1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start
);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop
);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr
);
46 static void spidev_release(struct device
*dev
)
48 struct spi_device
*spi
= to_spi_device(dev
);
50 /* spi controllers may cleanup for released devices */
51 if (spi
->controller
->cleanup
)
52 spi
->controller
->cleanup(spi
);
54 spi_controller_put(spi
->controller
);
55 kfree(spi
->driver_override
);
60 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
62 const struct spi_device
*spi
= to_spi_device(dev
);
65 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
69 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
71 static DEVICE_ATTR_RO(modalias
);
73 static ssize_t
driver_override_store(struct device
*dev
,
74 struct device_attribute
*a
,
75 const char *buf
, size_t count
)
77 struct spi_device
*spi
= to_spi_device(dev
);
78 const char *end
= memchr(buf
, '\n', count
);
79 const size_t len
= end
? end
- buf
: count
;
80 const char *driver_override
, *old
;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len
>= (PAGE_SIZE
- 1))
86 driver_override
= kstrndup(buf
, len
, GFP_KERNEL
);
91 old
= spi
->driver_override
;
93 spi
->driver_override
= driver_override
;
95 /* Emptry string, disable driver override */
96 spi
->driver_override
= NULL
;
97 kfree(driver_override
);
105 static ssize_t
driver_override_show(struct device
*dev
,
106 struct device_attribute
*a
, char *buf
)
108 const struct spi_device
*spi
= to_spi_device(dev
);
112 len
= snprintf(buf
, PAGE_SIZE
, "%s\n", spi
->driver_override
? : "");
116 static DEVICE_ATTR_RW(driver_override
);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
147 unsigned long flags; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages
, "%lu");
161 SPI_STATISTICS_SHOW(transfers
, "%lu");
162 SPI_STATISTICS_SHOW(errors
, "%lu");
163 SPI_STATISTICS_SHOW(timedout
, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
167 SPI_STATISTICS_SHOW(spi_async
, "%lu");
169 SPI_STATISTICS_SHOW(bytes
, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
197 static struct attribute
*spi_dev_attrs
[] = {
198 &dev_attr_modalias
.attr
,
199 &dev_attr_driver_override
.attr
,
203 static const struct attribute_group spi_dev_group
= {
204 .attrs
= spi_dev_attrs
,
207 static struct attribute
*spi_device_statistics_attrs
[] = {
208 &dev_attr_spi_device_messages
.attr
,
209 &dev_attr_spi_device_transfers
.attr
,
210 &dev_attr_spi_device_errors
.attr
,
211 &dev_attr_spi_device_timedout
.attr
,
212 &dev_attr_spi_device_spi_sync
.attr
,
213 &dev_attr_spi_device_spi_sync_immediate
.attr
,
214 &dev_attr_spi_device_spi_async
.attr
,
215 &dev_attr_spi_device_bytes
.attr
,
216 &dev_attr_spi_device_bytes_rx
.attr
,
217 &dev_attr_spi_device_bytes_tx
.attr
,
218 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
219 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
220 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
221 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
222 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
223 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
224 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
225 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
226 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
227 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
228 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
229 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
230 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
231 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
232 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
233 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
234 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
235 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
239 static const struct attribute_group spi_device_statistics_group
= {
240 .name
= "statistics",
241 .attrs
= spi_device_statistics_attrs
,
244 static const struct attribute_group
*spi_dev_groups
[] = {
246 &spi_device_statistics_group
,
250 static struct attribute
*spi_controller_statistics_attrs
[] = {
251 &dev_attr_spi_controller_messages
.attr
,
252 &dev_attr_spi_controller_transfers
.attr
,
253 &dev_attr_spi_controller_errors
.attr
,
254 &dev_attr_spi_controller_timedout
.attr
,
255 &dev_attr_spi_controller_spi_sync
.attr
,
256 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
257 &dev_attr_spi_controller_spi_async
.attr
,
258 &dev_attr_spi_controller_bytes
.attr
,
259 &dev_attr_spi_controller_bytes_rx
.attr
,
260 &dev_attr_spi_controller_bytes_tx
.attr
,
261 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
262 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
263 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
264 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
265 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
266 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
267 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
268 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
269 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
270 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
271 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
272 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
273 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
274 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
275 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
276 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
277 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
278 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
282 static const struct attribute_group spi_controller_statistics_group
= {
283 .name
= "statistics",
284 .attrs
= spi_controller_statistics_attrs
,
287 static const struct attribute_group
*spi_master_groups
[] = {
288 &spi_controller_statistics_group
,
292 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
293 struct spi_transfer
*xfer
,
294 struct spi_controller
*ctlr
)
297 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
302 spin_lock_irqsave(&stats
->lock
, flags
);
305 stats
->transfer_bytes_histo
[l2len
]++;
307 stats
->bytes
+= xfer
->len
;
308 if ((xfer
->tx_buf
) &&
309 (xfer
->tx_buf
!= ctlr
->dummy_tx
))
310 stats
->bytes_tx
+= xfer
->len
;
311 if ((xfer
->rx_buf
) &&
312 (xfer
->rx_buf
!= ctlr
->dummy_rx
))
313 stats
->bytes_rx
+= xfer
->len
;
315 spin_unlock_irqrestore(&stats
->lock
, flags
);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
324 const struct spi_device
*sdev
)
326 while (id
->name
[0]) {
327 if (!strcmp(sdev
->modalias
, id
->name
))
334 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
336 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
338 return spi_match_id(sdrv
->id_table
, sdev
);
340 EXPORT_SYMBOL_GPL(spi_get_device_id
);
342 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
344 const struct spi_device
*spi
= to_spi_device(dev
);
345 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
347 /* Check override first, and if set, only use the named driver */
348 if (spi
->driver_override
)
349 return strcmp(spi
->driver_override
, drv
->name
) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev
, drv
))
356 if (acpi_driver_match_device(dev
, drv
))
360 return !!spi_match_id(sdrv
->id_table
, spi
);
362 return strcmp(spi
->modalias
, drv
->name
) == 0;
365 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
367 const struct spi_device
*spi
= to_spi_device(dev
);
370 rc
= acpi_device_uevent_modalias(dev
, env
);
374 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
377 struct bus_type spi_bus_type
= {
379 .dev_groups
= spi_dev_groups
,
380 .match
= spi_match_device
,
381 .uevent
= spi_uevent
,
383 EXPORT_SYMBOL_GPL(spi_bus_type
);
386 static int spi_drv_probe(struct device
*dev
)
388 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
389 struct spi_device
*spi
= to_spi_device(dev
);
392 ret
= of_clk_set_defaults(dev
->of_node
, false);
397 spi
->irq
= of_irq_get(dev
->of_node
, 0);
398 if (spi
->irq
== -EPROBE_DEFER
)
399 return -EPROBE_DEFER
;
404 ret
= dev_pm_domain_attach(dev
, true);
408 ret
= sdrv
->probe(spi
);
410 dev_pm_domain_detach(dev
, true);
415 static int spi_drv_remove(struct device
*dev
)
417 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
420 ret
= sdrv
->remove(to_spi_device(dev
));
421 dev_pm_domain_detach(dev
, true);
426 static void spi_drv_shutdown(struct device
*dev
)
428 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
430 sdrv
->shutdown(to_spi_device(dev
));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
443 sdrv
->driver
.owner
= owner
;
444 sdrv
->driver
.bus
= &spi_bus_type
;
446 sdrv
->driver
.probe
= spi_drv_probe
;
448 sdrv
->driver
.remove
= spi_drv_remove
;
450 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
451 return driver_register(&sdrv
->driver
);
453 EXPORT_SYMBOL_GPL(__spi_register_driver
);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
464 struct list_head list
;
465 struct spi_board_info board_info
;
468 static LIST_HEAD(board_list
);
469 static LIST_HEAD(spi_controller_list
);
472 * Used to protect add/del opertion for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock
);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
497 struct spi_device
*spi
;
499 if (!spi_controller_get(ctlr
))
502 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
504 spi_controller_put(ctlr
);
508 spi
->master
= spi
->controller
= ctlr
;
509 spi
->dev
.parent
= &ctlr
->dev
;
510 spi
->dev
.bus
= &spi_bus_type
;
511 spi
->dev
.release
= spidev_release
;
512 spi
->cs_gpio
= -ENOENT
;
514 spin_lock_init(&spi
->statistics
.lock
);
516 device_initialize(&spi
->dev
);
519 EXPORT_SYMBOL_GPL(spi_alloc_device
);
521 static void spi_dev_set_name(struct spi_device
*spi
)
523 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
526 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
530 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
534 static int spi_dev_check(struct device
*dev
, void *data
)
536 struct spi_device
*spi
= to_spi_device(dev
);
537 struct spi_device
*new_spi
= data
;
539 if (spi
->controller
== new_spi
->controller
&&
540 spi
->chip_select
== new_spi
->chip_select
)
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
552 * Return: 0 on success; negative errno on failure
554 int spi_add_device(struct spi_device
*spi
)
556 static DEFINE_MUTEX(spi_add_lock
);
557 struct spi_controller
*ctlr
= spi
->controller
;
558 struct device
*dev
= ctlr
->dev
.parent
;
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi
->chip_select
>= ctlr
->num_chipselect
) {
563 dev_err(dev
, "cs%d >= max %d\n", spi
->chip_select
,
564 ctlr
->num_chipselect
);
568 /* Set the bus ID string */
569 spi_dev_set_name(spi
);
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
575 mutex_lock(&spi_add_lock
);
577 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
579 dev_err(dev
, "chipselect %d already in use\n",
584 /* Descriptors take precedence */
586 spi
->cs_gpiod
= ctlr
->cs_gpiods
[spi
->chip_select
];
587 else if (ctlr
->cs_gpios
)
588 spi
->cs_gpio
= ctlr
->cs_gpios
[spi
->chip_select
];
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
594 status
= spi_setup(spi
);
596 dev_err(dev
, "can't setup %s, status %d\n",
597 dev_name(&spi
->dev
), status
);
601 /* Device may be bound to an active driver when this returns */
602 status
= device_add(&spi
->dev
);
604 dev_err(dev
, "can't add %s, status %d\n",
605 dev_name(&spi
->dev
), status
);
607 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
610 mutex_unlock(&spi_add_lock
);
613 EXPORT_SYMBOL_GPL(spi_add_device
);
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
627 * Return: the new device, or NULL.
629 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
630 struct spi_board_info
*chip
)
632 struct spi_device
*proxy
;
635 /* NOTE: caller did any chip->bus_num checks necessary.
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
642 proxy
= spi_alloc_device(ctlr
);
646 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
648 proxy
->chip_select
= chip
->chip_select
;
649 proxy
->max_speed_hz
= chip
->max_speed_hz
;
650 proxy
->mode
= chip
->mode
;
651 proxy
->irq
= chip
->irq
;
652 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
653 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
654 proxy
->controller_data
= chip
->controller_data
;
655 proxy
->controller_state
= NULL
;
657 if (chip
->properties
) {
658 status
= device_add_properties(&proxy
->dev
, chip
->properties
);
661 "failed to add properties to '%s': %d\n",
662 chip
->modalias
, status
);
667 status
= spi_add_device(proxy
);
669 goto err_remove_props
;
674 if (chip
->properties
)
675 device_remove_properties(&proxy
->dev
);
680 EXPORT_SYMBOL_GPL(spi_new_device
);
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
689 void spi_unregister_device(struct spi_device
*spi
)
694 if (spi
->dev
.of_node
) {
695 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
696 of_node_put(spi
->dev
.of_node
);
698 if (ACPI_COMPANION(&spi
->dev
))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
700 device_unregister(&spi
->dev
);
702 EXPORT_SYMBOL_GPL(spi_unregister_device
);
704 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
705 struct spi_board_info
*bi
)
707 struct spi_device
*dev
;
709 if (ctlr
->bus_num
!= bi
->bus_num
)
712 dev
= spi_new_device(ctlr
, bi
);
714 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
738 * Return: zero on success, else a negative error code.
740 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
742 struct boardinfo
*bi
;
748 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
752 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
753 struct spi_controller
*ctlr
;
755 memcpy(&bi
->board_info
, info
, sizeof(*info
));
756 if (info
->properties
) {
757 bi
->board_info
.properties
=
758 property_entries_dup(info
->properties
);
759 if (IS_ERR(bi
->board_info
.properties
))
760 return PTR_ERR(bi
->board_info
.properties
);
763 mutex_lock(&board_lock
);
764 list_add_tail(&bi
->list
, &board_list
);
765 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
766 spi_match_controller_to_boardinfo(ctlr
,
768 mutex_unlock(&board_lock
);
774 /*-------------------------------------------------------------------------*/
776 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
778 if (spi
->mode
& SPI_CS_HIGH
)
781 if (spi
->cs_gpiod
|| gpio_is_valid(spi
->cs_gpio
)) {
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
789 if (!(spi
->mode
& SPI_NO_CS
)) {
791 gpiod_set_value_cansleep(spi
->cs_gpiod
,
794 gpio_set_value_cansleep(spi
->cs_gpio
, !enable
);
796 /* Some SPI masters need both GPIO CS & slave_select */
797 if ((spi
->controller
->flags
& SPI_MASTER_GPIO_SS
) &&
798 spi
->controller
->set_cs
)
799 spi
->controller
->set_cs(spi
, !enable
);
800 } else if (spi
->controller
->set_cs
) {
801 spi
->controller
->set_cs(spi
, !enable
);
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
807 struct sg_table
*sgt
, void *buf
, size_t len
,
808 enum dma_data_direction dir
)
810 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
811 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
812 #ifdef CONFIG_HIGHMEM
813 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
814 (unsigned long)buf
< (PKMAP_BASE
+
815 (LAST_PKMAP
* PAGE_SIZE
)));
817 const bool kmap_buf
= false;
821 struct page
*vm_page
;
822 struct scatterlist
*sg
;
827 if (vmalloced_buf
|| kmap_buf
) {
828 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
829 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
830 } else if (virt_addr_valid(buf
)) {
831 desc_len
= min_t(int, max_seg_size
, ctlr
->max_dma_len
);
832 sgs
= DIV_ROUND_UP(len
, desc_len
);
837 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
842 for (i
= 0; i
< sgs
; i
++) {
844 if (vmalloced_buf
|| kmap_buf
) {
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
850 min
= min_t(size_t, desc_len
,
852 PAGE_SIZE
- offset_in_page(buf
)));
854 vm_page
= vmalloc_to_page(buf
);
856 vm_page
= kmap_to_page(buf
);
861 sg_set_page(sg
, vm_page
,
862 min
, offset_in_page(buf
));
864 min
= min_t(size_t, len
, desc_len
);
866 sg_set_buf(sg
, sg_buf
, min
);
874 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
887 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
888 struct sg_table
*sgt
, enum dma_data_direction dir
)
890 if (sgt
->orig_nents
) {
891 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
896 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
898 struct device
*tx_dev
, *rx_dev
;
899 struct spi_transfer
*xfer
;
906 tx_dev
= ctlr
->dma_tx
->device
->dev
;
908 tx_dev
= ctlr
->dev
.parent
;
911 rx_dev
= ctlr
->dma_rx
->device
->dev
;
913 rx_dev
= ctlr
->dev
.parent
;
915 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
916 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
919 if (xfer
->tx_buf
!= NULL
) {
920 ret
= spi_map_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
921 (void *)xfer
->tx_buf
, xfer
->len
,
927 if (xfer
->rx_buf
!= NULL
) {
928 ret
= spi_map_buf(ctlr
, rx_dev
, &xfer
->rx_sg
,
929 xfer
->rx_buf
, xfer
->len
,
932 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
939 ctlr
->cur_msg_mapped
= true;
944 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
946 struct spi_transfer
*xfer
;
947 struct device
*tx_dev
, *rx_dev
;
949 if (!ctlr
->cur_msg_mapped
|| !ctlr
->can_dma
)
953 tx_dev
= ctlr
->dma_tx
->device
->dev
;
955 tx_dev
= ctlr
->dev
.parent
;
958 rx_dev
= ctlr
->dma_rx
->device
->dev
;
960 rx_dev
= ctlr
->dev
.parent
;
962 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
963 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
966 spi_unmap_buf(ctlr
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
967 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
974 struct spi_message
*msg
)
979 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
980 struct spi_message
*msg
)
984 #endif /* !CONFIG_HAS_DMA */
986 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
987 struct spi_message
*msg
)
989 struct spi_transfer
*xfer
;
991 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
993 * Restore the original value of tx_buf or rx_buf if they are
996 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
998 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
1002 return __spi_unmap_msg(ctlr
, msg
);
1005 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1007 struct spi_transfer
*xfer
;
1009 unsigned int max_tx
, max_rx
;
1011 if (ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
)) {
1015 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1016 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
1018 max_tx
= max(xfer
->len
, max_tx
);
1019 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
1021 max_rx
= max(xfer
->len
, max_rx
);
1025 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
1026 GFP_KERNEL
| GFP_DMA
);
1029 ctlr
->dummy_tx
= tmp
;
1030 memset(tmp
, 0, max_tx
);
1034 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
1035 GFP_KERNEL
| GFP_DMA
);
1038 ctlr
->dummy_rx
= tmp
;
1041 if (max_tx
|| max_rx
) {
1042 list_for_each_entry(xfer
, &msg
->transfers
,
1047 xfer
->tx_buf
= ctlr
->dummy_tx
;
1049 xfer
->rx_buf
= ctlr
->dummy_rx
;
1054 return __spi_map_msg(ctlr
, msg
);
1057 static int spi_transfer_wait(struct spi_controller
*ctlr
,
1058 struct spi_message
*msg
,
1059 struct spi_transfer
*xfer
)
1061 struct spi_statistics
*statm
= &ctlr
->statistics
;
1062 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1063 unsigned long long ms
= 1;
1065 if (spi_controller_is_slave(ctlr
)) {
1066 if (wait_for_completion_interruptible(&ctlr
->xfer_completion
)) {
1067 dev_dbg(&msg
->spi
->dev
, "SPI transfer interrupted\n");
1071 ms
= 8LL * 1000LL * xfer
->len
;
1072 do_div(ms
, xfer
->speed_hz
);
1073 ms
+= ms
+ 200; /* some tolerance */
1078 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1079 msecs_to_jiffies(ms
));
1082 SPI_STATISTICS_INCREMENT_FIELD(statm
, timedout
);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats
, timedout
);
1084 dev_err(&msg
->spi
->dev
,
1085 "SPI transfer timed out\n");
1094 * spi_transfer_one_message - Default implementation of transfer_one_message()
1096 * This is a standard implementation of transfer_one_message() for
1097 * drivers which implement a transfer_one() operation. It provides
1098 * standard handling of delays and chip select management.
1100 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1101 struct spi_message
*msg
)
1103 struct spi_transfer
*xfer
;
1104 bool keep_cs
= false;
1106 struct spi_statistics
*statm
= &ctlr
->statistics
;
1107 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1109 spi_set_cs(msg
->spi
, true);
1111 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1112 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1114 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1115 trace_spi_transfer_start(msg
, xfer
);
1117 spi_statistics_add_transfer_stats(statm
, xfer
, ctlr
);
1118 spi_statistics_add_transfer_stats(stats
, xfer
, ctlr
);
1120 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
1121 reinit_completion(&ctlr
->xfer_completion
);
1123 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1125 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1127 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1129 dev_err(&msg
->spi
->dev
,
1130 "SPI transfer failed: %d\n", ret
);
1135 ret
= spi_transfer_wait(ctlr
, msg
, xfer
);
1141 dev_err(&msg
->spi
->dev
,
1142 "Bufferless transfer has length %u\n",
1146 trace_spi_transfer_stop(msg
, xfer
);
1148 if (msg
->status
!= -EINPROGRESS
)
1151 if (xfer
->delay_usecs
) {
1152 u16 us
= xfer
->delay_usecs
;
1157 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1160 if (xfer
->cs_change
) {
1161 if (list_is_last(&xfer
->transfer_list
,
1165 spi_set_cs(msg
->spi
, false);
1167 spi_set_cs(msg
->spi
, true);
1171 msg
->actual_length
+= xfer
->len
;
1175 if (ret
!= 0 || !keep_cs
)
1176 spi_set_cs(msg
->spi
, false);
1178 if (msg
->status
== -EINPROGRESS
)
1181 if (msg
->status
&& ctlr
->handle_err
)
1182 ctlr
->handle_err(ctlr
, msg
);
1184 spi_res_release(ctlr
, msg
);
1186 spi_finalize_current_message(ctlr
);
1192 * spi_finalize_current_transfer - report completion of a transfer
1193 * @ctlr: the controller reporting completion
1195 * Called by SPI drivers using the core transfer_one_message()
1196 * implementation to notify it that the current interrupt driven
1197 * transfer has finished and the next one may be scheduled.
1199 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1201 complete(&ctlr
->xfer_completion
);
1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1206 * __spi_pump_messages - function which processes spi message queue
1207 * @ctlr: controller to process queue for
1208 * @in_kthread: true if we are in the context of the message pump thread
1210 * This function checks if there is any spi message in the queue that
1211 * needs processing and if so call out to the driver to initialize hardware
1212 * and transfer each message.
1214 * Note that it is called both from the kthread itself and also from
1215 * inside spi_sync(); the queue extraction handling at the top of the
1216 * function should deal with this safely.
1218 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1220 unsigned long flags
;
1221 bool was_busy
= false;
1225 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1227 /* Make sure we are not already running a message */
1228 if (ctlr
->cur_msg
) {
1229 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1233 /* If another context is idling the device then defer */
1235 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1236 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1240 /* Check if the queue is idle */
1241 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1243 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1247 /* Only do teardown in the thread */
1249 kthread_queue_work(&ctlr
->kworker
,
1250 &ctlr
->pump_messages
);
1251 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1256 ctlr
->idling
= true;
1257 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1259 kfree(ctlr
->dummy_rx
);
1260 ctlr
->dummy_rx
= NULL
;
1261 kfree(ctlr
->dummy_tx
);
1262 ctlr
->dummy_tx
= NULL
;
1263 if (ctlr
->unprepare_transfer_hardware
&&
1264 ctlr
->unprepare_transfer_hardware(ctlr
))
1266 "failed to unprepare transfer hardware\n");
1267 if (ctlr
->auto_runtime_pm
) {
1268 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1269 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1271 trace_spi_controller_idle(ctlr
);
1273 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1274 ctlr
->idling
= false;
1275 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1279 /* Extract head of queue */
1281 list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1283 list_del_init(&ctlr
->cur_msg
->queue
);
1288 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1290 mutex_lock(&ctlr
->io_mutex
);
1292 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1293 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1295 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1296 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1298 mutex_unlock(&ctlr
->io_mutex
);
1304 trace_spi_controller_busy(ctlr
);
1306 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1307 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1310 "failed to prepare transfer hardware\n");
1312 if (ctlr
->auto_runtime_pm
)
1313 pm_runtime_put(ctlr
->dev
.parent
);
1314 mutex_unlock(&ctlr
->io_mutex
);
1319 trace_spi_message_start(ctlr
->cur_msg
);
1321 if (ctlr
->prepare_message
) {
1322 ret
= ctlr
->prepare_message(ctlr
, ctlr
->cur_msg
);
1324 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1326 ctlr
->cur_msg
->status
= ret
;
1327 spi_finalize_current_message(ctlr
);
1330 ctlr
->cur_msg_prepared
= true;
1333 ret
= spi_map_msg(ctlr
, ctlr
->cur_msg
);
1335 ctlr
->cur_msg
->status
= ret
;
1336 spi_finalize_current_message(ctlr
);
1340 ret
= ctlr
->transfer_one_message(ctlr
, ctlr
->cur_msg
);
1343 "failed to transfer one message from queue\n");
1348 mutex_unlock(&ctlr
->io_mutex
);
1350 /* Prod the scheduler in case transfer_one() was busy waiting */
1356 * spi_pump_messages - kthread work function which processes spi message queue
1357 * @work: pointer to kthread work struct contained in the controller struct
1359 static void spi_pump_messages(struct kthread_work
*work
)
1361 struct spi_controller
*ctlr
=
1362 container_of(work
, struct spi_controller
, pump_messages
);
1364 __spi_pump_messages(ctlr
, true);
1367 static int spi_init_queue(struct spi_controller
*ctlr
)
1369 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1371 ctlr
->running
= false;
1374 kthread_init_worker(&ctlr
->kworker
);
1375 ctlr
->kworker_task
= kthread_run(kthread_worker_fn
, &ctlr
->kworker
,
1376 "%s", dev_name(&ctlr
->dev
));
1377 if (IS_ERR(ctlr
->kworker_task
)) {
1378 dev_err(&ctlr
->dev
, "failed to create message pump task\n");
1379 return PTR_ERR(ctlr
->kworker_task
);
1381 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
1384 * Controller config will indicate if this controller should run the
1385 * message pump with high (realtime) priority to reduce the transfer
1386 * latency on the bus by minimising the delay between a transfer
1387 * request and the scheduling of the message pump thread. Without this
1388 * setting the message pump thread will remain at default priority.
1391 dev_info(&ctlr
->dev
,
1392 "will run message pump with realtime priority\n");
1393 sched_setscheduler(ctlr
->kworker_task
, SCHED_FIFO
, ¶m
);
1400 * spi_get_next_queued_message() - called by driver to check for queued
1402 * @ctlr: the controller to check for queued messages
1404 * If there are more messages in the queue, the next message is returned from
1407 * Return: the next message in the queue, else NULL if the queue is empty.
1409 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
1411 struct spi_message
*next
;
1412 unsigned long flags
;
1414 /* get a pointer to the next message, if any */
1415 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1416 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
1418 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1422 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1425 * spi_finalize_current_message() - the current message is complete
1426 * @ctlr: the controller to return the message to
1428 * Called by the driver to notify the core that the message in the front of the
1429 * queue is complete and can be removed from the queue.
1431 void spi_finalize_current_message(struct spi_controller
*ctlr
)
1433 struct spi_message
*mesg
;
1434 unsigned long flags
;
1437 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1438 mesg
= ctlr
->cur_msg
;
1439 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1441 spi_unmap_msg(ctlr
, mesg
);
1443 if (ctlr
->cur_msg_prepared
&& ctlr
->unprepare_message
) {
1444 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
1446 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
1451 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1452 ctlr
->cur_msg
= NULL
;
1453 ctlr
->cur_msg_prepared
= false;
1454 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1455 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1457 trace_spi_message_done(mesg
);
1461 mesg
->complete(mesg
->context
);
1463 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1465 static int spi_start_queue(struct spi_controller
*ctlr
)
1467 unsigned long flags
;
1469 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1471 if (ctlr
->running
|| ctlr
->busy
) {
1472 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1476 ctlr
->running
= true;
1477 ctlr
->cur_msg
= NULL
;
1478 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1480 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1485 static int spi_stop_queue(struct spi_controller
*ctlr
)
1487 unsigned long flags
;
1488 unsigned limit
= 500;
1491 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1494 * This is a bit lame, but is optimized for the common execution path.
1495 * A wait_queue on the ctlr->busy could be used, but then the common
1496 * execution path (pump_messages) would be required to call wake_up or
1497 * friends on every SPI message. Do this instead.
1499 while ((!list_empty(&ctlr
->queue
) || ctlr
->busy
) && limit
--) {
1500 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1501 usleep_range(10000, 11000);
1502 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1505 if (!list_empty(&ctlr
->queue
) || ctlr
->busy
)
1508 ctlr
->running
= false;
1510 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1513 dev_warn(&ctlr
->dev
, "could not stop message queue\n");
1519 static int spi_destroy_queue(struct spi_controller
*ctlr
)
1523 ret
= spi_stop_queue(ctlr
);
1526 * kthread_flush_worker will block until all work is done.
1527 * If the reason that stop_queue timed out is that the work will never
1528 * finish, then it does no good to call flush/stop thread, so
1532 dev_err(&ctlr
->dev
, "problem destroying queue\n");
1536 kthread_flush_worker(&ctlr
->kworker
);
1537 kthread_stop(ctlr
->kworker_task
);
1542 static int __spi_queued_transfer(struct spi_device
*spi
,
1543 struct spi_message
*msg
,
1546 struct spi_controller
*ctlr
= spi
->controller
;
1547 unsigned long flags
;
1549 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1551 if (!ctlr
->running
) {
1552 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1555 msg
->actual_length
= 0;
1556 msg
->status
= -EINPROGRESS
;
1558 list_add_tail(&msg
->queue
, &ctlr
->queue
);
1559 if (!ctlr
->busy
&& need_pump
)
1560 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1562 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1567 * spi_queued_transfer - transfer function for queued transfers
1568 * @spi: spi device which is requesting transfer
1569 * @msg: spi message which is to handled is queued to driver queue
1571 * Return: zero on success, else a negative error code.
1573 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1575 return __spi_queued_transfer(spi
, msg
, true);
1578 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
1582 ctlr
->transfer
= spi_queued_transfer
;
1583 if (!ctlr
->transfer_one_message
)
1584 ctlr
->transfer_one_message
= spi_transfer_one_message
;
1586 /* Initialize and start queue */
1587 ret
= spi_init_queue(ctlr
);
1589 dev_err(&ctlr
->dev
, "problem initializing queue\n");
1590 goto err_init_queue
;
1592 ctlr
->queued
= true;
1593 ret
= spi_start_queue(ctlr
);
1595 dev_err(&ctlr
->dev
, "problem starting queue\n");
1596 goto err_start_queue
;
1602 spi_destroy_queue(ctlr
);
1608 * spi_flush_queue - Send all pending messages in the queue from the callers'
1610 * @ctlr: controller to process queue for
1612 * This should be used when one wants to ensure all pending messages have been
1613 * sent before doing something. Is used by the spi-mem code to make sure SPI
1614 * memory operations do not preempt regular SPI transfers that have been queued
1615 * before the spi-mem operation.
1617 void spi_flush_queue(struct spi_controller
*ctlr
)
1619 if (ctlr
->transfer
== spi_queued_transfer
)
1620 __spi_pump_messages(ctlr
, false);
1623 /*-------------------------------------------------------------------------*/
1625 #if defined(CONFIG_OF)
1626 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
1627 struct device_node
*nc
)
1632 /* Mode (clock phase/polarity/etc.) */
1633 if (of_property_read_bool(nc
, "spi-cpha"))
1634 spi
->mode
|= SPI_CPHA
;
1635 if (of_property_read_bool(nc
, "spi-cpol"))
1636 spi
->mode
|= SPI_CPOL
;
1637 if (of_property_read_bool(nc
, "spi-3wire"))
1638 spi
->mode
|= SPI_3WIRE
;
1639 if (of_property_read_bool(nc
, "spi-lsb-first"))
1640 spi
->mode
|= SPI_LSB_FIRST
;
1643 * For descriptors associated with the device, polarity inversion is
1644 * handled in the gpiolib, so all chip selects are "active high" in
1645 * the logical sense, the gpiolib will invert the line if need be.
1647 if (ctlr
->use_gpio_descriptors
)
1648 spi
->mode
|= SPI_CS_HIGH
;
1649 else if (of_property_read_bool(nc
, "spi-cs-high"))
1650 spi
->mode
|= SPI_CS_HIGH
;
1652 /* Device DUAL/QUAD mode */
1653 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1658 spi
->mode
|= SPI_TX_DUAL
;
1661 spi
->mode
|= SPI_TX_QUAD
;
1664 spi
->mode
|= SPI_TX_OCTAL
;
1667 dev_warn(&ctlr
->dev
,
1668 "spi-tx-bus-width %d not supported\n",
1674 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1679 spi
->mode
|= SPI_RX_DUAL
;
1682 spi
->mode
|= SPI_RX_QUAD
;
1685 spi
->mode
|= SPI_RX_OCTAL
;
1688 dev_warn(&ctlr
->dev
,
1689 "spi-rx-bus-width %d not supported\n",
1695 if (spi_controller_is_slave(ctlr
)) {
1696 if (!of_node_name_eq(nc
, "slave")) {
1697 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
1704 /* Device address */
1705 rc
= of_property_read_u32(nc
, "reg", &value
);
1707 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
1711 spi
->chip_select
= value
;
1714 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1717 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc
, rc
);
1720 spi
->max_speed_hz
= value
;
1725 static struct spi_device
*
1726 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
1728 struct spi_device
*spi
;
1731 /* Alloc an spi_device */
1732 spi
= spi_alloc_device(ctlr
);
1734 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
1739 /* Select device driver */
1740 rc
= of_modalias_node(nc
, spi
->modalias
,
1741 sizeof(spi
->modalias
));
1743 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
1747 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
1751 /* Store a pointer to the node in the device structure */
1753 spi
->dev
.of_node
= nc
;
1755 /* Register the new device */
1756 rc
= spi_add_device(spi
);
1758 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
1759 goto err_of_node_put
;
1772 * of_register_spi_devices() - Register child devices onto the SPI bus
1773 * @ctlr: Pointer to spi_controller device
1775 * Registers an spi_device for each child node of controller node which
1776 * represents a valid SPI slave.
1778 static void of_register_spi_devices(struct spi_controller
*ctlr
)
1780 struct spi_device
*spi
;
1781 struct device_node
*nc
;
1783 if (!ctlr
->dev
.of_node
)
1786 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
1787 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
1789 spi
= of_register_spi_device(ctlr
, nc
);
1791 dev_warn(&ctlr
->dev
,
1792 "Failed to create SPI device for %pOF\n", nc
);
1793 of_node_clear_flag(nc
, OF_POPULATED
);
1798 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
1802 static void acpi_spi_parse_apple_properties(struct spi_device
*spi
)
1804 struct acpi_device
*dev
= ACPI_COMPANION(&spi
->dev
);
1805 const union acpi_object
*obj
;
1807 if (!x86_apple_machine
)
1810 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
1811 && obj
->buffer
.length
>= 4)
1812 spi
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
1814 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
1815 && obj
->buffer
.length
== 8)
1816 spi
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
1818 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
1819 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
1820 spi
->mode
|= SPI_LSB_FIRST
;
1822 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
1823 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
1824 spi
->mode
|= SPI_CPOL
;
1826 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
1827 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
1828 spi
->mode
|= SPI_CPHA
;
1831 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1833 struct spi_device
*spi
= data
;
1834 struct spi_controller
*ctlr
= spi
->controller
;
1836 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1837 struct acpi_resource_spi_serialbus
*sb
;
1839 sb
= &ares
->data
.spi_serial_bus
;
1840 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1842 * ACPI DeviceSelection numbering is handled by the
1843 * host controller driver in Windows and can vary
1844 * from driver to driver. In Linux we always expect
1845 * 0 .. max - 1 so we need to ask the driver to
1846 * translate between the two schemes.
1848 if (ctlr
->fw_translate_cs
) {
1849 int cs
= ctlr
->fw_translate_cs(ctlr
,
1850 sb
->device_selection
);
1853 spi
->chip_select
= cs
;
1855 spi
->chip_select
= sb
->device_selection
;
1858 spi
->max_speed_hz
= sb
->connection_speed
;
1860 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1861 spi
->mode
|= SPI_CPHA
;
1862 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1863 spi
->mode
|= SPI_CPOL
;
1864 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1865 spi
->mode
|= SPI_CS_HIGH
;
1867 } else if (spi
->irq
< 0) {
1870 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1874 /* Always tell the ACPI core to skip this resource */
1878 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
1879 struct acpi_device
*adev
)
1881 struct list_head resource_list
;
1882 struct spi_device
*spi
;
1885 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
1886 acpi_device_enumerated(adev
))
1889 spi
= spi_alloc_device(ctlr
);
1891 dev_err(&ctlr
->dev
, "failed to allocate SPI device for %s\n",
1892 dev_name(&adev
->dev
));
1893 return AE_NO_MEMORY
;
1896 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1899 INIT_LIST_HEAD(&resource_list
);
1900 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1901 acpi_spi_add_resource
, spi
);
1902 acpi_dev_free_resource_list(&resource_list
);
1904 acpi_spi_parse_apple_properties(spi
);
1906 if (ret
< 0 || !spi
->max_speed_hz
) {
1911 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
1912 sizeof(spi
->modalias
));
1915 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
1917 acpi_device_set_enumerated(adev
);
1919 adev
->power
.flags
.ignore_parent
= true;
1920 if (spi_add_device(spi
)) {
1921 adev
->power
.flags
.ignore_parent
= false;
1922 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
1923 dev_name(&adev
->dev
));
1930 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1931 void *data
, void **return_value
)
1933 struct spi_controller
*ctlr
= data
;
1934 struct acpi_device
*adev
;
1936 if (acpi_bus_get_device(handle
, &adev
))
1939 return acpi_register_spi_device(ctlr
, adev
);
1942 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
1947 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
1951 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1952 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
1953 if (ACPI_FAILURE(status
))
1954 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
1957 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
1958 #endif /* CONFIG_ACPI */
1960 static void spi_controller_release(struct device
*dev
)
1962 struct spi_controller
*ctlr
;
1964 ctlr
= container_of(dev
, struct spi_controller
, dev
);
1968 static struct class spi_master_class
= {
1969 .name
= "spi_master",
1970 .owner
= THIS_MODULE
,
1971 .dev_release
= spi_controller_release
,
1972 .dev_groups
= spi_master_groups
,
1975 #ifdef CONFIG_SPI_SLAVE
1977 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1979 * @spi: device used for the current transfer
1981 int spi_slave_abort(struct spi_device
*spi
)
1983 struct spi_controller
*ctlr
= spi
->controller
;
1985 if (spi_controller_is_slave(ctlr
) && ctlr
->slave_abort
)
1986 return ctlr
->slave_abort(ctlr
);
1990 EXPORT_SYMBOL_GPL(spi_slave_abort
);
1992 static int match_true(struct device
*dev
, void *data
)
1997 static ssize_t
spi_slave_show(struct device
*dev
,
1998 struct device_attribute
*attr
, char *buf
)
2000 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2002 struct device
*child
;
2004 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2005 return sprintf(buf
, "%s\n",
2006 child
? to_spi_device(child
)->modalias
: NULL
);
2009 static ssize_t
spi_slave_store(struct device
*dev
,
2010 struct device_attribute
*attr
, const char *buf
,
2013 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2015 struct spi_device
*spi
;
2016 struct device
*child
;
2020 rc
= sscanf(buf
, "%31s", name
);
2021 if (rc
!= 1 || !name
[0])
2024 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2026 /* Remove registered slave */
2027 device_unregister(child
);
2031 if (strcmp(name
, "(null)")) {
2032 /* Register new slave */
2033 spi
= spi_alloc_device(ctlr
);
2037 strlcpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
2039 rc
= spi_add_device(spi
);
2049 static DEVICE_ATTR(slave
, 0644, spi_slave_show
, spi_slave_store
);
2051 static struct attribute
*spi_slave_attrs
[] = {
2052 &dev_attr_slave
.attr
,
2056 static const struct attribute_group spi_slave_group
= {
2057 .attrs
= spi_slave_attrs
,
2060 static const struct attribute_group
*spi_slave_groups
[] = {
2061 &spi_controller_statistics_group
,
2066 static struct class spi_slave_class
= {
2067 .name
= "spi_slave",
2068 .owner
= THIS_MODULE
,
2069 .dev_release
= spi_controller_release
,
2070 .dev_groups
= spi_slave_groups
,
2073 extern struct class spi_slave_class
; /* dummy */
2077 * __spi_alloc_controller - allocate an SPI master or slave controller
2078 * @dev: the controller, possibly using the platform_bus
2079 * @size: how much zeroed driver-private data to allocate; the pointer to this
2080 * memory is in the driver_data field of the returned device,
2081 * accessible with spi_controller_get_devdata().
2082 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2083 * slave (true) controller
2084 * Context: can sleep
2086 * This call is used only by SPI controller drivers, which are the
2087 * only ones directly touching chip registers. It's how they allocate
2088 * an spi_controller structure, prior to calling spi_register_controller().
2090 * This must be called from context that can sleep.
2092 * The caller is responsible for assigning the bus number and initializing the
2093 * controller's methods before calling spi_register_controller(); and (after
2094 * errors adding the device) calling spi_controller_put() to prevent a memory
2097 * Return: the SPI controller structure on success, else NULL.
2099 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
2100 unsigned int size
, bool slave
)
2102 struct spi_controller
*ctlr
;
2107 ctlr
= kzalloc(size
+ sizeof(*ctlr
), GFP_KERNEL
);
2111 device_initialize(&ctlr
->dev
);
2113 ctlr
->num_chipselect
= 1;
2114 ctlr
->slave
= slave
;
2115 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
2116 ctlr
->dev
.class = &spi_slave_class
;
2118 ctlr
->dev
.class = &spi_master_class
;
2119 ctlr
->dev
.parent
= dev
;
2120 pm_suspend_ignore_children(&ctlr
->dev
, true);
2121 spi_controller_set_devdata(ctlr
, &ctlr
[1]);
2125 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
2128 static int of_spi_register_master(struct spi_controller
*ctlr
)
2131 struct device_node
*np
= ctlr
->dev
.of_node
;
2136 nb
= of_gpio_named_count(np
, "cs-gpios");
2137 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2139 /* Return error only for an incorrectly formed cs-gpios property */
2140 if (nb
== 0 || nb
== -ENOENT
)
2145 cs
= devm_kcalloc(&ctlr
->dev
, ctlr
->num_chipselect
, sizeof(int),
2147 ctlr
->cs_gpios
= cs
;
2149 if (!ctlr
->cs_gpios
)
2152 for (i
= 0; i
< ctlr
->num_chipselect
; i
++)
2155 for (i
= 0; i
< nb
; i
++)
2156 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
2161 static int of_spi_register_master(struct spi_controller
*ctlr
)
2168 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2169 * @ctlr: The SPI master to grab GPIO descriptors for
2171 static int spi_get_gpio_descs(struct spi_controller
*ctlr
)
2174 struct gpio_desc
**cs
;
2175 struct device
*dev
= &ctlr
->dev
;
2177 nb
= gpiod_count(dev
, "cs");
2178 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2180 /* No GPIOs at all is fine, else return the error */
2181 if (nb
== 0 || nb
== -ENOENT
)
2186 cs
= devm_kcalloc(dev
, ctlr
->num_chipselect
, sizeof(*cs
),
2190 ctlr
->cs_gpiods
= cs
;
2192 for (i
= 0; i
< nb
; i
++) {
2194 * Most chipselects are active low, the inverted
2195 * semantics are handled by special quirks in gpiolib,
2196 * so initializing them GPIOD_OUT_LOW here means
2197 * "unasserted", in most cases this will drive the physical
2200 cs
[i
] = devm_gpiod_get_index_optional(dev
, "cs", i
,
2203 return PTR_ERR(cs
[i
]);
2207 * If we find a CS GPIO, name it after the device and
2212 gpioname
= devm_kasprintf(dev
, GFP_KERNEL
, "%s CS%d",
2216 gpiod_set_consumer_name(cs
[i
], gpioname
);
2223 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
2226 * The controller may implement only the high-level SPI-memory like
2227 * operations if it does not support regular SPI transfers, and this is
2229 * If ->mem_ops is NULL, we request that at least one of the
2230 * ->transfer_xxx() method be implemented.
2232 if (ctlr
->mem_ops
) {
2233 if (!ctlr
->mem_ops
->exec_op
)
2235 } else if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
2236 !ctlr
->transfer_one_message
) {
2244 * spi_register_controller - register SPI master or slave controller
2245 * @ctlr: initialized master, originally from spi_alloc_master() or
2247 * Context: can sleep
2249 * SPI controllers connect to their drivers using some non-SPI bus,
2250 * such as the platform bus. The final stage of probe() in that code
2251 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2253 * SPI controllers use board specific (often SOC specific) bus numbers,
2254 * and board-specific addressing for SPI devices combines those numbers
2255 * with chip select numbers. Since SPI does not directly support dynamic
2256 * device identification, boards need configuration tables telling which
2257 * chip is at which address.
2259 * This must be called from context that can sleep. It returns zero on
2260 * success, else a negative error code (dropping the controller's refcount).
2261 * After a successful return, the caller is responsible for calling
2262 * spi_unregister_controller().
2264 * Return: zero on success, else a negative error code.
2266 int spi_register_controller(struct spi_controller
*ctlr
)
2268 struct device
*dev
= ctlr
->dev
.parent
;
2269 struct boardinfo
*bi
;
2270 int status
= -ENODEV
;
2271 int id
, first_dynamic
;
2277 * Make sure all necessary hooks are implemented before registering
2278 * the SPI controller.
2280 status
= spi_controller_check_ops(ctlr
);
2284 /* even if it's just one always-selected device, there must
2285 * be at least one chipselect
2287 if (ctlr
->num_chipselect
== 0)
2289 if (ctlr
->bus_num
>= 0) {
2290 /* devices with a fixed bus num must check-in with the num */
2291 mutex_lock(&board_lock
);
2292 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2293 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2294 mutex_unlock(&board_lock
);
2295 if (WARN(id
< 0, "couldn't get idr"))
2296 return id
== -ENOSPC
? -EBUSY
: id
;
2298 } else if (ctlr
->dev
.of_node
) {
2299 /* allocate dynamic bus number using Linux idr */
2300 id
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
2303 mutex_lock(&board_lock
);
2304 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2305 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2306 mutex_unlock(&board_lock
);
2307 if (WARN(id
< 0, "couldn't get idr"))
2308 return id
== -ENOSPC
? -EBUSY
: id
;
2311 if (ctlr
->bus_num
< 0) {
2312 first_dynamic
= of_alias_get_highest_id("spi");
2313 if (first_dynamic
< 0)
2318 mutex_lock(&board_lock
);
2319 id
= idr_alloc(&spi_master_idr
, ctlr
, first_dynamic
,
2321 mutex_unlock(&board_lock
);
2322 if (WARN(id
< 0, "couldn't get idr"))
2326 INIT_LIST_HEAD(&ctlr
->queue
);
2327 spin_lock_init(&ctlr
->queue_lock
);
2328 spin_lock_init(&ctlr
->bus_lock_spinlock
);
2329 mutex_init(&ctlr
->bus_lock_mutex
);
2330 mutex_init(&ctlr
->io_mutex
);
2331 ctlr
->bus_lock_flag
= 0;
2332 init_completion(&ctlr
->xfer_completion
);
2333 if (!ctlr
->max_dma_len
)
2334 ctlr
->max_dma_len
= INT_MAX
;
2336 /* register the device, then userspace will see it.
2337 * registration fails if the bus ID is in use.
2339 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
2341 if (!spi_controller_is_slave(ctlr
)) {
2342 if (ctlr
->use_gpio_descriptors
) {
2343 status
= spi_get_gpio_descs(ctlr
);
2347 * A controller using GPIO descriptors always
2348 * supports SPI_CS_HIGH if need be.
2350 ctlr
->mode_bits
|= SPI_CS_HIGH
;
2352 /* Legacy code path for GPIOs from DT */
2353 status
= of_spi_register_master(ctlr
);
2359 status
= device_add(&ctlr
->dev
);
2362 mutex_lock(&board_lock
);
2363 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2364 mutex_unlock(&board_lock
);
2367 dev_dbg(dev
, "registered %s %s\n",
2368 spi_controller_is_slave(ctlr
) ? "slave" : "master",
2369 dev_name(&ctlr
->dev
));
2372 * If we're using a queued driver, start the queue. Note that we don't
2373 * need the queueing logic if the driver is only supporting high-level
2374 * memory operations.
2376 if (ctlr
->transfer
) {
2377 dev_info(dev
, "controller is unqueued, this is deprecated\n");
2378 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
2379 status
= spi_controller_initialize_queue(ctlr
);
2381 device_del(&ctlr
->dev
);
2383 mutex_lock(&board_lock
);
2384 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2385 mutex_unlock(&board_lock
);
2389 /* add statistics */
2390 spin_lock_init(&ctlr
->statistics
.lock
);
2392 mutex_lock(&board_lock
);
2393 list_add_tail(&ctlr
->list
, &spi_controller_list
);
2394 list_for_each_entry(bi
, &board_list
, list
)
2395 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
2396 mutex_unlock(&board_lock
);
2398 /* Register devices from the device tree and ACPI */
2399 of_register_spi_devices(ctlr
);
2400 acpi_register_spi_devices(ctlr
);
2404 EXPORT_SYMBOL_GPL(spi_register_controller
);
2406 static void devm_spi_unregister(struct device
*dev
, void *res
)
2408 spi_unregister_controller(*(struct spi_controller
**)res
);
2412 * devm_spi_register_controller - register managed SPI master or slave
2414 * @dev: device managing SPI controller
2415 * @ctlr: initialized controller, originally from spi_alloc_master() or
2417 * Context: can sleep
2419 * Register a SPI device as with spi_register_controller() which will
2420 * automatically be unregistered and freed.
2422 * Return: zero on success, else a negative error code.
2424 int devm_spi_register_controller(struct device
*dev
,
2425 struct spi_controller
*ctlr
)
2427 struct spi_controller
**ptr
;
2430 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
2434 ret
= spi_register_controller(ctlr
);
2437 devres_add(dev
, ptr
);
2444 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
2446 static int __unregister(struct device
*dev
, void *null
)
2448 spi_unregister_device(to_spi_device(dev
));
2453 * spi_unregister_controller - unregister SPI master or slave controller
2454 * @ctlr: the controller being unregistered
2455 * Context: can sleep
2457 * This call is used only by SPI controller drivers, which are the
2458 * only ones directly touching chip registers.
2460 * This must be called from context that can sleep.
2462 * Note that this function also drops a reference to the controller.
2464 void spi_unregister_controller(struct spi_controller
*ctlr
)
2466 struct spi_controller
*found
;
2467 int id
= ctlr
->bus_num
;
2470 /* First make sure that this controller was ever added */
2471 mutex_lock(&board_lock
);
2472 found
= idr_find(&spi_master_idr
, id
);
2473 mutex_unlock(&board_lock
);
2475 if (spi_destroy_queue(ctlr
))
2476 dev_err(&ctlr
->dev
, "queue remove failed\n");
2478 mutex_lock(&board_lock
);
2479 list_del(&ctlr
->list
);
2480 mutex_unlock(&board_lock
);
2482 dummy
= device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
2483 device_unregister(&ctlr
->dev
);
2485 mutex_lock(&board_lock
);
2487 idr_remove(&spi_master_idr
, id
);
2488 mutex_unlock(&board_lock
);
2490 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
2492 int spi_controller_suspend(struct spi_controller
*ctlr
)
2496 /* Basically no-ops for non-queued controllers */
2500 ret
= spi_stop_queue(ctlr
);
2502 dev_err(&ctlr
->dev
, "queue stop failed\n");
2506 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
2508 int spi_controller_resume(struct spi_controller
*ctlr
)
2515 ret
= spi_start_queue(ctlr
);
2517 dev_err(&ctlr
->dev
, "queue restart failed\n");
2521 EXPORT_SYMBOL_GPL(spi_controller_resume
);
2523 static int __spi_controller_match(struct device
*dev
, const void *data
)
2525 struct spi_controller
*ctlr
;
2526 const u16
*bus_num
= data
;
2528 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2529 return ctlr
->bus_num
== *bus_num
;
2533 * spi_busnum_to_master - look up master associated with bus_num
2534 * @bus_num: the master's bus number
2535 * Context: can sleep
2537 * This call may be used with devices that are registered after
2538 * arch init time. It returns a refcounted pointer to the relevant
2539 * spi_controller (which the caller must release), or NULL if there is
2540 * no such master registered.
2542 * Return: the SPI master structure on success, else NULL.
2544 struct spi_controller
*spi_busnum_to_master(u16 bus_num
)
2547 struct spi_controller
*ctlr
= NULL
;
2549 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2550 __spi_controller_match
);
2552 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2553 /* reference got in class_find_device */
2556 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2558 /*-------------------------------------------------------------------------*/
2560 /* Core methods for SPI resource management */
2563 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2564 * during the processing of a spi_message while using
2566 * @spi: the spi device for which we allocate memory
2567 * @release: the release code to execute for this resource
2568 * @size: size to alloc and return
2569 * @gfp: GFP allocation flags
2571 * Return: the pointer to the allocated data
2573 * This may get enhanced in the future to allocate from a memory pool
2574 * of the @spi_device or @spi_controller to avoid repeated allocations.
2576 void *spi_res_alloc(struct spi_device
*spi
,
2577 spi_res_release_t release
,
2578 size_t size
, gfp_t gfp
)
2580 struct spi_res
*sres
;
2582 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2586 INIT_LIST_HEAD(&sres
->entry
);
2587 sres
->release
= release
;
2591 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2594 * spi_res_free - free an spi resource
2595 * @res: pointer to the custom data of a resource
2598 void spi_res_free(void *res
)
2600 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2605 WARN_ON(!list_empty(&sres
->entry
));
2608 EXPORT_SYMBOL_GPL(spi_res_free
);
2611 * spi_res_add - add a spi_res to the spi_message
2612 * @message: the spi message
2613 * @res: the spi_resource
2615 void spi_res_add(struct spi_message
*message
, void *res
)
2617 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2619 WARN_ON(!list_empty(&sres
->entry
));
2620 list_add_tail(&sres
->entry
, &message
->resources
);
2622 EXPORT_SYMBOL_GPL(spi_res_add
);
2625 * spi_res_release - release all spi resources for this message
2626 * @ctlr: the @spi_controller
2627 * @message: the @spi_message
2629 void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
2631 struct spi_res
*res
;
2633 while (!list_empty(&message
->resources
)) {
2634 res
= list_last_entry(&message
->resources
,
2635 struct spi_res
, entry
);
2638 res
->release(ctlr
, message
, res
->data
);
2640 list_del(&res
->entry
);
2645 EXPORT_SYMBOL_GPL(spi_res_release
);
2647 /*-------------------------------------------------------------------------*/
2649 /* Core methods for spi_message alterations */
2651 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
2652 struct spi_message
*msg
,
2655 struct spi_replaced_transfers
*rxfer
= res
;
2658 /* call extra callback if requested */
2660 rxfer
->release(ctlr
, msg
, res
);
2662 /* insert replaced transfers back into the message */
2663 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2665 /* remove the formerly inserted entries */
2666 for (i
= 0; i
< rxfer
->inserted
; i
++)
2667 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2671 * spi_replace_transfers - replace transfers with several transfers
2672 * and register change with spi_message.resources
2673 * @msg: the spi_message we work upon
2674 * @xfer_first: the first spi_transfer we want to replace
2675 * @remove: number of transfers to remove
2676 * @insert: the number of transfers we want to insert instead
2677 * @release: extra release code necessary in some circumstances
2678 * @extradatasize: extra data to allocate (with alignment guarantees
2679 * of struct @spi_transfer)
2682 * Returns: pointer to @spi_replaced_transfers,
2683 * PTR_ERR(...) in case of errors.
2685 struct spi_replaced_transfers
*spi_replace_transfers(
2686 struct spi_message
*msg
,
2687 struct spi_transfer
*xfer_first
,
2690 spi_replaced_release_t release
,
2691 size_t extradatasize
,
2694 struct spi_replaced_transfers
*rxfer
;
2695 struct spi_transfer
*xfer
;
2698 /* allocate the structure using spi_res */
2699 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
2700 insert
* sizeof(struct spi_transfer
)
2701 + sizeof(struct spi_replaced_transfers
)
2705 return ERR_PTR(-ENOMEM
);
2707 /* the release code to invoke before running the generic release */
2708 rxfer
->release
= release
;
2710 /* assign extradata */
2713 &rxfer
->inserted_transfers
[insert
];
2715 /* init the replaced_transfers list */
2716 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
2718 /* assign the list_entry after which we should reinsert
2719 * the @replaced_transfers - it may be spi_message.messages!
2721 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
2723 /* remove the requested number of transfers */
2724 for (i
= 0; i
< remove
; i
++) {
2725 /* if the entry after replaced_after it is msg->transfers
2726 * then we have been requested to remove more transfers
2727 * than are in the list
2729 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
2730 dev_err(&msg
->spi
->dev
,
2731 "requested to remove more spi_transfers than are available\n");
2732 /* insert replaced transfers back into the message */
2733 list_splice(&rxfer
->replaced_transfers
,
2734 rxfer
->replaced_after
);
2736 /* free the spi_replace_transfer structure */
2737 spi_res_free(rxfer
);
2739 /* and return with an error */
2740 return ERR_PTR(-EINVAL
);
2743 /* remove the entry after replaced_after from list of
2744 * transfers and add it to list of replaced_transfers
2746 list_move_tail(rxfer
->replaced_after
->next
,
2747 &rxfer
->replaced_transfers
);
2750 /* create copy of the given xfer with identical settings
2751 * based on the first transfer to get removed
2753 for (i
= 0; i
< insert
; i
++) {
2754 /* we need to run in reverse order */
2755 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
2757 /* copy all spi_transfer data */
2758 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
2761 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
2763 /* clear cs_change and delay_usecs for all but the last */
2765 xfer
->cs_change
= false;
2766 xfer
->delay_usecs
= 0;
2770 /* set up inserted */
2771 rxfer
->inserted
= insert
;
2773 /* and register it with spi_res/spi_message */
2774 spi_res_add(msg
, rxfer
);
2778 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
2780 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
2781 struct spi_message
*msg
,
2782 struct spi_transfer
**xferp
,
2786 struct spi_transfer
*xfer
= *xferp
, *xfers
;
2787 struct spi_replaced_transfers
*srt
;
2791 /* warn once about this fact that we are splitting a transfer */
2792 dev_warn_once(&msg
->spi
->dev
,
2793 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2794 xfer
->len
, maxsize
);
2796 /* calculate how many we have to replace */
2797 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
2799 /* create replacement */
2800 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
2802 return PTR_ERR(srt
);
2803 xfers
= srt
->inserted_transfers
;
2805 /* now handle each of those newly inserted spi_transfers
2806 * note that the replacements spi_transfers all are preset
2807 * to the same values as *xferp, so tx_buf, rx_buf and len
2808 * are all identical (as well as most others)
2809 * so we just have to fix up len and the pointers.
2811 * this also includes support for the depreciated
2812 * spi_message.is_dma_mapped interface
2815 /* the first transfer just needs the length modified, so we
2816 * run it outside the loop
2818 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
2820 /* all the others need rx_buf/tx_buf also set */
2821 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
2822 /* update rx_buf, tx_buf and dma */
2823 if (xfers
[i
].rx_buf
)
2824 xfers
[i
].rx_buf
+= offset
;
2825 if (xfers
[i
].rx_dma
)
2826 xfers
[i
].rx_dma
+= offset
;
2827 if (xfers
[i
].tx_buf
)
2828 xfers
[i
].tx_buf
+= offset
;
2829 if (xfers
[i
].tx_dma
)
2830 xfers
[i
].tx_dma
+= offset
;
2833 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
2836 /* we set up xferp to the last entry we have inserted,
2837 * so that we skip those already split transfers
2839 *xferp
= &xfers
[count
- 1];
2841 /* increment statistics counters */
2842 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
2843 transfers_split_maxsize
);
2844 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
2845 transfers_split_maxsize
);
2851 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2852 * when an individual transfer exceeds a
2854 * @ctlr: the @spi_controller for this transfer
2855 * @msg: the @spi_message to transform
2856 * @maxsize: the maximum when to apply this
2857 * @gfp: GFP allocation flags
2859 * Return: status of transformation
2861 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
2862 struct spi_message
*msg
,
2866 struct spi_transfer
*xfer
;
2869 /* iterate over the transfer_list,
2870 * but note that xfer is advanced to the last transfer inserted
2871 * to avoid checking sizes again unnecessarily (also xfer does
2872 * potentiall belong to a different list by the time the
2873 * replacement has happened
2875 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
2876 if (xfer
->len
> maxsize
) {
2877 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
2886 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
2888 /*-------------------------------------------------------------------------*/
2890 /* Core methods for SPI controller protocol drivers. Some of the
2891 * other core methods are currently defined as inline functions.
2894 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
2897 if (ctlr
->bits_per_word_mask
) {
2898 /* Only 32 bits fit in the mask */
2899 if (bits_per_word
> 32)
2901 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
2909 * spi_setup - setup SPI mode and clock rate
2910 * @spi: the device whose settings are being modified
2911 * Context: can sleep, and no requests are queued to the device
2913 * SPI protocol drivers may need to update the transfer mode if the
2914 * device doesn't work with its default. They may likewise need
2915 * to update clock rates or word sizes from initial values. This function
2916 * changes those settings, and must be called from a context that can sleep.
2917 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2918 * effect the next time the device is selected and data is transferred to
2919 * or from it. When this function returns, the spi device is deselected.
2921 * Note that this call will fail if the protocol driver specifies an option
2922 * that the underlying controller or its driver does not support. For
2923 * example, not all hardware supports wire transfers using nine bit words,
2924 * LSB-first wire encoding, or active-high chipselects.
2926 * Return: zero on success, else a negative error code.
2928 int spi_setup(struct spi_device
*spi
)
2930 unsigned bad_bits
, ugly_bits
;
2933 /* check mode to prevent that DUAL and QUAD set at the same time
2935 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
2936 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
2938 "setup: can not select dual and quad at the same time\n");
2941 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2943 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
2944 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
2945 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
)))
2947 /* help drivers fail *cleanly* when they need options
2948 * that aren't supported with their current controller
2949 * SPI_CS_WORD has a fallback software implementation,
2950 * so it is ignored here.
2952 bad_bits
= spi
->mode
& ~(spi
->controller
->mode_bits
| SPI_CS_WORD
);
2953 ugly_bits
= bad_bits
&
2954 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
2955 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
);
2958 "setup: ignoring unsupported mode bits %x\n",
2960 spi
->mode
&= ~ugly_bits
;
2961 bad_bits
&= ~ugly_bits
;
2964 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
2969 if (!spi
->bits_per_word
)
2970 spi
->bits_per_word
= 8;
2972 status
= __spi_validate_bits_per_word(spi
->controller
,
2973 spi
->bits_per_word
);
2977 if (!spi
->max_speed_hz
)
2978 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
2980 if (spi
->controller
->setup
)
2981 status
= spi
->controller
->setup(spi
);
2983 spi_set_cs(spi
, false);
2985 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2986 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
2987 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
2988 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
2989 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
2990 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
2991 spi
->bits_per_word
, spi
->max_speed_hz
,
2996 EXPORT_SYMBOL_GPL(spi_setup
);
2998 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
3000 struct spi_controller
*ctlr
= spi
->controller
;
3001 struct spi_transfer
*xfer
;
3004 if (list_empty(&message
->transfers
))
3007 /* If an SPI controller does not support toggling the CS line on each
3008 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3009 * for the CS line, we can emulate the CS-per-word hardware function by
3010 * splitting transfers into one-word transfers and ensuring that
3011 * cs_change is set for each transfer.
3013 if ((spi
->mode
& SPI_CS_WORD
) && (!(ctlr
->mode_bits
& SPI_CS_WORD
) ||
3015 gpio_is_valid(spi
->cs_gpio
))) {
3019 maxsize
= (spi
->bits_per_word
+ 7) / 8;
3021 /* spi_split_transfers_maxsize() requires message->spi */
3024 ret
= spi_split_transfers_maxsize(ctlr
, message
, maxsize
,
3029 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3030 /* don't change cs_change on the last entry in the list */
3031 if (list_is_last(&xfer
->transfer_list
, &message
->transfers
))
3033 xfer
->cs_change
= 1;
3037 /* Half-duplex links include original MicroWire, and ones with
3038 * only one data pin like SPI_3WIRE (switches direction) or where
3039 * either MOSI or MISO is missing. They can also be caused by
3040 * software limitations.
3042 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
3043 (spi
->mode
& SPI_3WIRE
)) {
3044 unsigned flags
= ctlr
->flags
;
3046 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3047 if (xfer
->rx_buf
&& xfer
->tx_buf
)
3049 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
3051 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
3057 * Set transfer bits_per_word and max speed as spi device default if
3058 * it is not set for this transfer.
3059 * Set transfer tx_nbits and rx_nbits as single transfer default
3060 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3061 * Ensure transfer word_delay is at least as long as that required by
3064 message
->frame_length
= 0;
3065 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3066 message
->frame_length
+= xfer
->len
;
3067 if (!xfer
->bits_per_word
)
3068 xfer
->bits_per_word
= spi
->bits_per_word
;
3070 if (!xfer
->speed_hz
)
3071 xfer
->speed_hz
= spi
->max_speed_hz
;
3072 if (!xfer
->speed_hz
)
3073 xfer
->speed_hz
= ctlr
->max_speed_hz
;
3075 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
3076 xfer
->speed_hz
= ctlr
->max_speed_hz
;
3078 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
3082 * SPI transfer length should be multiple of SPI word size
3083 * where SPI word size should be power-of-two multiple
3085 if (xfer
->bits_per_word
<= 8)
3087 else if (xfer
->bits_per_word
<= 16)
3092 /* No partial transfers accepted */
3093 if (xfer
->len
% w_size
)
3096 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
3097 xfer
->speed_hz
< ctlr
->min_speed_hz
)
3100 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
3101 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
3102 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
3103 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
3104 /* check transfer tx/rx_nbits:
3105 * 1. check the value matches one of single, dual and quad
3106 * 2. check tx/rx_nbits match the mode in spi_device
3109 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
3110 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
3111 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
3113 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
3114 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
3116 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
3117 !(spi
->mode
& SPI_TX_QUAD
))
3120 /* check transfer rx_nbits */
3122 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
3123 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
3124 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
3126 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
3127 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
3129 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
3130 !(spi
->mode
& SPI_RX_QUAD
))
3134 if (xfer
->word_delay_usecs
< spi
->word_delay_usecs
)
3135 xfer
->word_delay_usecs
= spi
->word_delay_usecs
;
3138 message
->status
= -EINPROGRESS
;
3143 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3145 struct spi_controller
*ctlr
= spi
->controller
;
3148 * Some controllers do not support doing regular SPI transfers. Return
3149 * ENOTSUPP when this is the case.
3151 if (!ctlr
->transfer
)
3156 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_async
);
3157 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
3159 trace_spi_message_submit(message
);
3161 return ctlr
->transfer(spi
, message
);
3165 * spi_async - asynchronous SPI transfer
3166 * @spi: device with which data will be exchanged
3167 * @message: describes the data transfers, including completion callback
3168 * Context: any (irqs may be blocked, etc)
3170 * This call may be used in_irq and other contexts which can't sleep,
3171 * as well as from task contexts which can sleep.
3173 * The completion callback is invoked in a context which can't sleep.
3174 * Before that invocation, the value of message->status is undefined.
3175 * When the callback is issued, message->status holds either zero (to
3176 * indicate complete success) or a negative error code. After that
3177 * callback returns, the driver which issued the transfer request may
3178 * deallocate the associated memory; it's no longer in use by any SPI
3179 * core or controller driver code.
3181 * Note that although all messages to a spi_device are handled in
3182 * FIFO order, messages may go to different devices in other orders.
3183 * Some device might be higher priority, or have various "hard" access
3184 * time requirements, for example.
3186 * On detection of any fault during the transfer, processing of
3187 * the entire message is aborted, and the device is deselected.
3188 * Until returning from the associated message completion callback,
3189 * no other spi_message queued to that device will be processed.
3190 * (This rule applies equally to all the synchronous transfer calls,
3191 * which are wrappers around this core asynchronous primitive.)
3193 * Return: zero on success, else a negative error code.
3195 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3197 struct spi_controller
*ctlr
= spi
->controller
;
3199 unsigned long flags
;
3201 ret
= __spi_validate(spi
, message
);
3205 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3207 if (ctlr
->bus_lock_flag
)
3210 ret
= __spi_async(spi
, message
);
3212 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3216 EXPORT_SYMBOL_GPL(spi_async
);
3219 * spi_async_locked - version of spi_async with exclusive bus usage
3220 * @spi: device with which data will be exchanged
3221 * @message: describes the data transfers, including completion callback
3222 * Context: any (irqs may be blocked, etc)
3224 * This call may be used in_irq and other contexts which can't sleep,
3225 * as well as from task contexts which can sleep.
3227 * The completion callback is invoked in a context which can't sleep.
3228 * Before that invocation, the value of message->status is undefined.
3229 * When the callback is issued, message->status holds either zero (to
3230 * indicate complete success) or a negative error code. After that
3231 * callback returns, the driver which issued the transfer request may
3232 * deallocate the associated memory; it's no longer in use by any SPI
3233 * core or controller driver code.
3235 * Note that although all messages to a spi_device are handled in
3236 * FIFO order, messages may go to different devices in other orders.
3237 * Some device might be higher priority, or have various "hard" access
3238 * time requirements, for example.
3240 * On detection of any fault during the transfer, processing of
3241 * the entire message is aborted, and the device is deselected.
3242 * Until returning from the associated message completion callback,
3243 * no other spi_message queued to that device will be processed.
3244 * (This rule applies equally to all the synchronous transfer calls,
3245 * which are wrappers around this core asynchronous primitive.)
3247 * Return: zero on success, else a negative error code.
3249 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
3251 struct spi_controller
*ctlr
= spi
->controller
;
3253 unsigned long flags
;
3255 ret
= __spi_validate(spi
, message
);
3259 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3261 ret
= __spi_async(spi
, message
);
3263 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3268 EXPORT_SYMBOL_GPL(spi_async_locked
);
3270 /*-------------------------------------------------------------------------*/
3272 /* Utility methods for SPI protocol drivers, layered on
3273 * top of the core. Some other utility methods are defined as
3277 static void spi_complete(void *arg
)
3282 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3284 DECLARE_COMPLETION_ONSTACK(done
);
3286 struct spi_controller
*ctlr
= spi
->controller
;
3287 unsigned long flags
;
3289 status
= __spi_validate(spi
, message
);
3293 message
->complete
= spi_complete
;
3294 message
->context
= &done
;
3297 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_sync
);
3298 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
3300 /* If we're not using the legacy transfer method then we will
3301 * try to transfer in the calling context so special case.
3302 * This code would be less tricky if we could remove the
3303 * support for driver implemented message queues.
3305 if (ctlr
->transfer
== spi_queued_transfer
) {
3306 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3308 trace_spi_message_submit(message
);
3310 status
= __spi_queued_transfer(spi
, message
, false);
3312 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3314 status
= spi_async_locked(spi
, message
);
3318 /* Push out the messages in the calling context if we
3321 if (ctlr
->transfer
== spi_queued_transfer
) {
3322 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3323 spi_sync_immediate
);
3324 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
3325 spi_sync_immediate
);
3326 __spi_pump_messages(ctlr
, false);
3329 wait_for_completion(&done
);
3330 status
= message
->status
;
3332 message
->context
= NULL
;
3337 * spi_sync - blocking/synchronous SPI data transfers
3338 * @spi: device with which data will be exchanged
3339 * @message: describes the data transfers
3340 * Context: can sleep
3342 * This call may only be used from a context that may sleep. The sleep
3343 * is non-interruptible, and has no timeout. Low-overhead controller
3344 * drivers may DMA directly into and out of the message buffers.
3346 * Note that the SPI device's chip select is active during the message,
3347 * and then is normally disabled between messages. Drivers for some
3348 * frequently-used devices may want to minimize costs of selecting a chip,
3349 * by leaving it selected in anticipation that the next message will go
3350 * to the same chip. (That may increase power usage.)
3352 * Also, the caller is guaranteeing that the memory associated with the
3353 * message will not be freed before this call returns.
3355 * Return: zero on success, else a negative error code.
3357 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3361 mutex_lock(&spi
->controller
->bus_lock_mutex
);
3362 ret
= __spi_sync(spi
, message
);
3363 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
3367 EXPORT_SYMBOL_GPL(spi_sync
);
3370 * spi_sync_locked - version of spi_sync with exclusive bus usage
3371 * @spi: device with which data will be exchanged
3372 * @message: describes the data transfers
3373 * Context: can sleep
3375 * This call may only be used from a context that may sleep. The sleep
3376 * is non-interruptible, and has no timeout. Low-overhead controller
3377 * drivers may DMA directly into and out of the message buffers.
3379 * This call should be used by drivers that require exclusive access to the
3380 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3381 * be released by a spi_bus_unlock call when the exclusive access is over.
3383 * Return: zero on success, else a negative error code.
3385 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
3387 return __spi_sync(spi
, message
);
3389 EXPORT_SYMBOL_GPL(spi_sync_locked
);
3392 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3393 * @ctlr: SPI bus master that should be locked for exclusive bus access
3394 * Context: can sleep
3396 * This call may only be used from a context that may sleep. The sleep
3397 * is non-interruptible, and has no timeout.
3399 * This call should be used by drivers that require exclusive access to the
3400 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3401 * exclusive access is over. Data transfer must be done by spi_sync_locked
3402 * and spi_async_locked calls when the SPI bus lock is held.
3404 * Return: always zero.
3406 int spi_bus_lock(struct spi_controller
*ctlr
)
3408 unsigned long flags
;
3410 mutex_lock(&ctlr
->bus_lock_mutex
);
3412 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3413 ctlr
->bus_lock_flag
= 1;
3414 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3416 /* mutex remains locked until spi_bus_unlock is called */
3420 EXPORT_SYMBOL_GPL(spi_bus_lock
);
3423 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3424 * @ctlr: SPI bus master that was locked for exclusive bus access
3425 * Context: can sleep
3427 * This call may only be used from a context that may sleep. The sleep
3428 * is non-interruptible, and has no timeout.
3430 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3433 * Return: always zero.
3435 int spi_bus_unlock(struct spi_controller
*ctlr
)
3437 ctlr
->bus_lock_flag
= 0;
3439 mutex_unlock(&ctlr
->bus_lock_mutex
);
3443 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3445 /* portable code must never pass more than 32 bytes */
3446 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3451 * spi_write_then_read - SPI synchronous write followed by read
3452 * @spi: device with which data will be exchanged
3453 * @txbuf: data to be written (need not be dma-safe)
3454 * @n_tx: size of txbuf, in bytes
3455 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3456 * @n_rx: size of rxbuf, in bytes
3457 * Context: can sleep
3459 * This performs a half duplex MicroWire style transaction with the
3460 * device, sending txbuf and then reading rxbuf. The return value
3461 * is zero for success, else a negative errno status code.
3462 * This call may only be used from a context that may sleep.
3464 * Parameters to this routine are always copied using a small buffer;
3465 * portable code should never use this for more than 32 bytes.
3466 * Performance-sensitive or bulk transfer code should instead use
3467 * spi_{async,sync}() calls with dma-safe buffers.
3469 * Return: zero on success, else a negative error code.
3471 int spi_write_then_read(struct spi_device
*spi
,
3472 const void *txbuf
, unsigned n_tx
,
3473 void *rxbuf
, unsigned n_rx
)
3475 static DEFINE_MUTEX(lock
);
3478 struct spi_message message
;
3479 struct spi_transfer x
[2];
3482 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3483 * copying here, (as a pure convenience thing), but we can
3484 * keep heap costs out of the hot path unless someone else is
3485 * using the pre-allocated buffer or the transfer is too large.
3487 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
3488 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
3489 GFP_KERNEL
| GFP_DMA
);
3496 spi_message_init(&message
);
3497 memset(x
, 0, sizeof(x
));
3500 spi_message_add_tail(&x
[0], &message
);
3504 spi_message_add_tail(&x
[1], &message
);
3507 memcpy(local_buf
, txbuf
, n_tx
);
3508 x
[0].tx_buf
= local_buf
;
3509 x
[1].rx_buf
= local_buf
+ n_tx
;
3512 status
= spi_sync(spi
, &message
);
3514 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3516 if (x
[0].tx_buf
== buf
)
3517 mutex_unlock(&lock
);
3523 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3525 /*-------------------------------------------------------------------------*/
3527 #if IS_ENABLED(CONFIG_OF)
3528 static int __spi_of_device_match(struct device
*dev
, void *data
)
3530 return dev
->of_node
== data
;
3533 /* must call put_device() when done with returned spi_device device */
3534 struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3536 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
3537 __spi_of_device_match
);
3538 return dev
? to_spi_device(dev
) : NULL
;
3540 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node
);
3541 #endif /* IS_ENABLED(CONFIG_OF) */
3543 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3544 static int __spi_of_controller_match(struct device
*dev
, const void *data
)
3546 return dev
->of_node
== data
;
3549 /* the spi controllers are not using spi_bus, so we find it with another way */
3550 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
3554 dev
= class_find_device(&spi_master_class
, NULL
, node
,
3555 __spi_of_controller_match
);
3556 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3557 dev
= class_find_device(&spi_slave_class
, NULL
, node
,
3558 __spi_of_controller_match
);
3562 /* reference got in class_find_device */
3563 return container_of(dev
, struct spi_controller
, dev
);
3566 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3569 struct of_reconfig_data
*rd
= arg
;
3570 struct spi_controller
*ctlr
;
3571 struct spi_device
*spi
;
3573 switch (of_reconfig_get_state_change(action
, arg
)) {
3574 case OF_RECONFIG_CHANGE_ADD
:
3575 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
3577 return NOTIFY_OK
; /* not for us */
3579 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3580 put_device(&ctlr
->dev
);
3584 spi
= of_register_spi_device(ctlr
, rd
->dn
);
3585 put_device(&ctlr
->dev
);
3588 pr_err("%s: failed to create for '%pOF'\n",
3590 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
3591 return notifier_from_errno(PTR_ERR(spi
));
3595 case OF_RECONFIG_CHANGE_REMOVE
:
3596 /* already depopulated? */
3597 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3600 /* find our device by node */
3601 spi
= of_find_spi_device_by_node(rd
->dn
);
3603 return NOTIFY_OK
; /* no? not meant for us */
3605 /* unregister takes one ref away */
3606 spi_unregister_device(spi
);
3608 /* and put the reference of the find */
3609 put_device(&spi
->dev
);
3616 static struct notifier_block spi_of_notifier
= {
3617 .notifier_call
= of_spi_notify
,
3619 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3620 extern struct notifier_block spi_of_notifier
;
3621 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3623 #if IS_ENABLED(CONFIG_ACPI)
3624 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
3626 return ACPI_COMPANION(dev
->parent
) == data
;
3629 static int spi_acpi_device_match(struct device
*dev
, void *data
)
3631 return ACPI_COMPANION(dev
) == data
;
3634 static struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
3638 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
3639 spi_acpi_controller_match
);
3640 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3641 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
3642 spi_acpi_controller_match
);
3646 return container_of(dev
, struct spi_controller
, dev
);
3649 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
3653 dev
= bus_find_device(&spi_bus_type
, NULL
, adev
, spi_acpi_device_match
);
3655 return dev
? to_spi_device(dev
) : NULL
;
3658 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
3661 struct acpi_device
*adev
= arg
;
3662 struct spi_controller
*ctlr
;
3663 struct spi_device
*spi
;
3666 case ACPI_RECONFIG_DEVICE_ADD
:
3667 ctlr
= acpi_spi_find_controller_by_adev(adev
->parent
);
3671 acpi_register_spi_device(ctlr
, adev
);
3672 put_device(&ctlr
->dev
);
3674 case ACPI_RECONFIG_DEVICE_REMOVE
:
3675 if (!acpi_device_enumerated(adev
))
3678 spi
= acpi_spi_find_device_by_adev(adev
);
3682 spi_unregister_device(spi
);
3683 put_device(&spi
->dev
);
3690 static struct notifier_block spi_acpi_notifier
= {
3691 .notifier_call
= acpi_spi_notify
,
3694 extern struct notifier_block spi_acpi_notifier
;
3697 static int __init
spi_init(void)
3701 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
3707 status
= bus_register(&spi_bus_type
);
3711 status
= class_register(&spi_master_class
);
3715 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
3716 status
= class_register(&spi_slave_class
);
3721 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
3722 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
3723 if (IS_ENABLED(CONFIG_ACPI
))
3724 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
3729 class_unregister(&spi_master_class
);
3731 bus_unregister(&spi_bus_type
);
3739 /* board_info is normally registered in arch_initcall(),
3740 * but even essential drivers wait till later
3742 * REVISIT only boardinfo really needs static linking. the rest (device and
3743 * driver registration) _could_ be dynamically linked (modular) ... costs
3744 * include needing to have boardinfo data structures be much more public.
3746 postcore_initcall(spi_init
);