1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
9 * Copyright (C) 2011 Renesas Solutions Corp.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
28 #define RSPI_SPCR 0x00 /* Control Register */
29 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
30 #define RSPI_SPPCR 0x02 /* Pin Control Register */
31 #define RSPI_SPSR 0x03 /* Status Register */
32 #define RSPI_SPDR 0x04 /* Data Register */
33 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
34 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
35 #define RSPI_SPBR 0x0a /* Bit Rate Register */
36 #define RSPI_SPDCR 0x0b /* Data Control Register */
37 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
38 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
39 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
40 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
41 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
42 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
43 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
44 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
45 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
46 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
47 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
48 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
49 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
50 #define RSPI_NUM_SPCMD 8
51 #define RSPI_RZ_NUM_SPCMD 4
52 #define QSPI_NUM_SPCMD 4
55 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
56 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
59 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
60 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
61 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
62 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
63 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
64 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
65 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
67 /* SPCR - Control Register */
68 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
69 #define SPCR_SPE 0x40 /* Function Enable */
70 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
71 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
72 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
73 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
76 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
77 /* QSPI on R-Car Gen2 only */
78 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
79 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
81 /* SSLP - Slave Select Polarity Register */
82 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
83 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM 0x04
89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95 /* SPSR - Status Register */
96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97 #define SPSR_TEND 0x40 /* Transmit End */
98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF 0x08 /* Parity Error Flag */
100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD SPDCR_SPLW1
117 #define SPDCR_SPLBYTE SPDCR_SPLW0
118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1 0x08
121 #define SPDCR_SLSEL0 0x04
122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1 0x02
124 #define SPDCR_SPFC0 0x01
125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE 0x01 /* Parity Enable */
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146 #define SPCMD_LSBF 0x1000 /* LSB First */
147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150 #define SPCMD_SPB_16BIT 0x0100
151 #define SPCMD_SPB_20BIT 0x0000
152 #define SPCMD_SPB_24BIT 0x0100
153 #define SPCMD_SPB_32BIT 0x0200
154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1 0x0040
157 #define SPCMD_SPIMOD0 0x0020
158 #define SPCMD_SPIMOD_SINGLE 0
159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
165 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
167 /* SPBFCR - Buffer Control Register */
168 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
169 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
170 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
171 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
172 /* QSPI on R-Car Gen2 */
173 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
174 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
175 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
176 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
178 #define QSPI_BUFFER_SIZE 32u
183 struct spi_controller
*ctlr
;
184 wait_queue_head_t wait
;
190 const struct spi_ops
*ops
;
192 unsigned dma_callbacked
:1;
193 unsigned byte_access
:1;
196 static void rspi_write8(const struct rspi_data
*rspi
, u8 data
, u16 offset
)
198 iowrite8(data
, rspi
->addr
+ offset
);
201 static void rspi_write16(const struct rspi_data
*rspi
, u16 data
, u16 offset
)
203 iowrite16(data
, rspi
->addr
+ offset
);
206 static void rspi_write32(const struct rspi_data
*rspi
, u32 data
, u16 offset
)
208 iowrite32(data
, rspi
->addr
+ offset
);
211 static u8
rspi_read8(const struct rspi_data
*rspi
, u16 offset
)
213 return ioread8(rspi
->addr
+ offset
);
216 static u16
rspi_read16(const struct rspi_data
*rspi
, u16 offset
)
218 return ioread16(rspi
->addr
+ offset
);
221 static void rspi_write_data(const struct rspi_data
*rspi
, u16 data
)
223 if (rspi
->byte_access
)
224 rspi_write8(rspi
, data
, RSPI_SPDR
);
226 rspi_write16(rspi
, data
, RSPI_SPDR
);
229 static u16
rspi_read_data(const struct rspi_data
*rspi
)
231 if (rspi
->byte_access
)
232 return rspi_read8(rspi
, RSPI_SPDR
);
234 return rspi_read16(rspi
, RSPI_SPDR
);
237 /* optional functions */
239 int (*set_config_register
)(struct rspi_data
*rspi
, int access_size
);
240 int (*transfer_one
)(struct spi_controller
*ctlr
,
241 struct spi_device
*spi
, struct spi_transfer
*xfer
);
248 * functions for RSPI on legacy SH
250 static int rspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
254 /* Sets output mode, MOSI signal, and (optionally) loopback */
255 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
257 /* Sets transfer bit rate */
258 spbr
= DIV_ROUND_UP(clk_get_rate(rspi
->clk
),
259 2 * rspi
->max_speed_hz
) - 1;
260 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
262 /* Disable dummy transmission, set 16-bit word access, 1 frame */
263 rspi_write8(rspi
, 0, RSPI_SPDCR
);
264 rspi
->byte_access
= 0;
266 /* Sets RSPCK, SSL, next-access delay value */
267 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
268 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
269 rspi_write8(rspi
, 0x00, RSPI_SPND
);
271 /* Sets parity, interrupt mask */
272 rspi_write8(rspi
, 0x00, RSPI_SPCR2
);
274 /* Resets sequencer */
275 rspi_write8(rspi
, 0, RSPI_SPSCR
);
276 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
277 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
280 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
286 * functions for RSPI on RZ
288 static int rspi_rz_set_config_register(struct rspi_data
*rspi
, int access_size
)
292 unsigned long clksrc
;
294 /* Sets output mode, MOSI signal, and (optionally) loopback */
295 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
297 clksrc
= clk_get_rate(rspi
->clk
);
299 if (rspi
->max_speed_hz
>= clksrc
/4) /* 4=(CLK/2)/2 */
305 /* Sets transfer bit rate */
306 spbr
= DIV_ROUND_UP(clksrc
, 2 * rspi
->max_speed_hz
) - 1;
307 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
308 rspi
->spcmd
|= div
<< 2;
310 /* Disable dummy transmission, set byte access */
311 rspi_write8(rspi
, SPDCR_SPLBYTE
, RSPI_SPDCR
);
312 rspi
->byte_access
= 1;
314 /* Sets RSPCK, SSL, next-access delay value */
315 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
316 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
317 rspi_write8(rspi
, 0x00, RSPI_SPND
);
319 /* Resets sequencer */
320 rspi_write8(rspi
, 0, RSPI_SPSCR
);
321 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
322 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
325 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
333 static int qspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
337 /* Sets output mode, MOSI signal, and (optionally) loopback */
338 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
340 /* Sets transfer bit rate */
341 spbr
= DIV_ROUND_UP(clk_get_rate(rspi
->clk
), 2 * rspi
->max_speed_hz
);
342 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
344 /* Disable dummy transmission, set byte access */
345 rspi_write8(rspi
, 0, RSPI_SPDCR
);
346 rspi
->byte_access
= 1;
348 /* Sets RSPCK, SSL, next-access delay value */
349 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
350 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
351 rspi_write8(rspi
, 0x00, RSPI_SPND
);
353 /* Data Length Setting */
354 if (access_size
== 8)
355 rspi
->spcmd
|= SPCMD_SPB_8BIT
;
356 else if (access_size
== 16)
357 rspi
->spcmd
|= SPCMD_SPB_16BIT
;
359 rspi
->spcmd
|= SPCMD_SPB_32BIT
;
361 rspi
->spcmd
|= SPCMD_SCKDEN
| SPCMD_SLNDEN
| SPCMD_SPNDEN
;
363 /* Resets transfer data length */
364 rspi_write32(rspi
, 0, QSPI_SPBMUL0
);
366 /* Resets transmit and receive buffer */
367 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
368 /* Sets buffer to allow normal operation */
369 rspi_write8(rspi
, 0x00, QSPI_SPBFCR
);
371 /* Resets sequencer */
372 rspi_write8(rspi
, 0, RSPI_SPSCR
);
373 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
376 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
381 static void qspi_update(const struct rspi_data
*rspi
, u8 mask
, u8 val
, u8 reg
)
385 data
= rspi_read8(rspi
, reg
);
387 data
|= (val
& mask
);
388 rspi_write8(rspi
, data
, reg
);
391 static unsigned int qspi_set_send_trigger(struct rspi_data
*rspi
,
396 n
= min(len
, QSPI_BUFFER_SIZE
);
398 if (len
>= QSPI_BUFFER_SIZE
) {
399 /* sets triggering number to 32 bytes */
400 qspi_update(rspi
, SPBFCR_TXTRG_MASK
,
401 SPBFCR_TXTRG_32B
, QSPI_SPBFCR
);
403 /* sets triggering number to 1 byte */
404 qspi_update(rspi
, SPBFCR_TXTRG_MASK
,
405 SPBFCR_TXTRG_1B
, QSPI_SPBFCR
);
411 static int qspi_set_receive_trigger(struct rspi_data
*rspi
, unsigned int len
)
415 n
= min(len
, QSPI_BUFFER_SIZE
);
417 if (len
>= QSPI_BUFFER_SIZE
) {
418 /* sets triggering number to 32 bytes */
419 qspi_update(rspi
, SPBFCR_RXTRG_MASK
,
420 SPBFCR_RXTRG_32B
, QSPI_SPBFCR
);
422 /* sets triggering number to 1 byte */
423 qspi_update(rspi
, SPBFCR_RXTRG_MASK
,
424 SPBFCR_RXTRG_1B
, QSPI_SPBFCR
);
429 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
431 static void rspi_enable_irq(const struct rspi_data
*rspi
, u8 enable
)
433 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | enable
, RSPI_SPCR
);
436 static void rspi_disable_irq(const struct rspi_data
*rspi
, u8 disable
)
438 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~disable
, RSPI_SPCR
);
441 static int rspi_wait_for_interrupt(struct rspi_data
*rspi
, u8 wait_mask
,
446 rspi
->spsr
= rspi_read8(rspi
, RSPI_SPSR
);
447 if (rspi
->spsr
& wait_mask
)
450 rspi_enable_irq(rspi
, enable_bit
);
451 ret
= wait_event_timeout(rspi
->wait
, rspi
->spsr
& wait_mask
, HZ
);
452 if (ret
== 0 && !(rspi
->spsr
& wait_mask
))
458 static inline int rspi_wait_for_tx_empty(struct rspi_data
*rspi
)
460 return rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
);
463 static inline int rspi_wait_for_rx_full(struct rspi_data
*rspi
)
465 return rspi_wait_for_interrupt(rspi
, SPSR_SPRF
, SPCR_SPRIE
);
468 static int rspi_data_out(struct rspi_data
*rspi
, u8 data
)
470 int error
= rspi_wait_for_tx_empty(rspi
);
472 dev_err(&rspi
->ctlr
->dev
, "transmit timeout\n");
475 rspi_write_data(rspi
, data
);
479 static int rspi_data_in(struct rspi_data
*rspi
)
484 error
= rspi_wait_for_rx_full(rspi
);
486 dev_err(&rspi
->ctlr
->dev
, "receive timeout\n");
489 data
= rspi_read_data(rspi
);
493 static int rspi_pio_transfer(struct rspi_data
*rspi
, const u8
*tx
, u8
*rx
,
498 int ret
= rspi_data_out(rspi
, *tx
++);
503 int ret
= rspi_data_in(rspi
);
513 static void rspi_dma_complete(void *arg
)
515 struct rspi_data
*rspi
= arg
;
517 rspi
->dma_callbacked
= 1;
518 wake_up_interruptible(&rspi
->wait
);
521 static int rspi_dma_transfer(struct rspi_data
*rspi
, struct sg_table
*tx
,
524 struct dma_async_tx_descriptor
*desc_tx
= NULL
, *desc_rx
= NULL
;
526 unsigned int other_irq
= 0;
530 /* First prepare and submit the DMA request(s), as this may fail */
532 desc_rx
= dmaengine_prep_slave_sg(rspi
->ctlr
->dma_rx
, rx
->sgl
,
533 rx
->nents
, DMA_DEV_TO_MEM
,
534 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
540 desc_rx
->callback
= rspi_dma_complete
;
541 desc_rx
->callback_param
= rspi
;
542 cookie
= dmaengine_submit(desc_rx
);
543 if (dma_submit_error(cookie
)) {
548 irq_mask
|= SPCR_SPRIE
;
552 desc_tx
= dmaengine_prep_slave_sg(rspi
->ctlr
->dma_tx
, tx
->sgl
,
553 tx
->nents
, DMA_MEM_TO_DEV
,
554 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
562 desc_tx
->callback
= NULL
;
564 desc_tx
->callback
= rspi_dma_complete
;
565 desc_tx
->callback_param
= rspi
;
567 cookie
= dmaengine_submit(desc_tx
);
568 if (dma_submit_error(cookie
)) {
573 irq_mask
|= SPCR_SPTIE
;
577 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
578 * called. So, this driver disables the IRQ while DMA transfer.
581 disable_irq(other_irq
= rspi
->tx_irq
);
582 if (rx
&& rspi
->rx_irq
!= other_irq
)
583 disable_irq(rspi
->rx_irq
);
585 rspi_enable_irq(rspi
, irq_mask
);
586 rspi
->dma_callbacked
= 0;
590 dma_async_issue_pending(rspi
->ctlr
->dma_rx
);
592 dma_async_issue_pending(rspi
->ctlr
->dma_tx
);
594 ret
= wait_event_interruptible_timeout(rspi
->wait
,
595 rspi
->dma_callbacked
, HZ
);
596 if (ret
> 0 && rspi
->dma_callbacked
) {
600 dev_err(&rspi
->ctlr
->dev
, "DMA timeout\n");
604 dmaengine_terminate_all(rspi
->ctlr
->dma_tx
);
606 dmaengine_terminate_all(rspi
->ctlr
->dma_rx
);
609 rspi_disable_irq(rspi
, irq_mask
);
612 enable_irq(rspi
->tx_irq
);
613 if (rx
&& rspi
->rx_irq
!= other_irq
)
614 enable_irq(rspi
->rx_irq
);
620 dmaengine_terminate_all(rspi
->ctlr
->dma_rx
);
622 if (ret
== -EAGAIN
) {
623 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
624 dev_driver_string(&rspi
->ctlr
->dev
),
625 dev_name(&rspi
->ctlr
->dev
));
630 static void rspi_receive_init(const struct rspi_data
*rspi
)
634 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
635 if (spsr
& SPSR_SPRF
)
636 rspi_read_data(rspi
); /* dummy read */
637 if (spsr
& SPSR_OVRF
)
638 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPSR
) & ~SPSR_OVRF
,
642 static void rspi_rz_receive_init(const struct rspi_data
*rspi
)
644 rspi_receive_init(rspi
);
645 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, RSPI_SPBFCR
);
646 rspi_write8(rspi
, 0, RSPI_SPBFCR
);
649 static void qspi_receive_init(const struct rspi_data
*rspi
)
653 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
654 if (spsr
& SPSR_SPRF
)
655 rspi_read_data(rspi
); /* dummy read */
656 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
657 rspi_write8(rspi
, 0, QSPI_SPBFCR
);
660 static bool __rspi_can_dma(const struct rspi_data
*rspi
,
661 const struct spi_transfer
*xfer
)
663 return xfer
->len
> rspi
->ops
->fifo_size
;
666 static bool rspi_can_dma(struct spi_controller
*ctlr
, struct spi_device
*spi
,
667 struct spi_transfer
*xfer
)
669 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
671 return __rspi_can_dma(rspi
, xfer
);
674 static int rspi_dma_check_then_transfer(struct rspi_data
*rspi
,
675 struct spi_transfer
*xfer
)
677 if (!rspi
->ctlr
->can_dma
|| !__rspi_can_dma(rspi
, xfer
))
680 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
681 return rspi_dma_transfer(rspi
, &xfer
->tx_sg
,
682 xfer
->rx_buf
? &xfer
->rx_sg
: NULL
);
685 static int rspi_common_transfer(struct rspi_data
*rspi
,
686 struct spi_transfer
*xfer
)
690 ret
= rspi_dma_check_then_transfer(rspi
, xfer
);
694 ret
= rspi_pio_transfer(rspi
, xfer
->tx_buf
, xfer
->rx_buf
, xfer
->len
);
698 /* Wait for the last transmission */
699 rspi_wait_for_tx_empty(rspi
);
704 static int rspi_transfer_one(struct spi_controller
*ctlr
,
705 struct spi_device
*spi
, struct spi_transfer
*xfer
)
707 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
710 spcr
= rspi_read8(rspi
, RSPI_SPCR
);
712 rspi_receive_init(rspi
);
717 rspi_write8(rspi
, spcr
, RSPI_SPCR
);
719 return rspi_common_transfer(rspi
, xfer
);
722 static int rspi_rz_transfer_one(struct spi_controller
*ctlr
,
723 struct spi_device
*spi
,
724 struct spi_transfer
*xfer
)
726 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
728 rspi_rz_receive_init(rspi
);
730 return rspi_common_transfer(rspi
, xfer
);
733 static int qspi_trigger_transfer_out_in(struct rspi_data
*rspi
, const u8
*tx
,
734 u8
*rx
, unsigned int len
)
740 n
= qspi_set_send_trigger(rspi
, len
);
741 qspi_set_receive_trigger(rspi
, len
);
742 if (n
== QSPI_BUFFER_SIZE
) {
743 ret
= rspi_wait_for_tx_empty(rspi
);
745 dev_err(&rspi
->ctlr
->dev
, "transmit timeout\n");
748 for (i
= 0; i
< n
; i
++)
749 rspi_write_data(rspi
, *tx
++);
751 ret
= rspi_wait_for_rx_full(rspi
);
753 dev_err(&rspi
->ctlr
->dev
, "receive timeout\n");
756 for (i
= 0; i
< n
; i
++)
757 *rx
++ = rspi_read_data(rspi
);
759 ret
= rspi_pio_transfer(rspi
, tx
, rx
, n
);
769 static int qspi_transfer_out_in(struct rspi_data
*rspi
,
770 struct spi_transfer
*xfer
)
774 qspi_receive_init(rspi
);
776 ret
= rspi_dma_check_then_transfer(rspi
, xfer
);
780 return qspi_trigger_transfer_out_in(rspi
, xfer
->tx_buf
,
781 xfer
->rx_buf
, xfer
->len
);
784 static int qspi_transfer_out(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
786 const u8
*tx
= xfer
->tx_buf
;
787 unsigned int n
= xfer
->len
;
791 if (rspi
->ctlr
->can_dma
&& __rspi_can_dma(rspi
, xfer
)) {
792 ret
= rspi_dma_transfer(rspi
, &xfer
->tx_sg
, NULL
);
798 len
= qspi_set_send_trigger(rspi
, n
);
799 if (len
== QSPI_BUFFER_SIZE
) {
800 ret
= rspi_wait_for_tx_empty(rspi
);
802 dev_err(&rspi
->ctlr
->dev
, "transmit timeout\n");
805 for (i
= 0; i
< len
; i
++)
806 rspi_write_data(rspi
, *tx
++);
808 ret
= rspi_pio_transfer(rspi
, tx
, NULL
, len
);
815 /* Wait for the last transmission */
816 rspi_wait_for_tx_empty(rspi
);
821 static int qspi_transfer_in(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
823 u8
*rx
= xfer
->rx_buf
;
824 unsigned int n
= xfer
->len
;
828 if (rspi
->ctlr
->can_dma
&& __rspi_can_dma(rspi
, xfer
)) {
829 int ret
= rspi_dma_transfer(rspi
, NULL
, &xfer
->rx_sg
);
835 len
= qspi_set_receive_trigger(rspi
, n
);
836 if (len
== QSPI_BUFFER_SIZE
) {
837 ret
= rspi_wait_for_rx_full(rspi
);
839 dev_err(&rspi
->ctlr
->dev
, "receive timeout\n");
842 for (i
= 0; i
< len
; i
++)
843 *rx
++ = rspi_read_data(rspi
);
845 ret
= rspi_pio_transfer(rspi
, NULL
, rx
, len
);
855 static int qspi_transfer_one(struct spi_controller
*ctlr
,
856 struct spi_device
*spi
, struct spi_transfer
*xfer
)
858 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
860 if (spi
->mode
& SPI_LOOP
) {
861 return qspi_transfer_out_in(rspi
, xfer
);
862 } else if (xfer
->tx_nbits
> SPI_NBITS_SINGLE
) {
863 /* Quad or Dual SPI Write */
864 return qspi_transfer_out(rspi
, xfer
);
865 } else if (xfer
->rx_nbits
> SPI_NBITS_SINGLE
) {
866 /* Quad or Dual SPI Read */
867 return qspi_transfer_in(rspi
, xfer
);
869 /* Single SPI Transfer */
870 return qspi_transfer_out_in(rspi
, xfer
);
874 static int rspi_setup(struct spi_device
*spi
)
876 struct rspi_data
*rspi
= spi_controller_get_devdata(spi
->controller
);
878 rspi
->max_speed_hz
= spi
->max_speed_hz
;
880 rspi
->spcmd
= SPCMD_SSLKP
;
881 if (spi
->mode
& SPI_CPOL
)
882 rspi
->spcmd
|= SPCMD_CPOL
;
883 if (spi
->mode
& SPI_CPHA
)
884 rspi
->spcmd
|= SPCMD_CPHA
;
886 /* CMOS output mode and MOSI signal from previous transfer */
888 if (spi
->mode
& SPI_LOOP
)
889 rspi
->sppcr
|= SPPCR_SPLP
;
891 set_config_register(rspi
, 8);
896 static u16
qspi_transfer_mode(const struct spi_transfer
*xfer
)
899 switch (xfer
->tx_nbits
) {
901 return SPCMD_SPIMOD_QUAD
;
903 return SPCMD_SPIMOD_DUAL
;
908 switch (xfer
->rx_nbits
) {
910 return SPCMD_SPIMOD_QUAD
| SPCMD_SPRW
;
912 return SPCMD_SPIMOD_DUAL
| SPCMD_SPRW
;
920 static int qspi_setup_sequencer(struct rspi_data
*rspi
,
921 const struct spi_message
*msg
)
923 const struct spi_transfer
*xfer
;
924 unsigned int i
= 0, len
= 0;
925 u16 current_mode
= 0xffff, mode
;
927 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
928 mode
= qspi_transfer_mode(xfer
);
929 if (mode
== current_mode
) {
934 /* Transfer mode change */
936 /* Set transfer data length of previous transfer */
937 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
940 if (i
>= QSPI_NUM_SPCMD
) {
941 dev_err(&msg
->spi
->dev
,
942 "Too many different transfer modes");
946 /* Program transfer mode for this transfer */
947 rspi_write16(rspi
, rspi
->spcmd
| mode
, RSPI_SPCMD(i
));
953 /* Set final transfer data length and sequence length */
954 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
955 rspi_write8(rspi
, i
- 1, RSPI_SPSCR
);
961 static int rspi_prepare_message(struct spi_controller
*ctlr
,
962 struct spi_message
*msg
)
964 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
968 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)) {
969 /* Setup sequencer for messages with multiple transfer modes */
970 ret
= qspi_setup_sequencer(rspi
, msg
);
975 /* Enable SPI function in master mode */
976 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | SPCR_SPE
, RSPI_SPCR
);
980 static int rspi_unprepare_message(struct spi_controller
*ctlr
,
981 struct spi_message
*msg
)
983 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
985 /* Disable SPI function */
986 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~SPCR_SPE
, RSPI_SPCR
);
988 /* Reset sequencer for Single SPI Transfers */
989 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
990 rspi_write8(rspi
, 0, RSPI_SPSCR
);
994 static irqreturn_t
rspi_irq_mux(int irq
, void *_sr
)
996 struct rspi_data
*rspi
= _sr
;
998 irqreturn_t ret
= IRQ_NONE
;
1001 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1002 if (spsr
& SPSR_SPRF
)
1003 disable_irq
|= SPCR_SPRIE
;
1004 if (spsr
& SPSR_SPTEF
)
1005 disable_irq
|= SPCR_SPTIE
;
1009 rspi_disable_irq(rspi
, disable_irq
);
1010 wake_up(&rspi
->wait
);
1016 static irqreturn_t
rspi_irq_rx(int irq
, void *_sr
)
1018 struct rspi_data
*rspi
= _sr
;
1021 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1022 if (spsr
& SPSR_SPRF
) {
1023 rspi_disable_irq(rspi
, SPCR_SPRIE
);
1024 wake_up(&rspi
->wait
);
1031 static irqreturn_t
rspi_irq_tx(int irq
, void *_sr
)
1033 struct rspi_data
*rspi
= _sr
;
1036 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1037 if (spsr
& SPSR_SPTEF
) {
1038 rspi_disable_irq(rspi
, SPCR_SPTIE
);
1039 wake_up(&rspi
->wait
);
1046 static struct dma_chan
*rspi_request_dma_chan(struct device
*dev
,
1047 enum dma_transfer_direction dir
,
1049 dma_addr_t port_addr
)
1051 dma_cap_mask_t mask
;
1052 struct dma_chan
*chan
;
1053 struct dma_slave_config cfg
;
1057 dma_cap_set(DMA_SLAVE
, mask
);
1059 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
1060 (void *)(unsigned long)id
, dev
,
1061 dir
== DMA_MEM_TO_DEV
? "tx" : "rx");
1063 dev_warn(dev
, "dma_request_slave_channel_compat failed\n");
1067 memset(&cfg
, 0, sizeof(cfg
));
1068 cfg
.direction
= dir
;
1069 if (dir
== DMA_MEM_TO_DEV
) {
1070 cfg
.dst_addr
= port_addr
;
1071 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1073 cfg
.src_addr
= port_addr
;
1074 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1077 ret
= dmaengine_slave_config(chan
, &cfg
);
1079 dev_warn(dev
, "dmaengine_slave_config failed %d\n", ret
);
1080 dma_release_channel(chan
);
1087 static int rspi_request_dma(struct device
*dev
, struct spi_controller
*ctlr
,
1088 const struct resource
*res
)
1090 const struct rspi_plat_data
*rspi_pd
= dev_get_platdata(dev
);
1091 unsigned int dma_tx_id
, dma_rx_id
;
1094 /* In the OF case we will get the slave IDs from the DT */
1097 } else if (rspi_pd
&& rspi_pd
->dma_tx_id
&& rspi_pd
->dma_rx_id
) {
1098 dma_tx_id
= rspi_pd
->dma_tx_id
;
1099 dma_rx_id
= rspi_pd
->dma_rx_id
;
1101 /* The driver assumes no error. */
1105 ctlr
->dma_tx
= rspi_request_dma_chan(dev
, DMA_MEM_TO_DEV
, dma_tx_id
,
1106 res
->start
+ RSPI_SPDR
);
1110 ctlr
->dma_rx
= rspi_request_dma_chan(dev
, DMA_DEV_TO_MEM
, dma_rx_id
,
1111 res
->start
+ RSPI_SPDR
);
1112 if (!ctlr
->dma_rx
) {
1113 dma_release_channel(ctlr
->dma_tx
);
1114 ctlr
->dma_tx
= NULL
;
1118 ctlr
->can_dma
= rspi_can_dma
;
1119 dev_info(dev
, "DMA available");
1123 static void rspi_release_dma(struct spi_controller
*ctlr
)
1126 dma_release_channel(ctlr
->dma_tx
);
1128 dma_release_channel(ctlr
->dma_rx
);
1131 static int rspi_remove(struct platform_device
*pdev
)
1133 struct rspi_data
*rspi
= platform_get_drvdata(pdev
);
1135 rspi_release_dma(rspi
->ctlr
);
1136 pm_runtime_disable(&pdev
->dev
);
1141 static const struct spi_ops rspi_ops
= {
1142 .set_config_register
= rspi_set_config_register
,
1143 .transfer_one
= rspi_transfer_one
,
1144 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
,
1145 .flags
= SPI_CONTROLLER_MUST_TX
,
1149 static const struct spi_ops rspi_rz_ops
= {
1150 .set_config_register
= rspi_rz_set_config_register
,
1151 .transfer_one
= rspi_rz_transfer_one
,
1152 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
,
1153 .flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
,
1154 .fifo_size
= 8, /* 8 for TX, 32 for RX */
1157 static const struct spi_ops qspi_ops
= {
1158 .set_config_register
= qspi_set_config_register
,
1159 .transfer_one
= qspi_transfer_one
,
1160 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
|
1161 SPI_TX_DUAL
| SPI_TX_QUAD
|
1162 SPI_RX_DUAL
| SPI_RX_QUAD
,
1163 .flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
,
1168 static const struct of_device_id rspi_of_match
[] = {
1169 /* RSPI on legacy SH */
1170 { .compatible
= "renesas,rspi", .data
= &rspi_ops
},
1171 /* RSPI on RZ/A1H */
1172 { .compatible
= "renesas,rspi-rz", .data
= &rspi_rz_ops
},
1173 /* QSPI on R-Car Gen2 */
1174 { .compatible
= "renesas,qspi", .data
= &qspi_ops
},
1178 MODULE_DEVICE_TABLE(of
, rspi_of_match
);
1180 static int rspi_parse_dt(struct device
*dev
, struct spi_controller
*ctlr
)
1185 /* Parse DT properties */
1186 error
= of_property_read_u32(dev
->of_node
, "num-cs", &num_cs
);
1188 dev_err(dev
, "of_property_read_u32 num-cs failed %d\n", error
);
1192 ctlr
->num_chipselect
= num_cs
;
1196 #define rspi_of_match NULL
1197 static inline int rspi_parse_dt(struct device
*dev
, struct spi_controller
*ctlr
)
1201 #endif /* CONFIG_OF */
1203 static int rspi_request_irq(struct device
*dev
, unsigned int irq
,
1204 irq_handler_t handler
, const char *suffix
,
1207 const char *name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s:%s",
1208 dev_name(dev
), suffix
);
1212 return devm_request_irq(dev
, irq
, handler
, 0, name
, dev_id
);
1215 static int rspi_probe(struct platform_device
*pdev
)
1217 struct resource
*res
;
1218 struct spi_controller
*ctlr
;
1219 struct rspi_data
*rspi
;
1221 const struct rspi_plat_data
*rspi_pd
;
1222 const struct spi_ops
*ops
;
1224 ctlr
= spi_alloc_master(&pdev
->dev
, sizeof(struct rspi_data
));
1228 ops
= of_device_get_match_data(&pdev
->dev
);
1230 ret
= rspi_parse_dt(&pdev
->dev
, ctlr
);
1234 ops
= (struct spi_ops
*)pdev
->id_entry
->driver_data
;
1235 rspi_pd
= dev_get_platdata(&pdev
->dev
);
1236 if (rspi_pd
&& rspi_pd
->num_chipselect
)
1237 ctlr
->num_chipselect
= rspi_pd
->num_chipselect
;
1239 ctlr
->num_chipselect
= 2; /* default */
1242 /* ops parameter check */
1243 if (!ops
->set_config_register
) {
1244 dev_err(&pdev
->dev
, "there is no set_config_register\n");
1249 rspi
= spi_controller_get_devdata(ctlr
);
1250 platform_set_drvdata(pdev
, rspi
);
1254 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1255 rspi
->addr
= devm_ioremap_resource(&pdev
->dev
, res
);
1256 if (IS_ERR(rspi
->addr
)) {
1257 ret
= PTR_ERR(rspi
->addr
);
1261 rspi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1262 if (IS_ERR(rspi
->clk
)) {
1263 dev_err(&pdev
->dev
, "cannot get clock\n");
1264 ret
= PTR_ERR(rspi
->clk
);
1268 pm_runtime_enable(&pdev
->dev
);
1270 init_waitqueue_head(&rspi
->wait
);
1272 ctlr
->bus_num
= pdev
->id
;
1273 ctlr
->setup
= rspi_setup
;
1274 ctlr
->auto_runtime_pm
= true;
1275 ctlr
->transfer_one
= ops
->transfer_one
;
1276 ctlr
->prepare_message
= rspi_prepare_message
;
1277 ctlr
->unprepare_message
= rspi_unprepare_message
;
1278 ctlr
->mode_bits
= ops
->mode_bits
;
1279 ctlr
->flags
= ops
->flags
;
1280 ctlr
->dev
.of_node
= pdev
->dev
.of_node
;
1282 ret
= platform_get_irq_byname(pdev
, "rx");
1284 ret
= platform_get_irq_byname(pdev
, "mux");
1286 ret
= platform_get_irq(pdev
, 0);
1288 rspi
->rx_irq
= rspi
->tx_irq
= ret
;
1291 ret
= platform_get_irq_byname(pdev
, "tx");
1296 dev_err(&pdev
->dev
, "platform_get_irq error\n");
1300 if (rspi
->rx_irq
== rspi
->tx_irq
) {
1301 /* Single multiplexed interrupt */
1302 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_mux
,
1305 /* Multi-interrupt mode, only SPRI and SPTI are used */
1306 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_rx
,
1309 ret
= rspi_request_irq(&pdev
->dev
, rspi
->tx_irq
,
1310 rspi_irq_tx
, "tx", rspi
);
1313 dev_err(&pdev
->dev
, "request_irq error\n");
1317 ret
= rspi_request_dma(&pdev
->dev
, ctlr
, res
);
1319 dev_warn(&pdev
->dev
, "DMA not available, using PIO\n");
1321 ret
= devm_spi_register_controller(&pdev
->dev
, ctlr
);
1323 dev_err(&pdev
->dev
, "devm_spi_register_controller error.\n");
1327 dev_info(&pdev
->dev
, "probed\n");
1332 rspi_release_dma(ctlr
);
1334 pm_runtime_disable(&pdev
->dev
);
1336 spi_controller_put(ctlr
);
1341 static const struct platform_device_id spi_driver_ids
[] = {
1342 { "rspi", (kernel_ulong_t
)&rspi_ops
},
1343 { "rspi-rz", (kernel_ulong_t
)&rspi_rz_ops
},
1344 { "qspi", (kernel_ulong_t
)&qspi_ops
},
1348 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1350 #ifdef CONFIG_PM_SLEEP
1351 static int rspi_suspend(struct device
*dev
)
1353 struct rspi_data
*rspi
= dev_get_drvdata(dev
);
1355 return spi_controller_suspend(rspi
->ctlr
);
1358 static int rspi_resume(struct device
*dev
)
1360 struct rspi_data
*rspi
= dev_get_drvdata(dev
);
1362 return spi_controller_resume(rspi
->ctlr
);
1365 static SIMPLE_DEV_PM_OPS(rspi_pm_ops
, rspi_suspend
, rspi_resume
);
1366 #define DEV_PM_OPS &rspi_pm_ops
1368 #define DEV_PM_OPS NULL
1369 #endif /* CONFIG_PM_SLEEP */
1371 static struct platform_driver rspi_driver
= {
1372 .probe
= rspi_probe
,
1373 .remove
= rspi_remove
,
1374 .id_table
= spi_driver_ids
,
1376 .name
= "renesas_spi",
1378 .of_match_table
= of_match_ptr(rspi_of_match
),
1381 module_platform_driver(rspi_driver
);
1383 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1384 MODULE_LICENSE("GPL v2");
1385 MODULE_AUTHOR("Yoshihiro Shimoda");
1386 MODULE_ALIAS("platform:rspi");