ssp_comp(drv_data))
612 pxa2xx_spi_write(drv_data, SSTO, 0);
614 spi_finalize_current_transfer(drv_data->controller);
617 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
619 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
620 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
622 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
624 if (irq_status & SSSR_ROR) {
625 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
626 return IRQ_HANDLED;
629 if (irq_status & SSSR_TUR) {
630 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
631 return IRQ_HANDLED;
634 if (irq_status & SSSR_TINT) {
635 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
636 if (drv_data->read(drv_data)) {
637 int_transfer_complete(drv_data);
638 return IRQ_HANDLED;
642 /* Drain rx fifo, Fill tx fifo and prevent overruns */
643 do {
644 if (drv_data->read(drv_data)) {
645 int_transfer_complete(drv_data);
646 return IRQ_HANDLED;
648 } while (drv_data->write(drv_data));
650 if (drv_data->read(drv_data)) {
651 int_transfer_complete(drv_data);
652 return IRQ_HANDLED;
655 if (drv_data->tx == drv_data->tx_end) {
656 u32 bytes_left;
657 u32 sccr1_reg;
659 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
660 sccr1_reg &= ~SSCR1_TIE;
663 * PXA25x_SSP has no timeout, set up rx threshould for the
664 * remaining RX bytes.
666 if (pxa25x_ssp_comp(drv_data)) {
667 u32 rx_thre;
669 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
671 bytes_left = drv_data->rx_end - drv_data->rx;
672 switch (drv_data->n_bytes) {
673 case 4:
674 bytes_left >>= 2;
675 break;
676 case 2:
677 bytes_left >>= 1;
678 break;
681 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
682 if (rx_thre > bytes_left)
683 rx_thre = bytes_left;
685 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
687 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
690 /* We did something */
691 return IRQ_HANDLED;
694 static void handle_bad_msg(struct driver_data *drv_data)
696 pxa2xx_spi_write(drv_data, SSCR0,
697 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
698 pxa2xx_spi_write(drv_data, SSCR1,
699 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
700 if (!pxa25x_ssp_comp(drv_data))
701 pxa2xx_spi_write(drv_data, SSTO, 0);
702 write_SSSR_CS(drv_data, drv_data->clear_sr);
704 dev_err(&drv_data->pdev->dev,
705 "bad message state in interrupt handler\n");
708 static irqreturn_t ssp_int(int irq, void *dev_id)
710 struct driver_data *drv_data = dev_id;
711 u32 sccr1_reg;
712 u32 mask = drv_data->mask_sr;
713 u32 status;
716 * The IRQ might be shared with other peripherals so we must first
717 * check that are we RPM suspended or not. If we are we assume that
718 * the IRQ was not for us (we shouldn't be RPM suspended when the
719 * interrupt is enabled).
721 if (pm_runtime_suspended(&drv_data->pdev->dev))
722 return IRQ_NONE;
725 * If the device is not yet in RPM suspended state and we get an
726 * interrupt that is meant for another device, check if status bits
727 * are all set to one. That means that the device is already
728 * powered off.
730 status = pxa2xx_spi_read(drv_data, SSSR);
731 if (status == ~0)
732 return IRQ_NONE;
734 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
736 /* Ignore possible writes if we don't need to write */
737 if (!(sccr1_reg & SSCR1_TIE))
738 mask &= ~SSSR_TFS;
740 /* Ignore RX timeout interrupt if it is disabled */
741 if (!(sccr1_reg & SSCR1_TINTE))
742 mask &= ~SSSR_TINT;
744 if (!(status & mask))
745 return IRQ_NONE;
747 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
748 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
750 if (!drv_data->controller->cur_msg) {
751 handle_bad_msg(drv_data);
752 /* Never fail */
753 return IRQ_HANDLED;
756 return drv_data->transfer_handler(drv_data);
760 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
761 * input frequency by fractions of 2^24. It also has a divider by 5.
763 * There are formulas to get baud rate value for given input frequency and
764 * divider parameters, such as DDS_CLK_RATE and SCR:
766 * Fsys = 200MHz
768 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
769 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
771 * DDS_CLK_RATE either 2^n or 2^n / 5.
772 * SCR is in range 0 .. 255
774 * Divisor = 5^i * 2^j * 2 * k
775 * i = [0, 1] i = 1 iff j = 0 or j > 3
776 * j = [0, 23] j = 0 iff i = 1
777 * k = [1, 256]
778 * Special case: j = 0, i = 1: Divisor = 2 / 5
780 * Accordingly to the specification the recommended values for DDS_CLK_RATE
781 * are:
782 * Case 1: 2^n, n = [0, 23]
783 * Case 2: 2^24 * 2 / 5 (0x666666)
784 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
786 * In all cases the lowest possible value is better.
788 * The function calculates parameters for all cases and chooses the one closest
789 * to the asked baud rate.
791 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
793 unsigned long xtal = 200000000;
794 unsigned long fref = xtal / 2; /* mandatory division by 2,
795 see (2) */
796 /* case 3 */
797 unsigned long fref1 = fref / 2; /* case 1 */
798 unsigned long fref2 = fref * 2 / 5; /* case 2 */
799 unsigned long scale;
800 unsigned long q, q1, q2;
801 long r, r1, r2;
802 u32 mul;
804 /* Case 1 */
806 /* Set initial value for DDS_CLK_RATE */
807 mul = (1 << 24) >> 1;
809 /* Calculate initial quot */
810 q1 = DIV_ROUND_UP(fref1, rate);
812 /* Scale q1 if it's too big */
813 if (q1 > 256) {
814 /* Scale q1 to range [1, 512] */
815 scale = fls_long(q1 - 1);
816 if (scale > 9) {
817 q1 >>= scale - 9;
818 mul >>= scale - 9;
821 /* Round the result if we have a remainder */
822 q1 += q1 & 1;
825 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
826 scale = __ffs(q1);
827 q1 >>= scale;
828 mul >>= scale;
830 /* Get the remainder */
831 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
833 /* Case 2 */
835 q2 = DIV_ROUND_UP(fref2, rate);
836 r2 = abs(fref2 / q2 - rate);
839 * Choose the best between two: less remainder we have the better. We
840 * can't go case 2 if q2 is greater than 256 since SCR register can
841 * hold only values 0 .. 255.
843 if (r2 >= r1 || q2 > 256) {
844 /* case 1 is better */
845 r = r1;
846 q = q1;
847 } else {
848 /* case 2 is better */
849 r = r2;
850 q = q2;
851 mul = (1 << 24) * 2 / 5;
854 /* Check case 3 only if the divisor is big enough */
855 if (fref / rate >= 80) {
856 u64 fssp;
857 u32 m;
859 /* Calculate initial quot */
860 q1 = DIV_ROUND_UP(fref, rate);
861 m = (1 << 24) / q1;
863 /* Get the remainder */
864 fssp = (u64)fref * m;
865 do_div(fssp, 1 << 24);
866 r1 = abs(fssp - rate);
868 /* Choose this one if it suits better */
869 if (r1 < r) {
870 /* case 3 is better */
871 q = 1;
872 mul = m;
876 *dds = mul;
877 return q - 1;
880 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
882 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
883 const struct ssp_device *ssp = drv_data->ssp;
885 rate = min_t(int, ssp_clk, rate);
888 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
889 * that the SSP transmission rate can be greater than the device rate
891 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
892 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
893 else
894 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
897 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
898 int rate)
900 struct chip_data *chip =
901 spi_get_ctldata(drv_data->controller->cur_msg->spi);
902 unsigned int clk_div;
904 switch (drv_data->ssp_type) {
905 case QUARK_X1000_SSP:
906 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
907 break;
908 default:
909 clk_div = ssp_get_clk_div(drv_data, rate);
910 break;
912 return clk_div << 8;
915 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
916 struct spi_device *spi,
917 struct spi_transfer *xfer)
919 struct chip_data *chip = spi_get_ctldata(spi);
921 return chip->enable_dma &&
922 xfer->len <= MAX_DMA_LEN &&
923 xfer->len >= chip->dma_burst_size;
926 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
927 struct spi_device *spi,
928 struct spi_transfer *transfer)
930 struct driver_data *drv_data = spi_controller_get_devdata(controller);
931 struct spi_message *message = controller->cur_msg;
932 struct chip_data *chip = spi_get_ctldata(message->spi);
933 u32 dma_thresh = chip->dma_threshold;
934 u32 dma_burst = chip->dma_burst_size;
935 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
936 u32 clk_div;
937 u8 bits;
938 u32 speed;
939 u32 cr0;
940 u32 cr1;
941 int err;
942 int dma_mapped;
944 /* Check if we can DMA this transfer */
945 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
947 /* reject already-mapped transfers; PIO won't always work */
948 if (message->is_dma_mapped
949 || transfer->rx_dma || transfer->tx_dma) {
950 dev_err(&drv_data->pdev->dev,
951 "Mapped transfer length of %u is greater than %d\n",
952 transfer->len, MAX_DMA_LEN);
953 return -EINVAL;
956 /* warn ... we force this to PIO mode */
957 dev_warn_ratelimited(&message->spi->dev,
958 "DMA disabled for transfer length %ld greater than %d\n",
959 (long)transfer->len, MAX_DMA_LEN);
962 /* Setup the transfer state based on the type of transfer */
963 if (pxa2xx_spi_flush(drv_data) == 0) {
964 dev_err(&drv_data->pdev->dev, "Flush failed\n");
965 return -EIO;
967 drv_data->n_bytes = chip->n_bytes;
968 drv_data->tx = (void *)transfer->tx_buf;
969 drv_data->tx_end = drv_data->tx + transfer->len;
970 drv_data->rx = transfer->rx_buf;
971 drv_data->rx_end = drv_data->rx + transfer->len;
972 drv_data->write = drv_data->tx ? chip->write : null_writer;
973 drv_data->read = drv_data->rx ? chip->read : null_reader;
975 /* Change speed and bit per word on a per transfer */
976 bits = transfer->bits_per_word;
977 speed = transfer->speed_hz;
979 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
981 if (bits <= 8) {
982 drv_data->n_bytes = 1;
983 drv_data->read = drv_data->read != null_reader ?
984 u8_reader : null_reader;
985 drv_data->write = drv_data->write != null_writer ?
986 u8_writer : null_writer;
987 } else if (bits <= 16) {
988 drv_data->n_bytes = 2;
989 drv_data->read = drv_data->read != null_reader ?
990 u16_reader : null_reader;
991 drv_data->write = drv_data->write != null_writer ?
992 u16_writer : null_writer;
993 } else if (bits <= 32) {
994 drv_data->n_bytes = 4;
995 drv_data->read = drv_data->read != null_reader ?
996 u32_reader : null_reader;
997 drv_data->write = drv_data->write != null_writer ?
998 u32_writer : null_writer;
1001 * if bits/word is changed in dma mode, then must check the
1002 * thresholds and burst also
1004 if (chip->enable_dma) {
1005 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1006 message->spi,
1007 bits, &dma_burst,
1008 &dma_thresh))
1009 dev_warn_ratelimited(&message->spi->dev,
1010 "DMA burst size reduced to match bits_per_word\n");
1013 dma_mapped = controller->can_dma &&
1014 controller->can_dma(controller, message->spi, transfer) &&
1015 controller->cur_msg_mapped;
1016 if (dma_mapped) {
1018 /* Ensure we have the correct interrupt handler */
1019 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1021 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1022 if (err)
1023 return err;
1025 /* Clear status and start DMA engine */
1026 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1027 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1029 pxa2xx_spi_dma_start(drv_data);
1030 } else {
1031 /* Ensure we have the correct interrupt handler */
1032 drv_data->transfer_handler = interrupt_transfer;
1034 /* Clear status */
1035 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1036 write_SSSR_CS(drv_data, drv_data->clear_sr);
1039 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1040 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1041 if (!pxa25x_ssp_comp(drv_data))
1042 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1043 controller->max_speed_hz
1044 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1045 dma_mapped ? "DMA" : "PIO");
1046 else
1047 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1048 controller->max_speed_hz / 2
1049 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1050 dma_mapped ? "DMA" : "PIO");
1052 if (is_lpss_ssp(drv_data)) {
1053 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1054 != chip->lpss_rx_threshold)
1055 pxa2xx_spi_write(drv_data, SSIRF,
1056 chip->lpss_rx_threshold);
1057 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1058 != chip->lpss_tx_threshold)
1059 pxa2xx_spi_write(drv_data, SSITF,
1060 chip->lpss_tx_threshold);
1063 if (is_quark_x1000_ssp(drv_data) &&
1064 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1065 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1067 /* see if we need to reload the config registers */
1068 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1069 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1070 != (cr1 & change_mask)) {
1071 /* stop the SSP, and update the other bits */
1072 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1073 if (!pxa25x_ssp_comp(drv_data))
1074 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1075 /* first set CR1 without interrupt and service enables */
1076 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1077 /* restart the SSP */
1078 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1080 } else {
1081 if (!pxa25x_ssp_comp(drv_data))
1082 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1085 if (drv_data->ssp_type == MMP2_SSP) {
1086 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1087 & SSSR_TFL_MASK) >> 8;
1089 if (tx_level) {
1090 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1091 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1092 tx_level);
1093 if (tx_level > transfer->len)
1094 tx_level = transfer->len;
1095 drv_data->tx += tx_level;
1099 if (spi_controller_is_slave(controller)) {
1100 while (drv_data->write(drv_data))
1102 if (drv_data->gpiod_ready) {
1103 gpiod_set_value(drv_data->gpiod_ready, 1);
1104 udelay(1);
1105 gpiod_set_value(drv_data->gpiod_ready, 0);
1110 * Release the data by enabling service requests and interrupts,
1111 * without changing any mode bits
1113 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1115 return 1;
1118 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1120 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1122 /* Stop and reset SSP */
1123 write_SSSR_CS(drv_data, drv_data->clear_sr);
1124 reset_sccr1(drv_data);
1125 if (!pxa25x_ssp_comp(drv_data))
1126 pxa2xx_spi_write(drv_data, SSTO, 0);
1127 pxa2xx_spi_flush(drv_data);
1128 pxa2xx_spi_write(drv_data, SSCR0,
1129 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1131 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1133 drv_data->controller->cur_msg->status = -EINTR;
1134 spi_finalize_current_transfer(drv_data->controller);
1136 return 0;
1139 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1140 struct spi_message *msg)
1142 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1144 /* Disable the SSP */
1145 pxa2xx_spi_write(drv_data, SSCR0,
1146 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1147 /* Clear and disable interrupts and service requests */
1148 write_SSSR_CS(drv_data, drv_data->clear_sr);
1149 pxa2xx_spi_write(drv_data, SSCR1,
1150 pxa2xx_spi_read(drv_data, SSCR1)
1151 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1152 if (!pxa25x_ssp_comp(drv_data))
1153 pxa2xx_spi_write(drv_data, SSTO, 0);
1156 * Stop the DMA if running. Note DMA callback handler may have unset
1157 * the dma_running already, which is fine as stopping is not needed
1158 * then but we shouldn't rely this flag for anything else than
1159 * stopping. For instance to differentiate between PIO and DMA
1160 * transfers.
1162 if (atomic_read(&drv_data->dma_running))
1163 pxa2xx_spi_dma_stop(drv_data);
1166 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1168 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1170 /* Disable the SSP now */
1171 pxa2xx_spi_write(drv_data, SSCR0,
1172 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1174 return 0;
1177 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1178 struct pxa2xx_spi_chip *chip_info)
1180 struct driver_data *drv_data =
1181 spi_controller_get_devdata(spi->controller);
1182 struct gpio_desc *gpiod;
1183 int err = 0;
1185 if (chip == NULL)
1186 return 0;
1188 if (drv_data->cs_gpiods) {
1189 gpiod = drv_data->cs_gpiods[spi->chip_select];
1190 if (gpiod) {
1191 chip->gpiod_cs = gpiod;
1192 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1193 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1196 return 0;
1199 if (chip_info == NULL)
1200 return 0;
1202 /* NOTE: setup() can be called multiple times, possibly with
1203 * different chip_info, release previously requested GPIO
1205 if (chip->gpiod_cs) {
1206 gpiod_put(chip->gpiod_cs);
1207 chip->gpiod_cs = NULL;
1210 /* If (*cs_control) is provided, ignore GPIO chip select */
1211 if (chip_info->cs_control) {
1212 chip->cs_control = chip_info->cs_control;
1213 return 0;
1216 if (gpio_is_valid(chip_info->gpio_cs)) {
1217 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1218 if (err) {
1219 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1220 chip_info->gpio_cs);
1221 return err;
1224 gpiod = gpio_to_desc(chip_info->gpio_cs);
1225 chip->gpiod_cs = gpiod;
1226 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1228 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1231 return err;
1234 static int setup(struct spi_device *spi)
1236 struct pxa2xx_spi_chip *chip_info;
1237 struct chip_data *chip;
1238 const struct lpss_config *config;
1239 struct driver_data *drv_data =
1240 spi_controller_get_devdata(spi->controller);
1241 uint tx_thres, tx_hi_thres, rx_thres;
1243 switch (drv_data->ssp_type) {
1244 case QUARK_X1000_SSP:
1245 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1246 tx_hi_thres = 0;
1247 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1248 break;
1249 case CE4100_SSP:
1250 tx_thres = TX_THRESH_CE4100_DFLT;
1251 tx_hi_thres = 0;
1252 rx_thres = RX_THRESH_CE4100_DFLT;
1253 break;
1254 case LPSS_LPT_SSP:
1255 case LPSS_BYT_SSP:
1256 case LPSS_BSW_SSP:
1257 case LPSS_SPT_SSP:
1258 case LPSS_BXT_SSP:
1259 case LPSS_CNL_SSP:
1260 config = lpss_get_config(drv_data);
1261 tx_thres = config->tx_threshold_lo;
1262 tx_hi_thres = config->tx_threshold_hi;
1263 rx_thres = config->rx_threshold;
1264 break;
1265 default:
1266 tx_hi_thres = 0;
1267 if (spi_controller_is_slave(drv_data->controller)) {
1268 tx_thres = 1;
1269 rx_thres = 2;
1270 } else {
1271 tx_thres = TX_THRESH_DFLT;
1272 rx_thres = RX_THRESH_DFLT;
1274 break;
1277 /* Only alloc on first setup */
1278 chip = spi_get_ctldata(spi);
1279 if (!chip) {
1280 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1281 if (!chip)
1282 return -ENOMEM;
1284 if (drv_data->ssp_type == CE4100_SSP) {
1285 if (spi->chip_select > 4) {
1286 dev_err(&spi->dev,
1287 "failed setup: cs number must not be > 4.\n");
1288 kfree(chip);
1289 return -EINVAL;
1292 chip->frm = spi->chip_select;
1294 chip->enable_dma = drv_data->controller_info->enable_dma;
1295 chip->timeout = TIMOUT_DFLT;
1298 /* protocol drivers may change the chip settings, so...
1299 * if chip_info exists, use it */
1300 chip_info = spi->controller_data;
1302 /* chip_info isn't always needed */
1303 chip->cr1 = 0;
1304 if (chip_info) {
1305 if (chip_info->timeout)
1306 chip->timeout = chip_info->timeout;
1307 if (chip_info->tx_threshold)
1308 tx_thres = chip_info->tx_threshold;
1309 if (chip_info->tx_hi_threshold)
1310 tx_hi_thres = chip_info->tx_hi_threshold;
1311 if (chip_info->rx_threshold)
1312 rx_thres = chip_info->rx_threshold;
1313 chip->dma_threshold = 0;
1314 if (chip_info->enable_loopback)
1315 chip->cr1 = SSCR1_LBM;
1317 if (spi_controller_is_slave(drv_data->controller)) {
1318 chip->cr1 |= SSCR1_SCFR;
1319 chip->cr1 |= SSCR1_SCLKDIR;
1320 chip->cr1 |= SSCR1_SFRMDIR;
1321 chip->cr1 |= SSCR1_SPH;
1324 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1325 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1326 | SSITF_TxHiThresh(tx_hi_thres);
1328 /* set dma burst and threshold outside of chip_info path so that if
1329 * chip_info goes away after setting chip->enable_dma, the
1330 * burst and threshold can still respond to changes in bits_per_word */
1331 if (chip->enable_dma) {
1332 /* set up legal burst and threshold for dma */
1333 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1334 spi->bits_per_word,
1335 &chip->dma_burst_size,
1336 &chip->dma_threshold)) {
1337 dev_warn(&spi->dev,
1338 "in setup: DMA burst size reduced to match bits_per_word\n");
1342 switch (drv_data->ssp_type) {
1343 case QUARK_X1000_SSP:
1344 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1345 & QUARK_X1000_SSCR1_RFT)
1346 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1347 & QUARK_X1000_SSCR1_TFT);
1348 break;
1349 case CE4100_SSP:
1350 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1351 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1352 break;
1353 default:
1354 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1355 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1356 break;
1359 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1360 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1361 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1363 if (spi->mode & SPI_LOOP)
1364 chip->cr1 |= SSCR1_LBM;
1366 if (spi->bits_per_word <= 8) {
1367 chip->n_bytes = 1;
1368 chip->read = u8_reader;
1369 chip->write = u8_writer;
1370 } else if (spi->bits_per_word <= 16) {
1371 chip->n_bytes = 2;
1372 chip->read = u16_reader;
1373 chip->write = u16_writer;
1374 } else if (spi->bits_per_word <= 32) {
1375 chip->n_bytes = 4;
1376 chip->read = u32_reader;
1377 chip->write = u32_writer;
1380 spi_set_ctldata(spi, chip);
1382 if (drv_data->ssp_type == CE4100_SSP)
1383 return 0;
1385 return setup_cs(spi, chip, chip_info);
1388 static void cleanup(struct spi_device *spi)
1390 struct chip_data *chip = spi_get_ctldata(spi);
1391 struct driver_data *drv_data =
1392 spi_controller_get_devdata(spi->controller);
1394 if (!chip)
1395 return;
1397 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1398 chip->gpiod_cs)
1399 gpiod_put(chip->gpiod_cs);
1401 kfree(chip);
1404 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1405 { "INT33C0", LPSS_LPT_SSP },
1406 { "INT33C1", LPSS_LPT_SSP },
1407 { "INT3430", LPSS_LPT_SSP },
1408 { "INT3431", LPSS_LPT_SSP },
1409 { "80860F0E", LPSS_BYT_SSP },
1410 { "8086228E", LPSS_BSW_SSP },
1411 { },
1413 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1416 * PCI IDs of compound devices that integrate both host controller and private
1417 * integrated DMA engine. Please note these are not used in module
1418 * autoloading and probing in this module but matching the LPSS SSP type.
1420 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1421 /* SPT-LP */
1422 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1423 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1424 /* SPT-H */
1425 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1426 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1427 /* KBL-H */
1428 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1429 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1430 /* BXT A-Step */
1431 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1432 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1433 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1434 /* BXT B-Step */
1435 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1436 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1437 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1438 /* GLK */
1439 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1440 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1441 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1442 /* ICL-LP */
1443 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1444 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1445 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1446 /* APL */
1447 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1448 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1449 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1450 /* CNL-LP */
1451 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1452 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1453 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1454 /* CNL-H */
1455 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1456 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1457 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1458 { },
1461 static const struct of_device_id pxa2xx_spi_of_match[] = {
1462 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1465 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1467 #ifdef CONFIG_ACPI
1469 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1471 unsigned int devid;
1472 int port_id = -1;
1474 if (adev && adev->pnp.unique_id &&
1475 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1476 port_id = devid;
1477 return port_id;
1480 #else /* !CONFIG_ACPI */
1482 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1484 return -1;
1487 #endif /* CONFIG_ACPI */
1490 #ifdef CONFIG_PCI
1492 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1494 return param == chan->device->dev;
1497 #endif /* CONFIG_PCI */
1499 static struct pxa2xx_spi_controller *
1500 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1502 struct pxa2xx_spi_controller *pdata;
1503 struct acpi_device *adev;
1504 struct ssp_device *ssp;
1505 struct resource *res;
1506 const struct acpi_device_id *adev_id = NULL;
1507 const struct pci_device_id *pcidev_id = NULL;
1508 const struct of_device_id *of_id = NULL;
1509 enum pxa_ssp_type type;
1511 adev = ACPI_COMPANION(&pdev->dev);
1513 if (pdev->dev.of_node)
1514 of_id = of_match_device(pdev->dev.driver->of_match_table,
1515 &pdev->dev);
1516 else if (dev_is_pci(pdev->dev.parent))
1517 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1518 to_pci_dev(pdev->dev.parent));
1519 else if (adev)
1520 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1521 &pdev->dev);
1522 else
1523 return NULL;
1525 if (adev_id)
1526 type = (enum pxa_ssp_type)adev_id->driver_data;
1527 else if (pcidev_id)
1528 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1529 else if (of_id)
1530 type = (enum pxa_ssp_type)of_id->data;
1531 else
1532 return NULL;
1534 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1535 if (!pdata)
1536 return NULL;
1538 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1539 if (!res)
1540 return NULL;
1542 ssp = &pdata->ssp;
1544 ssp->phys_base = res->start;
1545 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1546 if (IS_ERR(ssp->mmio_base))
1547 return NULL;
1549 #ifdef CONFIG_PCI
1550 if (pcidev_id) {
1551 pdata->tx_param = pdev->dev.parent;
1552 pdata->rx_param = pdev->dev.parent;
1553 pdata->dma_filter = pxa2xx_spi_idma_filter;
1555 #endif
1557 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1558 ssp->irq = platform_get_irq(pdev, 0);
1559 ssp->type = type;
1560 ssp->pdev = pdev;
1561 ssp->port_id = pxa2xx_spi_get_port_id(adev);
1563 pdata->is_slave = of_property_read_bool(pdev->dev.of_node, "spi-slave");
1564 pdata->num_chipselect = 1;
1565 pdata->enable_dma = true;
1567 return pdata;
1570 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1571 unsigned int cs)
1573 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1575 if (has_acpi_companion(&drv_data->pdev->dev)) {
1576 switch (drv_data->ssp_type) {
1578 * For Atoms the ACPI DeviceSelection used by the Windows
1579 * driver starts from 1 instead of 0 so translate it here
1580 * to match what Linux expects.
1582 case LPSS_BYT_SSP:
1583 case LPSS_BSW_SSP:
1584 return cs - 1;
1586 default:
1587 break;
1591 return cs;
1594 static int pxa2xx_spi_probe(struct platform_device *pdev)
1596 struct device *dev = &pdev->dev;
1597 struct pxa2xx_spi_controller *platform_info;
1598 struct spi_controller *controller;
1599 struct driver_data *drv_data;
1600 struct ssp_device *ssp;
1601 const struct lpss_config *config;
1602 int status, count;
1603 u32 tmp;
1605 platform_info = dev_get_platdata(dev);
1606 if (!platform_info) {
1607 platform_info = pxa2xx_spi_init_pdata(pdev);
1608 if (!platform_info) {
1609 dev_err(&pdev->dev, "missing platform data\n");
1610 return -ENODEV;
1614 ssp = pxa_ssp_request(pdev->id, pdev->name);
1615 if (!ssp)
1616 ssp = &platform_info->ssp;
1618 if (!ssp->mmio_base) {
1619 dev_err(&pdev->dev, "failed to get ssp\n");
1620 return -ENODEV;
1623 if (platform_info->is_slave)
1624 controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1625 else
1626 controller = spi_alloc_master(dev, sizeof(struct driver_data));
1628 if (!controller) {
1629 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1630 pxa_ssp_free(ssp);
1631 return -ENOMEM;
1633 drv_data = spi_controller_get_devdata(controller);
1634 drv_data->controller = controller;
1635 drv_data->controller_info = platform_info;
1636 drv_data->pdev = pdev;
1637 drv_data->ssp = ssp;
1639 controller->dev.of_node = pdev->dev.of_node;
1640 /* the spi->mode bits understood by this driver: */
1641 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1643 controller->bus_num = ssp->port_id;
1644 controller->dma_alignment = DMA_ALIGNMENT;
1645 controller->cleanup = cleanup;
1646 controller->setup = setup;
1647 controller->set_cs = pxa2xx_spi_set_cs;
1648 controller->transfer_one = pxa2xx_spi_transfer_one;
1649 controller->slave_abort = pxa2xx_spi_slave_abort;
1650 controller->handle_err = pxa2xx_spi_handle_err;
1651 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1652 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1653 controller->auto_runtime_pm = true;
1654 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1656 drv_data->ssp_type = ssp->type;
1658 drv_data->ioaddr = ssp->mmio_base;
1659 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1660 if (pxa25x_ssp_comp(drv_data)) {
1661 switch (drv_data->ssp_type) {
1662 case QUARK_X1000_SSP:
1663 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1664 break;
1665 default:
1666 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1667 break;
1670 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1671 drv_data->dma_cr1 = 0;
1672 drv_data->clear_sr = SSSR_ROR;
1673 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1674 } else {
1675 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1676 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1677 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1678 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1679 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1680 | SSSR_ROR | SSSR_TUR;
1683 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1684 drv_data);
1685 if (status < 0) {
1686 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1687 goto out_error_controller_alloc;
1690 /* Setup DMA if requested */
1691 if (platform_info->enable_dma) {
1692 status = pxa2xx_spi_dma_setup(drv_data);
1693 if (status) {
1694 dev_dbg(dev, "no DMA channels available, using PIO\n");
1695 platform_info->enable_dma = false;
1696 } else {
1697 controller->can_dma = pxa2xx_spi_can_dma;
1698 controller->max_dma_len = MAX_DMA_LEN;
1702 /* Enable SOC clock */
1703 status = clk_prepare_enable(ssp->clk);
1704 if (status)
1705 goto out_error_dma_irq_alloc;
1707 controller->max_speed_hz = clk_get_rate(ssp->clk);
1709 /* Load default SSP configuration */
1710 pxa2xx_spi_write(drv_data, SSCR0, 0);
1711 switch (drv_data->ssp_type) {
1712 case QUARK_X1000_SSP:
1713 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1714 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1715 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1717 /* using the Motorola SPI protocol and use 8 bit frame */
1718 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1719 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1720 break;
1721 case CE4100_SSP:
1722 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1723 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1724 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1725 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1726 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1727 break;
1728 default:
1730 if (spi_controller_is_slave(controller)) {
1731 tmp = SSCR1_SCFR |
1732 SSCR1_SCLKDIR |
1733 SSCR1_SFRMDIR |
1734 SSCR1_RxTresh(2) |
1735 SSCR1_TxTresh(1) |
1736 SSCR1_SPH;
1737 } else {
1738 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1739 SSCR1_TxTresh(TX_THRESH_DFLT);
1741 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1742 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1743 if (!spi_controller_is_slave(controller))
1744 tmp |= SSCR0_SCR(2);
1745 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1746 break;
1749 if (!pxa25x_ssp_comp(drv_data))
1750 pxa2xx_spi_write(drv_data, SSTO, 0);
1752 if (!is_quark_x1000_ssp(drv_data))
1753 pxa2xx_spi_write(drv_data, SSPSP, 0);
1755 if (is_lpss_ssp(drv_data)) {
1756 lpss_ssp_setup(drv_data);
1757 config = lpss_get_config(drv_data);
1758 if (config->reg_capabilities >= 0) {
1759 tmp = __lpss_ssp_read_priv(drv_data,
1760 config->reg_capabilities);
1761 tmp &= LPSS_CAPS_CS_EN_MASK;
1762 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1763 platform_info->num_chipselect = ffz(tmp);
1764 } else if (config->cs_num) {
1765 platform_info->num_chipselect = config->cs_num;
1768 controller->num_chipselect = platform_info->num_chipselect;
1770 count = gpiod_count(&pdev->dev, "cs");
1771 if (count > 0) {
1772 int i;
1774 controller->num_chipselect = max_t(int, count,
1775 controller->num_chipselect);
1777 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1778 controller->num_chipselect, sizeof(struct gpio_desc *),
1779 GFP_KERNEL);
1780 if (!drv_data->cs_gpiods) {
1781 status = -ENOMEM;
1782 goto out_error_clock_enabled;
1785 for (i = 0; i < controller->num_chipselect; i++) {
1786 struct gpio_desc *gpiod;
1788 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1789 if (IS_ERR(gpiod)) {
1790 /* Means use native chip select */
1791 if (PTR_ERR(gpiod) == -ENOENT)
1792 continue;
1794 status = PTR_ERR(gpiod);
1795 goto out_error_clock_enabled;
1796 } else {
1797 drv_data->cs_gpiods[i] = gpiod;
1802 if (platform_info->is_slave) {
1803 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1804 "ready", GPIOD_OUT_LOW);
1805 if (IS_ERR(drv_data->gpiod_ready)) {
1806 status = PTR_ERR(drv_data->gpiod_ready);
1807 goto out_error_clock_enabled;
1811 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1812 pm_runtime_use_autosuspend(&pdev->dev);
1813 pm_runtime_set_active(&pdev->dev);
1814 pm_runtime_enable(&pdev->dev);
1816 /* Register with the SPI framework */
1817 platform_set_drvdata(pdev, drv_data);
1818 status = devm_spi_register_controller(&pdev->dev, controller);
1819 if (status != 0) {
1820 dev_err(&pdev->dev, "problem registering spi controller\n");
1821 goto out_error_clock_enabled;
1824 return status;
1826 out_error_clock_enabled:
1827 pm_runtime_put_noidle(&pdev->dev);
1828 pm_runtime_disable(&pdev->dev);
1829 clk_disable_unprepare(ssp->clk);
1831 out_error_dma_irq_alloc:
1832 pxa2xx_spi_dma_release(drv_data);
1833 free_irq(ssp->irq, drv_data);
1835 out_error_controller_alloc:
1836 spi_controller_put(controller);
1837 pxa_ssp_free(ssp);
1838 return status;
1841 static int pxa2xx_spi_remove(struct platform_device *pdev)
1843 struct driver_data *drv_data = platform_get_drvdata(pdev);
1844 struct ssp_device *ssp;
1846 if (!drv_data)
1847 return 0;
1848 ssp = drv_data->ssp;
1850 pm_runtime_get_sync(&pdev->dev);
1852 /* Disable the SSP at the peripheral and SOC level */
1853 pxa2xx_spi_write(drv_data, SSCR0, 0);
1854 clk_disable_unprepare(ssp->clk);
1856 /* Release DMA */
1857 if (drv_data->controller_info->enable_dma)
1858 pxa2xx_spi_dma_release(drv_data);
1860 pm_runtime_put_noidle(&pdev->dev);
1861 pm_runtime_disable(&pdev->dev);
1863 /* Release IRQ */
1864 free_irq(ssp->irq, drv_data);
1866 /* Release SSP */
1867 pxa_ssp_free(ssp);
1869 return 0;
1872 #ifdef CONFIG_PM_SLEEP
1873 static int pxa2xx_spi_suspend(struct device *dev)
1875 struct driver_data *drv_data = dev_get_drvdata(dev);
1876 struct ssp_device *ssp = drv_data->ssp;
1877 int status;
1879 status = spi_controller_suspend(drv_data->controller);
1880 if (status != 0)
1881 return status;
1882 pxa2xx_spi_write(drv_data, SSCR0, 0);
1884 if (!pm_runtime_suspended(dev))
1885 clk_disable_unprepare(ssp->clk);
1887 return 0;
1890 static int pxa2xx_spi_resume(struct device *dev)
1892 struct driver_data *drv_data = dev_get_drvdata(dev);
1893 struct ssp_device *ssp = drv_data->ssp;
1894 int status;
1896 /* Enable the SSP clock */
1897 if (!pm_runtime_suspended(dev)) {
1898 status = clk_prepare_enable(ssp->clk);
1899 if (status)
1900 return status;
1903 /* Start the queue running */
1904 return spi_controller_resume(drv_data->controller);
1906 #endif
1908 #ifdef CONFIG_PM
1909 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1911 struct driver_data *drv_data = dev_get_drvdata(dev);
1913 clk_disable_unprepare(drv_data->ssp->clk);
1914 return 0;
1917 static int pxa2xx_spi_runtime_resume(struct device *dev)
1919 struct driver_data *drv_data = dev_get_drvdata(dev);
1920 int status;
1922 status = clk_prepare_enable(drv_data->ssp->clk);
1923 return status;
1925 #endif
1927 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1928 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1929 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1930 pxa2xx_spi_runtime_resume, NULL)
1933 static struct platform_driver driver = {
1934 .driver = {
1935 .name = "pxa2xx-spi",
1936 .pm = &pxa2xx_spi_pm_ops,
1937 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1938 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1940 .probe = pxa2xx_spi_probe,
1941 .remove = pxa2xx_spi_remove,
1944 static int __init pxa2xx_spi_init(void)
1946 return platform_driver_register(&driver);
1948 subsys_initcall(pxa2xx_spi_init);
1950 static void __exit pxa2xx_spi_exit(void)
1952 platform_driver_unregister(&driver);
1954 module_exit(pxa2xx_spi_exit);