Linux 5.1.15
[linux/fpc-iii.git] / mm / memory_hotplug.c
blob547e48addced155325a02cebc79880a8fcd303fe
1 /*
2 * linux/mm/memory_hotplug.c
4 * Copyright (C)
5 */
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
39 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
50 static void generic_online_page(struct page *page, unsigned int order);
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
57 void get_online_mems(void)
59 percpu_down_read(&mem_hotplug_lock);
62 void put_online_mems(void)
64 percpu_up_read(&mem_hotplug_lock);
67 bool movable_node_enabled = false;
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
76 static int __init setup_memhp_default_state(char *str)
78 if (!strcmp(str, "online"))
79 memhp_auto_online = true;
80 else if (!strcmp(str, "offline"))
81 memhp_auto_online = false;
83 return 1;
85 __setup("memhp_default_state=", setup_memhp_default_state);
87 void mem_hotplug_begin(void)
89 cpus_read_lock();
90 percpu_down_write(&mem_hotplug_lock);
93 void mem_hotplug_done(void)
95 percpu_up_write(&mem_hotplug_lock);
96 cpus_read_unlock();
99 u64 max_mem_size = U64_MAX;
101 /* add this memory to iomem resource */
102 static struct resource *register_memory_resource(u64 start, u64 size)
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 char *resource_name = "System RAM";
108 if (start + size > max_mem_size)
109 return ERR_PTR(-E2BIG);
112 * Request ownership of the new memory range. This might be
113 * a child of an existing resource that was present but
114 * not marked as busy.
116 res = __request_region(&iomem_resource, start, size,
117 resource_name, flags);
119 if (!res) {
120 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
121 start, start + size);
122 return ERR_PTR(-EEXIST);
124 return res;
127 static void release_memory_resource(struct resource *res)
129 if (!res)
130 return;
131 release_resource(res);
132 kfree(res);
133 return;
136 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
137 void get_page_bootmem(unsigned long info, struct page *page,
138 unsigned long type)
140 page->freelist = (void *)type;
141 SetPagePrivate(page);
142 set_page_private(page, info);
143 page_ref_inc(page);
146 void put_page_bootmem(struct page *page)
148 unsigned long type;
150 type = (unsigned long) page->freelist;
151 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
152 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154 if (page_ref_dec_return(page) == 1) {
155 page->freelist = NULL;
156 ClearPagePrivate(page);
157 set_page_private(page, 0);
158 INIT_LIST_HEAD(&page->lru);
159 free_reserved_page(page);
163 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
164 #ifndef CONFIG_SPARSEMEM_VMEMMAP
165 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 unsigned long *usemap, mapsize, section_nr, i;
168 struct mem_section *ms;
169 struct page *page, *memmap;
171 section_nr = pfn_to_section_nr(start_pfn);
172 ms = __nr_to_section(section_nr);
174 /* Get section's memmap address */
175 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178 * Get page for the memmap's phys address
179 * XXX: need more consideration for sparse_vmemmap...
181 page = virt_to_page(memmap);
182 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
183 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
185 /* remember memmap's page */
186 for (i = 0; i < mapsize; i++, page++)
187 get_page_bootmem(section_nr, page, SECTION_INFO);
189 usemap = ms->pageblock_flags;
190 page = virt_to_page(usemap);
192 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
194 for (i = 0; i < mapsize; i++, page++)
195 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198 #else /* CONFIG_SPARSEMEM_VMEMMAP */
199 static void register_page_bootmem_info_section(unsigned long start_pfn)
201 unsigned long *usemap, mapsize, section_nr, i;
202 struct mem_section *ms;
203 struct page *page, *memmap;
205 section_nr = pfn_to_section_nr(start_pfn);
206 ms = __nr_to_section(section_nr);
208 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
210 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
212 usemap = ms->pageblock_flags;
213 page = virt_to_page(usemap);
215 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
217 for (i = 0; i < mapsize; i++, page++)
218 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
220 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
222 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
224 unsigned long i, pfn, end_pfn, nr_pages;
225 int node = pgdat->node_id;
226 struct page *page;
228 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
229 page = virt_to_page(pgdat);
231 for (i = 0; i < nr_pages; i++, page++)
232 get_page_bootmem(node, page, NODE_INFO);
234 pfn = pgdat->node_start_pfn;
235 end_pfn = pgdat_end_pfn(pgdat);
237 /* register section info */
238 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 * Some platforms can assign the same pfn to multiple nodes - on
241 * node0 as well as nodeN. To avoid registering a pfn against
242 * multiple nodes we check that this pfn does not already
243 * reside in some other nodes.
245 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
246 register_page_bootmem_info_section(pfn);
249 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
251 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
252 struct vmem_altmap *altmap, bool want_memblock)
254 int ret;
256 if (pfn_valid(phys_start_pfn))
257 return -EEXIST;
259 ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
260 if (ret < 0)
261 return ret;
263 if (!want_memblock)
264 return 0;
266 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
270 * Reasonably generic function for adding memory. It is
271 * expected that archs that support memory hotplug will
272 * call this function after deciding the zone to which to
273 * add the new pages.
275 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
276 unsigned long nr_pages, struct vmem_altmap *altmap,
277 bool want_memblock)
279 unsigned long i;
280 int err = 0;
281 int start_sec, end_sec;
283 /* during initialize mem_map, align hot-added range to section */
284 start_sec = pfn_to_section_nr(phys_start_pfn);
285 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
287 if (altmap) {
289 * Validate altmap is within bounds of the total request
291 if (altmap->base_pfn != phys_start_pfn
292 || vmem_altmap_offset(altmap) > nr_pages) {
293 pr_warn_once("memory add fail, invalid altmap\n");
294 err = -EINVAL;
295 goto out;
297 altmap->alloc = 0;
300 for (i = start_sec; i <= end_sec; i++) {
301 err = __add_section(nid, section_nr_to_pfn(i), altmap,
302 want_memblock);
305 * EEXIST is finally dealt with by ioresource collision
306 * check. see add_memory() => register_memory_resource()
307 * Warning will be printed if there is collision.
309 if (err && (err != -EEXIST))
310 break;
311 err = 0;
312 cond_resched();
314 vmemmap_populate_print_last();
315 out:
316 return err;
319 #ifdef CONFIG_MEMORY_HOTREMOVE
320 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
321 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
322 unsigned long start_pfn,
323 unsigned long end_pfn)
325 struct mem_section *ms;
327 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
328 ms = __pfn_to_section(start_pfn);
330 if (unlikely(!valid_section(ms)))
331 continue;
333 if (unlikely(pfn_to_nid(start_pfn) != nid))
334 continue;
336 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
337 continue;
339 return start_pfn;
342 return 0;
345 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
346 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
347 unsigned long start_pfn,
348 unsigned long end_pfn)
350 struct mem_section *ms;
351 unsigned long pfn;
353 /* pfn is the end pfn of a memory section. */
354 pfn = end_pfn - 1;
355 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
356 ms = __pfn_to_section(pfn);
358 if (unlikely(!valid_section(ms)))
359 continue;
361 if (unlikely(pfn_to_nid(pfn) != nid))
362 continue;
364 if (zone && zone != page_zone(pfn_to_page(pfn)))
365 continue;
367 return pfn;
370 return 0;
373 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
374 unsigned long end_pfn)
376 unsigned long zone_start_pfn = zone->zone_start_pfn;
377 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
378 unsigned long zone_end_pfn = z;
379 unsigned long pfn;
380 struct mem_section *ms;
381 int nid = zone_to_nid(zone);
383 zone_span_writelock(zone);
384 if (zone_start_pfn == start_pfn) {
386 * If the section is smallest section in the zone, it need
387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 * In this case, we find second smallest valid mem_section
389 * for shrinking zone.
391 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 zone_end_pfn);
393 if (pfn) {
394 zone->zone_start_pfn = pfn;
395 zone->spanned_pages = zone_end_pfn - pfn;
397 } else if (zone_end_pfn == end_pfn) {
399 * If the section is biggest section in the zone, it need
400 * shrink zone->spanned_pages.
401 * In this case, we find second biggest valid mem_section for
402 * shrinking zone.
404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 start_pfn);
406 if (pfn)
407 zone->spanned_pages = pfn - zone_start_pfn + 1;
411 * The section is not biggest or smallest mem_section in the zone, it
412 * only creates a hole in the zone. So in this case, we need not
413 * change the zone. But perhaps, the zone has only hole data. Thus
414 * it check the zone has only hole or not.
416 pfn = zone_start_pfn;
417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
418 ms = __pfn_to_section(pfn);
420 if (unlikely(!valid_section(ms)))
421 continue;
423 if (page_zone(pfn_to_page(pfn)) != zone)
424 continue;
426 /* If the section is current section, it continues the loop */
427 if (start_pfn == pfn)
428 continue;
430 /* If we find valid section, we have nothing to do */
431 zone_span_writeunlock(zone);
432 return;
435 /* The zone has no valid section */
436 zone->zone_start_pfn = 0;
437 zone->spanned_pages = 0;
438 zone_span_writeunlock(zone);
441 static void shrink_pgdat_span(struct pglist_data *pgdat,
442 unsigned long start_pfn, unsigned long end_pfn)
444 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
445 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
446 unsigned long pgdat_end_pfn = p;
447 unsigned long pfn;
448 struct mem_section *ms;
449 int nid = pgdat->node_id;
451 if (pgdat_start_pfn == start_pfn) {
453 * If the section is smallest section in the pgdat, it need
454 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
455 * In this case, we find second smallest valid mem_section
456 * for shrinking zone.
458 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
459 pgdat_end_pfn);
460 if (pfn) {
461 pgdat->node_start_pfn = pfn;
462 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
464 } else if (pgdat_end_pfn == end_pfn) {
466 * If the section is biggest section in the pgdat, it need
467 * shrink pgdat->node_spanned_pages.
468 * In this case, we find second biggest valid mem_section for
469 * shrinking zone.
471 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
472 start_pfn);
473 if (pfn)
474 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
478 * If the section is not biggest or smallest mem_section in the pgdat,
479 * it only creates a hole in the pgdat. So in this case, we need not
480 * change the pgdat.
481 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
482 * has only hole or not.
484 pfn = pgdat_start_pfn;
485 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
486 ms = __pfn_to_section(pfn);
488 if (unlikely(!valid_section(ms)))
489 continue;
491 if (pfn_to_nid(pfn) != nid)
492 continue;
494 /* If the section is current section, it continues the loop */
495 if (start_pfn == pfn)
496 continue;
498 /* If we find valid section, we have nothing to do */
499 return;
502 /* The pgdat has no valid section */
503 pgdat->node_start_pfn = 0;
504 pgdat->node_spanned_pages = 0;
507 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
509 struct pglist_data *pgdat = zone->zone_pgdat;
510 int nr_pages = PAGES_PER_SECTION;
511 unsigned long flags;
513 pgdat_resize_lock(zone->zone_pgdat, &flags);
514 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
515 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
516 pgdat_resize_unlock(zone->zone_pgdat, &flags);
519 static int __remove_section(struct zone *zone, struct mem_section *ms,
520 unsigned long map_offset, struct vmem_altmap *altmap)
522 unsigned long start_pfn;
523 int scn_nr;
524 int ret = -EINVAL;
526 if (!valid_section(ms))
527 return ret;
529 ret = unregister_memory_section(ms);
530 if (ret)
531 return ret;
533 scn_nr = __section_nr(ms);
534 start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
535 __remove_zone(zone, start_pfn);
537 sparse_remove_one_section(zone, ms, map_offset, altmap);
538 return 0;
542 * __remove_pages() - remove sections of pages from a zone
543 * @zone: zone from which pages need to be removed
544 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
545 * @nr_pages: number of pages to remove (must be multiple of section size)
546 * @altmap: alternative device page map or %NULL if default memmap is used
548 * Generic helper function to remove section mappings and sysfs entries
549 * for the section of the memory we are removing. Caller needs to make
550 * sure that pages are marked reserved and zones are adjust properly by
551 * calling offline_pages().
553 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
554 unsigned long nr_pages, struct vmem_altmap *altmap)
556 unsigned long i;
557 unsigned long map_offset = 0;
558 int sections_to_remove, ret = 0;
560 /* In the ZONE_DEVICE case device driver owns the memory region */
561 if (is_dev_zone(zone)) {
562 if (altmap)
563 map_offset = vmem_altmap_offset(altmap);
566 clear_zone_contiguous(zone);
569 * We can only remove entire sections
571 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
572 BUG_ON(nr_pages % PAGES_PER_SECTION);
574 sections_to_remove = nr_pages / PAGES_PER_SECTION;
575 for (i = 0; i < sections_to_remove; i++) {
576 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
578 cond_resched();
579 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
580 altmap);
581 map_offset = 0;
582 if (ret)
583 break;
586 set_zone_contiguous(zone);
588 return ret;
590 #endif /* CONFIG_MEMORY_HOTREMOVE */
592 int set_online_page_callback(online_page_callback_t callback)
594 int rc = -EINVAL;
596 get_online_mems();
597 mutex_lock(&online_page_callback_lock);
599 if (online_page_callback == generic_online_page) {
600 online_page_callback = callback;
601 rc = 0;
604 mutex_unlock(&online_page_callback_lock);
605 put_online_mems();
607 return rc;
609 EXPORT_SYMBOL_GPL(set_online_page_callback);
611 int restore_online_page_callback(online_page_callback_t callback)
613 int rc = -EINVAL;
615 get_online_mems();
616 mutex_lock(&online_page_callback_lock);
618 if (online_page_callback == callback) {
619 online_page_callback = generic_online_page;
620 rc = 0;
623 mutex_unlock(&online_page_callback_lock);
624 put_online_mems();
626 return rc;
628 EXPORT_SYMBOL_GPL(restore_online_page_callback);
630 void __online_page_set_limits(struct page *page)
633 EXPORT_SYMBOL_GPL(__online_page_set_limits);
635 void __online_page_increment_counters(struct page *page)
637 adjust_managed_page_count(page, 1);
639 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
641 void __online_page_free(struct page *page)
643 __free_reserved_page(page);
645 EXPORT_SYMBOL_GPL(__online_page_free);
647 static void generic_online_page(struct page *page, unsigned int order)
649 kernel_map_pages(page, 1 << order, 1);
650 __free_pages_core(page, order);
651 totalram_pages_add(1UL << order);
652 #ifdef CONFIG_HIGHMEM
653 if (PageHighMem(page))
654 totalhigh_pages_add(1UL << order);
655 #endif
658 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
660 unsigned long end = start + nr_pages;
661 int order, onlined_pages = 0;
663 while (start < end) {
664 order = min(MAX_ORDER - 1,
665 get_order(PFN_PHYS(end) - PFN_PHYS(start)));
666 (*online_page_callback)(pfn_to_page(start), order);
668 onlined_pages += (1UL << order);
669 start += (1UL << order);
671 return onlined_pages;
674 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
675 void *arg)
677 unsigned long onlined_pages = *(unsigned long *)arg;
679 if (PageReserved(pfn_to_page(start_pfn)))
680 onlined_pages += online_pages_blocks(start_pfn, nr_pages);
682 online_mem_sections(start_pfn, start_pfn + nr_pages);
684 *(unsigned long *)arg = onlined_pages;
685 return 0;
688 /* check which state of node_states will be changed when online memory */
689 static void node_states_check_changes_online(unsigned long nr_pages,
690 struct zone *zone, struct memory_notify *arg)
692 int nid = zone_to_nid(zone);
694 arg->status_change_nid = NUMA_NO_NODE;
695 arg->status_change_nid_normal = NUMA_NO_NODE;
696 arg->status_change_nid_high = NUMA_NO_NODE;
698 if (!node_state(nid, N_MEMORY))
699 arg->status_change_nid = nid;
700 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
701 arg->status_change_nid_normal = nid;
702 #ifdef CONFIG_HIGHMEM
703 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
704 arg->status_change_nid_high = nid;
705 #endif
708 static void node_states_set_node(int node, struct memory_notify *arg)
710 if (arg->status_change_nid_normal >= 0)
711 node_set_state(node, N_NORMAL_MEMORY);
713 if (arg->status_change_nid_high >= 0)
714 node_set_state(node, N_HIGH_MEMORY);
716 if (arg->status_change_nid >= 0)
717 node_set_state(node, N_MEMORY);
720 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
721 unsigned long nr_pages)
723 unsigned long old_end_pfn = zone_end_pfn(zone);
725 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
726 zone->zone_start_pfn = start_pfn;
728 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
731 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
732 unsigned long nr_pages)
734 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
736 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
737 pgdat->node_start_pfn = start_pfn;
739 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
742 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
743 unsigned long nr_pages, struct vmem_altmap *altmap)
745 struct pglist_data *pgdat = zone->zone_pgdat;
746 int nid = pgdat->node_id;
747 unsigned long flags;
749 clear_zone_contiguous(zone);
751 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
752 pgdat_resize_lock(pgdat, &flags);
753 zone_span_writelock(zone);
754 if (zone_is_empty(zone))
755 init_currently_empty_zone(zone, start_pfn, nr_pages);
756 resize_zone_range(zone, start_pfn, nr_pages);
757 zone_span_writeunlock(zone);
758 resize_pgdat_range(pgdat, start_pfn, nr_pages);
759 pgdat_resize_unlock(pgdat, &flags);
762 * TODO now we have a visible range of pages which are not associated
763 * with their zone properly. Not nice but set_pfnblock_flags_mask
764 * expects the zone spans the pfn range. All the pages in the range
765 * are reserved so nobody should be touching them so we should be safe
767 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
768 MEMMAP_HOTPLUG, altmap);
770 set_zone_contiguous(zone);
774 * Returns a default kernel memory zone for the given pfn range.
775 * If no kernel zone covers this pfn range it will automatically go
776 * to the ZONE_NORMAL.
778 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
779 unsigned long nr_pages)
781 struct pglist_data *pgdat = NODE_DATA(nid);
782 int zid;
784 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
785 struct zone *zone = &pgdat->node_zones[zid];
787 if (zone_intersects(zone, start_pfn, nr_pages))
788 return zone;
791 return &pgdat->node_zones[ZONE_NORMAL];
794 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
795 unsigned long nr_pages)
797 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
798 nr_pages);
799 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
800 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
801 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
804 * We inherit the existing zone in a simple case where zones do not
805 * overlap in the given range
807 if (in_kernel ^ in_movable)
808 return (in_kernel) ? kernel_zone : movable_zone;
811 * If the range doesn't belong to any zone or two zones overlap in the
812 * given range then we use movable zone only if movable_node is
813 * enabled because we always online to a kernel zone by default.
815 return movable_node_enabled ? movable_zone : kernel_zone;
818 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
819 unsigned long nr_pages)
821 if (online_type == MMOP_ONLINE_KERNEL)
822 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
824 if (online_type == MMOP_ONLINE_MOVABLE)
825 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
827 return default_zone_for_pfn(nid, start_pfn, nr_pages);
831 * Associates the given pfn range with the given node and the zone appropriate
832 * for the given online type.
834 static struct zone * __meminit move_pfn_range(int online_type, int nid,
835 unsigned long start_pfn, unsigned long nr_pages)
837 struct zone *zone;
839 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
840 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
841 return zone;
844 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
846 unsigned long flags;
847 unsigned long onlined_pages = 0;
848 struct zone *zone;
849 int need_zonelists_rebuild = 0;
850 int nid;
851 int ret;
852 struct memory_notify arg;
853 struct memory_block *mem;
855 mem_hotplug_begin();
858 * We can't use pfn_to_nid() because nid might be stored in struct page
859 * which is not yet initialized. Instead, we find nid from memory block.
861 mem = find_memory_block(__pfn_to_section(pfn));
862 nid = mem->nid;
863 put_device(&mem->dev);
865 /* associate pfn range with the zone */
866 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
868 arg.start_pfn = pfn;
869 arg.nr_pages = nr_pages;
870 node_states_check_changes_online(nr_pages, zone, &arg);
872 ret = memory_notify(MEM_GOING_ONLINE, &arg);
873 ret = notifier_to_errno(ret);
874 if (ret)
875 goto failed_addition;
878 * If this zone is not populated, then it is not in zonelist.
879 * This means the page allocator ignores this zone.
880 * So, zonelist must be updated after online.
882 if (!populated_zone(zone)) {
883 need_zonelists_rebuild = 1;
884 setup_zone_pageset(zone);
887 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
888 online_pages_range);
889 if (ret) {
890 if (need_zonelists_rebuild)
891 zone_pcp_reset(zone);
892 goto failed_addition;
895 zone->present_pages += onlined_pages;
897 pgdat_resize_lock(zone->zone_pgdat, &flags);
898 zone->zone_pgdat->node_present_pages += onlined_pages;
899 pgdat_resize_unlock(zone->zone_pgdat, &flags);
901 if (onlined_pages) {
902 node_states_set_node(nid, &arg);
903 if (need_zonelists_rebuild)
904 build_all_zonelists(NULL);
905 else
906 zone_pcp_update(zone);
909 init_per_zone_wmark_min();
911 if (onlined_pages) {
912 kswapd_run(nid);
913 kcompactd_run(nid);
916 vm_total_pages = nr_free_pagecache_pages();
918 writeback_set_ratelimit();
920 if (onlined_pages)
921 memory_notify(MEM_ONLINE, &arg);
922 mem_hotplug_done();
923 return 0;
925 failed_addition:
926 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
927 (unsigned long long) pfn << PAGE_SHIFT,
928 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
929 memory_notify(MEM_CANCEL_ONLINE, &arg);
930 mem_hotplug_done();
931 return ret;
933 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
935 static void reset_node_present_pages(pg_data_t *pgdat)
937 struct zone *z;
939 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
940 z->present_pages = 0;
942 pgdat->node_present_pages = 0;
945 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
946 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
948 struct pglist_data *pgdat;
949 unsigned long start_pfn = PFN_DOWN(start);
951 pgdat = NODE_DATA(nid);
952 if (!pgdat) {
953 pgdat = arch_alloc_nodedata(nid);
954 if (!pgdat)
955 return NULL;
957 arch_refresh_nodedata(nid, pgdat);
958 } else {
960 * Reset the nr_zones, order and classzone_idx before reuse.
961 * Note that kswapd will init kswapd_classzone_idx properly
962 * when it starts in the near future.
964 pgdat->nr_zones = 0;
965 pgdat->kswapd_order = 0;
966 pgdat->kswapd_classzone_idx = 0;
969 /* we can use NODE_DATA(nid) from here */
971 pgdat->node_id = nid;
972 pgdat->node_start_pfn = start_pfn;
974 /* init node's zones as empty zones, we don't have any present pages.*/
975 free_area_init_core_hotplug(nid);
976 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
979 * The node we allocated has no zone fallback lists. For avoiding
980 * to access not-initialized zonelist, build here.
982 build_all_zonelists(pgdat);
985 * When memory is hot-added, all the memory is in offline state. So
986 * clear all zones' present_pages because they will be updated in
987 * online_pages() and offline_pages().
989 reset_node_managed_pages(pgdat);
990 reset_node_present_pages(pgdat);
992 return pgdat;
995 static void rollback_node_hotadd(int nid)
997 pg_data_t *pgdat = NODE_DATA(nid);
999 arch_refresh_nodedata(nid, NULL);
1000 free_percpu(pgdat->per_cpu_nodestats);
1001 arch_free_nodedata(pgdat);
1002 return;
1007 * try_online_node - online a node if offlined
1008 * @nid: the node ID
1009 * @start: start addr of the node
1010 * @set_node_online: Whether we want to online the node
1011 * called by cpu_up() to online a node without onlined memory.
1013 * Returns:
1014 * 1 -> a new node has been allocated
1015 * 0 -> the node is already online
1016 * -ENOMEM -> the node could not be allocated
1018 static int __try_online_node(int nid, u64 start, bool set_node_online)
1020 pg_data_t *pgdat;
1021 int ret = 1;
1023 if (node_online(nid))
1024 return 0;
1026 pgdat = hotadd_new_pgdat(nid, start);
1027 if (!pgdat) {
1028 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1029 ret = -ENOMEM;
1030 goto out;
1033 if (set_node_online) {
1034 node_set_online(nid);
1035 ret = register_one_node(nid);
1036 BUG_ON(ret);
1038 out:
1039 return ret;
1043 * Users of this function always want to online/register the node
1045 int try_online_node(int nid)
1047 int ret;
1049 mem_hotplug_begin();
1050 ret = __try_online_node(nid, 0, true);
1051 mem_hotplug_done();
1052 return ret;
1055 static int check_hotplug_memory_range(u64 start, u64 size)
1057 unsigned long block_sz = memory_block_size_bytes();
1058 u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1059 u64 nr_pages = size >> PAGE_SHIFT;
1060 u64 start_pfn = PFN_DOWN(start);
1062 /* memory range must be block size aligned */
1063 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1064 !IS_ALIGNED(nr_pages, block_nr_pages)) {
1065 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1066 block_sz, start, size);
1067 return -EINVAL;
1070 return 0;
1073 static int online_memory_block(struct memory_block *mem, void *arg)
1075 return device_online(&mem->dev);
1079 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1080 * and online/offline operations (triggered e.g. by sysfs).
1082 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1084 int __ref add_memory_resource(int nid, struct resource *res)
1086 u64 start, size;
1087 bool new_node = false;
1088 int ret;
1090 start = res->start;
1091 size = resource_size(res);
1093 ret = check_hotplug_memory_range(start, size);
1094 if (ret)
1095 return ret;
1097 mem_hotplug_begin();
1100 * Add new range to memblock so that when hotadd_new_pgdat() is called
1101 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1102 * this new range and calculate total pages correctly. The range will
1103 * be removed at hot-remove time.
1105 memblock_add_node(start, size, nid);
1107 ret = __try_online_node(nid, start, false);
1108 if (ret < 0)
1109 goto error;
1110 new_node = ret;
1112 /* call arch's memory hotadd */
1113 ret = arch_add_memory(nid, start, size, NULL, true);
1114 if (ret < 0)
1115 goto error;
1117 if (new_node) {
1118 /* If sysfs file of new node can't be created, cpu on the node
1119 * can't be hot-added. There is no rollback way now.
1120 * So, check by BUG_ON() to catch it reluctantly..
1121 * We online node here. We can't roll back from here.
1123 node_set_online(nid);
1124 ret = __register_one_node(nid);
1125 BUG_ON(ret);
1128 /* link memory sections under this node.*/
1129 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1130 BUG_ON(ret);
1132 /* create new memmap entry */
1133 firmware_map_add_hotplug(start, start + size, "System RAM");
1135 /* device_online() will take the lock when calling online_pages() */
1136 mem_hotplug_done();
1138 /* online pages if requested */
1139 if (memhp_auto_online)
1140 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1141 NULL, online_memory_block);
1143 return ret;
1144 error:
1145 /* rollback pgdat allocation and others */
1146 if (new_node)
1147 rollback_node_hotadd(nid);
1148 memblock_remove(start, size);
1149 mem_hotplug_done();
1150 return ret;
1153 /* requires device_hotplug_lock, see add_memory_resource() */
1154 int __ref __add_memory(int nid, u64 start, u64 size)
1156 struct resource *res;
1157 int ret;
1159 res = register_memory_resource(start, size);
1160 if (IS_ERR(res))
1161 return PTR_ERR(res);
1163 ret = add_memory_resource(nid, res);
1164 if (ret < 0)
1165 release_memory_resource(res);
1166 return ret;
1169 int add_memory(int nid, u64 start, u64 size)
1171 int rc;
1173 lock_device_hotplug();
1174 rc = __add_memory(nid, start, size);
1175 unlock_device_hotplug();
1177 return rc;
1179 EXPORT_SYMBOL_GPL(add_memory);
1181 #ifdef CONFIG_MEMORY_HOTREMOVE
1183 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1184 * set and the size of the free page is given by page_order(). Using this,
1185 * the function determines if the pageblock contains only free pages.
1186 * Due to buddy contraints, a free page at least the size of a pageblock will
1187 * be located at the start of the pageblock
1189 static inline int pageblock_free(struct page *page)
1191 return PageBuddy(page) && page_order(page) >= pageblock_order;
1194 /* Return the pfn of the start of the next active pageblock after a given pfn */
1195 static unsigned long next_active_pageblock(unsigned long pfn)
1197 struct page *page = pfn_to_page(pfn);
1199 /* Ensure the starting page is pageblock-aligned */
1200 BUG_ON(pfn & (pageblock_nr_pages - 1));
1202 /* If the entire pageblock is free, move to the end of free page */
1203 if (pageblock_free(page)) {
1204 int order;
1205 /* be careful. we don't have locks, page_order can be changed.*/
1206 order = page_order(page);
1207 if ((order < MAX_ORDER) && (order >= pageblock_order))
1208 return pfn + (1 << order);
1211 return pfn + pageblock_nr_pages;
1214 static bool is_pageblock_removable_nolock(unsigned long pfn)
1216 struct page *page = pfn_to_page(pfn);
1217 struct zone *zone;
1220 * We have to be careful here because we are iterating over memory
1221 * sections which are not zone aware so we might end up outside of
1222 * the zone but still within the section.
1223 * We have to take care about the node as well. If the node is offline
1224 * its NODE_DATA will be NULL - see page_zone.
1226 if (!node_online(page_to_nid(page)))
1227 return false;
1229 zone = page_zone(page);
1230 pfn = page_to_pfn(page);
1231 if (!zone_spans_pfn(zone, pfn))
1232 return false;
1234 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1237 /* Checks if this range of memory is likely to be hot-removable. */
1238 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1240 unsigned long end_pfn, pfn;
1242 end_pfn = min(start_pfn + nr_pages,
1243 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1245 /* Check the starting page of each pageblock within the range */
1246 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1247 if (!is_pageblock_removable_nolock(pfn))
1248 return false;
1249 cond_resched();
1252 /* All pageblocks in the memory block are likely to be hot-removable */
1253 return true;
1257 * Confirm all pages in a range [start, end) belong to the same zone.
1258 * When true, return its valid [start, end).
1260 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1261 unsigned long *valid_start, unsigned long *valid_end)
1263 unsigned long pfn, sec_end_pfn;
1264 unsigned long start, end;
1265 struct zone *zone = NULL;
1266 struct page *page;
1267 int i;
1268 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1269 pfn < end_pfn;
1270 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1271 /* Make sure the memory section is present first */
1272 if (!present_section_nr(pfn_to_section_nr(pfn)))
1273 continue;
1274 for (; pfn < sec_end_pfn && pfn < end_pfn;
1275 pfn += MAX_ORDER_NR_PAGES) {
1276 i = 0;
1277 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1278 while ((i < MAX_ORDER_NR_PAGES) &&
1279 !pfn_valid_within(pfn + i))
1280 i++;
1281 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1282 continue;
1283 /* Check if we got outside of the zone */
1284 if (zone && !zone_spans_pfn(zone, pfn + i))
1285 return 0;
1286 page = pfn_to_page(pfn + i);
1287 if (zone && page_zone(page) != zone)
1288 return 0;
1289 if (!zone)
1290 start = pfn + i;
1291 zone = page_zone(page);
1292 end = pfn + MAX_ORDER_NR_PAGES;
1296 if (zone) {
1297 *valid_start = start;
1298 *valid_end = min(end, end_pfn);
1299 return 1;
1300 } else {
1301 return 0;
1306 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1307 * non-lru movable pages and hugepages). We scan pfn because it's much
1308 * easier than scanning over linked list. This function returns the pfn
1309 * of the first found movable page if it's found, otherwise 0.
1311 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1313 unsigned long pfn;
1315 for (pfn = start; pfn < end; pfn++) {
1316 struct page *page, *head;
1317 unsigned long skip;
1319 if (!pfn_valid(pfn))
1320 continue;
1321 page = pfn_to_page(pfn);
1322 if (PageLRU(page))
1323 return pfn;
1324 if (__PageMovable(page))
1325 return pfn;
1327 if (!PageHuge(page))
1328 continue;
1329 head = compound_head(page);
1330 if (hugepage_migration_supported(page_hstate(head)) &&
1331 page_huge_active(head))
1332 return pfn;
1333 skip = (1 << compound_order(head)) - (page - head);
1334 pfn += skip - 1;
1336 return 0;
1339 static struct page *new_node_page(struct page *page, unsigned long private)
1341 int nid = page_to_nid(page);
1342 nodemask_t nmask = node_states[N_MEMORY];
1345 * try to allocate from a different node but reuse this node if there
1346 * are no other online nodes to be used (e.g. we are offlining a part
1347 * of the only existing node)
1349 node_clear(nid, nmask);
1350 if (nodes_empty(nmask))
1351 node_set(nid, nmask);
1353 return new_page_nodemask(page, nid, &nmask);
1356 static int
1357 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1359 unsigned long pfn;
1360 struct page *page;
1361 int ret = 0;
1362 LIST_HEAD(source);
1364 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1365 if (!pfn_valid(pfn))
1366 continue;
1367 page = pfn_to_page(pfn);
1369 if (PageHuge(page)) {
1370 struct page *head = compound_head(page);
1371 if (compound_order(head) > PFN_SECTION_SHIFT) {
1372 ret = -EBUSY;
1373 break;
1375 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1376 isolate_huge_page(head, &source);
1377 continue;
1378 } else if (PageTransHuge(page))
1379 pfn = page_to_pfn(compound_head(page))
1380 + hpage_nr_pages(page) - 1;
1383 * HWPoison pages have elevated reference counts so the migration would
1384 * fail on them. It also doesn't make any sense to migrate them in the
1385 * first place. Still try to unmap such a page in case it is still mapped
1386 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1387 * the unmap as the catch all safety net).
1389 if (PageHWPoison(page)) {
1390 if (WARN_ON(PageLRU(page)))
1391 isolate_lru_page(page);
1392 if (page_mapped(page))
1393 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1394 continue;
1397 if (!get_page_unless_zero(page))
1398 continue;
1400 * We can skip free pages. And we can deal with pages on
1401 * LRU and non-lru movable pages.
1403 if (PageLRU(page))
1404 ret = isolate_lru_page(page);
1405 else
1406 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1407 if (!ret) { /* Success */
1408 list_add_tail(&page->lru, &source);
1409 if (!__PageMovable(page))
1410 inc_node_page_state(page, NR_ISOLATED_ANON +
1411 page_is_file_cache(page));
1413 } else {
1414 pr_warn("failed to isolate pfn %lx\n", pfn);
1415 dump_page(page, "isolation failed");
1417 put_page(page);
1419 if (!list_empty(&source)) {
1420 /* Allocate a new page from the nearest neighbor node */
1421 ret = migrate_pages(&source, new_node_page, NULL, 0,
1422 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1423 if (ret) {
1424 list_for_each_entry(page, &source, lru) {
1425 pr_warn("migrating pfn %lx failed ret:%d ",
1426 page_to_pfn(page), ret);
1427 dump_page(page, "migration failure");
1429 putback_movable_pages(&source);
1433 return ret;
1437 * remove from free_area[] and mark all as Reserved.
1439 static int
1440 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1441 void *data)
1443 __offline_isolated_pages(start, start + nr_pages);
1444 return 0;
1447 static void
1448 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1450 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1451 offline_isolated_pages_cb);
1455 * Check all pages in range, recoreded as memory resource, are isolated.
1457 static int
1458 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1459 void *data)
1461 int ret;
1462 long offlined = *(long *)data;
1463 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1464 offlined = nr_pages;
1465 if (!ret)
1466 *(long *)data += offlined;
1467 return ret;
1470 static long
1471 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1473 long offlined = 0;
1474 int ret;
1476 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1477 check_pages_isolated_cb);
1478 if (ret < 0)
1479 offlined = (long)ret;
1480 return offlined;
1483 static int __init cmdline_parse_movable_node(char *p)
1485 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1486 movable_node_enabled = true;
1487 #else
1488 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1489 #endif
1490 return 0;
1492 early_param("movable_node", cmdline_parse_movable_node);
1494 /* check which state of node_states will be changed when offline memory */
1495 static void node_states_check_changes_offline(unsigned long nr_pages,
1496 struct zone *zone, struct memory_notify *arg)
1498 struct pglist_data *pgdat = zone->zone_pgdat;
1499 unsigned long present_pages = 0;
1500 enum zone_type zt;
1502 arg->status_change_nid = NUMA_NO_NODE;
1503 arg->status_change_nid_normal = NUMA_NO_NODE;
1504 arg->status_change_nid_high = NUMA_NO_NODE;
1507 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1508 * If the memory to be offline is within the range
1509 * [0..ZONE_NORMAL], and it is the last present memory there,
1510 * the zones in that range will become empty after the offlining,
1511 * thus we can determine that we need to clear the node from
1512 * node_states[N_NORMAL_MEMORY].
1514 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1515 present_pages += pgdat->node_zones[zt].present_pages;
1516 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1517 arg->status_change_nid_normal = zone_to_nid(zone);
1519 #ifdef CONFIG_HIGHMEM
1521 * node_states[N_HIGH_MEMORY] contains nodes which
1522 * have normal memory or high memory.
1523 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1524 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1525 * we determine that the zones in that range become empty,
1526 * we need to clear the node for N_HIGH_MEMORY.
1528 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1529 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1530 arg->status_change_nid_high = zone_to_nid(zone);
1531 #endif
1534 * We have accounted the pages from [0..ZONE_NORMAL), and
1535 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1536 * as well.
1537 * Here we count the possible pages from ZONE_MOVABLE.
1538 * If after having accounted all the pages, we see that the nr_pages
1539 * to be offlined is over or equal to the accounted pages,
1540 * we know that the node will become empty, and so, we can clear
1541 * it for N_MEMORY as well.
1543 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545 if (nr_pages >= present_pages)
1546 arg->status_change_nid = zone_to_nid(zone);
1549 static void node_states_clear_node(int node, struct memory_notify *arg)
1551 if (arg->status_change_nid_normal >= 0)
1552 node_clear_state(node, N_NORMAL_MEMORY);
1554 if (arg->status_change_nid_high >= 0)
1555 node_clear_state(node, N_HIGH_MEMORY);
1557 if (arg->status_change_nid >= 0)
1558 node_clear_state(node, N_MEMORY);
1561 static int __ref __offline_pages(unsigned long start_pfn,
1562 unsigned long end_pfn)
1564 unsigned long pfn, nr_pages;
1565 long offlined_pages;
1566 int ret, node, nr_isolate_pageblock;
1567 unsigned long flags;
1568 unsigned long valid_start, valid_end;
1569 struct zone *zone;
1570 struct memory_notify arg;
1571 char *reason;
1573 mem_hotplug_begin();
1575 /* This makes hotplug much easier...and readable.
1576 we assume this for now. .*/
1577 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1578 &valid_end)) {
1579 ret = -EINVAL;
1580 reason = "multizone range";
1581 goto failed_removal;
1584 zone = page_zone(pfn_to_page(valid_start));
1585 node = zone_to_nid(zone);
1586 nr_pages = end_pfn - start_pfn;
1588 /* set above range as isolated */
1589 ret = start_isolate_page_range(start_pfn, end_pfn,
1590 MIGRATE_MOVABLE,
1591 SKIP_HWPOISON | REPORT_FAILURE);
1592 if (ret < 0) {
1593 reason = "failure to isolate range";
1594 goto failed_removal;
1596 nr_isolate_pageblock = ret;
1598 arg.start_pfn = start_pfn;
1599 arg.nr_pages = nr_pages;
1600 node_states_check_changes_offline(nr_pages, zone, &arg);
1602 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1603 ret = notifier_to_errno(ret);
1604 if (ret) {
1605 reason = "notifier failure";
1606 goto failed_removal_isolated;
1609 do {
1610 for (pfn = start_pfn; pfn;) {
1611 if (signal_pending(current)) {
1612 ret = -EINTR;
1613 reason = "signal backoff";
1614 goto failed_removal_isolated;
1617 cond_resched();
1618 lru_add_drain_all();
1620 pfn = scan_movable_pages(pfn, end_pfn);
1621 if (pfn) {
1623 * TODO: fatal migration failures should bail
1624 * out
1626 do_migrate_range(pfn, end_pfn);
1631 * Dissolve free hugepages in the memory block before doing
1632 * offlining actually in order to make hugetlbfs's object
1633 * counting consistent.
1635 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1636 if (ret) {
1637 reason = "failure to dissolve huge pages";
1638 goto failed_removal_isolated;
1640 /* check again */
1641 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1642 } while (offlined_pages < 0);
1644 pr_info("Offlined Pages %ld\n", offlined_pages);
1645 /* Ok, all of our target is isolated.
1646 We cannot do rollback at this point. */
1647 offline_isolated_pages(start_pfn, end_pfn);
1650 * Onlining will reset pagetype flags and makes migrate type
1651 * MOVABLE, so just need to decrease the number of isolated
1652 * pageblocks zone counter here.
1654 spin_lock_irqsave(&zone->lock, flags);
1655 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1656 spin_unlock_irqrestore(&zone->lock, flags);
1658 /* removal success */
1659 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1660 zone->present_pages -= offlined_pages;
1662 pgdat_resize_lock(zone->zone_pgdat, &flags);
1663 zone->zone_pgdat->node_present_pages -= offlined_pages;
1664 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1666 init_per_zone_wmark_min();
1668 if (!populated_zone(zone)) {
1669 zone_pcp_reset(zone);
1670 build_all_zonelists(NULL);
1671 } else
1672 zone_pcp_update(zone);
1674 node_states_clear_node(node, &arg);
1675 if (arg.status_change_nid >= 0) {
1676 kswapd_stop(node);
1677 kcompactd_stop(node);
1680 vm_total_pages = nr_free_pagecache_pages();
1681 writeback_set_ratelimit();
1683 memory_notify(MEM_OFFLINE, &arg);
1684 mem_hotplug_done();
1685 return 0;
1687 failed_removal_isolated:
1688 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1689 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1690 failed_removal:
1691 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1692 (unsigned long long) start_pfn << PAGE_SHIFT,
1693 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1694 reason);
1695 /* pushback to free area */
1696 mem_hotplug_done();
1697 return ret;
1700 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1702 return __offline_pages(start_pfn, start_pfn + nr_pages);
1704 #endif /* CONFIG_MEMORY_HOTREMOVE */
1707 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1708 * @start_pfn: start pfn of the memory range
1709 * @end_pfn: end pfn of the memory range
1710 * @arg: argument passed to func
1711 * @func: callback for each memory section walked
1713 * This function walks through all present mem sections in range
1714 * [start_pfn, end_pfn) and call func on each mem section.
1716 * Returns the return value of func.
1718 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1719 void *arg, int (*func)(struct memory_block *, void *))
1721 struct memory_block *mem = NULL;
1722 struct mem_section *section;
1723 unsigned long pfn, section_nr;
1724 int ret;
1726 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1727 section_nr = pfn_to_section_nr(pfn);
1728 if (!present_section_nr(section_nr))
1729 continue;
1731 section = __nr_to_section(section_nr);
1732 /* same memblock? */
1733 if (mem)
1734 if ((section_nr >= mem->start_section_nr) &&
1735 (section_nr <= mem->end_section_nr))
1736 continue;
1738 mem = find_memory_block_hinted(section, mem);
1739 if (!mem)
1740 continue;
1742 ret = func(mem, arg);
1743 if (ret) {
1744 kobject_put(&mem->dev.kobj);
1745 return ret;
1749 if (mem)
1750 kobject_put(&mem->dev.kobj);
1752 return 0;
1755 #ifdef CONFIG_MEMORY_HOTREMOVE
1756 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1758 int ret = !is_memblock_offlined(mem);
1760 if (unlikely(ret)) {
1761 phys_addr_t beginpa, endpa;
1763 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1764 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1765 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1766 &beginpa, &endpa);
1769 return ret;
1772 static int check_cpu_on_node(pg_data_t *pgdat)
1774 int cpu;
1776 for_each_present_cpu(cpu) {
1777 if (cpu_to_node(cpu) == pgdat->node_id)
1779 * the cpu on this node isn't removed, and we can't
1780 * offline this node.
1782 return -EBUSY;
1785 return 0;
1789 * try_offline_node
1790 * @nid: the node ID
1792 * Offline a node if all memory sections and cpus of the node are removed.
1794 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1795 * and online/offline operations before this call.
1797 void try_offline_node(int nid)
1799 pg_data_t *pgdat = NODE_DATA(nid);
1800 unsigned long start_pfn = pgdat->node_start_pfn;
1801 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1802 unsigned long pfn;
1804 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1805 unsigned long section_nr = pfn_to_section_nr(pfn);
1807 if (!present_section_nr(section_nr))
1808 continue;
1810 if (pfn_to_nid(pfn) != nid)
1811 continue;
1814 * some memory sections of this node are not removed, and we
1815 * can't offline node now.
1817 return;
1820 if (check_cpu_on_node(pgdat))
1821 return;
1824 * all memory/cpu of this node are removed, we can offline this
1825 * node now.
1827 node_set_offline(nid);
1828 unregister_one_node(nid);
1830 EXPORT_SYMBOL(try_offline_node);
1832 static void __release_memory_resource(resource_size_t start,
1833 resource_size_t size)
1835 int ret;
1838 * When removing memory in the same granularity as it was added,
1839 * this function never fails. It might only fail if resources
1840 * have to be adjusted or split. We'll ignore the error, as
1841 * removing of memory cannot fail.
1843 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1844 if (ret) {
1845 resource_size_t endres = start + size - 1;
1847 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1848 &start, &endres, ret);
1853 * remove_memory
1854 * @nid: the node ID
1855 * @start: physical address of the region to remove
1856 * @size: size of the region to remove
1858 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1859 * and online/offline operations before this call, as required by
1860 * try_offline_node().
1862 void __ref __remove_memory(int nid, u64 start, u64 size)
1864 int ret;
1866 BUG_ON(check_hotplug_memory_range(start, size));
1868 mem_hotplug_begin();
1871 * All memory blocks must be offlined before removing memory. Check
1872 * whether all memory blocks in question are offline and trigger a BUG()
1873 * if this is not the case.
1875 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1876 check_memblock_offlined_cb);
1877 if (ret)
1878 BUG();
1880 /* remove memmap entry */
1881 firmware_map_remove(start, start + size, "System RAM");
1882 memblock_free(start, size);
1883 memblock_remove(start, size);
1885 arch_remove_memory(nid, start, size, NULL);
1886 __release_memory_resource(start, size);
1888 try_offline_node(nid);
1890 mem_hotplug_done();
1893 void remove_memory(int nid, u64 start, u64 size)
1895 lock_device_hotplug();
1896 __remove_memory(nid, start, size);
1897 unlock_device_hotplug();
1899 EXPORT_SYMBOL_GPL(remove_memory);
1900 #endif /* CONFIG_MEMORY_HOTREMOVE */