2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
31 #include <asm/pgtable.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
42 int hugetlb_max_hstate __read_mostly
;
43 unsigned int default_hstate_idx
;
44 struct hstate hstates
[HUGE_MAX_HSTATE
];
46 * Minimum page order among possible hugepage sizes, set to a proper value
49 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
51 __initdata
LIST_HEAD(huge_boot_pages
);
53 /* for command line parsing */
54 static struct hstate
* __initdata parsed_hstate
;
55 static unsigned long __initdata default_hstate_max_huge_pages
;
56 static unsigned long __initdata default_hstate_size
;
57 static bool __initdata parsed_valid_hugepagesz
= true;
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
63 DEFINE_SPINLOCK(hugetlb_lock
);
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 static int num_fault_mutexes
;
70 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
75 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
77 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
79 spin_unlock(&spool
->lock
);
81 /* If no pages are used, and no other handles to the subpool
82 * remain, give up any reservations mased on minimum size and
85 if (spool
->min_hpages
!= -1)
86 hugetlb_acct_memory(spool
->hstate
,
92 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
95 struct hugepage_subpool
*spool
;
97 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
101 spin_lock_init(&spool
->lock
);
103 spool
->max_hpages
= max_hpages
;
105 spool
->min_hpages
= min_hpages
;
107 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
111 spool
->rsv_hpages
= min_hpages
;
116 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
118 spin_lock(&spool
->lock
);
119 BUG_ON(!spool
->count
);
121 unlock_or_release_subpool(spool
);
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
132 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
140 spin_lock(&spool
->lock
);
142 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
143 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
144 spool
->used_hpages
+= delta
;
151 /* minimum size accounting */
152 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
153 if (delta
> spool
->rsv_hpages
) {
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
158 ret
= delta
- spool
->rsv_hpages
;
159 spool
->rsv_hpages
= 0;
161 ret
= 0; /* reserves already accounted for */
162 spool
->rsv_hpages
-= delta
;
167 spin_unlock(&spool
->lock
);
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
177 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
185 spin_lock(&spool
->lock
);
187 if (spool
->max_hpages
!= -1) /* maximum size accounting */
188 spool
->used_hpages
-= delta
;
190 /* minimum size accounting */
191 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
192 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
195 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
197 spool
->rsv_hpages
+= delta
;
198 if (spool
->rsv_hpages
> spool
->min_hpages
)
199 spool
->rsv_hpages
= spool
->min_hpages
;
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
206 unlock_or_release_subpool(spool
);
211 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
213 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
216 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
218 return subpool_inode(file_inode(vma
->vm_file
));
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
241 struct list_head link
;
247 * Add the huge page range represented by [f, t) to the reserve
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
260 static long region_add(struct resv_map
*resv
, long f
, long t
)
262 struct list_head
*head
= &resv
->regions
;
263 struct file_region
*rg
, *nrg
, *trg
;
266 spin_lock(&resv
->lock
);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg
, head
, link
)
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
278 if (&rg
->link
== head
|| t
< rg
->from
) {
279 VM_BUG_ON(resv
->region_cache_count
<= 0);
281 resv
->region_cache_count
--;
282 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
284 list_del(&nrg
->link
);
288 list_add(&nrg
->link
, rg
->link
.prev
);
294 /* Round our left edge to the current segment if it encloses us. */
298 /* Check for and consume any regions we now overlap with. */
300 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
301 if (&rg
->link
== head
)
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
316 add
-= (rg
->to
- rg
->from
);
322 add
+= (nrg
->from
- f
); /* Added to beginning of region */
324 add
+= t
- nrg
->to
; /* Added to end of region */
328 resv
->adds_in_progress
--;
329 spin_unlock(&resv
->lock
);
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
356 static long region_chg(struct resv_map
*resv
, long f
, long t
)
358 struct list_head
*head
= &resv
->regions
;
359 struct file_region
*rg
, *nrg
= NULL
;
363 spin_lock(&resv
->lock
);
365 resv
->adds_in_progress
++;
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
371 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
372 struct file_region
*trg
;
374 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv
->adds_in_progress
--;
377 spin_unlock(&resv
->lock
);
379 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
385 spin_lock(&resv
->lock
);
386 list_add(&trg
->link
, &resv
->region_cache
);
387 resv
->region_cache_count
++;
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg
, head
, link
)
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg
->link
== head
|| t
< rg
->from
) {
401 resv
->adds_in_progress
--;
402 spin_unlock(&resv
->lock
);
403 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
409 INIT_LIST_HEAD(&nrg
->link
);
413 list_add(&nrg
->link
, rg
->link
.prev
);
418 /* Round our left edge to the current segment if it encloses us. */
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
425 if (&rg
->link
== head
)
430 /* We overlap with this area, if it extends further than
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
437 chg
-= rg
->to
- rg
->from
;
441 spin_unlock(&resv
->lock
);
442 /* We already know we raced and no longer need the new region */
446 spin_unlock(&resv
->lock
);
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
461 static void region_abort(struct resv_map
*resv
, long f
, long t
)
463 spin_lock(&resv
->lock
);
464 VM_BUG_ON(!resv
->region_cache_count
);
465 resv
->adds_in_progress
--;
466 spin_unlock(&resv
->lock
);
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
483 static long region_del(struct resv_map
*resv
, long f
, long t
)
485 struct list_head
*head
= &resv
->regions
;
486 struct file_region
*rg
, *trg
;
487 struct file_region
*nrg
= NULL
;
491 spin_lock(&resv
->lock
);
492 list_for_each_entry_safe(rg
, trg
, head
, link
) {
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
500 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
506 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
512 resv
->region_cache_count
> resv
->adds_in_progress
) {
513 nrg
= list_first_entry(&resv
->region_cache
,
516 list_del(&nrg
->link
);
517 resv
->region_cache_count
--;
521 spin_unlock(&resv
->lock
);
522 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
530 /* New entry for end of split region */
533 INIT_LIST_HEAD(&nrg
->link
);
535 /* Original entry is trimmed */
538 list_add(&nrg
->link
, &rg
->link
);
543 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
544 del
+= rg
->to
- rg
->from
;
550 if (f
<= rg
->from
) { /* Trim beginning of region */
553 } else { /* Trim end of region */
559 spin_unlock(&resv
->lock
);
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
573 void hugetlb_fix_reserve_counts(struct inode
*inode
)
575 struct hugepage_subpool
*spool
= subpool_inode(inode
);
578 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
580 struct hstate
*h
= hstate_inode(inode
);
582 hugetlb_acct_memory(h
, 1);
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
590 static long region_count(struct resv_map
*resv
, long f
, long t
)
592 struct list_head
*head
= &resv
->regions
;
593 struct file_region
*rg
;
596 spin_lock(&resv
->lock
);
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg
, head
, link
) {
607 seg_from
= max(rg
->from
, f
);
608 seg_to
= min(rg
->to
, t
);
610 chg
+= seg_to
- seg_from
;
612 spin_unlock(&resv
->lock
);
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
621 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
622 struct vm_area_struct
*vma
, unsigned long address
)
624 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
625 (vma
->vm_pgoff
>> huge_page_order(h
));
628 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
629 unsigned long address
)
631 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
633 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
639 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
641 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
642 return vma
->vm_ops
->pagesize(vma
);
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
648 * Return the page size being used by the MMU to back a VMA. In the majority
649 * of cases, the page size used by the kernel matches the MMU size. On
650 * architectures where it differs, an architecture-specific 'strong'
651 * version of this symbol is required.
653 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
655 return vma_kernel_pagesize(vma
);
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
663 #define HPAGE_RESV_OWNER (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
686 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
688 return (unsigned long)vma
->vm_private_data
;
691 static void set_vma_private_data(struct vm_area_struct
*vma
,
694 vma
->vm_private_data
= (void *)value
;
697 struct resv_map
*resv_map_alloc(void)
699 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
700 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
702 if (!resv_map
|| !rg
) {
708 kref_init(&resv_map
->refs
);
709 spin_lock_init(&resv_map
->lock
);
710 INIT_LIST_HEAD(&resv_map
->regions
);
712 resv_map
->adds_in_progress
= 0;
714 INIT_LIST_HEAD(&resv_map
->region_cache
);
715 list_add(&rg
->link
, &resv_map
->region_cache
);
716 resv_map
->region_cache_count
= 1;
721 void resv_map_release(struct kref
*ref
)
723 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
724 struct list_head
*head
= &resv_map
->region_cache
;
725 struct file_region
*rg
, *trg
;
727 /* Clear out any active regions before we release the map. */
728 region_del(resv_map
, 0, LONG_MAX
);
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg
, trg
, head
, link
) {
736 VM_BUG_ON(resv_map
->adds_in_progress
);
741 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
743 return inode
->i_mapping
->private_data
;
746 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
749 if (vma
->vm_flags
& VM_MAYSHARE
) {
750 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
751 struct inode
*inode
= mapping
->host
;
753 return inode_resv_map(inode
);
756 return (struct resv_map
*)(get_vma_private_data(vma
) &
761 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
764 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
766 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
767 HPAGE_RESV_MASK
) | (unsigned long)map
);
770 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
773 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
775 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
778 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
782 return (get_vma_private_data(vma
) & flag
) != 0;
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
789 if (!(vma
->vm_flags
& VM_MAYSHARE
))
790 vma
->vm_private_data
= (void *)0;
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
796 if (vma
->vm_flags
& VM_NORESERVE
) {
798 * This address is already reserved by other process(chg == 0),
799 * so, we should decrement reserved count. Without decrementing,
800 * reserve count remains after releasing inode, because this
801 * allocated page will go into page cache and is regarded as
802 * coming from reserved pool in releasing step. Currently, we
803 * don't have any other solution to deal with this situation
804 * properly, so add work-around here.
806 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
812 /* Shared mappings always use reserves */
813 if (vma
->vm_flags
& VM_MAYSHARE
) {
815 * We know VM_NORESERVE is not set. Therefore, there SHOULD
816 * be a region map for all pages. The only situation where
817 * there is no region map is if a hole was punched via
818 * fallocate. In this case, there really are no reverves to
819 * use. This situation is indicated if chg != 0.
828 * Only the process that called mmap() has reserves for
831 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
833 * Like the shared case above, a hole punch or truncate
834 * could have been performed on the private mapping.
835 * Examine the value of chg to determine if reserves
836 * actually exist or were previously consumed.
837 * Very Subtle - The value of chg comes from a previous
838 * call to vma_needs_reserves(). The reserve map for
839 * private mappings has different (opposite) semantics
840 * than that of shared mappings. vma_needs_reserves()
841 * has already taken this difference in semantics into
842 * account. Therefore, the meaning of chg is the same
843 * as in the shared case above. Code could easily be
844 * combined, but keeping it separate draws attention to
845 * subtle differences.
856 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
858 int nid
= page_to_nid(page
);
859 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
860 h
->free_huge_pages
++;
861 h
->free_huge_pages_node
[nid
]++;
864 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
868 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
869 if (!PageHWPoison(page
))
872 * if 'non-isolated free hugepage' not found on the list,
873 * the allocation fails.
875 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
877 list_move(&page
->lru
, &h
->hugepage_activelist
);
878 set_page_refcounted(page
);
879 h
->free_huge_pages
--;
880 h
->free_huge_pages_node
[nid
]--;
884 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
887 unsigned int cpuset_mems_cookie
;
888 struct zonelist
*zonelist
;
891 int node
= NUMA_NO_NODE
;
893 zonelist
= node_zonelist(nid
, gfp_mask
);
896 cpuset_mems_cookie
= read_mems_allowed_begin();
897 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
900 if (!cpuset_zone_allowed(zone
, gfp_mask
))
903 * no need to ask again on the same node. Pool is node rather than
906 if (zone_to_nid(zone
) == node
)
908 node
= zone_to_nid(zone
);
910 page
= dequeue_huge_page_node_exact(h
, node
);
914 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
923 if (hugepage_movable_supported(h
))
924 return GFP_HIGHUSER_MOVABLE
;
929 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
930 struct vm_area_struct
*vma
,
931 unsigned long address
, int avoid_reserve
,
935 struct mempolicy
*mpol
;
937 nodemask_t
*nodemask
;
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
945 if (!vma_has_reserves(vma
, chg
) &&
946 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
949 /* If reserves cannot be used, ensure enough pages are in the pool */
950 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
953 gfp_mask
= htlb_alloc_mask(h
);
954 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
955 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
956 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
957 SetPagePrivate(page
);
958 h
->resv_huge_pages
--;
969 * common helper functions for hstate_next_node_to_{alloc|free}.
970 * We may have allocated or freed a huge page based on a different
971 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972 * be outside of *nodes_allowed. Ensure that we use an allowed
973 * node for alloc or free.
975 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
977 nid
= next_node_in(nid
, *nodes_allowed
);
978 VM_BUG_ON(nid
>= MAX_NUMNODES
);
983 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
985 if (!node_isset(nid
, *nodes_allowed
))
986 nid
= next_node_allowed(nid
, nodes_allowed
);
991 * returns the previously saved node ["this node"] from which to
992 * allocate a persistent huge page for the pool and advance the
993 * next node from which to allocate, handling wrap at end of node
996 static int hstate_next_node_to_alloc(struct hstate
*h
,
997 nodemask_t
*nodes_allowed
)
1001 VM_BUG_ON(!nodes_allowed
);
1003 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1004 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1010 * helper for free_pool_huge_page() - return the previously saved
1011 * node ["this node"] from which to free a huge page. Advance the
1012 * next node id whether or not we find a free huge page to free so
1013 * that the next attempt to free addresses the next node.
1015 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1019 VM_BUG_ON(!nodes_allowed
);
1021 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1022 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1028 for (nr_nodes = nodes_weight(*mask); \
1030 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1036 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page
*page
,
1044 int nr_pages
= 1 << order
;
1045 struct page
*p
= page
+ 1;
1047 atomic_set(compound_mapcount_ptr(page
), 0);
1048 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1049 clear_compound_head(p
);
1050 set_page_refcounted(p
);
1053 set_compound_order(page
, 0);
1054 __ClearPageHead(page
);
1057 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1059 free_contig_range(page_to_pfn(page
), 1 << order
);
1062 static int __alloc_gigantic_page(unsigned long start_pfn
,
1063 unsigned long nr_pages
, gfp_t gfp_mask
)
1065 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1066 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1070 static bool pfn_range_valid_gigantic(struct zone
*z
,
1071 unsigned long start_pfn
, unsigned long nr_pages
)
1073 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1076 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1080 page
= pfn_to_page(i
);
1082 if (page_zone(page
) != z
)
1085 if (PageReserved(page
))
1088 if (page_count(page
) > 0)
1098 static bool zone_spans_last_pfn(const struct zone
*zone
,
1099 unsigned long start_pfn
, unsigned long nr_pages
)
1101 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1102 return zone_spans_pfn(zone
, last_pfn
);
1105 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1106 int nid
, nodemask_t
*nodemask
)
1108 unsigned int order
= huge_page_order(h
);
1109 unsigned long nr_pages
= 1 << order
;
1110 unsigned long ret
, pfn
, flags
;
1111 struct zonelist
*zonelist
;
1115 zonelist
= node_zonelist(nid
, gfp_mask
);
1116 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nodemask
) {
1117 spin_lock_irqsave(&zone
->lock
, flags
);
1119 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1120 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1121 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1123 * We release the zone lock here because
1124 * alloc_contig_range() will also lock the zone
1125 * at some point. If there's an allocation
1126 * spinning on this lock, it may win the race
1127 * and cause alloc_contig_range() to fail...
1129 spin_unlock_irqrestore(&zone
->lock
, flags
);
1130 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1132 return pfn_to_page(pfn
);
1133 spin_lock_irqsave(&zone
->lock
, flags
);
1138 spin_unlock_irqrestore(&zone
->lock
, flags
);
1144 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1145 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1147 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148 static inline bool gigantic_page_supported(void) { return false; }
1149 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1150 int nid
, nodemask_t
*nodemask
) { return NULL
; }
1151 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1152 static inline void destroy_compound_gigantic_page(struct page
*page
,
1153 unsigned int order
) { }
1156 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1160 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1164 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1165 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1166 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1167 1 << PG_referenced
| 1 << PG_dirty
|
1168 1 << PG_active
| 1 << PG_private
|
1171 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1172 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1173 set_page_refcounted(page
);
1174 if (hstate_is_gigantic(h
)) {
1175 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1176 free_gigantic_page(page
, huge_page_order(h
));
1178 __free_pages(page
, huge_page_order(h
));
1182 struct hstate
*size_to_hstate(unsigned long size
)
1186 for_each_hstate(h
) {
1187 if (huge_page_size(h
) == size
)
1194 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195 * to hstate->hugepage_activelist.)
1197 * This function can be called for tail pages, but never returns true for them.
1199 bool page_huge_active(struct page
*page
)
1201 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1202 return PageHead(page
) && PagePrivate(&page
[1]);
1205 /* never called for tail page */
1206 static void set_page_huge_active(struct page
*page
)
1208 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1209 SetPagePrivate(&page
[1]);
1212 static void clear_page_huge_active(struct page
*page
)
1214 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1215 ClearPagePrivate(&page
[1]);
1219 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1222 static inline bool PageHugeTemporary(struct page
*page
)
1224 if (!PageHuge(page
))
1227 return (unsigned long)page
[2].mapping
== -1U;
1230 static inline void SetPageHugeTemporary(struct page
*page
)
1232 page
[2].mapping
= (void *)-1U;
1235 static inline void ClearPageHugeTemporary(struct page
*page
)
1237 page
[2].mapping
= NULL
;
1240 void free_huge_page(struct page
*page
)
1243 * Can't pass hstate in here because it is called from the
1244 * compound page destructor.
1246 struct hstate
*h
= page_hstate(page
);
1247 int nid
= page_to_nid(page
);
1248 struct hugepage_subpool
*spool
=
1249 (struct hugepage_subpool
*)page_private(page
);
1250 bool restore_reserve
;
1252 VM_BUG_ON_PAGE(page_count(page
), page
);
1253 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1255 set_page_private(page
, 0);
1256 page
->mapping
= NULL
;
1257 restore_reserve
= PagePrivate(page
);
1258 ClearPagePrivate(page
);
1261 * If PagePrivate() was set on page, page allocation consumed a
1262 * reservation. If the page was associated with a subpool, there
1263 * would have been a page reserved in the subpool before allocation
1264 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1265 * reservtion, do not call hugepage_subpool_put_pages() as this will
1266 * remove the reserved page from the subpool.
1268 if (!restore_reserve
) {
1270 * A return code of zero implies that the subpool will be
1271 * under its minimum size if the reservation is not restored
1272 * after page is free. Therefore, force restore_reserve
1275 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1276 restore_reserve
= true;
1279 spin_lock(&hugetlb_lock
);
1280 clear_page_huge_active(page
);
1281 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1282 pages_per_huge_page(h
), page
);
1283 if (restore_reserve
)
1284 h
->resv_huge_pages
++;
1286 if (PageHugeTemporary(page
)) {
1287 list_del(&page
->lru
);
1288 ClearPageHugeTemporary(page
);
1289 update_and_free_page(h
, page
);
1290 } else if (h
->surplus_huge_pages_node
[nid
]) {
1291 /* remove the page from active list */
1292 list_del(&page
->lru
);
1293 update_and_free_page(h
, page
);
1294 h
->surplus_huge_pages
--;
1295 h
->surplus_huge_pages_node
[nid
]--;
1297 arch_clear_hugepage_flags(page
);
1298 enqueue_huge_page(h
, page
);
1300 spin_unlock(&hugetlb_lock
);
1303 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1305 INIT_LIST_HEAD(&page
->lru
);
1306 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1307 spin_lock(&hugetlb_lock
);
1308 set_hugetlb_cgroup(page
, NULL
);
1310 h
->nr_huge_pages_node
[nid
]++;
1311 spin_unlock(&hugetlb_lock
);
1314 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1317 int nr_pages
= 1 << order
;
1318 struct page
*p
= page
+ 1;
1320 /* we rely on prep_new_huge_page to set the destructor */
1321 set_compound_order(page
, order
);
1322 __ClearPageReserved(page
);
1323 __SetPageHead(page
);
1324 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1326 * For gigantic hugepages allocated through bootmem at
1327 * boot, it's safer to be consistent with the not-gigantic
1328 * hugepages and clear the PG_reserved bit from all tail pages
1329 * too. Otherwse drivers using get_user_pages() to access tail
1330 * pages may get the reference counting wrong if they see
1331 * PG_reserved set on a tail page (despite the head page not
1332 * having PG_reserved set). Enforcing this consistency between
1333 * head and tail pages allows drivers to optimize away a check
1334 * on the head page when they need know if put_page() is needed
1335 * after get_user_pages().
1337 __ClearPageReserved(p
);
1338 set_page_count(p
, 0);
1339 set_compound_head(p
, page
);
1341 atomic_set(compound_mapcount_ptr(page
), -1);
1345 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1346 * transparent huge pages. See the PageTransHuge() documentation for more
1349 int PageHuge(struct page
*page
)
1351 if (!PageCompound(page
))
1354 page
= compound_head(page
);
1355 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1357 EXPORT_SYMBOL_GPL(PageHuge
);
1360 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1361 * normal or transparent huge pages.
1363 int PageHeadHuge(struct page
*page_head
)
1365 if (!PageHead(page_head
))
1368 return get_compound_page_dtor(page_head
) == free_huge_page
;
1371 pgoff_t
__basepage_index(struct page
*page
)
1373 struct page
*page_head
= compound_head(page
);
1374 pgoff_t index
= page_index(page_head
);
1375 unsigned long compound_idx
;
1377 if (!PageHuge(page_head
))
1378 return page_index(page
);
1380 if (compound_order(page_head
) >= MAX_ORDER
)
1381 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1383 compound_idx
= page
- page_head
;
1385 return (index
<< compound_order(page_head
)) + compound_idx
;
1388 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1389 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1391 int order
= huge_page_order(h
);
1394 gfp_mask
|= __GFP_COMP
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
1395 if (nid
== NUMA_NO_NODE
)
1396 nid
= numa_mem_id();
1397 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1399 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1401 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1407 * Common helper to allocate a fresh hugetlb page. All specific allocators
1408 * should use this function to get new hugetlb pages
1410 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1411 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1415 if (hstate_is_gigantic(h
))
1416 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1418 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1423 if (hstate_is_gigantic(h
))
1424 prep_compound_gigantic_page(page
, huge_page_order(h
));
1425 prep_new_huge_page(h
, page
, page_to_nid(page
));
1431 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1434 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1438 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1440 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1441 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
);
1449 put_page(page
); /* free it into the hugepage allocator */
1455 * Free huge page from pool from next node to free.
1456 * Attempt to keep persistent huge pages more or less
1457 * balanced over allowed nodes.
1458 * Called with hugetlb_lock locked.
1460 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1466 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1468 * If we're returning unused surplus pages, only examine
1469 * nodes with surplus pages.
1471 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1472 !list_empty(&h
->hugepage_freelists
[node
])) {
1474 list_entry(h
->hugepage_freelists
[node
].next
,
1476 list_del(&page
->lru
);
1477 h
->free_huge_pages
--;
1478 h
->free_huge_pages_node
[node
]--;
1480 h
->surplus_huge_pages
--;
1481 h
->surplus_huge_pages_node
[node
]--;
1483 update_and_free_page(h
, page
);
1493 * Dissolve a given free hugepage into free buddy pages. This function does
1494 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1495 * dissolution fails because a give page is not a free hugepage, or because
1496 * free hugepages are fully reserved.
1498 int dissolve_free_huge_page(struct page
*page
)
1502 spin_lock(&hugetlb_lock
);
1503 if (PageHuge(page
) && !page_count(page
)) {
1504 struct page
*head
= compound_head(page
);
1505 struct hstate
*h
= page_hstate(head
);
1506 int nid
= page_to_nid(head
);
1507 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1510 * Move PageHWPoison flag from head page to the raw error page,
1511 * which makes any subpages rather than the error page reusable.
1513 if (PageHWPoison(head
) && page
!= head
) {
1514 SetPageHWPoison(page
);
1515 ClearPageHWPoison(head
);
1517 list_del(&head
->lru
);
1518 h
->free_huge_pages
--;
1519 h
->free_huge_pages_node
[nid
]--;
1520 h
->max_huge_pages
--;
1521 update_and_free_page(h
, head
);
1525 spin_unlock(&hugetlb_lock
);
1530 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1531 * make specified memory blocks removable from the system.
1532 * Note that this will dissolve a free gigantic hugepage completely, if any
1533 * part of it lies within the given range.
1534 * Also note that if dissolve_free_huge_page() returns with an error, all
1535 * free hugepages that were dissolved before that error are lost.
1537 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1543 if (!hugepages_supported())
1546 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1547 page
= pfn_to_page(pfn
);
1548 if (PageHuge(page
) && !page_count(page
)) {
1549 rc
= dissolve_free_huge_page(page
);
1559 * Allocates a fresh surplus page from the page allocator.
1561 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1562 int nid
, nodemask_t
*nmask
)
1564 struct page
*page
= NULL
;
1566 if (hstate_is_gigantic(h
))
1569 spin_lock(&hugetlb_lock
);
1570 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1572 spin_unlock(&hugetlb_lock
);
1574 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1578 spin_lock(&hugetlb_lock
);
1580 * We could have raced with the pool size change.
1581 * Double check that and simply deallocate the new page
1582 * if we would end up overcommiting the surpluses. Abuse
1583 * temporary page to workaround the nasty free_huge_page
1586 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1587 SetPageHugeTemporary(page
);
1588 spin_unlock(&hugetlb_lock
);
1592 h
->surplus_huge_pages
++;
1593 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1597 spin_unlock(&hugetlb_lock
);
1602 struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1603 int nid
, nodemask_t
*nmask
)
1607 if (hstate_is_gigantic(h
))
1610 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1615 * We do not account these pages as surplus because they are only
1616 * temporary and will be released properly on the last reference
1618 SetPageHugeTemporary(page
);
1624 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1627 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1628 struct vm_area_struct
*vma
, unsigned long addr
)
1631 struct mempolicy
*mpol
;
1632 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1634 nodemask_t
*nodemask
;
1636 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1637 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1638 mpol_cond_put(mpol
);
1643 /* page migration callback function */
1644 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1646 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1647 struct page
*page
= NULL
;
1649 if (nid
!= NUMA_NO_NODE
)
1650 gfp_mask
|= __GFP_THISNODE
;
1652 spin_lock(&hugetlb_lock
);
1653 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1654 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1655 spin_unlock(&hugetlb_lock
);
1658 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1663 /* page migration callback function */
1664 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1667 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1669 spin_lock(&hugetlb_lock
);
1670 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1673 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1675 spin_unlock(&hugetlb_lock
);
1679 spin_unlock(&hugetlb_lock
);
1681 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1684 /* mempolicy aware migration callback */
1685 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1686 unsigned long address
)
1688 struct mempolicy
*mpol
;
1689 nodemask_t
*nodemask
;
1694 gfp_mask
= htlb_alloc_mask(h
);
1695 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1696 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1697 mpol_cond_put(mpol
);
1703 * Increase the hugetlb pool such that it can accommodate a reservation
1706 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1708 struct list_head surplus_list
;
1709 struct page
*page
, *tmp
;
1711 int needed
, allocated
;
1712 bool alloc_ok
= true;
1714 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1716 h
->resv_huge_pages
+= delta
;
1721 INIT_LIST_HEAD(&surplus_list
);
1725 spin_unlock(&hugetlb_lock
);
1726 for (i
= 0; i
< needed
; i
++) {
1727 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1728 NUMA_NO_NODE
, NULL
);
1733 list_add(&page
->lru
, &surplus_list
);
1739 * After retaking hugetlb_lock, we need to recalculate 'needed'
1740 * because either resv_huge_pages or free_huge_pages may have changed.
1742 spin_lock(&hugetlb_lock
);
1743 needed
= (h
->resv_huge_pages
+ delta
) -
1744 (h
->free_huge_pages
+ allocated
);
1749 * We were not able to allocate enough pages to
1750 * satisfy the entire reservation so we free what
1751 * we've allocated so far.
1756 * The surplus_list now contains _at_least_ the number of extra pages
1757 * needed to accommodate the reservation. Add the appropriate number
1758 * of pages to the hugetlb pool and free the extras back to the buddy
1759 * allocator. Commit the entire reservation here to prevent another
1760 * process from stealing the pages as they are added to the pool but
1761 * before they are reserved.
1763 needed
+= allocated
;
1764 h
->resv_huge_pages
+= delta
;
1767 /* Free the needed pages to the hugetlb pool */
1768 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1772 * This page is now managed by the hugetlb allocator and has
1773 * no users -- drop the buddy allocator's reference.
1775 put_page_testzero(page
);
1776 VM_BUG_ON_PAGE(page_count(page
), page
);
1777 enqueue_huge_page(h
, page
);
1780 spin_unlock(&hugetlb_lock
);
1782 /* Free unnecessary surplus pages to the buddy allocator */
1783 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1785 spin_lock(&hugetlb_lock
);
1791 * This routine has two main purposes:
1792 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1793 * in unused_resv_pages. This corresponds to the prior adjustments made
1794 * to the associated reservation map.
1795 * 2) Free any unused surplus pages that may have been allocated to satisfy
1796 * the reservation. As many as unused_resv_pages may be freed.
1798 * Called with hugetlb_lock held. However, the lock could be dropped (and
1799 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1800 * we must make sure nobody else can claim pages we are in the process of
1801 * freeing. Do this by ensuring resv_huge_page always is greater than the
1802 * number of huge pages we plan to free when dropping the lock.
1804 static void return_unused_surplus_pages(struct hstate
*h
,
1805 unsigned long unused_resv_pages
)
1807 unsigned long nr_pages
;
1809 /* Cannot return gigantic pages currently */
1810 if (hstate_is_gigantic(h
))
1814 * Part (or even all) of the reservation could have been backed
1815 * by pre-allocated pages. Only free surplus pages.
1817 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1820 * We want to release as many surplus pages as possible, spread
1821 * evenly across all nodes with memory. Iterate across these nodes
1822 * until we can no longer free unreserved surplus pages. This occurs
1823 * when the nodes with surplus pages have no free pages.
1824 * free_pool_huge_page() will balance the the freed pages across the
1825 * on-line nodes with memory and will handle the hstate accounting.
1827 * Note that we decrement resv_huge_pages as we free the pages. If
1828 * we drop the lock, resv_huge_pages will still be sufficiently large
1829 * to cover subsequent pages we may free.
1831 while (nr_pages
--) {
1832 h
->resv_huge_pages
--;
1833 unused_resv_pages
--;
1834 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1836 cond_resched_lock(&hugetlb_lock
);
1840 /* Fully uncommit the reservation */
1841 h
->resv_huge_pages
-= unused_resv_pages
;
1846 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1847 * are used by the huge page allocation routines to manage reservations.
1849 * vma_needs_reservation is called to determine if the huge page at addr
1850 * within the vma has an associated reservation. If a reservation is
1851 * needed, the value 1 is returned. The caller is then responsible for
1852 * managing the global reservation and subpool usage counts. After
1853 * the huge page has been allocated, vma_commit_reservation is called
1854 * to add the page to the reservation map. If the page allocation fails,
1855 * the reservation must be ended instead of committed. vma_end_reservation
1856 * is called in such cases.
1858 * In the normal case, vma_commit_reservation returns the same value
1859 * as the preceding vma_needs_reservation call. The only time this
1860 * is not the case is if a reserve map was changed between calls. It
1861 * is the responsibility of the caller to notice the difference and
1862 * take appropriate action.
1864 * vma_add_reservation is used in error paths where a reservation must
1865 * be restored when a newly allocated huge page must be freed. It is
1866 * to be called after calling vma_needs_reservation to determine if a
1867 * reservation exists.
1869 enum vma_resv_mode
{
1875 static long __vma_reservation_common(struct hstate
*h
,
1876 struct vm_area_struct
*vma
, unsigned long addr
,
1877 enum vma_resv_mode mode
)
1879 struct resv_map
*resv
;
1883 resv
= vma_resv_map(vma
);
1887 idx
= vma_hugecache_offset(h
, vma
, addr
);
1889 case VMA_NEEDS_RESV
:
1890 ret
= region_chg(resv
, idx
, idx
+ 1);
1892 case VMA_COMMIT_RESV
:
1893 ret
= region_add(resv
, idx
, idx
+ 1);
1896 region_abort(resv
, idx
, idx
+ 1);
1900 if (vma
->vm_flags
& VM_MAYSHARE
)
1901 ret
= region_add(resv
, idx
, idx
+ 1);
1903 region_abort(resv
, idx
, idx
+ 1);
1904 ret
= region_del(resv
, idx
, idx
+ 1);
1911 if (vma
->vm_flags
& VM_MAYSHARE
)
1913 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1915 * In most cases, reserves always exist for private mappings.
1916 * However, a file associated with mapping could have been
1917 * hole punched or truncated after reserves were consumed.
1918 * As subsequent fault on such a range will not use reserves.
1919 * Subtle - The reserve map for private mappings has the
1920 * opposite meaning than that of shared mappings. If NO
1921 * entry is in the reserve map, it means a reservation exists.
1922 * If an entry exists in the reserve map, it means the
1923 * reservation has already been consumed. As a result, the
1924 * return value of this routine is the opposite of the
1925 * value returned from reserve map manipulation routines above.
1933 return ret
< 0 ? ret
: 0;
1936 static long vma_needs_reservation(struct hstate
*h
,
1937 struct vm_area_struct
*vma
, unsigned long addr
)
1939 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1942 static long vma_commit_reservation(struct hstate
*h
,
1943 struct vm_area_struct
*vma
, unsigned long addr
)
1945 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1948 static void vma_end_reservation(struct hstate
*h
,
1949 struct vm_area_struct
*vma
, unsigned long addr
)
1951 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1954 static long vma_add_reservation(struct hstate
*h
,
1955 struct vm_area_struct
*vma
, unsigned long addr
)
1957 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1961 * This routine is called to restore a reservation on error paths. In the
1962 * specific error paths, a huge page was allocated (via alloc_huge_page)
1963 * and is about to be freed. If a reservation for the page existed,
1964 * alloc_huge_page would have consumed the reservation and set PagePrivate
1965 * in the newly allocated page. When the page is freed via free_huge_page,
1966 * the global reservation count will be incremented if PagePrivate is set.
1967 * However, free_huge_page can not adjust the reserve map. Adjust the
1968 * reserve map here to be consistent with global reserve count adjustments
1969 * to be made by free_huge_page.
1971 static void restore_reserve_on_error(struct hstate
*h
,
1972 struct vm_area_struct
*vma
, unsigned long address
,
1975 if (unlikely(PagePrivate(page
))) {
1976 long rc
= vma_needs_reservation(h
, vma
, address
);
1978 if (unlikely(rc
< 0)) {
1980 * Rare out of memory condition in reserve map
1981 * manipulation. Clear PagePrivate so that
1982 * global reserve count will not be incremented
1983 * by free_huge_page. This will make it appear
1984 * as though the reservation for this page was
1985 * consumed. This may prevent the task from
1986 * faulting in the page at a later time. This
1987 * is better than inconsistent global huge page
1988 * accounting of reserve counts.
1990 ClearPagePrivate(page
);
1992 rc
= vma_add_reservation(h
, vma
, address
);
1993 if (unlikely(rc
< 0))
1995 * See above comment about rare out of
1998 ClearPagePrivate(page
);
2000 vma_end_reservation(h
, vma
, address
);
2004 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
2005 unsigned long addr
, int avoid_reserve
)
2007 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2008 struct hstate
*h
= hstate_vma(vma
);
2010 long map_chg
, map_commit
;
2013 struct hugetlb_cgroup
*h_cg
;
2015 idx
= hstate_index(h
);
2017 * Examine the region/reserve map to determine if the process
2018 * has a reservation for the page to be allocated. A return
2019 * code of zero indicates a reservation exists (no change).
2021 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2023 return ERR_PTR(-ENOMEM
);
2026 * Processes that did not create the mapping will have no
2027 * reserves as indicated by the region/reserve map. Check
2028 * that the allocation will not exceed the subpool limit.
2029 * Allocations for MAP_NORESERVE mappings also need to be
2030 * checked against any subpool limit.
2032 if (map_chg
|| avoid_reserve
) {
2033 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2035 vma_end_reservation(h
, vma
, addr
);
2036 return ERR_PTR(-ENOSPC
);
2040 * Even though there was no reservation in the region/reserve
2041 * map, there could be reservations associated with the
2042 * subpool that can be used. This would be indicated if the
2043 * return value of hugepage_subpool_get_pages() is zero.
2044 * However, if avoid_reserve is specified we still avoid even
2045 * the subpool reservations.
2051 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2053 goto out_subpool_put
;
2055 spin_lock(&hugetlb_lock
);
2057 * glb_chg is passed to indicate whether or not a page must be taken
2058 * from the global free pool (global change). gbl_chg == 0 indicates
2059 * a reservation exists for the allocation.
2061 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2063 spin_unlock(&hugetlb_lock
);
2064 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2066 goto out_uncharge_cgroup
;
2067 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2068 SetPagePrivate(page
);
2069 h
->resv_huge_pages
--;
2071 spin_lock(&hugetlb_lock
);
2072 list_move(&page
->lru
, &h
->hugepage_activelist
);
2075 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2076 spin_unlock(&hugetlb_lock
);
2078 set_page_private(page
, (unsigned long)spool
);
2080 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2081 if (unlikely(map_chg
> map_commit
)) {
2083 * The page was added to the reservation map between
2084 * vma_needs_reservation and vma_commit_reservation.
2085 * This indicates a race with hugetlb_reserve_pages.
2086 * Adjust for the subpool count incremented above AND
2087 * in hugetlb_reserve_pages for the same page. Also,
2088 * the reservation count added in hugetlb_reserve_pages
2089 * no longer applies.
2093 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2094 hugetlb_acct_memory(h
, -rsv_adjust
);
2098 out_uncharge_cgroup
:
2099 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2101 if (map_chg
|| avoid_reserve
)
2102 hugepage_subpool_put_pages(spool
, 1);
2103 vma_end_reservation(h
, vma
, addr
);
2104 return ERR_PTR(-ENOSPC
);
2107 int alloc_bootmem_huge_page(struct hstate
*h
)
2108 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2109 int __alloc_bootmem_huge_page(struct hstate
*h
)
2111 struct huge_bootmem_page
*m
;
2114 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2117 addr
= memblock_alloc_try_nid_raw(
2118 huge_page_size(h
), huge_page_size(h
),
2119 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2122 * Use the beginning of the huge page to store the
2123 * huge_bootmem_page struct (until gather_bootmem
2124 * puts them into the mem_map).
2133 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2134 /* Put them into a private list first because mem_map is not up yet */
2135 INIT_LIST_HEAD(&m
->list
);
2136 list_add(&m
->list
, &huge_boot_pages
);
2141 static void __init
prep_compound_huge_page(struct page
*page
,
2144 if (unlikely(order
> (MAX_ORDER
- 1)))
2145 prep_compound_gigantic_page(page
, order
);
2147 prep_compound_page(page
, order
);
2150 /* Put bootmem huge pages into the standard lists after mem_map is up */
2151 static void __init
gather_bootmem_prealloc(void)
2153 struct huge_bootmem_page
*m
;
2155 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2156 struct page
*page
= virt_to_page(m
);
2157 struct hstate
*h
= m
->hstate
;
2159 WARN_ON(page_count(page
) != 1);
2160 prep_compound_huge_page(page
, h
->order
);
2161 WARN_ON(PageReserved(page
));
2162 prep_new_huge_page(h
, page
, page_to_nid(page
));
2163 put_page(page
); /* free it into the hugepage allocator */
2166 * If we had gigantic hugepages allocated at boot time, we need
2167 * to restore the 'stolen' pages to totalram_pages in order to
2168 * fix confusing memory reports from free(1) and another
2169 * side-effects, like CommitLimit going negative.
2171 if (hstate_is_gigantic(h
))
2172 adjust_managed_page_count(page
, 1 << h
->order
);
2177 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2181 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2182 if (hstate_is_gigantic(h
)) {
2183 if (!alloc_bootmem_huge_page(h
))
2185 } else if (!alloc_pool_huge_page(h
,
2186 &node_states
[N_MEMORY
]))
2190 if (i
< h
->max_huge_pages
) {
2193 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2194 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2195 h
->max_huge_pages
, buf
, i
);
2196 h
->max_huge_pages
= i
;
2200 static void __init
hugetlb_init_hstates(void)
2204 for_each_hstate(h
) {
2205 if (minimum_order
> huge_page_order(h
))
2206 minimum_order
= huge_page_order(h
);
2208 /* oversize hugepages were init'ed in early boot */
2209 if (!hstate_is_gigantic(h
))
2210 hugetlb_hstate_alloc_pages(h
);
2212 VM_BUG_ON(minimum_order
== UINT_MAX
);
2215 static void __init
report_hugepages(void)
2219 for_each_hstate(h
) {
2222 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2223 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2224 buf
, h
->free_huge_pages
);
2228 #ifdef CONFIG_HIGHMEM
2229 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2230 nodemask_t
*nodes_allowed
)
2234 if (hstate_is_gigantic(h
))
2237 for_each_node_mask(i
, *nodes_allowed
) {
2238 struct page
*page
, *next
;
2239 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2240 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2241 if (count
>= h
->nr_huge_pages
)
2243 if (PageHighMem(page
))
2245 list_del(&page
->lru
);
2246 update_and_free_page(h
, page
);
2247 h
->free_huge_pages
--;
2248 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2253 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2254 nodemask_t
*nodes_allowed
)
2260 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2261 * balanced by operating on them in a round-robin fashion.
2262 * Returns 1 if an adjustment was made.
2264 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2269 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2272 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2273 if (h
->surplus_huge_pages_node
[node
])
2277 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2278 if (h
->surplus_huge_pages_node
[node
] <
2279 h
->nr_huge_pages_node
[node
])
2286 h
->surplus_huge_pages
+= delta
;
2287 h
->surplus_huge_pages_node
[node
] += delta
;
2291 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2292 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2293 nodemask_t
*nodes_allowed
)
2295 unsigned long min_count
, ret
;
2297 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2298 return h
->max_huge_pages
;
2301 * Increase the pool size
2302 * First take pages out of surplus state. Then make up the
2303 * remaining difference by allocating fresh huge pages.
2305 * We might race with alloc_surplus_huge_page() here and be unable
2306 * to convert a surplus huge page to a normal huge page. That is
2307 * not critical, though, it just means the overall size of the
2308 * pool might be one hugepage larger than it needs to be, but
2309 * within all the constraints specified by the sysctls.
2311 spin_lock(&hugetlb_lock
);
2312 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2313 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2317 while (count
> persistent_huge_pages(h
)) {
2319 * If this allocation races such that we no longer need the
2320 * page, free_huge_page will handle it by freeing the page
2321 * and reducing the surplus.
2323 spin_unlock(&hugetlb_lock
);
2325 /* yield cpu to avoid soft lockup */
2328 ret
= alloc_pool_huge_page(h
, nodes_allowed
);
2329 spin_lock(&hugetlb_lock
);
2333 /* Bail for signals. Probably ctrl-c from user */
2334 if (signal_pending(current
))
2339 * Decrease the pool size
2340 * First return free pages to the buddy allocator (being careful
2341 * to keep enough around to satisfy reservations). Then place
2342 * pages into surplus state as needed so the pool will shrink
2343 * to the desired size as pages become free.
2345 * By placing pages into the surplus state independent of the
2346 * overcommit value, we are allowing the surplus pool size to
2347 * exceed overcommit. There are few sane options here. Since
2348 * alloc_surplus_huge_page() is checking the global counter,
2349 * though, we'll note that we're not allowed to exceed surplus
2350 * and won't grow the pool anywhere else. Not until one of the
2351 * sysctls are changed, or the surplus pages go out of use.
2353 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2354 min_count
= max(count
, min_count
);
2355 try_to_free_low(h
, min_count
, nodes_allowed
);
2356 while (min_count
< persistent_huge_pages(h
)) {
2357 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2359 cond_resched_lock(&hugetlb_lock
);
2361 while (count
< persistent_huge_pages(h
)) {
2362 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2366 ret
= persistent_huge_pages(h
);
2367 spin_unlock(&hugetlb_lock
);
2371 #define HSTATE_ATTR_RO(_name) \
2372 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2374 #define HSTATE_ATTR(_name) \
2375 static struct kobj_attribute _name##_attr = \
2376 __ATTR(_name, 0644, _name##_show, _name##_store)
2378 static struct kobject
*hugepages_kobj
;
2379 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2381 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2383 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2387 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2388 if (hstate_kobjs
[i
] == kobj
) {
2390 *nidp
= NUMA_NO_NODE
;
2394 return kobj_to_node_hstate(kobj
, nidp
);
2397 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2398 struct kobj_attribute
*attr
, char *buf
)
2401 unsigned long nr_huge_pages
;
2404 h
= kobj_to_hstate(kobj
, &nid
);
2405 if (nid
== NUMA_NO_NODE
)
2406 nr_huge_pages
= h
->nr_huge_pages
;
2408 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2410 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2413 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2414 struct hstate
*h
, int nid
,
2415 unsigned long count
, size_t len
)
2418 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2420 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2425 if (nid
== NUMA_NO_NODE
) {
2427 * global hstate attribute
2429 if (!(obey_mempolicy
&&
2430 init_nodemask_of_mempolicy(nodes_allowed
))) {
2431 NODEMASK_FREE(nodes_allowed
);
2432 nodes_allowed
= &node_states
[N_MEMORY
];
2434 } else if (nodes_allowed
) {
2436 * per node hstate attribute: adjust count to global,
2437 * but restrict alloc/free to the specified node.
2439 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2440 init_nodemask_of_node(nodes_allowed
, nid
);
2442 nodes_allowed
= &node_states
[N_MEMORY
];
2444 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2446 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2447 NODEMASK_FREE(nodes_allowed
);
2451 NODEMASK_FREE(nodes_allowed
);
2455 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2456 struct kobject
*kobj
, const char *buf
,
2460 unsigned long count
;
2464 err
= kstrtoul(buf
, 10, &count
);
2468 h
= kobj_to_hstate(kobj
, &nid
);
2469 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2472 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2473 struct kobj_attribute
*attr
, char *buf
)
2475 return nr_hugepages_show_common(kobj
, attr
, buf
);
2478 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2479 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2481 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2483 HSTATE_ATTR(nr_hugepages
);
2488 * hstate attribute for optionally mempolicy-based constraint on persistent
2489 * huge page alloc/free.
2491 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2492 struct kobj_attribute
*attr
, char *buf
)
2494 return nr_hugepages_show_common(kobj
, attr
, buf
);
2497 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2498 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2500 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2502 HSTATE_ATTR(nr_hugepages_mempolicy
);
2506 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2507 struct kobj_attribute
*attr
, char *buf
)
2509 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2510 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2513 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2514 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2517 unsigned long input
;
2518 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2520 if (hstate_is_gigantic(h
))
2523 err
= kstrtoul(buf
, 10, &input
);
2527 spin_lock(&hugetlb_lock
);
2528 h
->nr_overcommit_huge_pages
= input
;
2529 spin_unlock(&hugetlb_lock
);
2533 HSTATE_ATTR(nr_overcommit_hugepages
);
2535 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2536 struct kobj_attribute
*attr
, char *buf
)
2539 unsigned long free_huge_pages
;
2542 h
= kobj_to_hstate(kobj
, &nid
);
2543 if (nid
== NUMA_NO_NODE
)
2544 free_huge_pages
= h
->free_huge_pages
;
2546 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2548 return sprintf(buf
, "%lu\n", free_huge_pages
);
2550 HSTATE_ATTR_RO(free_hugepages
);
2552 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2553 struct kobj_attribute
*attr
, char *buf
)
2555 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2556 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2558 HSTATE_ATTR_RO(resv_hugepages
);
2560 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2561 struct kobj_attribute
*attr
, char *buf
)
2564 unsigned long surplus_huge_pages
;
2567 h
= kobj_to_hstate(kobj
, &nid
);
2568 if (nid
== NUMA_NO_NODE
)
2569 surplus_huge_pages
= h
->surplus_huge_pages
;
2571 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2573 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2575 HSTATE_ATTR_RO(surplus_hugepages
);
2577 static struct attribute
*hstate_attrs
[] = {
2578 &nr_hugepages_attr
.attr
,
2579 &nr_overcommit_hugepages_attr
.attr
,
2580 &free_hugepages_attr
.attr
,
2581 &resv_hugepages_attr
.attr
,
2582 &surplus_hugepages_attr
.attr
,
2584 &nr_hugepages_mempolicy_attr
.attr
,
2589 static const struct attribute_group hstate_attr_group
= {
2590 .attrs
= hstate_attrs
,
2593 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2594 struct kobject
**hstate_kobjs
,
2595 const struct attribute_group
*hstate_attr_group
)
2598 int hi
= hstate_index(h
);
2600 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2601 if (!hstate_kobjs
[hi
])
2604 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2606 kobject_put(hstate_kobjs
[hi
]);
2611 static void __init
hugetlb_sysfs_init(void)
2616 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2617 if (!hugepages_kobj
)
2620 for_each_hstate(h
) {
2621 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2622 hstate_kobjs
, &hstate_attr_group
);
2624 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2631 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2632 * with node devices in node_devices[] using a parallel array. The array
2633 * index of a node device or _hstate == node id.
2634 * This is here to avoid any static dependency of the node device driver, in
2635 * the base kernel, on the hugetlb module.
2637 struct node_hstate
{
2638 struct kobject
*hugepages_kobj
;
2639 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2641 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2644 * A subset of global hstate attributes for node devices
2646 static struct attribute
*per_node_hstate_attrs
[] = {
2647 &nr_hugepages_attr
.attr
,
2648 &free_hugepages_attr
.attr
,
2649 &surplus_hugepages_attr
.attr
,
2653 static const struct attribute_group per_node_hstate_attr_group
= {
2654 .attrs
= per_node_hstate_attrs
,
2658 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2659 * Returns node id via non-NULL nidp.
2661 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2665 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2666 struct node_hstate
*nhs
= &node_hstates
[nid
];
2668 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2669 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2681 * Unregister hstate attributes from a single node device.
2682 * No-op if no hstate attributes attached.
2684 static void hugetlb_unregister_node(struct node
*node
)
2687 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2689 if (!nhs
->hugepages_kobj
)
2690 return; /* no hstate attributes */
2692 for_each_hstate(h
) {
2693 int idx
= hstate_index(h
);
2694 if (nhs
->hstate_kobjs
[idx
]) {
2695 kobject_put(nhs
->hstate_kobjs
[idx
]);
2696 nhs
->hstate_kobjs
[idx
] = NULL
;
2700 kobject_put(nhs
->hugepages_kobj
);
2701 nhs
->hugepages_kobj
= NULL
;
2706 * Register hstate attributes for a single node device.
2707 * No-op if attributes already registered.
2709 static void hugetlb_register_node(struct node
*node
)
2712 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2715 if (nhs
->hugepages_kobj
)
2716 return; /* already allocated */
2718 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2720 if (!nhs
->hugepages_kobj
)
2723 for_each_hstate(h
) {
2724 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2726 &per_node_hstate_attr_group
);
2728 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2729 h
->name
, node
->dev
.id
);
2730 hugetlb_unregister_node(node
);
2737 * hugetlb init time: register hstate attributes for all registered node
2738 * devices of nodes that have memory. All on-line nodes should have
2739 * registered their associated device by this time.
2741 static void __init
hugetlb_register_all_nodes(void)
2745 for_each_node_state(nid
, N_MEMORY
) {
2746 struct node
*node
= node_devices
[nid
];
2747 if (node
->dev
.id
== nid
)
2748 hugetlb_register_node(node
);
2752 * Let the node device driver know we're here so it can
2753 * [un]register hstate attributes on node hotplug.
2755 register_hugetlbfs_with_node(hugetlb_register_node
,
2756 hugetlb_unregister_node
);
2758 #else /* !CONFIG_NUMA */
2760 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2768 static void hugetlb_register_all_nodes(void) { }
2772 static int __init
hugetlb_init(void)
2776 if (!hugepages_supported())
2779 if (!size_to_hstate(default_hstate_size
)) {
2780 if (default_hstate_size
!= 0) {
2781 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2782 default_hstate_size
, HPAGE_SIZE
);
2785 default_hstate_size
= HPAGE_SIZE
;
2786 if (!size_to_hstate(default_hstate_size
))
2787 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2789 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2790 if (default_hstate_max_huge_pages
) {
2791 if (!default_hstate
.max_huge_pages
)
2792 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2795 hugetlb_init_hstates();
2796 gather_bootmem_prealloc();
2799 hugetlb_sysfs_init();
2800 hugetlb_register_all_nodes();
2801 hugetlb_cgroup_file_init();
2804 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2806 num_fault_mutexes
= 1;
2808 hugetlb_fault_mutex_table
=
2809 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
2811 BUG_ON(!hugetlb_fault_mutex_table
);
2813 for (i
= 0; i
< num_fault_mutexes
; i
++)
2814 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2817 subsys_initcall(hugetlb_init
);
2819 /* Should be called on processing a hugepagesz=... option */
2820 void __init
hugetlb_bad_size(void)
2822 parsed_valid_hugepagesz
= false;
2825 void __init
hugetlb_add_hstate(unsigned int order
)
2830 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2831 pr_warn("hugepagesz= specified twice, ignoring\n");
2834 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2836 h
= &hstates
[hugetlb_max_hstate
++];
2838 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2839 h
->nr_huge_pages
= 0;
2840 h
->free_huge_pages
= 0;
2841 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2842 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2843 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2844 h
->next_nid_to_alloc
= first_memory_node
;
2845 h
->next_nid_to_free
= first_memory_node
;
2846 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2847 huge_page_size(h
)/1024);
2852 static int __init
hugetlb_nrpages_setup(char *s
)
2855 static unsigned long *last_mhp
;
2857 if (!parsed_valid_hugepagesz
) {
2858 pr_warn("hugepages = %s preceded by "
2859 "an unsupported hugepagesz, ignoring\n", s
);
2860 parsed_valid_hugepagesz
= true;
2864 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2865 * so this hugepages= parameter goes to the "default hstate".
2867 else if (!hugetlb_max_hstate
)
2868 mhp
= &default_hstate_max_huge_pages
;
2870 mhp
= &parsed_hstate
->max_huge_pages
;
2872 if (mhp
== last_mhp
) {
2873 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2877 if (sscanf(s
, "%lu", mhp
) <= 0)
2881 * Global state is always initialized later in hugetlb_init.
2882 * But we need to allocate >= MAX_ORDER hstates here early to still
2883 * use the bootmem allocator.
2885 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2886 hugetlb_hstate_alloc_pages(parsed_hstate
);
2892 __setup("hugepages=", hugetlb_nrpages_setup
);
2894 static int __init
hugetlb_default_setup(char *s
)
2896 default_hstate_size
= memparse(s
, &s
);
2899 __setup("default_hugepagesz=", hugetlb_default_setup
);
2901 static unsigned int cpuset_mems_nr(unsigned int *array
)
2904 unsigned int nr
= 0;
2906 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2912 #ifdef CONFIG_SYSCTL
2913 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2914 struct ctl_table
*table
, int write
,
2915 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2917 struct hstate
*h
= &default_hstate
;
2918 unsigned long tmp
= h
->max_huge_pages
;
2921 if (!hugepages_supported())
2925 table
->maxlen
= sizeof(unsigned long);
2926 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2931 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2932 NUMA_NO_NODE
, tmp
, *length
);
2937 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2938 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2941 return hugetlb_sysctl_handler_common(false, table
, write
,
2942 buffer
, length
, ppos
);
2946 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2947 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2949 return hugetlb_sysctl_handler_common(true, table
, write
,
2950 buffer
, length
, ppos
);
2952 #endif /* CONFIG_NUMA */
2954 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2955 void __user
*buffer
,
2956 size_t *length
, loff_t
*ppos
)
2958 struct hstate
*h
= &default_hstate
;
2962 if (!hugepages_supported())
2965 tmp
= h
->nr_overcommit_huge_pages
;
2967 if (write
&& hstate_is_gigantic(h
))
2971 table
->maxlen
= sizeof(unsigned long);
2972 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2977 spin_lock(&hugetlb_lock
);
2978 h
->nr_overcommit_huge_pages
= tmp
;
2979 spin_unlock(&hugetlb_lock
);
2985 #endif /* CONFIG_SYSCTL */
2987 void hugetlb_report_meminfo(struct seq_file
*m
)
2990 unsigned long total
= 0;
2992 if (!hugepages_supported())
2995 for_each_hstate(h
) {
2996 unsigned long count
= h
->nr_huge_pages
;
2998 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
3000 if (h
== &default_hstate
)
3002 "HugePages_Total: %5lu\n"
3003 "HugePages_Free: %5lu\n"
3004 "HugePages_Rsvd: %5lu\n"
3005 "HugePages_Surp: %5lu\n"
3006 "Hugepagesize: %8lu kB\n",
3010 h
->surplus_huge_pages
,
3011 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3014 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3017 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3019 struct hstate
*h
= &default_hstate
;
3020 if (!hugepages_supported())
3023 "Node %d HugePages_Total: %5u\n"
3024 "Node %d HugePages_Free: %5u\n"
3025 "Node %d HugePages_Surp: %5u\n",
3026 nid
, h
->nr_huge_pages_node
[nid
],
3027 nid
, h
->free_huge_pages_node
[nid
],
3028 nid
, h
->surplus_huge_pages_node
[nid
]);
3031 void hugetlb_show_meminfo(void)
3036 if (!hugepages_supported())
3039 for_each_node_state(nid
, N_MEMORY
)
3041 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3043 h
->nr_huge_pages_node
[nid
],
3044 h
->free_huge_pages_node
[nid
],
3045 h
->surplus_huge_pages_node
[nid
],
3046 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3049 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3051 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3052 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3055 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3056 unsigned long hugetlb_total_pages(void)
3059 unsigned long nr_total_pages
= 0;
3062 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3063 return nr_total_pages
;
3066 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3070 spin_lock(&hugetlb_lock
);
3072 * When cpuset is configured, it breaks the strict hugetlb page
3073 * reservation as the accounting is done on a global variable. Such
3074 * reservation is completely rubbish in the presence of cpuset because
3075 * the reservation is not checked against page availability for the
3076 * current cpuset. Application can still potentially OOM'ed by kernel
3077 * with lack of free htlb page in cpuset that the task is in.
3078 * Attempt to enforce strict accounting with cpuset is almost
3079 * impossible (or too ugly) because cpuset is too fluid that
3080 * task or memory node can be dynamically moved between cpusets.
3082 * The change of semantics for shared hugetlb mapping with cpuset is
3083 * undesirable. However, in order to preserve some of the semantics,
3084 * we fall back to check against current free page availability as
3085 * a best attempt and hopefully to minimize the impact of changing
3086 * semantics that cpuset has.
3089 if (gather_surplus_pages(h
, delta
) < 0)
3092 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3093 return_unused_surplus_pages(h
, delta
);
3100 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3103 spin_unlock(&hugetlb_lock
);
3107 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3109 struct resv_map
*resv
= vma_resv_map(vma
);
3112 * This new VMA should share its siblings reservation map if present.
3113 * The VMA will only ever have a valid reservation map pointer where
3114 * it is being copied for another still existing VMA. As that VMA
3115 * has a reference to the reservation map it cannot disappear until
3116 * after this open call completes. It is therefore safe to take a
3117 * new reference here without additional locking.
3119 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3120 kref_get(&resv
->refs
);
3123 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3125 struct hstate
*h
= hstate_vma(vma
);
3126 struct resv_map
*resv
= vma_resv_map(vma
);
3127 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3128 unsigned long reserve
, start
, end
;
3131 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3134 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3135 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3137 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3139 kref_put(&resv
->refs
, resv_map_release
);
3143 * Decrement reserve counts. The global reserve count may be
3144 * adjusted if the subpool has a minimum size.
3146 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3147 hugetlb_acct_memory(h
, -gbl_reserve
);
3151 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3153 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3158 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3160 struct hstate
*hstate
= hstate_vma(vma
);
3162 return 1UL << huge_page_shift(hstate
);
3166 * We cannot handle pagefaults against hugetlb pages at all. They cause
3167 * handle_mm_fault() to try to instantiate regular-sized pages in the
3168 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3171 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3178 * When a new function is introduced to vm_operations_struct and added
3179 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3180 * This is because under System V memory model, mappings created via
3181 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3182 * their original vm_ops are overwritten with shm_vm_ops.
3184 const struct vm_operations_struct hugetlb_vm_ops
= {
3185 .fault
= hugetlb_vm_op_fault
,
3186 .open
= hugetlb_vm_op_open
,
3187 .close
= hugetlb_vm_op_close
,
3188 .split
= hugetlb_vm_op_split
,
3189 .pagesize
= hugetlb_vm_op_pagesize
,
3192 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3198 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3199 vma
->vm_page_prot
)));
3201 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3202 vma
->vm_page_prot
));
3204 entry
= pte_mkyoung(entry
);
3205 entry
= pte_mkhuge(entry
);
3206 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3211 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3212 unsigned long address
, pte_t
*ptep
)
3216 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3217 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3218 update_mmu_cache(vma
, address
, ptep
);
3221 bool is_hugetlb_entry_migration(pte_t pte
)
3225 if (huge_pte_none(pte
) || pte_present(pte
))
3227 swp
= pte_to_swp_entry(pte
);
3228 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3234 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3238 if (huge_pte_none(pte
) || pte_present(pte
))
3240 swp
= pte_to_swp_entry(pte
);
3241 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3247 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3248 struct vm_area_struct
*vma
)
3250 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3251 struct page
*ptepage
;
3254 struct hstate
*h
= hstate_vma(vma
);
3255 unsigned long sz
= huge_page_size(h
);
3256 struct mmu_notifier_range range
;
3259 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3262 mmu_notifier_range_init(&range
, src
, vma
->vm_start
,
3264 mmu_notifier_invalidate_range_start(&range
);
3267 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3268 spinlock_t
*src_ptl
, *dst_ptl
;
3269 src_pte
= huge_pte_offset(src
, addr
, sz
);
3272 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3279 * If the pagetables are shared don't copy or take references.
3280 * dst_pte == src_pte is the common case of src/dest sharing.
3282 * However, src could have 'unshared' and dst shares with
3283 * another vma. If dst_pte !none, this implies sharing.
3284 * Check here before taking page table lock, and once again
3285 * after taking the lock below.
3287 dst_entry
= huge_ptep_get(dst_pte
);
3288 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3291 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3292 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3293 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3294 entry
= huge_ptep_get(src_pte
);
3295 dst_entry
= huge_ptep_get(dst_pte
);
3296 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3298 * Skip if src entry none. Also, skip in the
3299 * unlikely case dst entry !none as this implies
3300 * sharing with another vma.
3303 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3304 is_hugetlb_entry_hwpoisoned(entry
))) {
3305 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3307 if (is_write_migration_entry(swp_entry
) && cow
) {
3309 * COW mappings require pages in both
3310 * parent and child to be set to read.
3312 make_migration_entry_read(&swp_entry
);
3313 entry
= swp_entry_to_pte(swp_entry
);
3314 set_huge_swap_pte_at(src
, addr
, src_pte
,
3317 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3321 * No need to notify as we are downgrading page
3322 * table protection not changing it to point
3325 * See Documentation/vm/mmu_notifier.rst
3327 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3329 entry
= huge_ptep_get(src_pte
);
3330 ptepage
= pte_page(entry
);
3332 page_dup_rmap(ptepage
, true);
3333 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3334 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3336 spin_unlock(src_ptl
);
3337 spin_unlock(dst_ptl
);
3341 mmu_notifier_invalidate_range_end(&range
);
3346 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3347 unsigned long start
, unsigned long end
,
3348 struct page
*ref_page
)
3350 struct mm_struct
*mm
= vma
->vm_mm
;
3351 unsigned long address
;
3356 struct hstate
*h
= hstate_vma(vma
);
3357 unsigned long sz
= huge_page_size(h
);
3358 struct mmu_notifier_range range
;
3360 WARN_ON(!is_vm_hugetlb_page(vma
));
3361 BUG_ON(start
& ~huge_page_mask(h
));
3362 BUG_ON(end
& ~huge_page_mask(h
));
3365 * This is a hugetlb vma, all the pte entries should point
3368 tlb_remove_check_page_size_change(tlb
, sz
);
3369 tlb_start_vma(tlb
, vma
);
3372 * If sharing possible, alert mmu notifiers of worst case.
3374 mmu_notifier_range_init(&range
, mm
, start
, end
);
3375 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3376 mmu_notifier_invalidate_range_start(&range
);
3378 for (; address
< end
; address
+= sz
) {
3379 ptep
= huge_pte_offset(mm
, address
, sz
);
3383 ptl
= huge_pte_lock(h
, mm
, ptep
);
3384 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3387 * We just unmapped a page of PMDs by clearing a PUD.
3388 * The caller's TLB flush range should cover this area.
3393 pte
= huge_ptep_get(ptep
);
3394 if (huge_pte_none(pte
)) {
3400 * Migrating hugepage or HWPoisoned hugepage is already
3401 * unmapped and its refcount is dropped, so just clear pte here.
3403 if (unlikely(!pte_present(pte
))) {
3404 huge_pte_clear(mm
, address
, ptep
, sz
);
3409 page
= pte_page(pte
);
3411 * If a reference page is supplied, it is because a specific
3412 * page is being unmapped, not a range. Ensure the page we
3413 * are about to unmap is the actual page of interest.
3416 if (page
!= ref_page
) {
3421 * Mark the VMA as having unmapped its page so that
3422 * future faults in this VMA will fail rather than
3423 * looking like data was lost
3425 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3428 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3429 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3430 if (huge_pte_dirty(pte
))
3431 set_page_dirty(page
);
3433 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3434 page_remove_rmap(page
, true);
3437 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3439 * Bail out after unmapping reference page if supplied
3444 mmu_notifier_invalidate_range_end(&range
);
3445 tlb_end_vma(tlb
, vma
);
3448 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3449 struct vm_area_struct
*vma
, unsigned long start
,
3450 unsigned long end
, struct page
*ref_page
)
3452 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3455 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3456 * test will fail on a vma being torn down, and not grab a page table
3457 * on its way out. We're lucky that the flag has such an appropriate
3458 * name, and can in fact be safely cleared here. We could clear it
3459 * before the __unmap_hugepage_range above, but all that's necessary
3460 * is to clear it before releasing the i_mmap_rwsem. This works
3461 * because in the context this is called, the VMA is about to be
3462 * destroyed and the i_mmap_rwsem is held.
3464 vma
->vm_flags
&= ~VM_MAYSHARE
;
3467 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3468 unsigned long end
, struct page
*ref_page
)
3470 struct mm_struct
*mm
;
3471 struct mmu_gather tlb
;
3472 unsigned long tlb_start
= start
;
3473 unsigned long tlb_end
= end
;
3476 * If shared PMDs were possibly used within this vma range, adjust
3477 * start/end for worst case tlb flushing.
3478 * Note that we can not be sure if PMDs are shared until we try to
3479 * unmap pages. However, we want to make sure TLB flushing covers
3480 * the largest possible range.
3482 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3486 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3487 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3488 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3492 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3493 * mappping it owns the reserve page for. The intention is to unmap the page
3494 * from other VMAs and let the children be SIGKILLed if they are faulting the
3497 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3498 struct page
*page
, unsigned long address
)
3500 struct hstate
*h
= hstate_vma(vma
);
3501 struct vm_area_struct
*iter_vma
;
3502 struct address_space
*mapping
;
3506 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3507 * from page cache lookup which is in HPAGE_SIZE units.
3509 address
= address
& huge_page_mask(h
);
3510 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3512 mapping
= vma
->vm_file
->f_mapping
;
3515 * Take the mapping lock for the duration of the table walk. As
3516 * this mapping should be shared between all the VMAs,
3517 * __unmap_hugepage_range() is called as the lock is already held
3519 i_mmap_lock_write(mapping
);
3520 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3521 /* Do not unmap the current VMA */
3522 if (iter_vma
== vma
)
3526 * Shared VMAs have their own reserves and do not affect
3527 * MAP_PRIVATE accounting but it is possible that a shared
3528 * VMA is using the same page so check and skip such VMAs.
3530 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3534 * Unmap the page from other VMAs without their own reserves.
3535 * They get marked to be SIGKILLed if they fault in these
3536 * areas. This is because a future no-page fault on this VMA
3537 * could insert a zeroed page instead of the data existing
3538 * from the time of fork. This would look like data corruption
3540 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3541 unmap_hugepage_range(iter_vma
, address
,
3542 address
+ huge_page_size(h
), page
);
3544 i_mmap_unlock_write(mapping
);
3548 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3549 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3550 * cannot race with other handlers or page migration.
3551 * Keep the pte_same checks anyway to make transition from the mutex easier.
3553 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3554 unsigned long address
, pte_t
*ptep
,
3555 struct page
*pagecache_page
, spinlock_t
*ptl
)
3558 struct hstate
*h
= hstate_vma(vma
);
3559 struct page
*old_page
, *new_page
;
3560 int outside_reserve
= 0;
3562 unsigned long haddr
= address
& huge_page_mask(h
);
3563 struct mmu_notifier_range range
;
3565 pte
= huge_ptep_get(ptep
);
3566 old_page
= pte_page(pte
);
3569 /* If no-one else is actually using this page, avoid the copy
3570 * and just make the page writable */
3571 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3572 page_move_anon_rmap(old_page
, vma
);
3573 set_huge_ptep_writable(vma
, haddr
, ptep
);
3578 * If the process that created a MAP_PRIVATE mapping is about to
3579 * perform a COW due to a shared page count, attempt to satisfy
3580 * the allocation without using the existing reserves. The pagecache
3581 * page is used to determine if the reserve at this address was
3582 * consumed or not. If reserves were used, a partial faulted mapping
3583 * at the time of fork() could consume its reserves on COW instead
3584 * of the full address range.
3586 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3587 old_page
!= pagecache_page
)
3588 outside_reserve
= 1;
3593 * Drop page table lock as buddy allocator may be called. It will
3594 * be acquired again before returning to the caller, as expected.
3597 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
3599 if (IS_ERR(new_page
)) {
3601 * If a process owning a MAP_PRIVATE mapping fails to COW,
3602 * it is due to references held by a child and an insufficient
3603 * huge page pool. To guarantee the original mappers
3604 * reliability, unmap the page from child processes. The child
3605 * may get SIGKILLed if it later faults.
3607 if (outside_reserve
) {
3609 BUG_ON(huge_pte_none(pte
));
3610 unmap_ref_private(mm
, vma
, old_page
, haddr
);
3611 BUG_ON(huge_pte_none(pte
));
3613 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3615 pte_same(huge_ptep_get(ptep
), pte
)))
3616 goto retry_avoidcopy
;
3618 * race occurs while re-acquiring page table
3619 * lock, and our job is done.
3624 ret
= vmf_error(PTR_ERR(new_page
));
3625 goto out_release_old
;
3629 * When the original hugepage is shared one, it does not have
3630 * anon_vma prepared.
3632 if (unlikely(anon_vma_prepare(vma
))) {
3634 goto out_release_all
;
3637 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3638 pages_per_huge_page(h
));
3639 __SetPageUptodate(new_page
);
3641 mmu_notifier_range_init(&range
, mm
, haddr
, haddr
+ huge_page_size(h
));
3642 mmu_notifier_invalidate_range_start(&range
);
3645 * Retake the page table lock to check for racing updates
3646 * before the page tables are altered
3649 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3650 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3651 ClearPagePrivate(new_page
);
3654 huge_ptep_clear_flush(vma
, haddr
, ptep
);
3655 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
3656 set_huge_pte_at(mm
, haddr
, ptep
,
3657 make_huge_pte(vma
, new_page
, 1));
3658 page_remove_rmap(old_page
, true);
3659 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
3660 set_page_huge_active(new_page
);
3661 /* Make the old page be freed below */
3662 new_page
= old_page
;
3665 mmu_notifier_invalidate_range_end(&range
);
3667 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
3672 spin_lock(ptl
); /* Caller expects lock to be held */
3676 /* Return the pagecache page at a given address within a VMA */
3677 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3678 struct vm_area_struct
*vma
, unsigned long address
)
3680 struct address_space
*mapping
;
3683 mapping
= vma
->vm_file
->f_mapping
;
3684 idx
= vma_hugecache_offset(h
, vma
, address
);
3686 return find_lock_page(mapping
, idx
);
3690 * Return whether there is a pagecache page to back given address within VMA.
3691 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3693 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3694 struct vm_area_struct
*vma
, unsigned long address
)
3696 struct address_space
*mapping
;
3700 mapping
= vma
->vm_file
->f_mapping
;
3701 idx
= vma_hugecache_offset(h
, vma
, address
);
3703 page
= find_get_page(mapping
, idx
);
3706 return page
!= NULL
;
3709 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3712 struct inode
*inode
= mapping
->host
;
3713 struct hstate
*h
= hstate_inode(inode
);
3714 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3718 ClearPagePrivate(page
);
3721 * set page dirty so that it will not be removed from cache/file
3722 * by non-hugetlbfs specific code paths.
3724 set_page_dirty(page
);
3726 spin_lock(&inode
->i_lock
);
3727 inode
->i_blocks
+= blocks_per_huge_page(h
);
3728 spin_unlock(&inode
->i_lock
);
3732 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
3733 struct vm_area_struct
*vma
,
3734 struct address_space
*mapping
, pgoff_t idx
,
3735 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3737 struct hstate
*h
= hstate_vma(vma
);
3738 vm_fault_t ret
= VM_FAULT_SIGBUS
;
3744 unsigned long haddr
= address
& huge_page_mask(h
);
3745 bool new_page
= false;
3748 * Currently, we are forced to kill the process in the event the
3749 * original mapper has unmapped pages from the child due to a failed
3750 * COW. Warn that such a situation has occurred as it may not be obvious
3752 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3753 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3759 * Use page lock to guard against racing truncation
3760 * before we get page_table_lock.
3763 page
= find_lock_page(mapping
, idx
);
3765 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3770 * Check for page in userfault range
3772 if (userfaultfd_missing(vma
)) {
3774 struct vm_fault vmf
= {
3779 * Hard to debug if it ends up being
3780 * used by a callee that assumes
3781 * something about the other
3782 * uninitialized fields... same as in
3788 * hugetlb_fault_mutex must be dropped before
3789 * handling userfault. Reacquire after handling
3790 * fault to make calling code simpler.
3792 hash
= hugetlb_fault_mutex_hash(h
, mapping
, idx
, haddr
);
3793 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3794 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3795 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3799 page
= alloc_huge_page(vma
, haddr
, 0);
3801 ret
= vmf_error(PTR_ERR(page
));
3804 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3805 __SetPageUptodate(page
);
3808 if (vma
->vm_flags
& VM_MAYSHARE
) {
3809 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3818 if (unlikely(anon_vma_prepare(vma
))) {
3820 goto backout_unlocked
;
3826 * If memory error occurs between mmap() and fault, some process
3827 * don't have hwpoisoned swap entry for errored virtual address.
3828 * So we need to block hugepage fault by PG_hwpoison bit check.
3830 if (unlikely(PageHWPoison(page
))) {
3831 ret
= VM_FAULT_HWPOISON
|
3832 VM_FAULT_SET_HINDEX(hstate_index(h
));
3833 goto backout_unlocked
;
3838 * If we are going to COW a private mapping later, we examine the
3839 * pending reservations for this page now. This will ensure that
3840 * any allocations necessary to record that reservation occur outside
3843 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3844 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3846 goto backout_unlocked
;
3848 /* Just decrements count, does not deallocate */
3849 vma_end_reservation(h
, vma
, haddr
);
3852 ptl
= huge_pte_lock(h
, mm
, ptep
);
3853 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3858 if (!huge_pte_none(huge_ptep_get(ptep
)))
3862 ClearPagePrivate(page
);
3863 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
3865 page_dup_rmap(page
, true);
3866 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3867 && (vma
->vm_flags
& VM_SHARED
)));
3868 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
3870 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3871 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3872 /* Optimization, do the COW without a second fault */
3873 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3879 * Only make newly allocated pages active. Existing pages found
3880 * in the pagecache could be !page_huge_active() if they have been
3881 * isolated for migration.
3884 set_page_huge_active(page
);
3894 restore_reserve_on_error(h
, vma
, haddr
, page
);
3900 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct address_space
*mapping
,
3901 pgoff_t idx
, unsigned long address
)
3903 unsigned long key
[2];
3906 key
[0] = (unsigned long) mapping
;
3909 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3911 return hash
& (num_fault_mutexes
- 1);
3915 * For uniprocesor systems we always use a single mutex, so just
3916 * return 0 and avoid the hashing overhead.
3918 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct address_space
*mapping
,
3919 pgoff_t idx
, unsigned long address
)
3925 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3926 unsigned long address
, unsigned int flags
)
3933 struct page
*page
= NULL
;
3934 struct page
*pagecache_page
= NULL
;
3935 struct hstate
*h
= hstate_vma(vma
);
3936 struct address_space
*mapping
;
3937 int need_wait_lock
= 0;
3938 unsigned long haddr
= address
& huge_page_mask(h
);
3940 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3942 entry
= huge_ptep_get(ptep
);
3943 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3944 migration_entry_wait_huge(vma
, mm
, ptep
);
3946 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3947 return VM_FAULT_HWPOISON_LARGE
|
3948 VM_FAULT_SET_HINDEX(hstate_index(h
));
3950 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
3952 return VM_FAULT_OOM
;
3955 mapping
= vma
->vm_file
->f_mapping
;
3956 idx
= vma_hugecache_offset(h
, vma
, haddr
);
3959 * Serialize hugepage allocation and instantiation, so that we don't
3960 * get spurious allocation failures if two CPUs race to instantiate
3961 * the same page in the page cache.
3963 hash
= hugetlb_fault_mutex_hash(h
, mapping
, idx
, haddr
);
3964 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3966 entry
= huge_ptep_get(ptep
);
3967 if (huge_pte_none(entry
)) {
3968 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3975 * entry could be a migration/hwpoison entry at this point, so this
3976 * check prevents the kernel from going below assuming that we have
3977 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3978 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3981 if (!pte_present(entry
))
3985 * If we are going to COW the mapping later, we examine the pending
3986 * reservations for this page now. This will ensure that any
3987 * allocations necessary to record that reservation occur outside the
3988 * spinlock. For private mappings, we also lookup the pagecache
3989 * page now as it is used to determine if a reservation has been
3992 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3993 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3997 /* Just decrements count, does not deallocate */
3998 vma_end_reservation(h
, vma
, haddr
);
4000 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4001 pagecache_page
= hugetlbfs_pagecache_page(h
,
4005 ptl
= huge_pte_lock(h
, mm
, ptep
);
4007 /* Check for a racing update before calling hugetlb_cow */
4008 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4012 * hugetlb_cow() requires page locks of pte_page(entry) and
4013 * pagecache_page, so here we need take the former one
4014 * when page != pagecache_page or !pagecache_page.
4016 page
= pte_page(entry
);
4017 if (page
!= pagecache_page
)
4018 if (!trylock_page(page
)) {
4025 if (flags
& FAULT_FLAG_WRITE
) {
4026 if (!huge_pte_write(entry
)) {
4027 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4028 pagecache_page
, ptl
);
4031 entry
= huge_pte_mkdirty(entry
);
4033 entry
= pte_mkyoung(entry
);
4034 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4035 flags
& FAULT_FLAG_WRITE
))
4036 update_mmu_cache(vma
, haddr
, ptep
);
4038 if (page
!= pagecache_page
)
4044 if (pagecache_page
) {
4045 unlock_page(pagecache_page
);
4046 put_page(pagecache_page
);
4049 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4051 * Generally it's safe to hold refcount during waiting page lock. But
4052 * here we just wait to defer the next page fault to avoid busy loop and
4053 * the page is not used after unlocked before returning from the current
4054 * page fault. So we are safe from accessing freed page, even if we wait
4055 * here without taking refcount.
4058 wait_on_page_locked(page
);
4063 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4064 * modifications for huge pages.
4066 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4068 struct vm_area_struct
*dst_vma
,
4069 unsigned long dst_addr
,
4070 unsigned long src_addr
,
4071 struct page
**pagep
)
4073 struct address_space
*mapping
;
4076 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4077 struct hstate
*h
= hstate_vma(dst_vma
);
4085 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4089 ret
= copy_huge_page_from_user(page
,
4090 (const void __user
*) src_addr
,
4091 pages_per_huge_page(h
), false);
4093 /* fallback to copy_from_user outside mmap_sem */
4094 if (unlikely(ret
)) {
4097 /* don't free the page */
4106 * The memory barrier inside __SetPageUptodate makes sure that
4107 * preceding stores to the page contents become visible before
4108 * the set_pte_at() write.
4110 __SetPageUptodate(page
);
4112 mapping
= dst_vma
->vm_file
->f_mapping
;
4113 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4116 * If shared, add to page cache
4119 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4122 goto out_release_nounlock
;
4125 * Serialization between remove_inode_hugepages() and
4126 * huge_add_to_page_cache() below happens through the
4127 * hugetlb_fault_mutex_table that here must be hold by
4130 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4132 goto out_release_nounlock
;
4135 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4139 * Recheck the i_size after holding PT lock to make sure not
4140 * to leave any page mapped (as page_mapped()) beyond the end
4141 * of the i_size (remove_inode_hugepages() is strict about
4142 * enforcing that). If we bail out here, we'll also leave a
4143 * page in the radix tree in the vm_shared case beyond the end
4144 * of the i_size, but remove_inode_hugepages() will take care
4145 * of it as soon as we drop the hugetlb_fault_mutex_table.
4147 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4150 goto out_release_unlock
;
4153 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4154 goto out_release_unlock
;
4157 page_dup_rmap(page
, true);
4159 ClearPagePrivate(page
);
4160 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4163 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4164 if (dst_vma
->vm_flags
& VM_WRITE
)
4165 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4166 _dst_pte
= pte_mkyoung(_dst_pte
);
4168 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4170 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4171 dst_vma
->vm_flags
& VM_WRITE
);
4172 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4174 /* No need to invalidate - it was non-present before */
4175 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4178 set_page_huge_active(page
);
4188 out_release_nounlock
:
4193 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4194 struct page
**pages
, struct vm_area_struct
**vmas
,
4195 unsigned long *position
, unsigned long *nr_pages
,
4196 long i
, unsigned int flags
, int *nonblocking
)
4198 unsigned long pfn_offset
;
4199 unsigned long vaddr
= *position
;
4200 unsigned long remainder
= *nr_pages
;
4201 struct hstate
*h
= hstate_vma(vma
);
4204 while (vaddr
< vma
->vm_end
&& remainder
) {
4206 spinlock_t
*ptl
= NULL
;
4211 * If we have a pending SIGKILL, don't keep faulting pages and
4212 * potentially allocating memory.
4214 if (fatal_signal_pending(current
)) {
4220 * Some archs (sparc64, sh*) have multiple pte_ts to
4221 * each hugepage. We have to make sure we get the
4222 * first, for the page indexing below to work.
4224 * Note that page table lock is not held when pte is null.
4226 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4229 ptl
= huge_pte_lock(h
, mm
, pte
);
4230 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4233 * When coredumping, it suits get_dump_page if we just return
4234 * an error where there's an empty slot with no huge pagecache
4235 * to back it. This way, we avoid allocating a hugepage, and
4236 * the sparse dumpfile avoids allocating disk blocks, but its
4237 * huge holes still show up with zeroes where they need to be.
4239 if (absent
&& (flags
& FOLL_DUMP
) &&
4240 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4248 * We need call hugetlb_fault for both hugepages under migration
4249 * (in which case hugetlb_fault waits for the migration,) and
4250 * hwpoisoned hugepages (in which case we need to prevent the
4251 * caller from accessing to them.) In order to do this, we use
4252 * here is_swap_pte instead of is_hugetlb_entry_migration and
4253 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4254 * both cases, and because we can't follow correct pages
4255 * directly from any kind of swap entries.
4257 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4258 ((flags
& FOLL_WRITE
) &&
4259 !huge_pte_write(huge_ptep_get(pte
)))) {
4261 unsigned int fault_flags
= 0;
4265 if (flags
& FOLL_WRITE
)
4266 fault_flags
|= FAULT_FLAG_WRITE
;
4268 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4269 if (flags
& FOLL_NOWAIT
)
4270 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4271 FAULT_FLAG_RETRY_NOWAIT
;
4272 if (flags
& FOLL_TRIED
) {
4273 VM_WARN_ON_ONCE(fault_flags
&
4274 FAULT_FLAG_ALLOW_RETRY
);
4275 fault_flags
|= FAULT_FLAG_TRIED
;
4277 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4278 if (ret
& VM_FAULT_ERROR
) {
4279 err
= vm_fault_to_errno(ret
, flags
);
4283 if (ret
& VM_FAULT_RETRY
) {
4285 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4289 * VM_FAULT_RETRY must not return an
4290 * error, it will return zero
4293 * No need to update "position" as the
4294 * caller will not check it after
4295 * *nr_pages is set to 0.
4302 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4303 page
= pte_page(huge_ptep_get(pte
));
4306 * Instead of doing 'try_get_page()' below in the same_page
4307 * loop, just check the count once here.
4309 if (unlikely(page_count(page
) <= 0)) {
4319 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4330 if (vaddr
< vma
->vm_end
&& remainder
&&
4331 pfn_offset
< pages_per_huge_page(h
)) {
4333 * We use pfn_offset to avoid touching the pageframes
4334 * of this compound page.
4340 *nr_pages
= remainder
;
4342 * setting position is actually required only if remainder is
4343 * not zero but it's faster not to add a "if (remainder)"
4351 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4353 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4356 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4359 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4360 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4362 struct mm_struct
*mm
= vma
->vm_mm
;
4363 unsigned long start
= address
;
4366 struct hstate
*h
= hstate_vma(vma
);
4367 unsigned long pages
= 0;
4368 bool shared_pmd
= false;
4369 struct mmu_notifier_range range
;
4372 * In the case of shared PMDs, the area to flush could be beyond
4373 * start/end. Set range.start/range.end to cover the maximum possible
4374 * range if PMD sharing is possible.
4376 mmu_notifier_range_init(&range
, mm
, start
, end
);
4377 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
4379 BUG_ON(address
>= end
);
4380 flush_cache_range(vma
, range
.start
, range
.end
);
4382 mmu_notifier_invalidate_range_start(&range
);
4383 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4384 for (; address
< end
; address
+= huge_page_size(h
)) {
4386 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4389 ptl
= huge_pte_lock(h
, mm
, ptep
);
4390 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4396 pte
= huge_ptep_get(ptep
);
4397 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4401 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4402 swp_entry_t entry
= pte_to_swp_entry(pte
);
4404 if (is_write_migration_entry(entry
)) {
4407 make_migration_entry_read(&entry
);
4408 newpte
= swp_entry_to_pte(entry
);
4409 set_huge_swap_pte_at(mm
, address
, ptep
,
4410 newpte
, huge_page_size(h
));
4416 if (!huge_pte_none(pte
)) {
4419 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
4420 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
4421 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4422 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
4428 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4429 * may have cleared our pud entry and done put_page on the page table:
4430 * once we release i_mmap_rwsem, another task can do the final put_page
4431 * and that page table be reused and filled with junk. If we actually
4432 * did unshare a page of pmds, flush the range corresponding to the pud.
4435 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
4437 flush_hugetlb_tlb_range(vma
, start
, end
);
4439 * No need to call mmu_notifier_invalidate_range() we are downgrading
4440 * page table protection not changing it to point to a new page.
4442 * See Documentation/vm/mmu_notifier.rst
4444 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4445 mmu_notifier_invalidate_range_end(&range
);
4447 return pages
<< h
->order
;
4450 int hugetlb_reserve_pages(struct inode
*inode
,
4452 struct vm_area_struct
*vma
,
4453 vm_flags_t vm_flags
)
4456 struct hstate
*h
= hstate_inode(inode
);
4457 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4458 struct resv_map
*resv_map
;
4461 /* This should never happen */
4463 VM_WARN(1, "%s called with a negative range\n", __func__
);
4468 * Only apply hugepage reservation if asked. At fault time, an
4469 * attempt will be made for VM_NORESERVE to allocate a page
4470 * without using reserves
4472 if (vm_flags
& VM_NORESERVE
)
4476 * Shared mappings base their reservation on the number of pages that
4477 * are already allocated on behalf of the file. Private mappings need
4478 * to reserve the full area even if read-only as mprotect() may be
4479 * called to make the mapping read-write. Assume !vma is a shm mapping
4481 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4482 resv_map
= inode_resv_map(inode
);
4484 chg
= region_chg(resv_map
, from
, to
);
4487 resv_map
= resv_map_alloc();
4493 set_vma_resv_map(vma
, resv_map
);
4494 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4503 * There must be enough pages in the subpool for the mapping. If
4504 * the subpool has a minimum size, there may be some global
4505 * reservations already in place (gbl_reserve).
4507 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4508 if (gbl_reserve
< 0) {
4514 * Check enough hugepages are available for the reservation.
4515 * Hand the pages back to the subpool if there are not
4517 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4519 /* put back original number of pages, chg */
4520 (void)hugepage_subpool_put_pages(spool
, chg
);
4525 * Account for the reservations made. Shared mappings record regions
4526 * that have reservations as they are shared by multiple VMAs.
4527 * When the last VMA disappears, the region map says how much
4528 * the reservation was and the page cache tells how much of
4529 * the reservation was consumed. Private mappings are per-VMA and
4530 * only the consumed reservations are tracked. When the VMA
4531 * disappears, the original reservation is the VMA size and the
4532 * consumed reservations are stored in the map. Hence, nothing
4533 * else has to be done for private mappings here
4535 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4536 long add
= region_add(resv_map
, from
, to
);
4538 if (unlikely(chg
> add
)) {
4540 * pages in this range were added to the reserve
4541 * map between region_chg and region_add. This
4542 * indicates a race with alloc_huge_page. Adjust
4543 * the subpool and reserve counts modified above
4544 * based on the difference.
4548 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4550 hugetlb_acct_memory(h
, -rsv_adjust
);
4555 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4556 /* Don't call region_abort if region_chg failed */
4558 region_abort(resv_map
, from
, to
);
4559 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4560 kref_put(&resv_map
->refs
, resv_map_release
);
4564 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4567 struct hstate
*h
= hstate_inode(inode
);
4568 struct resv_map
*resv_map
= inode_resv_map(inode
);
4570 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4574 chg
= region_del(resv_map
, start
, end
);
4576 * region_del() can fail in the rare case where a region
4577 * must be split and another region descriptor can not be
4578 * allocated. If end == LONG_MAX, it will not fail.
4584 spin_lock(&inode
->i_lock
);
4585 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4586 spin_unlock(&inode
->i_lock
);
4589 * If the subpool has a minimum size, the number of global
4590 * reservations to be released may be adjusted.
4592 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4593 hugetlb_acct_memory(h
, -gbl_reserve
);
4598 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4599 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4600 struct vm_area_struct
*vma
,
4601 unsigned long addr
, pgoff_t idx
)
4603 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4605 unsigned long sbase
= saddr
& PUD_MASK
;
4606 unsigned long s_end
= sbase
+ PUD_SIZE
;
4608 /* Allow segments to share if only one is marked locked */
4609 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4610 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4613 * match the virtual addresses, permission and the alignment of the
4616 if (pmd_index(addr
) != pmd_index(saddr
) ||
4617 vm_flags
!= svm_flags
||
4618 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4624 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4626 unsigned long base
= addr
& PUD_MASK
;
4627 unsigned long end
= base
+ PUD_SIZE
;
4630 * check on proper vm_flags and page table alignment
4632 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
4638 * Determine if start,end range within vma could be mapped by shared pmd.
4639 * If yes, adjust start and end to cover range associated with possible
4640 * shared pmd mappings.
4642 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4643 unsigned long *start
, unsigned long *end
)
4645 unsigned long check_addr
= *start
;
4647 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4650 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
4651 unsigned long a_start
= check_addr
& PUD_MASK
;
4652 unsigned long a_end
= a_start
+ PUD_SIZE
;
4655 * If sharing is possible, adjust start/end if necessary.
4657 if (range_in_vma(vma
, a_start
, a_end
)) {
4658 if (a_start
< *start
)
4667 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4668 * and returns the corresponding pte. While this is not necessary for the
4669 * !shared pmd case because we can allocate the pmd later as well, it makes the
4670 * code much cleaner. pmd allocation is essential for the shared case because
4671 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4672 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4673 * bad pmd for sharing.
4675 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4677 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4678 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4679 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4681 struct vm_area_struct
*svma
;
4682 unsigned long saddr
;
4687 if (!vma_shareable(vma
, addr
))
4688 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4690 i_mmap_lock_write(mapping
);
4691 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4695 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4697 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4698 vma_mmu_pagesize(svma
));
4700 get_page(virt_to_page(spte
));
4709 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4710 if (pud_none(*pud
)) {
4711 pud_populate(mm
, pud
,
4712 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4715 put_page(virt_to_page(spte
));
4719 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4720 i_mmap_unlock_write(mapping
);
4725 * unmap huge page backed by shared pte.
4727 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4728 * indicated by page_count > 1, unmap is achieved by clearing pud and
4729 * decrementing the ref count. If count == 1, the pte page is not shared.
4731 * called with page table lock held.
4733 * returns: 1 successfully unmapped a shared pte page
4734 * 0 the underlying pte page is not shared, or it is the last user
4736 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4738 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4739 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4740 pud_t
*pud
= pud_offset(p4d
, *addr
);
4742 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4743 if (page_count(virt_to_page(ptep
)) == 1)
4747 put_page(virt_to_page(ptep
));
4749 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4752 #define want_pmd_share() (1)
4753 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4754 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4759 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4764 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4765 unsigned long *start
, unsigned long *end
)
4768 #define want_pmd_share() (0)
4769 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4771 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4772 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4773 unsigned long addr
, unsigned long sz
)
4780 pgd
= pgd_offset(mm
, addr
);
4781 p4d
= p4d_alloc(mm
, pgd
, addr
);
4784 pud
= pud_alloc(mm
, p4d
, addr
);
4786 if (sz
== PUD_SIZE
) {
4789 BUG_ON(sz
!= PMD_SIZE
);
4790 if (want_pmd_share() && pud_none(*pud
))
4791 pte
= huge_pmd_share(mm
, addr
, pud
);
4793 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4796 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4802 * huge_pte_offset() - Walk the page table to resolve the hugepage
4803 * entry at address @addr
4805 * Return: Pointer to page table or swap entry (PUD or PMD) for
4806 * address @addr, or NULL if a p*d_none() entry is encountered and the
4807 * size @sz doesn't match the hugepage size at this level of the page
4810 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4811 unsigned long addr
, unsigned long sz
)
4818 pgd
= pgd_offset(mm
, addr
);
4819 if (!pgd_present(*pgd
))
4821 p4d
= p4d_offset(pgd
, addr
);
4822 if (!p4d_present(*p4d
))
4825 pud
= pud_offset(p4d
, addr
);
4826 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4828 /* hugepage or swap? */
4829 if (pud_huge(*pud
) || !pud_present(*pud
))
4830 return (pte_t
*)pud
;
4832 pmd
= pmd_offset(pud
, addr
);
4833 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4835 /* hugepage or swap? */
4836 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4837 return (pte_t
*)pmd
;
4842 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4845 * These functions are overwritable if your architecture needs its own
4848 struct page
* __weak
4849 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4852 return ERR_PTR(-EINVAL
);
4855 struct page
* __weak
4856 follow_huge_pd(struct vm_area_struct
*vma
,
4857 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4859 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4863 struct page
* __weak
4864 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4865 pmd_t
*pmd
, int flags
)
4867 struct page
*page
= NULL
;
4871 ptl
= pmd_lockptr(mm
, pmd
);
4874 * make sure that the address range covered by this pmd is not
4875 * unmapped from other threads.
4877 if (!pmd_huge(*pmd
))
4879 pte
= huge_ptep_get((pte_t
*)pmd
);
4880 if (pte_present(pte
)) {
4881 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4882 if (flags
& FOLL_GET
)
4885 if (is_hugetlb_entry_migration(pte
)) {
4887 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4891 * hwpoisoned entry is treated as no_page_table in
4892 * follow_page_mask().
4900 struct page
* __weak
4901 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4902 pud_t
*pud
, int flags
)
4904 if (flags
& FOLL_GET
)
4907 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4910 struct page
* __weak
4911 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4913 if (flags
& FOLL_GET
)
4916 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4919 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4923 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4924 spin_lock(&hugetlb_lock
);
4925 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4929 clear_page_huge_active(page
);
4930 list_move_tail(&page
->lru
, list
);
4932 spin_unlock(&hugetlb_lock
);
4936 void putback_active_hugepage(struct page
*page
)
4938 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4939 spin_lock(&hugetlb_lock
);
4940 set_page_huge_active(page
);
4941 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4942 spin_unlock(&hugetlb_lock
);
4946 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
4948 struct hstate
*h
= page_hstate(oldpage
);
4950 hugetlb_cgroup_migrate(oldpage
, newpage
);
4951 set_page_owner_migrate_reason(newpage
, reason
);
4954 * transfer temporary state of the new huge page. This is
4955 * reverse to other transitions because the newpage is going to
4956 * be final while the old one will be freed so it takes over
4957 * the temporary status.
4959 * Also note that we have to transfer the per-node surplus state
4960 * here as well otherwise the global surplus count will not match
4963 if (PageHugeTemporary(newpage
)) {
4964 int old_nid
= page_to_nid(oldpage
);
4965 int new_nid
= page_to_nid(newpage
);
4967 SetPageHugeTemporary(oldpage
);
4968 ClearPageHugeTemporary(newpage
);
4970 spin_lock(&hugetlb_lock
);
4971 if (h
->surplus_huge_pages_node
[old_nid
]) {
4972 h
->surplus_huge_pages_node
[old_nid
]--;
4973 h
->surplus_huge_pages_node
[new_nid
]++;
4975 spin_unlock(&hugetlb_lock
);