Linux 5.1.15
[linux/fpc-iii.git] / drivers / spi / spi.c
bloba83fcddf1dadcf9cc3ad837aaa918c9a2cfa6b53
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
99 device_unlock(dev);
100 kfree(old);
102 return count;
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
116 static DEVICE_ATTR_RW(driver_override);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
299 if (l2len < 0)
300 l2len = 0;
302 spin_lock_irqsave(&stats->lock, flags);
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
315 spin_unlock_irqrestore(&stats->lock, flags);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
331 return NULL;
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
338 return spi_match_id(sdrv->id_table, sdev);
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
362 return strcmp(spi->modalias, drv->name) == 0;
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
383 EXPORT_SYMBOL_GPL(spi_bus_type);
386 static int spi_drv_probe(struct device *dev)
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
412 return ret;
415 static int spi_drv_remove(struct device *dev)
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
423 return ret;
426 static void spi_drv_shutdown(struct device *dev)
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
430 sdrv->shutdown(to_spi_device(dev));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
472 * Used to protect add/del opertion for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
481 * Context: can sleep
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
497 struct spi_device *spi;
499 if (!spi_controller_get(ctlr))
500 return NULL;
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 if (!spi) {
504 spi_controller_put(ctlr);
505 return NULL;
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
514 spin_lock_init(&spi->statistics.lock);
516 device_initialize(&spi->dev);
517 return spi;
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
521 static void spi_dev_set_name(struct spi_device *spi)
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 spi->chip_select);
534 static int spi_dev_check(struct device *dev, void *data)
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
539 if (spi->controller == new_spi->controller &&
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
552 * Return: 0 on success; negative errno on failure
554 int spi_add_device(struct spi_device *spi)
556 static DEFINE_MUTEX(spi_add_lock);
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
559 int status;
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
565 return -EINVAL;
568 /* Set the bus ID string */
569 spi_dev_set_name(spi);
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
575 mutex_lock(&spi_add_lock);
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
581 goto done;
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
594 status = spi_setup(spi);
595 if (status < 0) {
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
598 goto done;
601 /* Device may be bound to an active driver when this returns */
602 status = device_add(&spi->dev);
603 if (status < 0)
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
606 else
607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
609 done:
610 mutex_unlock(&spi_add_lock);
611 return status;
613 EXPORT_SYMBOL_GPL(spi_add_device);
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
619 * Context: can sleep
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
627 * Return: the new device, or NULL.
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 struct spi_board_info *chip)
632 struct spi_device *proxy;
633 int status;
635 /* NOTE: caller did any chip->bus_num checks necessary.
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
642 proxy = spi_alloc_device(ctlr);
643 if (!proxy)
644 return NULL;
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
650 proxy->mode = chip->mode;
651 proxy->irq = chip->irq;
652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
660 dev_err(&ctlr->dev,
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
671 return proxy;
673 err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676 err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
680 EXPORT_SYMBOL_GPL(spi_new_device);
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
689 void spi_unregister_device(struct spi_device *spi)
691 if (!spi)
692 return;
694 if (spi->dev.of_node) {
695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 of_node_put(spi->dev.of_node);
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 device_unregister(&spi->dev);
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
707 struct spi_device *dev;
709 if (ctlr->bus_num != bi->bus_num)
710 return;
712 dev = spi_new_device(ctlr, bi);
713 if (!dev)
714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 bi->modalias);
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
738 * Return: zero on success, else a negative error code.
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
742 struct boardinfo *bi;
743 int i;
745 if (!n)
746 return 0;
748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 if (!bi)
750 return -ENOMEM;
752 for (i = 0; i < n; i++, bi++, info++) {
753 struct spi_controller *ctlr;
755 memcpy(&bi->board_info, info, sizeof(*info));
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
768 mutex_unlock(&board_lock);
771 return 0;
774 /*-------------------------------------------------------------------------*/
776 static void spi_set_cs(struct spi_device *spi, bool enable)
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
793 else
794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
796 /* Some SPI masters need both GPIO CS & slave_select */
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816 #else
817 const bool kmap_buf = false;
818 #endif
819 int desc_len;
820 int sgs;
821 struct page *vm_page;
822 struct scatterlist *sg;
823 void *sg_buf;
824 size_t min;
825 int i, ret;
827 if (vmalloced_buf || kmap_buf) {
828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 } else if (virt_addr_valid(buf)) {
831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 sgs = DIV_ROUND_UP(len, desc_len);
833 } else {
834 return -EINVAL;
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
841 sg = &sgt->sgl[0];
842 for (i = 0; i < sgs; i++) {
844 if (vmalloced_buf || kmap_buf) {
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
861 sg_set_page(sg, vm_page,
862 min, offset_in_page(buf));
863 } else {
864 min = min_t(size_t, len, desc_len);
865 sg_buf = buf;
866 sg_set_buf(sg, sg_buf, min);
869 buf += min;
870 len -= min;
871 sg = sg_next(sg);
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 if (!ret)
876 ret = -ENOMEM;
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
882 sgt->nents = ret;
884 return 0;
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
900 int ret;
902 if (!ctlr->can_dma)
903 return 0;
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
907 else
908 tx_dev = ctlr->dev.parent;
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
912 else
913 rx_dev = ctlr->dev.parent;
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 continue;
919 if (xfer->tx_buf != NULL) {
920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
927 if (xfer->rx_buf != NULL) {
928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 DMA_TO_DEVICE);
934 return ret;
939 ctlr->cur_msg_mapped = true;
941 return 0;
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 return 0;
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
954 else
955 tx_dev = ctlr->dev.parent;
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
959 else
960 rx_dev = ctlr->dev.parent;
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 continue;
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
970 return 0;
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 struct spi_message *msg)
976 return 0;
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 struct spi_message *msg)
982 return 0;
984 #endif /* !CONFIG_HAS_DMA */
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 struct spi_message *msg)
989 struct spi_transfer *xfer;
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
996 if (xfer->tx_buf == ctlr->dummy_tx)
997 xfer->tx_buf = NULL;
998 if (xfer->rx_buf == ctlr->dummy_rx)
999 xfer->rx_buf = NULL;
1002 return __spi_unmap_msg(ctlr, msg);
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 max_tx = 0;
1013 max_rx = 0;
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1024 if (max_tx) {
1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
1029 ctlr->dummy_tx = tmp;
1030 memset(tmp, 0, max_tx);
1033 if (max_rx) {
1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
1038 ctlr->dummy_rx = tmp;
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
1044 if (!xfer->len)
1045 continue;
1046 if (!xfer->tx_buf)
1047 xfer->tx_buf = ctlr->dummy_tx;
1048 if (!xfer->rx_buf)
1049 xfer->rx_buf = ctlr->dummy_rx;
1054 return __spi_map_msg(ctlr, msg);
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1090 return 0;
1094 * spi_transfer_one_message - Default implementation of transfer_one_message()
1096 * This is a standard implementation of transfer_one_message() for
1097 * drivers which implement a transfer_one() operation. It provides
1098 * standard handling of delays and chip select management.
1100 static int spi_transfer_one_message(struct spi_controller *ctlr,
1101 struct spi_message *msg)
1103 struct spi_transfer *xfer;
1104 bool keep_cs = false;
1105 int ret = 0;
1106 struct spi_statistics *statm = &ctlr->statistics;
1107 struct spi_statistics *stats = &msg->spi->statistics;
1109 spi_set_cs(msg->spi, true);
1111 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1112 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1114 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1115 trace_spi_transfer_start(msg, xfer);
1117 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1118 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1120 if (xfer->tx_buf || xfer->rx_buf) {
1121 reinit_completion(&ctlr->xfer_completion);
1123 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1124 if (ret < 0) {
1125 SPI_STATISTICS_INCREMENT_FIELD(statm,
1126 errors);
1127 SPI_STATISTICS_INCREMENT_FIELD(stats,
1128 errors);
1129 dev_err(&msg->spi->dev,
1130 "SPI transfer failed: %d\n", ret);
1131 goto out;
1134 if (ret > 0) {
1135 ret = spi_transfer_wait(ctlr, msg, xfer);
1136 if (ret < 0)
1137 msg->status = ret;
1139 } else {
1140 if (xfer->len)
1141 dev_err(&msg->spi->dev,
1142 "Bufferless transfer has length %u\n",
1143 xfer->len);
1146 trace_spi_transfer_stop(msg, xfer);
1148 if (msg->status != -EINPROGRESS)
1149 goto out;
1151 if (xfer->delay_usecs) {
1152 u16 us = xfer->delay_usecs;
1154 if (us <= 10)
1155 udelay(us);
1156 else
1157 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1160 if (xfer->cs_change) {
1161 if (list_is_last(&xfer->transfer_list,
1162 &msg->transfers)) {
1163 keep_cs = true;
1164 } else {
1165 spi_set_cs(msg->spi, false);
1166 udelay(10);
1167 spi_set_cs(msg->spi, true);
1171 msg->actual_length += xfer->len;
1174 out:
1175 if (ret != 0 || !keep_cs)
1176 spi_set_cs(msg->spi, false);
1178 if (msg->status == -EINPROGRESS)
1179 msg->status = ret;
1181 if (msg->status && ctlr->handle_err)
1182 ctlr->handle_err(ctlr, msg);
1184 spi_res_release(ctlr, msg);
1186 spi_finalize_current_message(ctlr);
1188 return ret;
1192 * spi_finalize_current_transfer - report completion of a transfer
1193 * @ctlr: the controller reporting completion
1195 * Called by SPI drivers using the core transfer_one_message()
1196 * implementation to notify it that the current interrupt driven
1197 * transfer has finished and the next one may be scheduled.
1199 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1201 complete(&ctlr->xfer_completion);
1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1206 * __spi_pump_messages - function which processes spi message queue
1207 * @ctlr: controller to process queue for
1208 * @in_kthread: true if we are in the context of the message pump thread
1210 * This function checks if there is any spi message in the queue that
1211 * needs processing and if so call out to the driver to initialize hardware
1212 * and transfer each message.
1214 * Note that it is called both from the kthread itself and also from
1215 * inside spi_sync(); the queue extraction handling at the top of the
1216 * function should deal with this safely.
1218 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1220 unsigned long flags;
1221 bool was_busy = false;
1222 int ret;
1224 /* Lock queue */
1225 spin_lock_irqsave(&ctlr->queue_lock, flags);
1227 /* Make sure we are not already running a message */
1228 if (ctlr->cur_msg) {
1229 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1230 return;
1233 /* If another context is idling the device then defer */
1234 if (ctlr->idling) {
1235 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1236 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1237 return;
1240 /* Check if the queue is idle */
1241 if (list_empty(&ctlr->queue) || !ctlr->running) {
1242 if (!ctlr->busy) {
1243 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1244 return;
1247 /* Only do teardown in the thread */
1248 if (!in_kthread) {
1249 kthread_queue_work(&ctlr->kworker,
1250 &ctlr->pump_messages);
1251 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1252 return;
1255 ctlr->busy = false;
1256 ctlr->idling = true;
1257 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1259 kfree(ctlr->dummy_rx);
1260 ctlr->dummy_rx = NULL;
1261 kfree(ctlr->dummy_tx);
1262 ctlr->dummy_tx = NULL;
1263 if (ctlr->unprepare_transfer_hardware &&
1264 ctlr->unprepare_transfer_hardware(ctlr))
1265 dev_err(&ctlr->dev,
1266 "failed to unprepare transfer hardware\n");
1267 if (ctlr->auto_runtime_pm) {
1268 pm_runtime_mark_last_busy(ctlr->dev.parent);
1269 pm_runtime_put_autosuspend(ctlr->dev.parent);
1271 trace_spi_controller_idle(ctlr);
1273 spin_lock_irqsave(&ctlr->queue_lock, flags);
1274 ctlr->idling = false;
1275 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1276 return;
1279 /* Extract head of queue */
1280 ctlr->cur_msg =
1281 list_first_entry(&ctlr->queue, struct spi_message, queue);
1283 list_del_init(&ctlr->cur_msg->queue);
1284 if (ctlr->busy)
1285 was_busy = true;
1286 else
1287 ctlr->busy = true;
1288 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1290 mutex_lock(&ctlr->io_mutex);
1292 if (!was_busy && ctlr->auto_runtime_pm) {
1293 ret = pm_runtime_get_sync(ctlr->dev.parent);
1294 if (ret < 0) {
1295 pm_runtime_put_noidle(ctlr->dev.parent);
1296 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1297 ret);
1298 mutex_unlock(&ctlr->io_mutex);
1299 return;
1303 if (!was_busy)
1304 trace_spi_controller_busy(ctlr);
1306 if (!was_busy && ctlr->prepare_transfer_hardware) {
1307 ret = ctlr->prepare_transfer_hardware(ctlr);
1308 if (ret) {
1309 dev_err(&ctlr->dev,
1310 "failed to prepare transfer hardware\n");
1312 if (ctlr->auto_runtime_pm)
1313 pm_runtime_put(ctlr->dev.parent);
1314 mutex_unlock(&ctlr->io_mutex);
1315 return;
1319 trace_spi_message_start(ctlr->cur_msg);
1321 if (ctlr->prepare_message) {
1322 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1323 if (ret) {
1324 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1325 ret);
1326 ctlr->cur_msg->status = ret;
1327 spi_finalize_current_message(ctlr);
1328 goto out;
1330 ctlr->cur_msg_prepared = true;
1333 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1334 if (ret) {
1335 ctlr->cur_msg->status = ret;
1336 spi_finalize_current_message(ctlr);
1337 goto out;
1340 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1341 if (ret) {
1342 dev_err(&ctlr->dev,
1343 "failed to transfer one message from queue\n");
1344 goto out;
1347 out:
1348 mutex_unlock(&ctlr->io_mutex);
1350 /* Prod the scheduler in case transfer_one() was busy waiting */
1351 if (!ret)
1352 cond_resched();
1356 * spi_pump_messages - kthread work function which processes spi message queue
1357 * @work: pointer to kthread work struct contained in the controller struct
1359 static void spi_pump_messages(struct kthread_work *work)
1361 struct spi_controller *ctlr =
1362 container_of(work, struct spi_controller, pump_messages);
1364 __spi_pump_messages(ctlr, true);
1367 static int spi_init_queue(struct spi_controller *ctlr)
1369 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1371 ctlr->running = false;
1372 ctlr->busy = false;
1374 kthread_init_worker(&ctlr->kworker);
1375 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1376 "%s", dev_name(&ctlr->dev));
1377 if (IS_ERR(ctlr->kworker_task)) {
1378 dev_err(&ctlr->dev, "failed to create message pump task\n");
1379 return PTR_ERR(ctlr->kworker_task);
1381 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1384 * Controller config will indicate if this controller should run the
1385 * message pump with high (realtime) priority to reduce the transfer
1386 * latency on the bus by minimising the delay between a transfer
1387 * request and the scheduling of the message pump thread. Without this
1388 * setting the message pump thread will remain at default priority.
1390 if (ctlr->rt) {
1391 dev_info(&ctlr->dev,
1392 "will run message pump with realtime priority\n");
1393 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1396 return 0;
1400 * spi_get_next_queued_message() - called by driver to check for queued
1401 * messages
1402 * @ctlr: the controller to check for queued messages
1404 * If there are more messages in the queue, the next message is returned from
1405 * this call.
1407 * Return: the next message in the queue, else NULL if the queue is empty.
1409 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1411 struct spi_message *next;
1412 unsigned long flags;
1414 /* get a pointer to the next message, if any */
1415 spin_lock_irqsave(&ctlr->queue_lock, flags);
1416 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1417 queue);
1418 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1420 return next;
1422 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1425 * spi_finalize_current_message() - the current message is complete
1426 * @ctlr: the controller to return the message to
1428 * Called by the driver to notify the core that the message in the front of the
1429 * queue is complete and can be removed from the queue.
1431 void spi_finalize_current_message(struct spi_controller *ctlr)
1433 struct spi_message *mesg;
1434 unsigned long flags;
1435 int ret;
1437 spin_lock_irqsave(&ctlr->queue_lock, flags);
1438 mesg = ctlr->cur_msg;
1439 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1441 spi_unmap_msg(ctlr, mesg);
1443 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1444 ret = ctlr->unprepare_message(ctlr, mesg);
1445 if (ret) {
1446 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1447 ret);
1451 spin_lock_irqsave(&ctlr->queue_lock, flags);
1452 ctlr->cur_msg = NULL;
1453 ctlr->cur_msg_prepared = false;
1454 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1455 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1457 trace_spi_message_done(mesg);
1459 mesg->state = NULL;
1460 if (mesg->complete)
1461 mesg->complete(mesg->context);
1463 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1465 static int spi_start_queue(struct spi_controller *ctlr)
1467 unsigned long flags;
1469 spin_lock_irqsave(&ctlr->queue_lock, flags);
1471 if (ctlr->running || ctlr->busy) {
1472 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1473 return -EBUSY;
1476 ctlr->running = true;
1477 ctlr->cur_msg = NULL;
1478 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1480 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1482 return 0;
1485 static int spi_stop_queue(struct spi_controller *ctlr)
1487 unsigned long flags;
1488 unsigned limit = 500;
1489 int ret = 0;
1491 spin_lock_irqsave(&ctlr->queue_lock, flags);
1494 * This is a bit lame, but is optimized for the common execution path.
1495 * A wait_queue on the ctlr->busy could be used, but then the common
1496 * execution path (pump_messages) would be required to call wake_up or
1497 * friends on every SPI message. Do this instead.
1499 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1500 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1501 usleep_range(10000, 11000);
1502 spin_lock_irqsave(&ctlr->queue_lock, flags);
1505 if (!list_empty(&ctlr->queue) || ctlr->busy)
1506 ret = -EBUSY;
1507 else
1508 ctlr->running = false;
1510 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1512 if (ret) {
1513 dev_warn(&ctlr->dev, "could not stop message queue\n");
1514 return ret;
1516 return ret;
1519 static int spi_destroy_queue(struct spi_controller *ctlr)
1521 int ret;
1523 ret = spi_stop_queue(ctlr);
1526 * kthread_flush_worker will block until all work is done.
1527 * If the reason that stop_queue timed out is that the work will never
1528 * finish, then it does no good to call flush/stop thread, so
1529 * return anyway.
1531 if (ret) {
1532 dev_err(&ctlr->dev, "problem destroying queue\n");
1533 return ret;
1536 kthread_flush_worker(&ctlr->kworker);
1537 kthread_stop(ctlr->kworker_task);
1539 return 0;
1542 static int __spi_queued_transfer(struct spi_device *spi,
1543 struct spi_message *msg,
1544 bool need_pump)
1546 struct spi_controller *ctlr = spi->controller;
1547 unsigned long flags;
1549 spin_lock_irqsave(&ctlr->queue_lock, flags);
1551 if (!ctlr->running) {
1552 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1553 return -ESHUTDOWN;
1555 msg->actual_length = 0;
1556 msg->status = -EINPROGRESS;
1558 list_add_tail(&msg->queue, &ctlr->queue);
1559 if (!ctlr->busy && need_pump)
1560 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1562 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1563 return 0;
1567 * spi_queued_transfer - transfer function for queued transfers
1568 * @spi: spi device which is requesting transfer
1569 * @msg: spi message which is to handled is queued to driver queue
1571 * Return: zero on success, else a negative error code.
1573 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1575 return __spi_queued_transfer(spi, msg, true);
1578 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1580 int ret;
1582 ctlr->transfer = spi_queued_transfer;
1583 if (!ctlr->transfer_one_message)
1584 ctlr->transfer_one_message = spi_transfer_one_message;
1586 /* Initialize and start queue */
1587 ret = spi_init_queue(ctlr);
1588 if (ret) {
1589 dev_err(&ctlr->dev, "problem initializing queue\n");
1590 goto err_init_queue;
1592 ctlr->queued = true;
1593 ret = spi_start_queue(ctlr);
1594 if (ret) {
1595 dev_err(&ctlr->dev, "problem starting queue\n");
1596 goto err_start_queue;
1599 return 0;
1601 err_start_queue:
1602 spi_destroy_queue(ctlr);
1603 err_init_queue:
1604 return ret;
1608 * spi_flush_queue - Send all pending messages in the queue from the callers'
1609 * context
1610 * @ctlr: controller to process queue for
1612 * This should be used when one wants to ensure all pending messages have been
1613 * sent before doing something. Is used by the spi-mem code to make sure SPI
1614 * memory operations do not preempt regular SPI transfers that have been queued
1615 * before the spi-mem operation.
1617 void spi_flush_queue(struct spi_controller *ctlr)
1619 if (ctlr->transfer == spi_queued_transfer)
1620 __spi_pump_messages(ctlr, false);
1623 /*-------------------------------------------------------------------------*/
1625 #if defined(CONFIG_OF)
1626 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1627 struct device_node *nc)
1629 u32 value;
1630 int rc;
1632 /* Mode (clock phase/polarity/etc.) */
1633 if (of_property_read_bool(nc, "spi-cpha"))
1634 spi->mode |= SPI_CPHA;
1635 if (of_property_read_bool(nc, "spi-cpol"))
1636 spi->mode |= SPI_CPOL;
1637 if (of_property_read_bool(nc, "spi-3wire"))
1638 spi->mode |= SPI_3WIRE;
1639 if (of_property_read_bool(nc, "spi-lsb-first"))
1640 spi->mode |= SPI_LSB_FIRST;
1643 * For descriptors associated with the device, polarity inversion is
1644 * handled in the gpiolib, so all chip selects are "active high" in
1645 * the logical sense, the gpiolib will invert the line if need be.
1647 if (ctlr->use_gpio_descriptors)
1648 spi->mode |= SPI_CS_HIGH;
1649 else if (of_property_read_bool(nc, "spi-cs-high"))
1650 spi->mode |= SPI_CS_HIGH;
1652 /* Device DUAL/QUAD mode */
1653 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1654 switch (value) {
1655 case 1:
1656 break;
1657 case 2:
1658 spi->mode |= SPI_TX_DUAL;
1659 break;
1660 case 4:
1661 spi->mode |= SPI_TX_QUAD;
1662 break;
1663 case 8:
1664 spi->mode |= SPI_TX_OCTAL;
1665 break;
1666 default:
1667 dev_warn(&ctlr->dev,
1668 "spi-tx-bus-width %d not supported\n",
1669 value);
1670 break;
1674 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1675 switch (value) {
1676 case 1:
1677 break;
1678 case 2:
1679 spi->mode |= SPI_RX_DUAL;
1680 break;
1681 case 4:
1682 spi->mode |= SPI_RX_QUAD;
1683 break;
1684 case 8:
1685 spi->mode |= SPI_RX_OCTAL;
1686 break;
1687 default:
1688 dev_warn(&ctlr->dev,
1689 "spi-rx-bus-width %d not supported\n",
1690 value);
1691 break;
1695 if (spi_controller_is_slave(ctlr)) {
1696 if (!of_node_name_eq(nc, "slave")) {
1697 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1698 nc);
1699 return -EINVAL;
1701 return 0;
1704 /* Device address */
1705 rc = of_property_read_u32(nc, "reg", &value);
1706 if (rc) {
1707 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1708 nc, rc);
1709 return rc;
1711 spi->chip_select = value;
1713 /* Device speed */
1714 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1715 if (rc) {
1716 dev_err(&ctlr->dev,
1717 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1718 return rc;
1720 spi->max_speed_hz = value;
1722 return 0;
1725 static struct spi_device *
1726 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1728 struct spi_device *spi;
1729 int rc;
1731 /* Alloc an spi_device */
1732 spi = spi_alloc_device(ctlr);
1733 if (!spi) {
1734 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1735 rc = -ENOMEM;
1736 goto err_out;
1739 /* Select device driver */
1740 rc = of_modalias_node(nc, spi->modalias,
1741 sizeof(spi->modalias));
1742 if (rc < 0) {
1743 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1744 goto err_out;
1747 rc = of_spi_parse_dt(ctlr, spi, nc);
1748 if (rc)
1749 goto err_out;
1751 /* Store a pointer to the node in the device structure */
1752 of_node_get(nc);
1753 spi->dev.of_node = nc;
1755 /* Register the new device */
1756 rc = spi_add_device(spi);
1757 if (rc) {
1758 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1759 goto err_of_node_put;
1762 return spi;
1764 err_of_node_put:
1765 of_node_put(nc);
1766 err_out:
1767 spi_dev_put(spi);
1768 return ERR_PTR(rc);
1772 * of_register_spi_devices() - Register child devices onto the SPI bus
1773 * @ctlr: Pointer to spi_controller device
1775 * Registers an spi_device for each child node of controller node which
1776 * represents a valid SPI slave.
1778 static void of_register_spi_devices(struct spi_controller *ctlr)
1780 struct spi_device *spi;
1781 struct device_node *nc;
1783 if (!ctlr->dev.of_node)
1784 return;
1786 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1787 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1788 continue;
1789 spi = of_register_spi_device(ctlr, nc);
1790 if (IS_ERR(spi)) {
1791 dev_warn(&ctlr->dev,
1792 "Failed to create SPI device for %pOF\n", nc);
1793 of_node_clear_flag(nc, OF_POPULATED);
1797 #else
1798 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1799 #endif
1801 #ifdef CONFIG_ACPI
1802 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1804 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1805 const union acpi_object *obj;
1807 if (!x86_apple_machine)
1808 return;
1810 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1811 && obj->buffer.length >= 4)
1812 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1814 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1815 && obj->buffer.length == 8)
1816 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1818 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1819 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1820 spi->mode |= SPI_LSB_FIRST;
1822 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1823 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1824 spi->mode |= SPI_CPOL;
1826 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1827 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1828 spi->mode |= SPI_CPHA;
1831 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1833 struct spi_device *spi = data;
1834 struct spi_controller *ctlr = spi->controller;
1836 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1837 struct acpi_resource_spi_serialbus *sb;
1839 sb = &ares->data.spi_serial_bus;
1840 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1842 * ACPI DeviceSelection numbering is handled by the
1843 * host controller driver in Windows and can vary
1844 * from driver to driver. In Linux we always expect
1845 * 0 .. max - 1 so we need to ask the driver to
1846 * translate between the two schemes.
1848 if (ctlr->fw_translate_cs) {
1849 int cs = ctlr->fw_translate_cs(ctlr,
1850 sb->device_selection);
1851 if (cs < 0)
1852 return cs;
1853 spi->chip_select = cs;
1854 } else {
1855 spi->chip_select = sb->device_selection;
1858 spi->max_speed_hz = sb->connection_speed;
1860 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1861 spi->mode |= SPI_CPHA;
1862 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1863 spi->mode |= SPI_CPOL;
1864 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1865 spi->mode |= SPI_CS_HIGH;
1867 } else if (spi->irq < 0) {
1868 struct resource r;
1870 if (acpi_dev_resource_interrupt(ares, 0, &r))
1871 spi->irq = r.start;
1874 /* Always tell the ACPI core to skip this resource */
1875 return 1;
1878 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1879 struct acpi_device *adev)
1881 struct list_head resource_list;
1882 struct spi_device *spi;
1883 int ret;
1885 if (acpi_bus_get_status(adev) || !adev->status.present ||
1886 acpi_device_enumerated(adev))
1887 return AE_OK;
1889 spi = spi_alloc_device(ctlr);
1890 if (!spi) {
1891 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1892 dev_name(&adev->dev));
1893 return AE_NO_MEMORY;
1896 ACPI_COMPANION_SET(&spi->dev, adev);
1897 spi->irq = -1;
1899 INIT_LIST_HEAD(&resource_list);
1900 ret = acpi_dev_get_resources(adev, &resource_list,
1901 acpi_spi_add_resource, spi);
1902 acpi_dev_free_resource_list(&resource_list);
1904 acpi_spi_parse_apple_properties(spi);
1906 if (ret < 0 || !spi->max_speed_hz) {
1907 spi_dev_put(spi);
1908 return AE_OK;
1911 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1912 sizeof(spi->modalias));
1914 if (spi->irq < 0)
1915 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1917 acpi_device_set_enumerated(adev);
1919 adev->power.flags.ignore_parent = true;
1920 if (spi_add_device(spi)) {
1921 adev->power.flags.ignore_parent = false;
1922 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1923 dev_name(&adev->dev));
1924 spi_dev_put(spi);
1927 return AE_OK;
1930 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1931 void *data, void **return_value)
1933 struct spi_controller *ctlr = data;
1934 struct acpi_device *adev;
1936 if (acpi_bus_get_device(handle, &adev))
1937 return AE_OK;
1939 return acpi_register_spi_device(ctlr, adev);
1942 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1944 acpi_status status;
1945 acpi_handle handle;
1947 handle = ACPI_HANDLE(ctlr->dev.parent);
1948 if (!handle)
1949 return;
1951 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1952 acpi_spi_add_device, NULL, ctlr, NULL);
1953 if (ACPI_FAILURE(status))
1954 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1956 #else
1957 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1958 #endif /* CONFIG_ACPI */
1960 static void spi_controller_release(struct device *dev)
1962 struct spi_controller *ctlr;
1964 ctlr = container_of(dev, struct spi_controller, dev);
1965 kfree(ctlr);
1968 static struct class spi_master_class = {
1969 .name = "spi_master",
1970 .owner = THIS_MODULE,
1971 .dev_release = spi_controller_release,
1972 .dev_groups = spi_master_groups,
1975 #ifdef CONFIG_SPI_SLAVE
1977 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1978 * controller
1979 * @spi: device used for the current transfer
1981 int spi_slave_abort(struct spi_device *spi)
1983 struct spi_controller *ctlr = spi->controller;
1985 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1986 return ctlr->slave_abort(ctlr);
1988 return -ENOTSUPP;
1990 EXPORT_SYMBOL_GPL(spi_slave_abort);
1992 static int match_true(struct device *dev, void *data)
1994 return 1;
1997 static ssize_t spi_slave_show(struct device *dev,
1998 struct device_attribute *attr, char *buf)
2000 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2001 dev);
2002 struct device *child;
2004 child = device_find_child(&ctlr->dev, NULL, match_true);
2005 return sprintf(buf, "%s\n",
2006 child ? to_spi_device(child)->modalias : NULL);
2009 static ssize_t spi_slave_store(struct device *dev,
2010 struct device_attribute *attr, const char *buf,
2011 size_t count)
2013 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2014 dev);
2015 struct spi_device *spi;
2016 struct device *child;
2017 char name[32];
2018 int rc;
2020 rc = sscanf(buf, "%31s", name);
2021 if (rc != 1 || !name[0])
2022 return -EINVAL;
2024 child = device_find_child(&ctlr->dev, NULL, match_true);
2025 if (child) {
2026 /* Remove registered slave */
2027 device_unregister(child);
2028 put_device(child);
2031 if (strcmp(name, "(null)")) {
2032 /* Register new slave */
2033 spi = spi_alloc_device(ctlr);
2034 if (!spi)
2035 return -ENOMEM;
2037 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2039 rc = spi_add_device(spi);
2040 if (rc) {
2041 spi_dev_put(spi);
2042 return rc;
2046 return count;
2049 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2051 static struct attribute *spi_slave_attrs[] = {
2052 &dev_attr_slave.attr,
2053 NULL,
2056 static const struct attribute_group spi_slave_group = {
2057 .attrs = spi_slave_attrs,
2060 static const struct attribute_group *spi_slave_groups[] = {
2061 &spi_controller_statistics_group,
2062 &spi_slave_group,
2063 NULL,
2066 static struct class spi_slave_class = {
2067 .name = "spi_slave",
2068 .owner = THIS_MODULE,
2069 .dev_release = spi_controller_release,
2070 .dev_groups = spi_slave_groups,
2072 #else
2073 extern struct class spi_slave_class; /* dummy */
2074 #endif
2077 * __spi_alloc_controller - allocate an SPI master or slave controller
2078 * @dev: the controller, possibly using the platform_bus
2079 * @size: how much zeroed driver-private data to allocate; the pointer to this
2080 * memory is in the driver_data field of the returned device,
2081 * accessible with spi_controller_get_devdata().
2082 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2083 * slave (true) controller
2084 * Context: can sleep
2086 * This call is used only by SPI controller drivers, which are the
2087 * only ones directly touching chip registers. It's how they allocate
2088 * an spi_controller structure, prior to calling spi_register_controller().
2090 * This must be called from context that can sleep.
2092 * The caller is responsible for assigning the bus number and initializing the
2093 * controller's methods before calling spi_register_controller(); and (after
2094 * errors adding the device) calling spi_controller_put() to prevent a memory
2095 * leak.
2097 * Return: the SPI controller structure on success, else NULL.
2099 struct spi_controller *__spi_alloc_controller(struct device *dev,
2100 unsigned int size, bool slave)
2102 struct spi_controller *ctlr;
2104 if (!dev)
2105 return NULL;
2107 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2108 if (!ctlr)
2109 return NULL;
2111 device_initialize(&ctlr->dev);
2112 ctlr->bus_num = -1;
2113 ctlr->num_chipselect = 1;
2114 ctlr->slave = slave;
2115 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2116 ctlr->dev.class = &spi_slave_class;
2117 else
2118 ctlr->dev.class = &spi_master_class;
2119 ctlr->dev.parent = dev;
2120 pm_suspend_ignore_children(&ctlr->dev, true);
2121 spi_controller_set_devdata(ctlr, &ctlr[1]);
2123 return ctlr;
2125 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2127 #ifdef CONFIG_OF
2128 static int of_spi_register_master(struct spi_controller *ctlr)
2130 int nb, i, *cs;
2131 struct device_node *np = ctlr->dev.of_node;
2133 if (!np)
2134 return 0;
2136 nb = of_gpio_named_count(np, "cs-gpios");
2137 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2139 /* Return error only for an incorrectly formed cs-gpios property */
2140 if (nb == 0 || nb == -ENOENT)
2141 return 0;
2142 else if (nb < 0)
2143 return nb;
2145 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2146 GFP_KERNEL);
2147 ctlr->cs_gpios = cs;
2149 if (!ctlr->cs_gpios)
2150 return -ENOMEM;
2152 for (i = 0; i < ctlr->num_chipselect; i++)
2153 cs[i] = -ENOENT;
2155 for (i = 0; i < nb; i++)
2156 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2158 return 0;
2160 #else
2161 static int of_spi_register_master(struct spi_controller *ctlr)
2163 return 0;
2165 #endif
2168 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2169 * @ctlr: The SPI master to grab GPIO descriptors for
2171 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2173 int nb, i;
2174 struct gpio_desc **cs;
2175 struct device *dev = &ctlr->dev;
2177 nb = gpiod_count(dev, "cs");
2178 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2180 /* No GPIOs at all is fine, else return the error */
2181 if (nb == 0 || nb == -ENOENT)
2182 return 0;
2183 else if (nb < 0)
2184 return nb;
2186 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2187 GFP_KERNEL);
2188 if (!cs)
2189 return -ENOMEM;
2190 ctlr->cs_gpiods = cs;
2192 for (i = 0; i < nb; i++) {
2194 * Most chipselects are active low, the inverted
2195 * semantics are handled by special quirks in gpiolib,
2196 * so initializing them GPIOD_OUT_LOW here means
2197 * "unasserted", in most cases this will drive the physical
2198 * line high.
2200 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2201 GPIOD_OUT_LOW);
2202 if (IS_ERR(cs[i]))
2203 return PTR_ERR(cs[i]);
2205 if (cs[i]) {
2207 * If we find a CS GPIO, name it after the device and
2208 * chip select line.
2210 char *gpioname;
2212 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2213 dev_name(dev), i);
2214 if (!gpioname)
2215 return -ENOMEM;
2216 gpiod_set_consumer_name(cs[i], gpioname);
2220 return 0;
2223 static int spi_controller_check_ops(struct spi_controller *ctlr)
2226 * The controller may implement only the high-level SPI-memory like
2227 * operations if it does not support regular SPI transfers, and this is
2228 * valid use case.
2229 * If ->mem_ops is NULL, we request that at least one of the
2230 * ->transfer_xxx() method be implemented.
2232 if (ctlr->mem_ops) {
2233 if (!ctlr->mem_ops->exec_op)
2234 return -EINVAL;
2235 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2236 !ctlr->transfer_one_message) {
2237 return -EINVAL;
2240 return 0;
2244 * spi_register_controller - register SPI master or slave controller
2245 * @ctlr: initialized master, originally from spi_alloc_master() or
2246 * spi_alloc_slave()
2247 * Context: can sleep
2249 * SPI controllers connect to their drivers using some non-SPI bus,
2250 * such as the platform bus. The final stage of probe() in that code
2251 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2253 * SPI controllers use board specific (often SOC specific) bus numbers,
2254 * and board-specific addressing for SPI devices combines those numbers
2255 * with chip select numbers. Since SPI does not directly support dynamic
2256 * device identification, boards need configuration tables telling which
2257 * chip is at which address.
2259 * This must be called from context that can sleep. It returns zero on
2260 * success, else a negative error code (dropping the controller's refcount).
2261 * After a successful return, the caller is responsible for calling
2262 * spi_unregister_controller().
2264 * Return: zero on success, else a negative error code.
2266 int spi_register_controller(struct spi_controller *ctlr)
2268 struct device *dev = ctlr->dev.parent;
2269 struct boardinfo *bi;
2270 int status = -ENODEV;
2271 int id, first_dynamic;
2273 if (!dev)
2274 return -ENODEV;
2277 * Make sure all necessary hooks are implemented before registering
2278 * the SPI controller.
2280 status = spi_controller_check_ops(ctlr);
2281 if (status)
2282 return status;
2284 /* even if it's just one always-selected device, there must
2285 * be at least one chipselect
2287 if (ctlr->num_chipselect == 0)
2288 return -EINVAL;
2289 if (ctlr->bus_num >= 0) {
2290 /* devices with a fixed bus num must check-in with the num */
2291 mutex_lock(&board_lock);
2292 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2293 ctlr->bus_num + 1, GFP_KERNEL);
2294 mutex_unlock(&board_lock);
2295 if (WARN(id < 0, "couldn't get idr"))
2296 return id == -ENOSPC ? -EBUSY : id;
2297 ctlr->bus_num = id;
2298 } else if (ctlr->dev.of_node) {
2299 /* allocate dynamic bus number using Linux idr */
2300 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2301 if (id >= 0) {
2302 ctlr->bus_num = id;
2303 mutex_lock(&board_lock);
2304 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2305 ctlr->bus_num + 1, GFP_KERNEL);
2306 mutex_unlock(&board_lock);
2307 if (WARN(id < 0, "couldn't get idr"))
2308 return id == -ENOSPC ? -EBUSY : id;
2311 if (ctlr->bus_num < 0) {
2312 first_dynamic = of_alias_get_highest_id("spi");
2313 if (first_dynamic < 0)
2314 first_dynamic = 0;
2315 else
2316 first_dynamic++;
2318 mutex_lock(&board_lock);
2319 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2320 0, GFP_KERNEL);
2321 mutex_unlock(&board_lock);
2322 if (WARN(id < 0, "couldn't get idr"))
2323 return id;
2324 ctlr->bus_num = id;
2326 INIT_LIST_HEAD(&ctlr->queue);
2327 spin_lock_init(&ctlr->queue_lock);
2328 spin_lock_init(&ctlr->bus_lock_spinlock);
2329 mutex_init(&ctlr->bus_lock_mutex);
2330 mutex_init(&ctlr->io_mutex);
2331 ctlr->bus_lock_flag = 0;
2332 init_completion(&ctlr->xfer_completion);
2333 if (!ctlr->max_dma_len)
2334 ctlr->max_dma_len = INT_MAX;
2336 /* register the device, then userspace will see it.
2337 * registration fails if the bus ID is in use.
2339 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2341 if (!spi_controller_is_slave(ctlr)) {
2342 if (ctlr->use_gpio_descriptors) {
2343 status = spi_get_gpio_descs(ctlr);
2344 if (status)
2345 return status;
2347 * A controller using GPIO descriptors always
2348 * supports SPI_CS_HIGH if need be.
2350 ctlr->mode_bits |= SPI_CS_HIGH;
2351 } else {
2352 /* Legacy code path for GPIOs from DT */
2353 status = of_spi_register_master(ctlr);
2354 if (status)
2355 return status;
2359 status = device_add(&ctlr->dev);
2360 if (status < 0) {
2361 /* free bus id */
2362 mutex_lock(&board_lock);
2363 idr_remove(&spi_master_idr, ctlr->bus_num);
2364 mutex_unlock(&board_lock);
2365 goto done;
2367 dev_dbg(dev, "registered %s %s\n",
2368 spi_controller_is_slave(ctlr) ? "slave" : "master",
2369 dev_name(&ctlr->dev));
2372 * If we're using a queued driver, start the queue. Note that we don't
2373 * need the queueing logic if the driver is only supporting high-level
2374 * memory operations.
2376 if (ctlr->transfer) {
2377 dev_info(dev, "controller is unqueued, this is deprecated\n");
2378 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2379 status = spi_controller_initialize_queue(ctlr);
2380 if (status) {
2381 device_del(&ctlr->dev);
2382 /* free bus id */
2383 mutex_lock(&board_lock);
2384 idr_remove(&spi_master_idr, ctlr->bus_num);
2385 mutex_unlock(&board_lock);
2386 goto done;
2389 /* add statistics */
2390 spin_lock_init(&ctlr->statistics.lock);
2392 mutex_lock(&board_lock);
2393 list_add_tail(&ctlr->list, &spi_controller_list);
2394 list_for_each_entry(bi, &board_list, list)
2395 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2396 mutex_unlock(&board_lock);
2398 /* Register devices from the device tree and ACPI */
2399 of_register_spi_devices(ctlr);
2400 acpi_register_spi_devices(ctlr);
2401 done:
2402 return status;
2404 EXPORT_SYMBOL_GPL(spi_register_controller);
2406 static void devm_spi_unregister(struct device *dev, void *res)
2408 spi_unregister_controller(*(struct spi_controller **)res);
2412 * devm_spi_register_controller - register managed SPI master or slave
2413 * controller
2414 * @dev: device managing SPI controller
2415 * @ctlr: initialized controller, originally from spi_alloc_master() or
2416 * spi_alloc_slave()
2417 * Context: can sleep
2419 * Register a SPI device as with spi_register_controller() which will
2420 * automatically be unregistered and freed.
2422 * Return: zero on success, else a negative error code.
2424 int devm_spi_register_controller(struct device *dev,
2425 struct spi_controller *ctlr)
2427 struct spi_controller **ptr;
2428 int ret;
2430 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2431 if (!ptr)
2432 return -ENOMEM;
2434 ret = spi_register_controller(ctlr);
2435 if (!ret) {
2436 *ptr = ctlr;
2437 devres_add(dev, ptr);
2438 } else {
2439 devres_free(ptr);
2442 return ret;
2444 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2446 static int __unregister(struct device *dev, void *null)
2448 spi_unregister_device(to_spi_device(dev));
2449 return 0;
2453 * spi_unregister_controller - unregister SPI master or slave controller
2454 * @ctlr: the controller being unregistered
2455 * Context: can sleep
2457 * This call is used only by SPI controller drivers, which are the
2458 * only ones directly touching chip registers.
2460 * This must be called from context that can sleep.
2462 * Note that this function also drops a reference to the controller.
2464 void spi_unregister_controller(struct spi_controller *ctlr)
2466 struct spi_controller *found;
2467 int id = ctlr->bus_num;
2468 int dummy;
2470 /* First make sure that this controller was ever added */
2471 mutex_lock(&board_lock);
2472 found = idr_find(&spi_master_idr, id);
2473 mutex_unlock(&board_lock);
2474 if (ctlr->queued) {
2475 if (spi_destroy_queue(ctlr))
2476 dev_err(&ctlr->dev, "queue remove failed\n");
2478 mutex_lock(&board_lock);
2479 list_del(&ctlr->list);
2480 mutex_unlock(&board_lock);
2482 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2483 device_unregister(&ctlr->dev);
2484 /* free bus id */
2485 mutex_lock(&board_lock);
2486 if (found == ctlr)
2487 idr_remove(&spi_master_idr, id);
2488 mutex_unlock(&board_lock);
2490 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2492 int spi_controller_suspend(struct spi_controller *ctlr)
2494 int ret;
2496 /* Basically no-ops for non-queued controllers */
2497 if (!ctlr->queued)
2498 return 0;
2500 ret = spi_stop_queue(ctlr);
2501 if (ret)
2502 dev_err(&ctlr->dev, "queue stop failed\n");
2504 return ret;
2506 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2508 int spi_controller_resume(struct spi_controller *ctlr)
2510 int ret;
2512 if (!ctlr->queued)
2513 return 0;
2515 ret = spi_start_queue(ctlr);
2516 if (ret)
2517 dev_err(&ctlr->dev, "queue restart failed\n");
2519 return ret;
2521 EXPORT_SYMBOL_GPL(spi_controller_resume);
2523 static int __spi_controller_match(struct device *dev, const void *data)
2525 struct spi_controller *ctlr;
2526 const u16 *bus_num = data;
2528 ctlr = container_of(dev, struct spi_controller, dev);
2529 return ctlr->bus_num == *bus_num;
2533 * spi_busnum_to_master - look up master associated with bus_num
2534 * @bus_num: the master's bus number
2535 * Context: can sleep
2537 * This call may be used with devices that are registered after
2538 * arch init time. It returns a refcounted pointer to the relevant
2539 * spi_controller (which the caller must release), or NULL if there is
2540 * no such master registered.
2542 * Return: the SPI master structure on success, else NULL.
2544 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2546 struct device *dev;
2547 struct spi_controller *ctlr = NULL;
2549 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2550 __spi_controller_match);
2551 if (dev)
2552 ctlr = container_of(dev, struct spi_controller, dev);
2553 /* reference got in class_find_device */
2554 return ctlr;
2556 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2558 /*-------------------------------------------------------------------------*/
2560 /* Core methods for SPI resource management */
2563 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2564 * during the processing of a spi_message while using
2565 * spi_transfer_one
2566 * @spi: the spi device for which we allocate memory
2567 * @release: the release code to execute for this resource
2568 * @size: size to alloc and return
2569 * @gfp: GFP allocation flags
2571 * Return: the pointer to the allocated data
2573 * This may get enhanced in the future to allocate from a memory pool
2574 * of the @spi_device or @spi_controller to avoid repeated allocations.
2576 void *spi_res_alloc(struct spi_device *spi,
2577 spi_res_release_t release,
2578 size_t size, gfp_t gfp)
2580 struct spi_res *sres;
2582 sres = kzalloc(sizeof(*sres) + size, gfp);
2583 if (!sres)
2584 return NULL;
2586 INIT_LIST_HEAD(&sres->entry);
2587 sres->release = release;
2589 return sres->data;
2591 EXPORT_SYMBOL_GPL(spi_res_alloc);
2594 * spi_res_free - free an spi resource
2595 * @res: pointer to the custom data of a resource
2598 void spi_res_free(void *res)
2600 struct spi_res *sres = container_of(res, struct spi_res, data);
2602 if (!res)
2603 return;
2605 WARN_ON(!list_empty(&sres->entry));
2606 kfree(sres);
2608 EXPORT_SYMBOL_GPL(spi_res_free);
2611 * spi_res_add - add a spi_res to the spi_message
2612 * @message: the spi message
2613 * @res: the spi_resource
2615 void spi_res_add(struct spi_message *message, void *res)
2617 struct spi_res *sres = container_of(res, struct spi_res, data);
2619 WARN_ON(!list_empty(&sres->entry));
2620 list_add_tail(&sres->entry, &message->resources);
2622 EXPORT_SYMBOL_GPL(spi_res_add);
2625 * spi_res_release - release all spi resources for this message
2626 * @ctlr: the @spi_controller
2627 * @message: the @spi_message
2629 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2631 struct spi_res *res;
2633 while (!list_empty(&message->resources)) {
2634 res = list_last_entry(&message->resources,
2635 struct spi_res, entry);
2637 if (res->release)
2638 res->release(ctlr, message, res->data);
2640 list_del(&res->entry);
2642 kfree(res);
2645 EXPORT_SYMBOL_GPL(spi_res_release);
2647 /*-------------------------------------------------------------------------*/
2649 /* Core methods for spi_message alterations */
2651 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2652 struct spi_message *msg,
2653 void *res)
2655 struct spi_replaced_transfers *rxfer = res;
2656 size_t i;
2658 /* call extra callback if requested */
2659 if (rxfer->release)
2660 rxfer->release(ctlr, msg, res);
2662 /* insert replaced transfers back into the message */
2663 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2665 /* remove the formerly inserted entries */
2666 for (i = 0; i < rxfer->inserted; i++)
2667 list_del(&rxfer->inserted_transfers[i].transfer_list);
2671 * spi_replace_transfers - replace transfers with several transfers
2672 * and register change with spi_message.resources
2673 * @msg: the spi_message we work upon
2674 * @xfer_first: the first spi_transfer we want to replace
2675 * @remove: number of transfers to remove
2676 * @insert: the number of transfers we want to insert instead
2677 * @release: extra release code necessary in some circumstances
2678 * @extradatasize: extra data to allocate (with alignment guarantees
2679 * of struct @spi_transfer)
2680 * @gfp: gfp flags
2682 * Returns: pointer to @spi_replaced_transfers,
2683 * PTR_ERR(...) in case of errors.
2685 struct spi_replaced_transfers *spi_replace_transfers(
2686 struct spi_message *msg,
2687 struct spi_transfer *xfer_first,
2688 size_t remove,
2689 size_t insert,
2690 spi_replaced_release_t release,
2691 size_t extradatasize,
2692 gfp_t gfp)
2694 struct spi_replaced_transfers *rxfer;
2695 struct spi_transfer *xfer;
2696 size_t i;
2698 /* allocate the structure using spi_res */
2699 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2700 insert * sizeof(struct spi_transfer)
2701 + sizeof(struct spi_replaced_transfers)
2702 + extradatasize,
2703 gfp);
2704 if (!rxfer)
2705 return ERR_PTR(-ENOMEM);
2707 /* the release code to invoke before running the generic release */
2708 rxfer->release = release;
2710 /* assign extradata */
2711 if (extradatasize)
2712 rxfer->extradata =
2713 &rxfer->inserted_transfers[insert];
2715 /* init the replaced_transfers list */
2716 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2718 /* assign the list_entry after which we should reinsert
2719 * the @replaced_transfers - it may be spi_message.messages!
2721 rxfer->replaced_after = xfer_first->transfer_list.prev;
2723 /* remove the requested number of transfers */
2724 for (i = 0; i < remove; i++) {
2725 /* if the entry after replaced_after it is msg->transfers
2726 * then we have been requested to remove more transfers
2727 * than are in the list
2729 if (rxfer->replaced_after->next == &msg->transfers) {
2730 dev_err(&msg->spi->dev,
2731 "requested to remove more spi_transfers than are available\n");
2732 /* insert replaced transfers back into the message */
2733 list_splice(&rxfer->replaced_transfers,
2734 rxfer->replaced_after);
2736 /* free the spi_replace_transfer structure */
2737 spi_res_free(rxfer);
2739 /* and return with an error */
2740 return ERR_PTR(-EINVAL);
2743 /* remove the entry after replaced_after from list of
2744 * transfers and add it to list of replaced_transfers
2746 list_move_tail(rxfer->replaced_after->next,
2747 &rxfer->replaced_transfers);
2750 /* create copy of the given xfer with identical settings
2751 * based on the first transfer to get removed
2753 for (i = 0; i < insert; i++) {
2754 /* we need to run in reverse order */
2755 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2757 /* copy all spi_transfer data */
2758 memcpy(xfer, xfer_first, sizeof(*xfer));
2760 /* add to list */
2761 list_add(&xfer->transfer_list, rxfer->replaced_after);
2763 /* clear cs_change and delay_usecs for all but the last */
2764 if (i) {
2765 xfer->cs_change = false;
2766 xfer->delay_usecs = 0;
2770 /* set up inserted */
2771 rxfer->inserted = insert;
2773 /* and register it with spi_res/spi_message */
2774 spi_res_add(msg, rxfer);
2776 return rxfer;
2778 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2780 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2781 struct spi_message *msg,
2782 struct spi_transfer **xferp,
2783 size_t maxsize,
2784 gfp_t gfp)
2786 struct spi_transfer *xfer = *xferp, *xfers;
2787 struct spi_replaced_transfers *srt;
2788 size_t offset;
2789 size_t count, i;
2791 /* warn once about this fact that we are splitting a transfer */
2792 dev_warn_once(&msg->spi->dev,
2793 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2794 xfer->len, maxsize);
2796 /* calculate how many we have to replace */
2797 count = DIV_ROUND_UP(xfer->len, maxsize);
2799 /* create replacement */
2800 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2801 if (IS_ERR(srt))
2802 return PTR_ERR(srt);
2803 xfers = srt->inserted_transfers;
2805 /* now handle each of those newly inserted spi_transfers
2806 * note that the replacements spi_transfers all are preset
2807 * to the same values as *xferp, so tx_buf, rx_buf and len
2808 * are all identical (as well as most others)
2809 * so we just have to fix up len and the pointers.
2811 * this also includes support for the depreciated
2812 * spi_message.is_dma_mapped interface
2815 /* the first transfer just needs the length modified, so we
2816 * run it outside the loop
2818 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2820 /* all the others need rx_buf/tx_buf also set */
2821 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2822 /* update rx_buf, tx_buf and dma */
2823 if (xfers[i].rx_buf)
2824 xfers[i].rx_buf += offset;
2825 if (xfers[i].rx_dma)
2826 xfers[i].rx_dma += offset;
2827 if (xfers[i].tx_buf)
2828 xfers[i].tx_buf += offset;
2829 if (xfers[i].tx_dma)
2830 xfers[i].tx_dma += offset;
2832 /* update length */
2833 xfers[i].len = min(maxsize, xfers[i].len - offset);
2836 /* we set up xferp to the last entry we have inserted,
2837 * so that we skip those already split transfers
2839 *xferp = &xfers[count - 1];
2841 /* increment statistics counters */
2842 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2843 transfers_split_maxsize);
2844 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2845 transfers_split_maxsize);
2847 return 0;
2851 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2852 * when an individual transfer exceeds a
2853 * certain size
2854 * @ctlr: the @spi_controller for this transfer
2855 * @msg: the @spi_message to transform
2856 * @maxsize: the maximum when to apply this
2857 * @gfp: GFP allocation flags
2859 * Return: status of transformation
2861 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2862 struct spi_message *msg,
2863 size_t maxsize,
2864 gfp_t gfp)
2866 struct spi_transfer *xfer;
2867 int ret;
2869 /* iterate over the transfer_list,
2870 * but note that xfer is advanced to the last transfer inserted
2871 * to avoid checking sizes again unnecessarily (also xfer does
2872 * potentiall belong to a different list by the time the
2873 * replacement has happened
2875 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2876 if (xfer->len > maxsize) {
2877 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2878 maxsize, gfp);
2879 if (ret)
2880 return ret;
2884 return 0;
2886 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2888 /*-------------------------------------------------------------------------*/
2890 /* Core methods for SPI controller protocol drivers. Some of the
2891 * other core methods are currently defined as inline functions.
2894 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2895 u8 bits_per_word)
2897 if (ctlr->bits_per_word_mask) {
2898 /* Only 32 bits fit in the mask */
2899 if (bits_per_word > 32)
2900 return -EINVAL;
2901 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2902 return -EINVAL;
2905 return 0;
2909 * spi_setup - setup SPI mode and clock rate
2910 * @spi: the device whose settings are being modified
2911 * Context: can sleep, and no requests are queued to the device
2913 * SPI protocol drivers may need to update the transfer mode if the
2914 * device doesn't work with its default. They may likewise need
2915 * to update clock rates or word sizes from initial values. This function
2916 * changes those settings, and must be called from a context that can sleep.
2917 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2918 * effect the next time the device is selected and data is transferred to
2919 * or from it. When this function returns, the spi device is deselected.
2921 * Note that this call will fail if the protocol driver specifies an option
2922 * that the underlying controller or its driver does not support. For
2923 * example, not all hardware supports wire transfers using nine bit words,
2924 * LSB-first wire encoding, or active-high chipselects.
2926 * Return: zero on success, else a negative error code.
2928 int spi_setup(struct spi_device *spi)
2930 unsigned bad_bits, ugly_bits;
2931 int status;
2933 /* check mode to prevent that DUAL and QUAD set at the same time
2935 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2936 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2937 dev_err(&spi->dev,
2938 "setup: can not select dual and quad at the same time\n");
2939 return -EINVAL;
2941 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2943 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2944 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2945 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
2946 return -EINVAL;
2947 /* help drivers fail *cleanly* when they need options
2948 * that aren't supported with their current controller
2949 * SPI_CS_WORD has a fallback software implementation,
2950 * so it is ignored here.
2952 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2953 ugly_bits = bad_bits &
2954 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2955 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2956 if (ugly_bits) {
2957 dev_warn(&spi->dev,
2958 "setup: ignoring unsupported mode bits %x\n",
2959 ugly_bits);
2960 spi->mode &= ~ugly_bits;
2961 bad_bits &= ~ugly_bits;
2963 if (bad_bits) {
2964 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2965 bad_bits);
2966 return -EINVAL;
2969 if (!spi->bits_per_word)
2970 spi->bits_per_word = 8;
2972 status = __spi_validate_bits_per_word(spi->controller,
2973 spi->bits_per_word);
2974 if (status)
2975 return status;
2977 if (!spi->max_speed_hz)
2978 spi->max_speed_hz = spi->controller->max_speed_hz;
2980 if (spi->controller->setup)
2981 status = spi->controller->setup(spi);
2983 spi_set_cs(spi, false);
2985 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2986 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2987 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2988 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2989 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2990 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2991 spi->bits_per_word, spi->max_speed_hz,
2992 status);
2994 return status;
2996 EXPORT_SYMBOL_GPL(spi_setup);
2998 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3000 struct spi_controller *ctlr = spi->controller;
3001 struct spi_transfer *xfer;
3002 int w_size;
3004 if (list_empty(&message->transfers))
3005 return -EINVAL;
3007 /* If an SPI controller does not support toggling the CS line on each
3008 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3009 * for the CS line, we can emulate the CS-per-word hardware function by
3010 * splitting transfers into one-word transfers and ensuring that
3011 * cs_change is set for each transfer.
3013 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3014 spi->cs_gpiod ||
3015 gpio_is_valid(spi->cs_gpio))) {
3016 size_t maxsize;
3017 int ret;
3019 maxsize = (spi->bits_per_word + 7) / 8;
3021 /* spi_split_transfers_maxsize() requires message->spi */
3022 message->spi = spi;
3024 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3025 GFP_KERNEL);
3026 if (ret)
3027 return ret;
3029 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3030 /* don't change cs_change on the last entry in the list */
3031 if (list_is_last(&xfer->transfer_list, &message->transfers))
3032 break;
3033 xfer->cs_change = 1;
3037 /* Half-duplex links include original MicroWire, and ones with
3038 * only one data pin like SPI_3WIRE (switches direction) or where
3039 * either MOSI or MISO is missing. They can also be caused by
3040 * software limitations.
3042 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3043 (spi->mode & SPI_3WIRE)) {
3044 unsigned flags = ctlr->flags;
3046 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3047 if (xfer->rx_buf && xfer->tx_buf)
3048 return -EINVAL;
3049 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3050 return -EINVAL;
3051 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3052 return -EINVAL;
3057 * Set transfer bits_per_word and max speed as spi device default if
3058 * it is not set for this transfer.
3059 * Set transfer tx_nbits and rx_nbits as single transfer default
3060 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3061 * Ensure transfer word_delay is at least as long as that required by
3062 * device itself.
3064 message->frame_length = 0;
3065 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3066 message->frame_length += xfer->len;
3067 if (!xfer->bits_per_word)
3068 xfer->bits_per_word = spi->bits_per_word;
3070 if (!xfer->speed_hz)
3071 xfer->speed_hz = spi->max_speed_hz;
3072 if (!xfer->speed_hz)
3073 xfer->speed_hz = ctlr->max_speed_hz;
3075 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3076 xfer->speed_hz = ctlr->max_speed_hz;
3078 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3079 return -EINVAL;
3082 * SPI transfer length should be multiple of SPI word size
3083 * where SPI word size should be power-of-two multiple
3085 if (xfer->bits_per_word <= 8)
3086 w_size = 1;
3087 else if (xfer->bits_per_word <= 16)
3088 w_size = 2;
3089 else
3090 w_size = 4;
3092 /* No partial transfers accepted */
3093 if (xfer->len % w_size)
3094 return -EINVAL;
3096 if (xfer->speed_hz && ctlr->min_speed_hz &&
3097 xfer->speed_hz < ctlr->min_speed_hz)
3098 return -EINVAL;
3100 if (xfer->tx_buf && !xfer->tx_nbits)
3101 xfer->tx_nbits = SPI_NBITS_SINGLE;
3102 if (xfer->rx_buf && !xfer->rx_nbits)
3103 xfer->rx_nbits = SPI_NBITS_SINGLE;
3104 /* check transfer tx/rx_nbits:
3105 * 1. check the value matches one of single, dual and quad
3106 * 2. check tx/rx_nbits match the mode in spi_device
3108 if (xfer->tx_buf) {
3109 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3110 xfer->tx_nbits != SPI_NBITS_DUAL &&
3111 xfer->tx_nbits != SPI_NBITS_QUAD)
3112 return -EINVAL;
3113 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3114 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3115 return -EINVAL;
3116 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3117 !(spi->mode & SPI_TX_QUAD))
3118 return -EINVAL;
3120 /* check transfer rx_nbits */
3121 if (xfer->rx_buf) {
3122 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3123 xfer->rx_nbits != SPI_NBITS_DUAL &&
3124 xfer->rx_nbits != SPI_NBITS_QUAD)
3125 return -EINVAL;
3126 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3127 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3128 return -EINVAL;
3129 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3130 !(spi->mode & SPI_RX_QUAD))
3131 return -EINVAL;
3134 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3135 xfer->word_delay_usecs = spi->word_delay_usecs;
3138 message->status = -EINPROGRESS;
3140 return 0;
3143 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3145 struct spi_controller *ctlr = spi->controller;
3148 * Some controllers do not support doing regular SPI transfers. Return
3149 * ENOTSUPP when this is the case.
3151 if (!ctlr->transfer)
3152 return -ENOTSUPP;
3154 message->spi = spi;
3156 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3157 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3159 trace_spi_message_submit(message);
3161 return ctlr->transfer(spi, message);
3165 * spi_async - asynchronous SPI transfer
3166 * @spi: device with which data will be exchanged
3167 * @message: describes the data transfers, including completion callback
3168 * Context: any (irqs may be blocked, etc)
3170 * This call may be used in_irq and other contexts which can't sleep,
3171 * as well as from task contexts which can sleep.
3173 * The completion callback is invoked in a context which can't sleep.
3174 * Before that invocation, the value of message->status is undefined.
3175 * When the callback is issued, message->status holds either zero (to
3176 * indicate complete success) or a negative error code. After that
3177 * callback returns, the driver which issued the transfer request may
3178 * deallocate the associated memory; it's no longer in use by any SPI
3179 * core or controller driver code.
3181 * Note that although all messages to a spi_device are handled in
3182 * FIFO order, messages may go to different devices in other orders.
3183 * Some device might be higher priority, or have various "hard" access
3184 * time requirements, for example.
3186 * On detection of any fault during the transfer, processing of
3187 * the entire message is aborted, and the device is deselected.
3188 * Until returning from the associated message completion callback,
3189 * no other spi_message queued to that device will be processed.
3190 * (This rule applies equally to all the synchronous transfer calls,
3191 * which are wrappers around this core asynchronous primitive.)
3193 * Return: zero on success, else a negative error code.
3195 int spi_async(struct spi_device *spi, struct spi_message *message)
3197 struct spi_controller *ctlr = spi->controller;
3198 int ret;
3199 unsigned long flags;
3201 ret = __spi_validate(spi, message);
3202 if (ret != 0)
3203 return ret;
3205 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3207 if (ctlr->bus_lock_flag)
3208 ret = -EBUSY;
3209 else
3210 ret = __spi_async(spi, message);
3212 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3214 return ret;
3216 EXPORT_SYMBOL_GPL(spi_async);
3219 * spi_async_locked - version of spi_async with exclusive bus usage
3220 * @spi: device with which data will be exchanged
3221 * @message: describes the data transfers, including completion callback
3222 * Context: any (irqs may be blocked, etc)
3224 * This call may be used in_irq and other contexts which can't sleep,
3225 * as well as from task contexts which can sleep.
3227 * The completion callback is invoked in a context which can't sleep.
3228 * Before that invocation, the value of message->status is undefined.
3229 * When the callback is issued, message->status holds either zero (to
3230 * indicate complete success) or a negative error code. After that
3231 * callback returns, the driver which issued the transfer request may
3232 * deallocate the associated memory; it's no longer in use by any SPI
3233 * core or controller driver code.
3235 * Note that although all messages to a spi_device are handled in
3236 * FIFO order, messages may go to different devices in other orders.
3237 * Some device might be higher priority, or have various "hard" access
3238 * time requirements, for example.
3240 * On detection of any fault during the transfer, processing of
3241 * the entire message is aborted, and the device is deselected.
3242 * Until returning from the associated message completion callback,
3243 * no other spi_message queued to that device will be processed.
3244 * (This rule applies equally to all the synchronous transfer calls,
3245 * which are wrappers around this core asynchronous primitive.)
3247 * Return: zero on success, else a negative error code.
3249 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3251 struct spi_controller *ctlr = spi->controller;
3252 int ret;
3253 unsigned long flags;
3255 ret = __spi_validate(spi, message);
3256 if (ret != 0)
3257 return ret;
3259 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3261 ret = __spi_async(spi, message);
3263 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3265 return ret;
3268 EXPORT_SYMBOL_GPL(spi_async_locked);
3270 /*-------------------------------------------------------------------------*/
3272 /* Utility methods for SPI protocol drivers, layered on
3273 * top of the core. Some other utility methods are defined as
3274 * inline functions.
3277 static void spi_complete(void *arg)
3279 complete(arg);
3282 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3284 DECLARE_COMPLETION_ONSTACK(done);
3285 int status;
3286 struct spi_controller *ctlr = spi->controller;
3287 unsigned long flags;
3289 status = __spi_validate(spi, message);
3290 if (status != 0)
3291 return status;
3293 message->complete = spi_complete;
3294 message->context = &done;
3295 message->spi = spi;
3297 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3298 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3300 /* If we're not using the legacy transfer method then we will
3301 * try to transfer in the calling context so special case.
3302 * This code would be less tricky if we could remove the
3303 * support for driver implemented message queues.
3305 if (ctlr->transfer == spi_queued_transfer) {
3306 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3308 trace_spi_message_submit(message);
3310 status = __spi_queued_transfer(spi, message, false);
3312 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3313 } else {
3314 status = spi_async_locked(spi, message);
3317 if (status == 0) {
3318 /* Push out the messages in the calling context if we
3319 * can.
3321 if (ctlr->transfer == spi_queued_transfer) {
3322 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3323 spi_sync_immediate);
3324 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3325 spi_sync_immediate);
3326 __spi_pump_messages(ctlr, false);
3329 wait_for_completion(&done);
3330 status = message->status;
3332 message->context = NULL;
3333 return status;
3337 * spi_sync - blocking/synchronous SPI data transfers
3338 * @spi: device with which data will be exchanged
3339 * @message: describes the data transfers
3340 * Context: can sleep
3342 * This call may only be used from a context that may sleep. The sleep
3343 * is non-interruptible, and has no timeout. Low-overhead controller
3344 * drivers may DMA directly into and out of the message buffers.
3346 * Note that the SPI device's chip select is active during the message,
3347 * and then is normally disabled between messages. Drivers for some
3348 * frequently-used devices may want to minimize costs of selecting a chip,
3349 * by leaving it selected in anticipation that the next message will go
3350 * to the same chip. (That may increase power usage.)
3352 * Also, the caller is guaranteeing that the memory associated with the
3353 * message will not be freed before this call returns.
3355 * Return: zero on success, else a negative error code.
3357 int spi_sync(struct spi_device *spi, struct spi_message *message)
3359 int ret;
3361 mutex_lock(&spi->controller->bus_lock_mutex);
3362 ret = __spi_sync(spi, message);
3363 mutex_unlock(&spi->controller->bus_lock_mutex);
3365 return ret;
3367 EXPORT_SYMBOL_GPL(spi_sync);
3370 * spi_sync_locked - version of spi_sync with exclusive bus usage
3371 * @spi: device with which data will be exchanged
3372 * @message: describes the data transfers
3373 * Context: can sleep
3375 * This call may only be used from a context that may sleep. The sleep
3376 * is non-interruptible, and has no timeout. Low-overhead controller
3377 * drivers may DMA directly into and out of the message buffers.
3379 * This call should be used by drivers that require exclusive access to the
3380 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3381 * be released by a spi_bus_unlock call when the exclusive access is over.
3383 * Return: zero on success, else a negative error code.
3385 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3387 return __spi_sync(spi, message);
3389 EXPORT_SYMBOL_GPL(spi_sync_locked);
3392 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3393 * @ctlr: SPI bus master that should be locked for exclusive bus access
3394 * Context: can sleep
3396 * This call may only be used from a context that may sleep. The sleep
3397 * is non-interruptible, and has no timeout.
3399 * This call should be used by drivers that require exclusive access to the
3400 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3401 * exclusive access is over. Data transfer must be done by spi_sync_locked
3402 * and spi_async_locked calls when the SPI bus lock is held.
3404 * Return: always zero.
3406 int spi_bus_lock(struct spi_controller *ctlr)
3408 unsigned long flags;
3410 mutex_lock(&ctlr->bus_lock_mutex);
3412 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3413 ctlr->bus_lock_flag = 1;
3414 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3416 /* mutex remains locked until spi_bus_unlock is called */
3418 return 0;
3420 EXPORT_SYMBOL_GPL(spi_bus_lock);
3423 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3424 * @ctlr: SPI bus master that was locked for exclusive bus access
3425 * Context: can sleep
3427 * This call may only be used from a context that may sleep. The sleep
3428 * is non-interruptible, and has no timeout.
3430 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3431 * call.
3433 * Return: always zero.
3435 int spi_bus_unlock(struct spi_controller *ctlr)
3437 ctlr->bus_lock_flag = 0;
3439 mutex_unlock(&ctlr->bus_lock_mutex);
3441 return 0;
3443 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3445 /* portable code must never pass more than 32 bytes */
3446 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3448 static u8 *buf;
3451 * spi_write_then_read - SPI synchronous write followed by read
3452 * @spi: device with which data will be exchanged
3453 * @txbuf: data to be written (need not be dma-safe)
3454 * @n_tx: size of txbuf, in bytes
3455 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3456 * @n_rx: size of rxbuf, in bytes
3457 * Context: can sleep
3459 * This performs a half duplex MicroWire style transaction with the
3460 * device, sending txbuf and then reading rxbuf. The return value
3461 * is zero for success, else a negative errno status code.
3462 * This call may only be used from a context that may sleep.
3464 * Parameters to this routine are always copied using a small buffer;
3465 * portable code should never use this for more than 32 bytes.
3466 * Performance-sensitive or bulk transfer code should instead use
3467 * spi_{async,sync}() calls with dma-safe buffers.
3469 * Return: zero on success, else a negative error code.
3471 int spi_write_then_read(struct spi_device *spi,
3472 const void *txbuf, unsigned n_tx,
3473 void *rxbuf, unsigned n_rx)
3475 static DEFINE_MUTEX(lock);
3477 int status;
3478 struct spi_message message;
3479 struct spi_transfer x[2];
3480 u8 *local_buf;
3482 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3483 * copying here, (as a pure convenience thing), but we can
3484 * keep heap costs out of the hot path unless someone else is
3485 * using the pre-allocated buffer or the transfer is too large.
3487 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3488 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3489 GFP_KERNEL | GFP_DMA);
3490 if (!local_buf)
3491 return -ENOMEM;
3492 } else {
3493 local_buf = buf;
3496 spi_message_init(&message);
3497 memset(x, 0, sizeof(x));
3498 if (n_tx) {
3499 x[0].len = n_tx;
3500 spi_message_add_tail(&x[0], &message);
3502 if (n_rx) {
3503 x[1].len = n_rx;
3504 spi_message_add_tail(&x[1], &message);
3507 memcpy(local_buf, txbuf, n_tx);
3508 x[0].tx_buf = local_buf;
3509 x[1].rx_buf = local_buf + n_tx;
3511 /* do the i/o */
3512 status = spi_sync(spi, &message);
3513 if (status == 0)
3514 memcpy(rxbuf, x[1].rx_buf, n_rx);
3516 if (x[0].tx_buf == buf)
3517 mutex_unlock(&lock);
3518 else
3519 kfree(local_buf);
3521 return status;
3523 EXPORT_SYMBOL_GPL(spi_write_then_read);
3525 /*-------------------------------------------------------------------------*/
3527 #if IS_ENABLED(CONFIG_OF)
3528 static int __spi_of_device_match(struct device *dev, void *data)
3530 return dev->of_node == data;
3533 /* must call put_device() when done with returned spi_device device */
3534 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3536 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3537 __spi_of_device_match);
3538 return dev ? to_spi_device(dev) : NULL;
3540 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3541 #endif /* IS_ENABLED(CONFIG_OF) */
3543 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3544 static int __spi_of_controller_match(struct device *dev, const void *data)
3546 return dev->of_node == data;
3549 /* the spi controllers are not using spi_bus, so we find it with another way */
3550 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3552 struct device *dev;
3554 dev = class_find_device(&spi_master_class, NULL, node,
3555 __spi_of_controller_match);
3556 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3557 dev = class_find_device(&spi_slave_class, NULL, node,
3558 __spi_of_controller_match);
3559 if (!dev)
3560 return NULL;
3562 /* reference got in class_find_device */
3563 return container_of(dev, struct spi_controller, dev);
3566 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3567 void *arg)
3569 struct of_reconfig_data *rd = arg;
3570 struct spi_controller *ctlr;
3571 struct spi_device *spi;
3573 switch (of_reconfig_get_state_change(action, arg)) {
3574 case OF_RECONFIG_CHANGE_ADD:
3575 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3576 if (ctlr == NULL)
3577 return NOTIFY_OK; /* not for us */
3579 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3580 put_device(&ctlr->dev);
3581 return NOTIFY_OK;
3584 spi = of_register_spi_device(ctlr, rd->dn);
3585 put_device(&ctlr->dev);
3587 if (IS_ERR(spi)) {
3588 pr_err("%s: failed to create for '%pOF'\n",
3589 __func__, rd->dn);
3590 of_node_clear_flag(rd->dn, OF_POPULATED);
3591 return notifier_from_errno(PTR_ERR(spi));
3593 break;
3595 case OF_RECONFIG_CHANGE_REMOVE:
3596 /* already depopulated? */
3597 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3598 return NOTIFY_OK;
3600 /* find our device by node */
3601 spi = of_find_spi_device_by_node(rd->dn);
3602 if (spi == NULL)
3603 return NOTIFY_OK; /* no? not meant for us */
3605 /* unregister takes one ref away */
3606 spi_unregister_device(spi);
3608 /* and put the reference of the find */
3609 put_device(&spi->dev);
3610 break;
3613 return NOTIFY_OK;
3616 static struct notifier_block spi_of_notifier = {
3617 .notifier_call = of_spi_notify,
3619 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3620 extern struct notifier_block spi_of_notifier;
3621 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3623 #if IS_ENABLED(CONFIG_ACPI)
3624 static int spi_acpi_controller_match(struct device *dev, const void *data)
3626 return ACPI_COMPANION(dev->parent) == data;
3629 static int spi_acpi_device_match(struct device *dev, void *data)
3631 return ACPI_COMPANION(dev) == data;
3634 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3636 struct device *dev;
3638 dev = class_find_device(&spi_master_class, NULL, adev,
3639 spi_acpi_controller_match);
3640 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3641 dev = class_find_device(&spi_slave_class, NULL, adev,
3642 spi_acpi_controller_match);
3643 if (!dev)
3644 return NULL;
3646 return container_of(dev, struct spi_controller, dev);
3649 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3651 struct device *dev;
3653 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3655 return dev ? to_spi_device(dev) : NULL;
3658 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3659 void *arg)
3661 struct acpi_device *adev = arg;
3662 struct spi_controller *ctlr;
3663 struct spi_device *spi;
3665 switch (value) {
3666 case ACPI_RECONFIG_DEVICE_ADD:
3667 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3668 if (!ctlr)
3669 break;
3671 acpi_register_spi_device(ctlr, adev);
3672 put_device(&ctlr->dev);
3673 break;
3674 case ACPI_RECONFIG_DEVICE_REMOVE:
3675 if (!acpi_device_enumerated(adev))
3676 break;
3678 spi = acpi_spi_find_device_by_adev(adev);
3679 if (!spi)
3680 break;
3682 spi_unregister_device(spi);
3683 put_device(&spi->dev);
3684 break;
3687 return NOTIFY_OK;
3690 static struct notifier_block spi_acpi_notifier = {
3691 .notifier_call = acpi_spi_notify,
3693 #else
3694 extern struct notifier_block spi_acpi_notifier;
3695 #endif
3697 static int __init spi_init(void)
3699 int status;
3701 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3702 if (!buf) {
3703 status = -ENOMEM;
3704 goto err0;
3707 status = bus_register(&spi_bus_type);
3708 if (status < 0)
3709 goto err1;
3711 status = class_register(&spi_master_class);
3712 if (status < 0)
3713 goto err2;
3715 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3716 status = class_register(&spi_slave_class);
3717 if (status < 0)
3718 goto err3;
3721 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3722 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3723 if (IS_ENABLED(CONFIG_ACPI))
3724 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3726 return 0;
3728 err3:
3729 class_unregister(&spi_master_class);
3730 err2:
3731 bus_unregister(&spi_bus_type);
3732 err1:
3733 kfree(buf);
3734 buf = NULL;
3735 err0:
3736 return status;
3739 /* board_info is normally registered in arch_initcall(),
3740 * but even essential drivers wait till later
3742 * REVISIT only boardinfo really needs static linking. the rest (device and
3743 * driver registration) _could_ be dynamically linked (modular) ... costs
3744 * include needing to have boardinfo data structures be much more public.
3746 postcore_initcall(spi_init);