Linux 5.1.15
[linux/fpc-iii.git] / drivers / thunderbolt / nhi.c
blob9aa44f9762a3886980e48b6eb986a90f3b0731b3
1 /*
2 * Thunderbolt driver - NHI driver
4 * The NHI (native host interface) is the pci device that allows us to send and
5 * receive frames from the thunderbolt bus.
7 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
8 * Copyright (C) 2018, Intel Corporation
9 */
11 #include <linux/pm_runtime.h>
12 #include <linux/slab.h>
13 #include <linux/errno.h>
14 #include <linux/pci.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/delay.h>
19 #include "nhi.h"
20 #include "nhi_regs.h"
21 #include "tb.h"
23 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26 * Used to enable end-to-end workaround for missing RX packets. Do not
27 * use this ring for anything else.
29 #define RING_E2E_UNUSED_HOPID 2
30 /* HopIDs 0-7 are reserved by the Thunderbolt protocol */
31 #define RING_FIRST_USABLE_HOPID 8
34 * Minimal number of vectors when we use MSI-X. Two for control channel
35 * Rx/Tx and the rest four are for cross domain DMA paths.
37 #define MSIX_MIN_VECS 6
38 #define MSIX_MAX_VECS 16
40 #define NHI_MAILBOX_TIMEOUT 500 /* ms */
42 static int ring_interrupt_index(struct tb_ring *ring)
44 int bit = ring->hop;
45 if (!ring->is_tx)
46 bit += ring->nhi->hop_count;
47 return bit;
50 /**
51 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
53 * ring->nhi->lock must be held.
55 static void ring_interrupt_active(struct tb_ring *ring, bool active)
57 int reg = REG_RING_INTERRUPT_BASE +
58 ring_interrupt_index(ring) / 32 * 4;
59 int bit = ring_interrupt_index(ring) & 31;
60 int mask = 1 << bit;
61 u32 old, new;
63 if (ring->irq > 0) {
64 u32 step, shift, ivr, misc;
65 void __iomem *ivr_base;
66 int index;
68 if (ring->is_tx)
69 index = ring->hop;
70 else
71 index = ring->hop + ring->nhi->hop_count;
74 * Ask the hardware to clear interrupt status bits automatically
75 * since we already know which interrupt was triggered.
77 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
78 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
79 misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
80 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
83 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
84 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
85 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
86 ivr = ioread32(ivr_base + step);
87 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
88 if (active)
89 ivr |= ring->vector << shift;
90 iowrite32(ivr, ivr_base + step);
93 old = ioread32(ring->nhi->iobase + reg);
94 if (active)
95 new = old | mask;
96 else
97 new = old & ~mask;
99 dev_dbg(&ring->nhi->pdev->dev,
100 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
101 active ? "enabling" : "disabling", reg, bit, old, new);
103 if (new == old)
104 dev_WARN(&ring->nhi->pdev->dev,
105 "interrupt for %s %d is already %s\n",
106 RING_TYPE(ring), ring->hop,
107 active ? "enabled" : "disabled");
108 iowrite32(new, ring->nhi->iobase + reg);
112 * nhi_disable_interrupts() - disable interrupts for all rings
114 * Use only during init and shutdown.
116 static void nhi_disable_interrupts(struct tb_nhi *nhi)
118 int i = 0;
119 /* disable interrupts */
120 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
121 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
123 /* clear interrupt status bits */
124 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
125 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
128 /* ring helper methods */
130 static void __iomem *ring_desc_base(struct tb_ring *ring)
132 void __iomem *io = ring->nhi->iobase;
133 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
134 io += ring->hop * 16;
135 return io;
138 static void __iomem *ring_options_base(struct tb_ring *ring)
140 void __iomem *io = ring->nhi->iobase;
141 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
142 io += ring->hop * 32;
143 return io;
146 static void ring_iowrite16desc(struct tb_ring *ring, u32 value, u32 offset)
148 iowrite16(value, ring_desc_base(ring) + offset);
151 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
153 iowrite32(value, ring_desc_base(ring) + offset);
156 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
158 iowrite32(value, ring_desc_base(ring) + offset);
159 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
162 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
164 iowrite32(value, ring_options_base(ring) + offset);
167 static bool ring_full(struct tb_ring *ring)
169 return ((ring->head + 1) % ring->size) == ring->tail;
172 static bool ring_empty(struct tb_ring *ring)
174 return ring->head == ring->tail;
178 * ring_write_descriptors() - post frames from ring->queue to the controller
180 * ring->lock is held.
182 static void ring_write_descriptors(struct tb_ring *ring)
184 struct ring_frame *frame, *n;
185 struct ring_desc *descriptor;
186 list_for_each_entry_safe(frame, n, &ring->queue, list) {
187 if (ring_full(ring))
188 break;
189 list_move_tail(&frame->list, &ring->in_flight);
190 descriptor = &ring->descriptors[ring->head];
191 descriptor->phys = frame->buffer_phy;
192 descriptor->time = 0;
193 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
194 if (ring->is_tx) {
195 descriptor->length = frame->size;
196 descriptor->eof = frame->eof;
197 descriptor->sof = frame->sof;
199 ring->head = (ring->head + 1) % ring->size;
200 ring_iowrite16desc(ring, ring->head, ring->is_tx ? 10 : 8);
205 * ring_work() - progress completed frames
207 * If the ring is shutting down then all frames are marked as canceled and
208 * their callbacks are invoked.
210 * Otherwise we collect all completed frame from the ring buffer, write new
211 * frame to the ring buffer and invoke the callbacks for the completed frames.
213 static void ring_work(struct work_struct *work)
215 struct tb_ring *ring = container_of(work, typeof(*ring), work);
216 struct ring_frame *frame;
217 bool canceled = false;
218 unsigned long flags;
219 LIST_HEAD(done);
221 spin_lock_irqsave(&ring->lock, flags);
223 if (!ring->running) {
224 /* Move all frames to done and mark them as canceled. */
225 list_splice_tail_init(&ring->in_flight, &done);
226 list_splice_tail_init(&ring->queue, &done);
227 canceled = true;
228 goto invoke_callback;
231 while (!ring_empty(ring)) {
232 if (!(ring->descriptors[ring->tail].flags
233 & RING_DESC_COMPLETED))
234 break;
235 frame = list_first_entry(&ring->in_flight, typeof(*frame),
236 list);
237 list_move_tail(&frame->list, &done);
238 if (!ring->is_tx) {
239 frame->size = ring->descriptors[ring->tail].length;
240 frame->eof = ring->descriptors[ring->tail].eof;
241 frame->sof = ring->descriptors[ring->tail].sof;
242 frame->flags = ring->descriptors[ring->tail].flags;
244 ring->tail = (ring->tail + 1) % ring->size;
246 ring_write_descriptors(ring);
248 invoke_callback:
249 /* allow callbacks to schedule new work */
250 spin_unlock_irqrestore(&ring->lock, flags);
251 while (!list_empty(&done)) {
252 frame = list_first_entry(&done, typeof(*frame), list);
254 * The callback may reenqueue or delete frame.
255 * Do not hold on to it.
257 list_del_init(&frame->list);
258 if (frame->callback)
259 frame->callback(ring, frame, canceled);
263 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
265 unsigned long flags;
266 int ret = 0;
268 spin_lock_irqsave(&ring->lock, flags);
269 if (ring->running) {
270 list_add_tail(&frame->list, &ring->queue);
271 ring_write_descriptors(ring);
272 } else {
273 ret = -ESHUTDOWN;
275 spin_unlock_irqrestore(&ring->lock, flags);
276 return ret;
278 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
281 * tb_ring_poll() - Poll one completed frame from the ring
282 * @ring: Ring to poll
284 * This function can be called when @start_poll callback of the @ring
285 * has been called. It will read one completed frame from the ring and
286 * return it to the caller. Returns %NULL if there is no more completed
287 * frames.
289 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
291 struct ring_frame *frame = NULL;
292 unsigned long flags;
294 spin_lock_irqsave(&ring->lock, flags);
295 if (!ring->running)
296 goto unlock;
297 if (ring_empty(ring))
298 goto unlock;
300 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
301 frame = list_first_entry(&ring->in_flight, typeof(*frame),
302 list);
303 list_del_init(&frame->list);
305 if (!ring->is_tx) {
306 frame->size = ring->descriptors[ring->tail].length;
307 frame->eof = ring->descriptors[ring->tail].eof;
308 frame->sof = ring->descriptors[ring->tail].sof;
309 frame->flags = ring->descriptors[ring->tail].flags;
312 ring->tail = (ring->tail + 1) % ring->size;
315 unlock:
316 spin_unlock_irqrestore(&ring->lock, flags);
317 return frame;
319 EXPORT_SYMBOL_GPL(tb_ring_poll);
321 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
323 int idx = ring_interrupt_index(ring);
324 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
325 int bit = idx % 32;
326 u32 val;
328 val = ioread32(ring->nhi->iobase + reg);
329 if (mask)
330 val &= ~BIT(bit);
331 else
332 val |= BIT(bit);
333 iowrite32(val, ring->nhi->iobase + reg);
336 /* Both @nhi->lock and @ring->lock should be held */
337 static void __ring_interrupt(struct tb_ring *ring)
339 if (!ring->running)
340 return;
342 if (ring->start_poll) {
343 __ring_interrupt_mask(ring, true);
344 ring->start_poll(ring->poll_data);
345 } else {
346 schedule_work(&ring->work);
351 * tb_ring_poll_complete() - Re-start interrupt for the ring
352 * @ring: Ring to re-start the interrupt
354 * This will re-start (unmask) the ring interrupt once the user is done
355 * with polling.
357 void tb_ring_poll_complete(struct tb_ring *ring)
359 unsigned long flags;
361 spin_lock_irqsave(&ring->nhi->lock, flags);
362 spin_lock(&ring->lock);
363 if (ring->start_poll)
364 __ring_interrupt_mask(ring, false);
365 spin_unlock(&ring->lock);
366 spin_unlock_irqrestore(&ring->nhi->lock, flags);
368 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
370 static irqreturn_t ring_msix(int irq, void *data)
372 struct tb_ring *ring = data;
374 spin_lock(&ring->nhi->lock);
375 spin_lock(&ring->lock);
376 __ring_interrupt(ring);
377 spin_unlock(&ring->lock);
378 spin_unlock(&ring->nhi->lock);
380 return IRQ_HANDLED;
383 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
385 struct tb_nhi *nhi = ring->nhi;
386 unsigned long irqflags;
387 int ret;
389 if (!nhi->pdev->msix_enabled)
390 return 0;
392 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
393 if (ret < 0)
394 return ret;
396 ring->vector = ret;
398 ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
399 if (ring->irq < 0)
400 return ring->irq;
402 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
403 return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
406 static void ring_release_msix(struct tb_ring *ring)
408 if (ring->irq <= 0)
409 return;
411 free_irq(ring->irq, ring);
412 ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
413 ring->vector = 0;
414 ring->irq = 0;
417 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
419 int ret = 0;
421 spin_lock_irq(&nhi->lock);
423 if (ring->hop < 0) {
424 unsigned int i;
427 * Automatically allocate HopID from the non-reserved
428 * range 8 .. hop_count - 1.
430 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
431 if (ring->is_tx) {
432 if (!nhi->tx_rings[i]) {
433 ring->hop = i;
434 break;
436 } else {
437 if (!nhi->rx_rings[i]) {
438 ring->hop = i;
439 break;
445 if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
446 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
447 ret = -EINVAL;
448 goto err_unlock;
450 if (ring->is_tx && nhi->tx_rings[ring->hop]) {
451 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
452 ring->hop);
453 ret = -EBUSY;
454 goto err_unlock;
455 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
456 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
457 ring->hop);
458 ret = -EBUSY;
459 goto err_unlock;
462 if (ring->is_tx)
463 nhi->tx_rings[ring->hop] = ring;
464 else
465 nhi->rx_rings[ring->hop] = ring;
467 err_unlock:
468 spin_unlock_irq(&nhi->lock);
470 return ret;
473 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
474 bool transmit, unsigned int flags,
475 u16 sof_mask, u16 eof_mask,
476 void (*start_poll)(void *),
477 void *poll_data)
479 struct tb_ring *ring = NULL;
481 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
482 transmit ? "TX" : "RX", hop, size);
484 /* Tx Ring 2 is reserved for E2E workaround */
485 if (transmit && hop == RING_E2E_UNUSED_HOPID)
486 return NULL;
488 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
489 if (!ring)
490 return NULL;
492 spin_lock_init(&ring->lock);
493 INIT_LIST_HEAD(&ring->queue);
494 INIT_LIST_HEAD(&ring->in_flight);
495 INIT_WORK(&ring->work, ring_work);
497 ring->nhi = nhi;
498 ring->hop = hop;
499 ring->is_tx = transmit;
500 ring->size = size;
501 ring->flags = flags;
502 ring->sof_mask = sof_mask;
503 ring->eof_mask = eof_mask;
504 ring->head = 0;
505 ring->tail = 0;
506 ring->running = false;
507 ring->start_poll = start_poll;
508 ring->poll_data = poll_data;
510 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
511 size * sizeof(*ring->descriptors),
512 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
513 if (!ring->descriptors)
514 goto err_free_ring;
516 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
517 goto err_free_descs;
519 if (nhi_alloc_hop(nhi, ring))
520 goto err_release_msix;
522 return ring;
524 err_release_msix:
525 ring_release_msix(ring);
526 err_free_descs:
527 dma_free_coherent(&ring->nhi->pdev->dev,
528 ring->size * sizeof(*ring->descriptors),
529 ring->descriptors, ring->descriptors_dma);
530 err_free_ring:
531 kfree(ring);
533 return NULL;
537 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
538 * @nhi: Pointer to the NHI the ring is to be allocated
539 * @hop: HopID (ring) to allocate
540 * @size: Number of entries in the ring
541 * @flags: Flags for the ring
543 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
544 unsigned int flags)
546 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
548 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
551 * tb_ring_alloc_rx() - Allocate DMA ring for receive
552 * @nhi: Pointer to the NHI the ring is to be allocated
553 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
554 * @size: Number of entries in the ring
555 * @flags: Flags for the ring
556 * @sof_mask: Mask of PDF values that start a frame
557 * @eof_mask: Mask of PDF values that end a frame
558 * @start_poll: If not %NULL the ring will call this function when an
559 * interrupt is triggered and masked, instead of callback
560 * in each Rx frame.
561 * @poll_data: Optional data passed to @start_poll
563 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
564 unsigned int flags, u16 sof_mask, u16 eof_mask,
565 void (*start_poll)(void *), void *poll_data)
567 return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
568 start_poll, poll_data);
570 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
573 * tb_ring_start() - enable a ring
575 * Must not be invoked in parallel with tb_ring_stop().
577 void tb_ring_start(struct tb_ring *ring)
579 u16 frame_size;
580 u32 flags;
582 spin_lock_irq(&ring->nhi->lock);
583 spin_lock(&ring->lock);
584 if (ring->nhi->going_away)
585 goto err;
586 if (ring->running) {
587 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
588 goto err;
590 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
591 RING_TYPE(ring), ring->hop);
593 if (ring->flags & RING_FLAG_FRAME) {
594 /* Means 4096 */
595 frame_size = 0;
596 flags = RING_FLAG_ENABLE;
597 } else {
598 frame_size = TB_FRAME_SIZE;
599 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
602 if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
603 u32 hop;
606 * In order not to lose Rx packets we enable end-to-end
607 * workaround which transfers Rx credits to an unused Tx
608 * HopID.
610 hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
611 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
612 flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
615 ring_iowrite64desc(ring, ring->descriptors_dma, 0);
616 if (ring->is_tx) {
617 ring_iowrite32desc(ring, ring->size, 12);
618 ring_iowrite32options(ring, 0, 4); /* time releated ? */
619 ring_iowrite32options(ring, flags, 0);
620 } else {
621 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
623 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
624 ring_iowrite32options(ring, sof_eof_mask, 4);
625 ring_iowrite32options(ring, flags, 0);
627 ring_interrupt_active(ring, true);
628 ring->running = true;
629 err:
630 spin_unlock(&ring->lock);
631 spin_unlock_irq(&ring->nhi->lock);
633 EXPORT_SYMBOL_GPL(tb_ring_start);
636 * tb_ring_stop() - shutdown a ring
638 * Must not be invoked from a callback.
640 * This method will disable the ring. Further calls to
641 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
642 * called.
644 * All enqueued frames will be canceled and their callbacks will be executed
645 * with frame->canceled set to true (on the callback thread). This method
646 * returns only after all callback invocations have finished.
648 void tb_ring_stop(struct tb_ring *ring)
650 spin_lock_irq(&ring->nhi->lock);
651 spin_lock(&ring->lock);
652 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
653 RING_TYPE(ring), ring->hop);
654 if (ring->nhi->going_away)
655 goto err;
656 if (!ring->running) {
657 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
658 RING_TYPE(ring), ring->hop);
659 goto err;
661 ring_interrupt_active(ring, false);
663 ring_iowrite32options(ring, 0, 0);
664 ring_iowrite64desc(ring, 0, 0);
665 ring_iowrite16desc(ring, 0, ring->is_tx ? 10 : 8);
666 ring_iowrite32desc(ring, 0, 12);
667 ring->head = 0;
668 ring->tail = 0;
669 ring->running = false;
671 err:
672 spin_unlock(&ring->lock);
673 spin_unlock_irq(&ring->nhi->lock);
676 * schedule ring->work to invoke callbacks on all remaining frames.
678 schedule_work(&ring->work);
679 flush_work(&ring->work);
681 EXPORT_SYMBOL_GPL(tb_ring_stop);
684 * tb_ring_free() - free ring
686 * When this method returns all invocations of ring->callback will have
687 * finished.
689 * Ring must be stopped.
691 * Must NOT be called from ring_frame->callback!
693 void tb_ring_free(struct tb_ring *ring)
695 spin_lock_irq(&ring->nhi->lock);
697 * Dissociate the ring from the NHI. This also ensures that
698 * nhi_interrupt_work cannot reschedule ring->work.
700 if (ring->is_tx)
701 ring->nhi->tx_rings[ring->hop] = NULL;
702 else
703 ring->nhi->rx_rings[ring->hop] = NULL;
705 if (ring->running) {
706 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
707 RING_TYPE(ring), ring->hop);
709 spin_unlock_irq(&ring->nhi->lock);
711 ring_release_msix(ring);
713 dma_free_coherent(&ring->nhi->pdev->dev,
714 ring->size * sizeof(*ring->descriptors),
715 ring->descriptors, ring->descriptors_dma);
717 ring->descriptors = NULL;
718 ring->descriptors_dma = 0;
721 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
722 ring->hop);
725 * ring->work can no longer be scheduled (it is scheduled only
726 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
727 * to finish before freeing the ring.
729 flush_work(&ring->work);
730 kfree(ring);
732 EXPORT_SYMBOL_GPL(tb_ring_free);
735 * nhi_mailbox_cmd() - Send a command through NHI mailbox
736 * @nhi: Pointer to the NHI structure
737 * @cmd: Command to send
738 * @data: Data to be send with the command
740 * Sends mailbox command to the firmware running on NHI. Returns %0 in
741 * case of success and negative errno in case of failure.
743 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
745 ktime_t timeout;
746 u32 val;
748 iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
750 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
751 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
752 val |= REG_INMAIL_OP_REQUEST | cmd;
753 iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
755 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
756 do {
757 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
758 if (!(val & REG_INMAIL_OP_REQUEST))
759 break;
760 usleep_range(10, 20);
761 } while (ktime_before(ktime_get(), timeout));
763 if (val & REG_INMAIL_OP_REQUEST)
764 return -ETIMEDOUT;
765 if (val & REG_INMAIL_ERROR)
766 return -EIO;
768 return 0;
772 * nhi_mailbox_mode() - Return current firmware operation mode
773 * @nhi: Pointer to the NHI structure
775 * The function reads current firmware operation mode using NHI mailbox
776 * registers and returns it to the caller.
778 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
780 u32 val;
782 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
783 val &= REG_OUTMAIL_CMD_OPMODE_MASK;
784 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
786 return (enum nhi_fw_mode)val;
789 static void nhi_interrupt_work(struct work_struct *work)
791 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
792 int value = 0; /* Suppress uninitialized usage warning. */
793 int bit;
794 int hop = -1;
795 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
796 struct tb_ring *ring;
798 spin_lock_irq(&nhi->lock);
801 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
802 * (TX, RX, RX overflow). We iterate over the bits and read a new
803 * dwords as required. The registers are cleared on read.
805 for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
806 if (bit % 32 == 0)
807 value = ioread32(nhi->iobase
808 + REG_RING_NOTIFY_BASE
809 + 4 * (bit / 32));
810 if (++hop == nhi->hop_count) {
811 hop = 0;
812 type++;
814 if ((value & (1 << (bit % 32))) == 0)
815 continue;
816 if (type == 2) {
817 dev_warn(&nhi->pdev->dev,
818 "RX overflow for ring %d\n",
819 hop);
820 continue;
822 if (type == 0)
823 ring = nhi->tx_rings[hop];
824 else
825 ring = nhi->rx_rings[hop];
826 if (ring == NULL) {
827 dev_warn(&nhi->pdev->dev,
828 "got interrupt for inactive %s ring %d\n",
829 type ? "RX" : "TX",
830 hop);
831 continue;
834 spin_lock(&ring->lock);
835 __ring_interrupt(ring);
836 spin_unlock(&ring->lock);
838 spin_unlock_irq(&nhi->lock);
841 static irqreturn_t nhi_msi(int irq, void *data)
843 struct tb_nhi *nhi = data;
844 schedule_work(&nhi->interrupt_work);
845 return IRQ_HANDLED;
848 static int nhi_suspend_noirq(struct device *dev)
850 struct pci_dev *pdev = to_pci_dev(dev);
851 struct tb *tb = pci_get_drvdata(pdev);
853 return tb_domain_suspend_noirq(tb);
856 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
858 /* Throttling is specified in 256ns increments */
859 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
860 unsigned int i;
863 * Configure interrupt throttling for all vectors even if we
864 * only use few.
866 for (i = 0; i < MSIX_MAX_VECS; i++) {
867 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
868 iowrite32(throttle, nhi->iobase + reg);
872 static int nhi_resume_noirq(struct device *dev)
874 struct pci_dev *pdev = to_pci_dev(dev);
875 struct tb *tb = pci_get_drvdata(pdev);
878 * Check that the device is still there. It may be that the user
879 * unplugged last device which causes the host controller to go
880 * away on PCs.
882 if (!pci_device_is_present(pdev))
883 tb->nhi->going_away = true;
884 else
885 nhi_enable_int_throttling(tb->nhi);
887 return tb_domain_resume_noirq(tb);
890 static int nhi_suspend(struct device *dev)
892 struct pci_dev *pdev = to_pci_dev(dev);
893 struct tb *tb = pci_get_drvdata(pdev);
895 return tb_domain_suspend(tb);
898 static void nhi_complete(struct device *dev)
900 struct pci_dev *pdev = to_pci_dev(dev);
901 struct tb *tb = pci_get_drvdata(pdev);
904 * If we were runtime suspended when system suspend started,
905 * schedule runtime resume now. It should bring the domain back
906 * to functional state.
908 if (pm_runtime_suspended(&pdev->dev))
909 pm_runtime_resume(&pdev->dev);
910 else
911 tb_domain_complete(tb);
914 static int nhi_runtime_suspend(struct device *dev)
916 struct pci_dev *pdev = to_pci_dev(dev);
917 struct tb *tb = pci_get_drvdata(pdev);
919 return tb_domain_runtime_suspend(tb);
922 static int nhi_runtime_resume(struct device *dev)
924 struct pci_dev *pdev = to_pci_dev(dev);
925 struct tb *tb = pci_get_drvdata(pdev);
927 nhi_enable_int_throttling(tb->nhi);
928 return tb_domain_runtime_resume(tb);
931 static void nhi_shutdown(struct tb_nhi *nhi)
933 int i;
935 dev_dbg(&nhi->pdev->dev, "shutdown\n");
937 for (i = 0; i < nhi->hop_count; i++) {
938 if (nhi->tx_rings[i])
939 dev_WARN(&nhi->pdev->dev,
940 "TX ring %d is still active\n", i);
941 if (nhi->rx_rings[i])
942 dev_WARN(&nhi->pdev->dev,
943 "RX ring %d is still active\n", i);
945 nhi_disable_interrupts(nhi);
947 * We have to release the irq before calling flush_work. Otherwise an
948 * already executing IRQ handler could call schedule_work again.
950 if (!nhi->pdev->msix_enabled) {
951 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
952 flush_work(&nhi->interrupt_work);
954 ida_destroy(&nhi->msix_ida);
957 static int nhi_init_msi(struct tb_nhi *nhi)
959 struct pci_dev *pdev = nhi->pdev;
960 int res, irq, nvec;
962 /* In case someone left them on. */
963 nhi_disable_interrupts(nhi);
965 nhi_enable_int_throttling(nhi);
967 ida_init(&nhi->msix_ida);
970 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
971 * get all MSI-X vectors and if we succeed, each ring will have
972 * one MSI-X. If for some reason that does not work out, we
973 * fallback to a single MSI.
975 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
976 PCI_IRQ_MSIX);
977 if (nvec < 0) {
978 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
979 if (nvec < 0)
980 return nvec;
982 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
984 irq = pci_irq_vector(nhi->pdev, 0);
985 if (irq < 0)
986 return irq;
988 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
989 IRQF_NO_SUSPEND, "thunderbolt", nhi);
990 if (res) {
991 dev_err(&pdev->dev, "request_irq failed, aborting\n");
992 return res;
996 return 0;
999 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1001 struct tb_nhi *nhi;
1002 struct tb *tb;
1003 int res;
1005 res = pcim_enable_device(pdev);
1006 if (res) {
1007 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1008 return res;
1011 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1012 if (res) {
1013 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1014 return res;
1017 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1018 if (!nhi)
1019 return -ENOMEM;
1021 nhi->pdev = pdev;
1022 /* cannot fail - table is allocated bin pcim_iomap_regions */
1023 nhi->iobase = pcim_iomap_table(pdev)[0];
1024 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1025 if (nhi->hop_count != 12 && nhi->hop_count != 32)
1026 dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1027 nhi->hop_count);
1029 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1030 sizeof(*nhi->tx_rings), GFP_KERNEL);
1031 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1032 sizeof(*nhi->rx_rings), GFP_KERNEL);
1033 if (!nhi->tx_rings || !nhi->rx_rings)
1034 return -ENOMEM;
1036 res = nhi_init_msi(nhi);
1037 if (res) {
1038 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1039 return res;
1042 spin_lock_init(&nhi->lock);
1044 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1045 if (res)
1046 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1047 if (res) {
1048 dev_err(&pdev->dev, "failed to set DMA mask\n");
1049 return res;
1052 pci_set_master(pdev);
1054 tb = icm_probe(nhi);
1055 if (!tb)
1056 tb = tb_probe(nhi);
1057 if (!tb) {
1058 dev_err(&nhi->pdev->dev,
1059 "failed to determine connection manager, aborting\n");
1060 return -ENODEV;
1063 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1065 res = tb_domain_add(tb);
1066 if (res) {
1068 * At this point the RX/TX rings might already have been
1069 * activated. Do a proper shutdown.
1071 tb_domain_put(tb);
1072 nhi_shutdown(nhi);
1073 return res;
1075 pci_set_drvdata(pdev, tb);
1077 pm_runtime_allow(&pdev->dev);
1078 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1079 pm_runtime_use_autosuspend(&pdev->dev);
1080 pm_runtime_put_autosuspend(&pdev->dev);
1082 return 0;
1085 static void nhi_remove(struct pci_dev *pdev)
1087 struct tb *tb = pci_get_drvdata(pdev);
1088 struct tb_nhi *nhi = tb->nhi;
1090 pm_runtime_get_sync(&pdev->dev);
1091 pm_runtime_dont_use_autosuspend(&pdev->dev);
1092 pm_runtime_forbid(&pdev->dev);
1094 tb_domain_remove(tb);
1095 nhi_shutdown(nhi);
1099 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1100 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1101 * resume_noirq until we are done.
1103 static const struct dev_pm_ops nhi_pm_ops = {
1104 .suspend_noirq = nhi_suspend_noirq,
1105 .resume_noirq = nhi_resume_noirq,
1106 .freeze_noirq = nhi_suspend_noirq, /*
1107 * we just disable hotplug, the
1108 * pci-tunnels stay alive.
1110 .thaw_noirq = nhi_resume_noirq,
1111 .restore_noirq = nhi_resume_noirq,
1112 .suspend = nhi_suspend,
1113 .freeze = nhi_suspend,
1114 .poweroff = nhi_suspend,
1115 .complete = nhi_complete,
1116 .runtime_suspend = nhi_runtime_suspend,
1117 .runtime_resume = nhi_runtime_resume,
1120 static struct pci_device_id nhi_ids[] = {
1122 * We have to specify class, the TB bridges use the same device and
1123 * vendor (sub)id on gen 1 and gen 2 controllers.
1126 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1127 .vendor = PCI_VENDOR_ID_INTEL,
1128 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1129 .subvendor = 0x2222, .subdevice = 0x1111,
1132 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1133 .vendor = PCI_VENDOR_ID_INTEL,
1134 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1135 .subvendor = 0x2222, .subdevice = 0x1111,
1138 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1139 .vendor = PCI_VENDOR_ID_INTEL,
1140 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1141 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1144 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1145 .vendor = PCI_VENDOR_ID_INTEL,
1146 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1147 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1150 /* Thunderbolt 3 */
1151 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1152 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1153 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1154 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1155 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1156 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1157 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1158 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1159 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1160 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1162 { 0,}
1165 MODULE_DEVICE_TABLE(pci, nhi_ids);
1166 MODULE_LICENSE("GPL");
1168 static struct pci_driver nhi_driver = {
1169 .name = "thunderbolt",
1170 .id_table = nhi_ids,
1171 .probe = nhi_probe,
1172 .remove = nhi_remove,
1173 .driver.pm = &nhi_pm_ops,
1176 static int __init nhi_init(void)
1178 int ret;
1180 ret = tb_domain_init();
1181 if (ret)
1182 return ret;
1183 ret = pci_register_driver(&nhi_driver);
1184 if (ret)
1185 tb_domain_exit();
1186 return ret;
1189 static void __exit nhi_unload(void)
1191 pci_unregister_driver(&nhi_driver);
1192 tb_domain_exit();
1195 rootfs_initcall(nhi_init);
1196 module_exit(nhi_unload);