2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 static struct vfsmount
*shm_mnt
;
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
102 struct shmem_falloc
{
103 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
104 pgoff_t start
; /* start of range currently being fallocated */
105 pgoff_t next
; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages() / 2;
116 static unsigned long shmem_default_max_inodes(void)
118 unsigned long nr_pages
= totalram_pages();
120 return min(nr_pages
- totalhigh_pages(), nr_pages
/ 2);
124 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
125 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
126 struct shmem_inode_info
*info
, pgoff_t index
);
127 static int shmem_swapin_page(struct inode
*inode
, pgoff_t index
,
128 struct page
**pagep
, enum sgp_type sgp
,
129 gfp_t gfp
, struct vm_area_struct
*vma
,
130 vm_fault_t
*fault_type
);
131 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
132 struct page
**pagep
, enum sgp_type sgp
,
133 gfp_t gfp
, struct vm_area_struct
*vma
,
134 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
136 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
137 struct page
**pagep
, enum sgp_type sgp
)
139 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
140 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
143 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
145 return sb
->s_fs_info
;
149 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150 * for shared memory and for shared anonymous (/dev/zero) mappings
151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152 * consistent with the pre-accounting of private mappings ...
154 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
156 return (flags
& VM_NORESERVE
) ?
157 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
160 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
162 if (!(flags
& VM_NORESERVE
))
163 vm_unacct_memory(VM_ACCT(size
));
166 static inline int shmem_reacct_size(unsigned long flags
,
167 loff_t oldsize
, loff_t newsize
)
169 if (!(flags
& VM_NORESERVE
)) {
170 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
171 return security_vm_enough_memory_mm(current
->mm
,
172 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
173 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
174 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
180 * ... whereas tmpfs objects are accounted incrementally as
181 * pages are allocated, in order to allow large sparse files.
182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185 static inline int shmem_acct_block(unsigned long flags
, long pages
)
187 if (!(flags
& VM_NORESERVE
))
190 return security_vm_enough_memory_mm(current
->mm
,
191 pages
* VM_ACCT(PAGE_SIZE
));
194 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
196 if (flags
& VM_NORESERVE
)
197 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
200 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
202 struct shmem_inode_info
*info
= SHMEM_I(inode
);
203 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
205 if (shmem_acct_block(info
->flags
, pages
))
208 if (sbinfo
->max_blocks
) {
209 if (percpu_counter_compare(&sbinfo
->used_blocks
,
210 sbinfo
->max_blocks
- pages
) > 0)
212 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
218 shmem_unacct_blocks(info
->flags
, pages
);
222 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
224 struct shmem_inode_info
*info
= SHMEM_I(inode
);
225 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
227 if (sbinfo
->max_blocks
)
228 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
229 shmem_unacct_blocks(info
->flags
, pages
);
232 static const struct super_operations shmem_ops
;
233 static const struct address_space_operations shmem_aops
;
234 static const struct file_operations shmem_file_operations
;
235 static const struct inode_operations shmem_inode_operations
;
236 static const struct inode_operations shmem_dir_inode_operations
;
237 static const struct inode_operations shmem_special_inode_operations
;
238 static const struct vm_operations_struct shmem_vm_ops
;
239 static struct file_system_type shmem_fs_type
;
241 bool vma_is_shmem(struct vm_area_struct
*vma
)
243 return vma
->vm_ops
== &shmem_vm_ops
;
246 static LIST_HEAD(shmem_swaplist
);
247 static DEFINE_MUTEX(shmem_swaplist_mutex
);
249 static int shmem_reserve_inode(struct super_block
*sb
)
251 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
252 if (sbinfo
->max_inodes
) {
253 spin_lock(&sbinfo
->stat_lock
);
254 if (!sbinfo
->free_inodes
) {
255 spin_unlock(&sbinfo
->stat_lock
);
258 sbinfo
->free_inodes
--;
259 spin_unlock(&sbinfo
->stat_lock
);
264 static void shmem_free_inode(struct super_block
*sb
)
266 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
267 if (sbinfo
->max_inodes
) {
268 spin_lock(&sbinfo
->stat_lock
);
269 sbinfo
->free_inodes
++;
270 spin_unlock(&sbinfo
->stat_lock
);
275 * shmem_recalc_inode - recalculate the block usage of an inode
276 * @inode: inode to recalc
278 * We have to calculate the free blocks since the mm can drop
279 * undirtied hole pages behind our back.
281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284 * It has to be called with the spinlock held.
286 static void shmem_recalc_inode(struct inode
*inode
)
288 struct shmem_inode_info
*info
= SHMEM_I(inode
);
291 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
293 info
->alloced
-= freed
;
294 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
295 shmem_inode_unacct_blocks(inode
, freed
);
299 bool shmem_charge(struct inode
*inode
, long pages
)
301 struct shmem_inode_info
*info
= SHMEM_I(inode
);
304 if (!shmem_inode_acct_block(inode
, pages
))
307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 inode
->i_mapping
->nrpages
+= pages
;
310 spin_lock_irqsave(&info
->lock
, flags
);
311 info
->alloced
+= pages
;
312 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
313 shmem_recalc_inode(inode
);
314 spin_unlock_irqrestore(&info
->lock
, flags
);
319 void shmem_uncharge(struct inode
*inode
, long pages
)
321 struct shmem_inode_info
*info
= SHMEM_I(inode
);
324 /* nrpages adjustment done by __delete_from_page_cache() or caller */
326 spin_lock_irqsave(&info
->lock
, flags
);
327 info
->alloced
-= pages
;
328 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
329 shmem_recalc_inode(inode
);
330 spin_unlock_irqrestore(&info
->lock
, flags
);
332 shmem_inode_unacct_blocks(inode
, pages
);
336 * Replace item expected in xarray by a new item, while holding xa_lock.
338 static int shmem_replace_entry(struct address_space
*mapping
,
339 pgoff_t index
, void *expected
, void *replacement
)
341 XA_STATE(xas
, &mapping
->i_pages
, index
);
344 VM_BUG_ON(!expected
);
345 VM_BUG_ON(!replacement
);
346 item
= xas_load(&xas
);
347 if (item
!= expected
)
349 xas_store(&xas
, replacement
);
354 * Sometimes, before we decide whether to proceed or to fail, we must check
355 * that an entry was not already brought back from swap by a racing thread.
357 * Checking page is not enough: by the time a SwapCache page is locked, it
358 * might be reused, and again be SwapCache, using the same swap as before.
360 static bool shmem_confirm_swap(struct address_space
*mapping
,
361 pgoff_t index
, swp_entry_t swap
)
363 return xa_load(&mapping
->i_pages
, index
) == swp_to_radix_entry(swap
);
367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
370 * disables huge pages for the mount;
372 * enables huge pages for the mount;
373 * SHMEM_HUGE_WITHIN_SIZE:
374 * only allocate huge pages if the page will be fully within i_size,
375 * also respect fadvise()/madvise() hints;
377 * only allocate huge pages if requested with fadvise()/madvise();
380 #define SHMEM_HUGE_NEVER 0
381 #define SHMEM_HUGE_ALWAYS 1
382 #define SHMEM_HUGE_WITHIN_SIZE 2
383 #define SHMEM_HUGE_ADVISE 3
387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
390 * disables huge on shm_mnt and all mounts, for emergency use;
392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
395 #define SHMEM_HUGE_DENY (-1)
396 #define SHMEM_HUGE_FORCE (-2)
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
401 static int shmem_huge __read_mostly
;
403 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
404 static int shmem_parse_huge(const char *str
)
406 if (!strcmp(str
, "never"))
407 return SHMEM_HUGE_NEVER
;
408 if (!strcmp(str
, "always"))
409 return SHMEM_HUGE_ALWAYS
;
410 if (!strcmp(str
, "within_size"))
411 return SHMEM_HUGE_WITHIN_SIZE
;
412 if (!strcmp(str
, "advise"))
413 return SHMEM_HUGE_ADVISE
;
414 if (!strcmp(str
, "deny"))
415 return SHMEM_HUGE_DENY
;
416 if (!strcmp(str
, "force"))
417 return SHMEM_HUGE_FORCE
;
421 static const char *shmem_format_huge(int huge
)
424 case SHMEM_HUGE_NEVER
:
426 case SHMEM_HUGE_ALWAYS
:
428 case SHMEM_HUGE_WITHIN_SIZE
:
429 return "within_size";
430 case SHMEM_HUGE_ADVISE
:
432 case SHMEM_HUGE_DENY
:
434 case SHMEM_HUGE_FORCE
:
443 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
444 struct shrink_control
*sc
, unsigned long nr_to_split
)
446 LIST_HEAD(list
), *pos
, *next
;
447 LIST_HEAD(to_remove
);
449 struct shmem_inode_info
*info
;
451 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
452 int removed
= 0, split
= 0;
454 if (list_empty(&sbinfo
->shrinklist
))
457 spin_lock(&sbinfo
->shrinklist_lock
);
458 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
459 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
462 inode
= igrab(&info
->vfs_inode
);
464 /* inode is about to be evicted */
466 list_del_init(&info
->shrinklist
);
471 /* Check if there's anything to gain */
472 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
473 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
474 list_move(&info
->shrinklist
, &to_remove
);
479 list_move(&info
->shrinklist
, &list
);
484 spin_unlock(&sbinfo
->shrinklist_lock
);
486 list_for_each_safe(pos
, next
, &to_remove
) {
487 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
488 inode
= &info
->vfs_inode
;
489 list_del_init(&info
->shrinklist
);
493 list_for_each_safe(pos
, next
, &list
) {
496 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
497 inode
= &info
->vfs_inode
;
499 if (nr_to_split
&& split
>= nr_to_split
)
502 page
= find_get_page(inode
->i_mapping
,
503 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
507 /* No huge page at the end of the file: nothing to split */
508 if (!PageTransHuge(page
)) {
514 * Leave the inode on the list if we failed to lock
515 * the page at this time.
517 * Waiting for the lock may lead to deadlock in the
520 if (!trylock_page(page
)) {
525 ret
= split_huge_page(page
);
529 /* If split failed leave the inode on the list */
535 list_del_init(&info
->shrinklist
);
541 spin_lock(&sbinfo
->shrinklist_lock
);
542 list_splice_tail(&list
, &sbinfo
->shrinklist
);
543 sbinfo
->shrinklist_len
-= removed
;
544 spin_unlock(&sbinfo
->shrinklist_lock
);
549 static long shmem_unused_huge_scan(struct super_block
*sb
,
550 struct shrink_control
*sc
)
552 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
554 if (!READ_ONCE(sbinfo
->shrinklist_len
))
557 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
560 static long shmem_unused_huge_count(struct super_block
*sb
,
561 struct shrink_control
*sc
)
563 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
564 return READ_ONCE(sbinfo
->shrinklist_len
);
566 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568 #define shmem_huge SHMEM_HUGE_DENY
570 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
571 struct shrink_control
*sc
, unsigned long nr_to_split
)
575 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
579 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
580 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
581 shmem_huge
!= SHMEM_HUGE_DENY
)
587 * Like add_to_page_cache_locked, but error if expected item has gone.
589 static int shmem_add_to_page_cache(struct page
*page
,
590 struct address_space
*mapping
,
591 pgoff_t index
, void *expected
, gfp_t gfp
)
593 XA_STATE_ORDER(xas
, &mapping
->i_pages
, index
, compound_order(page
));
595 unsigned long nr
= 1UL << compound_order(page
);
597 VM_BUG_ON_PAGE(PageTail(page
), page
);
598 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
599 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
600 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
601 VM_BUG_ON(expected
&& PageTransHuge(page
));
603 page_ref_add(page
, nr
);
604 page
->mapping
= mapping
;
610 entry
= xas_find_conflict(&xas
);
611 if (entry
!= expected
)
612 xas_set_err(&xas
, -EEXIST
);
613 xas_create_range(&xas
);
617 xas_store(&xas
, page
+ i
);
622 if (PageTransHuge(page
)) {
623 count_vm_event(THP_FILE_ALLOC
);
624 __inc_node_page_state(page
, NR_SHMEM_THPS
);
626 mapping
->nrpages
+= nr
;
627 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
628 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
630 xas_unlock_irq(&xas
);
631 } while (xas_nomem(&xas
, gfp
));
633 if (xas_error(&xas
)) {
634 page
->mapping
= NULL
;
635 page_ref_sub(page
, nr
);
636 return xas_error(&xas
);
643 * Like delete_from_page_cache, but substitutes swap for page.
645 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
647 struct address_space
*mapping
= page
->mapping
;
650 VM_BUG_ON_PAGE(PageCompound(page
), page
);
652 xa_lock_irq(&mapping
->i_pages
);
653 error
= shmem_replace_entry(mapping
, page
->index
, page
, radswap
);
654 page
->mapping
= NULL
;
656 __dec_node_page_state(page
, NR_FILE_PAGES
);
657 __dec_node_page_state(page
, NR_SHMEM
);
658 xa_unlock_irq(&mapping
->i_pages
);
664 * Remove swap entry from page cache, free the swap and its page cache.
666 static int shmem_free_swap(struct address_space
*mapping
,
667 pgoff_t index
, void *radswap
)
671 old
= xa_cmpxchg_irq(&mapping
->i_pages
, index
, radswap
, NULL
, 0);
674 free_swap_and_cache(radix_to_swp_entry(radswap
));
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
682 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
685 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
686 pgoff_t start
, pgoff_t end
)
688 XA_STATE(xas
, &mapping
->i_pages
, start
);
690 unsigned long swapped
= 0;
693 xas_for_each(&xas
, page
, end
- 1) {
694 if (xas_retry(&xas
, page
))
696 if (xa_is_value(page
))
699 if (need_resched()) {
707 return swapped
<< PAGE_SHIFT
;
711 * Determine (in bytes) how many of the shmem object's pages mapped by the
712 * given vma is swapped out.
714 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
715 * as long as the inode doesn't go away and racy results are not a problem.
717 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
719 struct inode
*inode
= file_inode(vma
->vm_file
);
720 struct shmem_inode_info
*info
= SHMEM_I(inode
);
721 struct address_space
*mapping
= inode
->i_mapping
;
722 unsigned long swapped
;
724 /* Be careful as we don't hold info->lock */
725 swapped
= READ_ONCE(info
->swapped
);
728 * The easier cases are when the shmem object has nothing in swap, or
729 * the vma maps it whole. Then we can simply use the stats that we
735 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
736 return swapped
<< PAGE_SHIFT
;
738 /* Here comes the more involved part */
739 return shmem_partial_swap_usage(mapping
,
740 linear_page_index(vma
, vma
->vm_start
),
741 linear_page_index(vma
, vma
->vm_end
));
745 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
747 void shmem_unlock_mapping(struct address_space
*mapping
)
750 pgoff_t indices
[PAGEVEC_SIZE
];
755 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
757 while (!mapping_unevictable(mapping
)) {
759 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
760 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
762 pvec
.nr
= find_get_entries(mapping
, index
,
763 PAGEVEC_SIZE
, pvec
.pages
, indices
);
766 index
= indices
[pvec
.nr
- 1] + 1;
767 pagevec_remove_exceptionals(&pvec
);
768 check_move_unevictable_pages(&pvec
);
769 pagevec_release(&pvec
);
775 * Remove range of pages and swap entries from page cache, and free them.
776 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
778 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
781 struct address_space
*mapping
= inode
->i_mapping
;
782 struct shmem_inode_info
*info
= SHMEM_I(inode
);
783 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
784 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
785 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
786 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
788 pgoff_t indices
[PAGEVEC_SIZE
];
789 long nr_swaps_freed
= 0;
794 end
= -1; /* unsigned, so actually very big */
798 while (index
< end
) {
799 pvec
.nr
= find_get_entries(mapping
, index
,
800 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
801 pvec
.pages
, indices
);
804 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
805 struct page
*page
= pvec
.pages
[i
];
811 if (xa_is_value(page
)) {
814 nr_swaps_freed
+= !shmem_free_swap(mapping
,
819 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
821 if (!trylock_page(page
))
824 if (PageTransTail(page
)) {
825 /* Middle of THP: zero out the page */
826 clear_highpage(page
);
829 } else if (PageTransHuge(page
)) {
830 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
832 * Range ends in the middle of THP:
835 clear_highpage(page
);
839 index
+= HPAGE_PMD_NR
- 1;
840 i
+= HPAGE_PMD_NR
- 1;
843 if (!unfalloc
|| !PageUptodate(page
)) {
844 VM_BUG_ON_PAGE(PageTail(page
), page
);
845 if (page_mapping(page
) == mapping
) {
846 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
847 truncate_inode_page(mapping
, page
);
852 pagevec_remove_exceptionals(&pvec
);
853 pagevec_release(&pvec
);
859 struct page
*page
= NULL
;
860 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
862 unsigned int top
= PAGE_SIZE
;
867 zero_user_segment(page
, partial_start
, top
);
868 set_page_dirty(page
);
874 struct page
*page
= NULL
;
875 shmem_getpage(inode
, end
, &page
, SGP_READ
);
877 zero_user_segment(page
, 0, partial_end
);
878 set_page_dirty(page
);
887 while (index
< end
) {
890 pvec
.nr
= find_get_entries(mapping
, index
,
891 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
892 pvec
.pages
, indices
);
894 /* If all gone or hole-punch or unfalloc, we're done */
895 if (index
== start
|| end
!= -1)
897 /* But if truncating, restart to make sure all gone */
901 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
902 struct page
*page
= pvec
.pages
[i
];
908 if (xa_is_value(page
)) {
911 if (shmem_free_swap(mapping
, index
, page
)) {
912 /* Swap was replaced by page: retry */
922 if (PageTransTail(page
)) {
923 /* Middle of THP: zero out the page */
924 clear_highpage(page
);
927 * Partial thp truncate due 'start' in middle
928 * of THP: don't need to look on these pages
929 * again on !pvec.nr restart.
931 if (index
!= round_down(end
, HPAGE_PMD_NR
))
934 } else if (PageTransHuge(page
)) {
935 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
937 * Range ends in the middle of THP:
940 clear_highpage(page
);
944 index
+= HPAGE_PMD_NR
- 1;
945 i
+= HPAGE_PMD_NR
- 1;
948 if (!unfalloc
|| !PageUptodate(page
)) {
949 VM_BUG_ON_PAGE(PageTail(page
), page
);
950 if (page_mapping(page
) == mapping
) {
951 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
952 truncate_inode_page(mapping
, page
);
954 /* Page was replaced by swap: retry */
962 pagevec_remove_exceptionals(&pvec
);
963 pagevec_release(&pvec
);
967 spin_lock_irq(&info
->lock
);
968 info
->swapped
-= nr_swaps_freed
;
969 shmem_recalc_inode(inode
);
970 spin_unlock_irq(&info
->lock
);
973 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
975 shmem_undo_range(inode
, lstart
, lend
, false);
976 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
978 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
980 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
981 u32 request_mask
, unsigned int query_flags
)
983 struct inode
*inode
= path
->dentry
->d_inode
;
984 struct shmem_inode_info
*info
= SHMEM_I(inode
);
985 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
987 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
988 spin_lock_irq(&info
->lock
);
989 shmem_recalc_inode(inode
);
990 spin_unlock_irq(&info
->lock
);
992 generic_fillattr(inode
, stat
);
994 if (is_huge_enabled(sb_info
))
995 stat
->blksize
= HPAGE_PMD_SIZE
;
1000 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1002 struct inode
*inode
= d_inode(dentry
);
1003 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1004 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1007 error
= setattr_prepare(dentry
, attr
);
1011 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1012 loff_t oldsize
= inode
->i_size
;
1013 loff_t newsize
= attr
->ia_size
;
1015 /* protected by i_mutex */
1016 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1017 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1020 if (newsize
!= oldsize
) {
1021 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1025 i_size_write(inode
, newsize
);
1026 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1028 if (newsize
<= oldsize
) {
1029 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1030 if (oldsize
> holebegin
)
1031 unmap_mapping_range(inode
->i_mapping
,
1034 shmem_truncate_range(inode
,
1035 newsize
, (loff_t
)-1);
1036 /* unmap again to remove racily COWed private pages */
1037 if (oldsize
> holebegin
)
1038 unmap_mapping_range(inode
->i_mapping
,
1042 * Part of the huge page can be beyond i_size: subject
1043 * to shrink under memory pressure.
1045 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1046 spin_lock(&sbinfo
->shrinklist_lock
);
1048 * _careful to defend against unlocked access to
1049 * ->shrink_list in shmem_unused_huge_shrink()
1051 if (list_empty_careful(&info
->shrinklist
)) {
1052 list_add_tail(&info
->shrinklist
,
1053 &sbinfo
->shrinklist
);
1054 sbinfo
->shrinklist_len
++;
1056 spin_unlock(&sbinfo
->shrinklist_lock
);
1061 setattr_copy(inode
, attr
);
1062 if (attr
->ia_valid
& ATTR_MODE
)
1063 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1067 static void shmem_evict_inode(struct inode
*inode
)
1069 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1070 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1072 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1073 shmem_unacct_size(info
->flags
, inode
->i_size
);
1075 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1076 if (!list_empty(&info
->shrinklist
)) {
1077 spin_lock(&sbinfo
->shrinklist_lock
);
1078 if (!list_empty(&info
->shrinklist
)) {
1079 list_del_init(&info
->shrinklist
);
1080 sbinfo
->shrinklist_len
--;
1082 spin_unlock(&sbinfo
->shrinklist_lock
);
1084 while (!list_empty(&info
->swaplist
)) {
1085 /* Wait while shmem_unuse() is scanning this inode... */
1086 wait_var_event(&info
->stop_eviction
,
1087 !atomic_read(&info
->stop_eviction
));
1088 mutex_lock(&shmem_swaplist_mutex
);
1089 /* ...but beware of the race if we peeked too early */
1090 if (!atomic_read(&info
->stop_eviction
))
1091 list_del_init(&info
->swaplist
);
1092 mutex_unlock(&shmem_swaplist_mutex
);
1096 simple_xattrs_free(&info
->xattrs
);
1097 WARN_ON(inode
->i_blocks
);
1098 shmem_free_inode(inode
->i_sb
);
1102 extern struct swap_info_struct
*swap_info
[];
1104 static int shmem_find_swap_entries(struct address_space
*mapping
,
1105 pgoff_t start
, unsigned int nr_entries
,
1106 struct page
**entries
, pgoff_t
*indices
,
1107 unsigned int type
, bool frontswap
)
1109 XA_STATE(xas
, &mapping
->i_pages
, start
);
1112 unsigned int ret
= 0;
1118 xas_for_each(&xas
, page
, ULONG_MAX
) {
1119 if (xas_retry(&xas
, page
))
1122 if (!xa_is_value(page
))
1125 entry
= radix_to_swp_entry(page
);
1126 if (swp_type(entry
) != type
)
1129 !frontswap_test(swap_info
[type
], swp_offset(entry
)))
1132 indices
[ret
] = xas
.xa_index
;
1133 entries
[ret
] = page
;
1135 if (need_resched()) {
1139 if (++ret
== nr_entries
)
1148 * Move the swapped pages for an inode to page cache. Returns the count
1149 * of pages swapped in, or the error in case of failure.
1151 static int shmem_unuse_swap_entries(struct inode
*inode
, struct pagevec pvec
,
1157 struct address_space
*mapping
= inode
->i_mapping
;
1159 for (i
= 0; i
< pvec
.nr
; i
++) {
1160 struct page
*page
= pvec
.pages
[i
];
1162 if (!xa_is_value(page
))
1164 error
= shmem_swapin_page(inode
, indices
[i
],
1166 mapping_gfp_mask(mapping
),
1173 if (error
== -ENOMEM
)
1177 return error
? error
: ret
;
1181 * If swap found in inode, free it and move page from swapcache to filecache.
1183 static int shmem_unuse_inode(struct inode
*inode
, unsigned int type
,
1184 bool frontswap
, unsigned long *fs_pages_to_unuse
)
1186 struct address_space
*mapping
= inode
->i_mapping
;
1188 struct pagevec pvec
;
1189 pgoff_t indices
[PAGEVEC_SIZE
];
1190 bool frontswap_partial
= (frontswap
&& *fs_pages_to_unuse
> 0);
1193 pagevec_init(&pvec
);
1195 unsigned int nr_entries
= PAGEVEC_SIZE
;
1197 if (frontswap_partial
&& *fs_pages_to_unuse
< PAGEVEC_SIZE
)
1198 nr_entries
= *fs_pages_to_unuse
;
1200 pvec
.nr
= shmem_find_swap_entries(mapping
, start
, nr_entries
,
1201 pvec
.pages
, indices
,
1208 ret
= shmem_unuse_swap_entries(inode
, pvec
, indices
);
1212 if (frontswap_partial
) {
1213 *fs_pages_to_unuse
-= ret
;
1214 if (*fs_pages_to_unuse
== 0) {
1215 ret
= FRONTSWAP_PAGES_UNUSED
;
1220 start
= indices
[pvec
.nr
- 1];
1227 * Read all the shared memory data that resides in the swap
1228 * device 'type' back into memory, so the swap device can be
1231 int shmem_unuse(unsigned int type
, bool frontswap
,
1232 unsigned long *fs_pages_to_unuse
)
1234 struct shmem_inode_info
*info
, *next
;
1237 if (list_empty(&shmem_swaplist
))
1240 mutex_lock(&shmem_swaplist_mutex
);
1241 list_for_each_entry_safe(info
, next
, &shmem_swaplist
, swaplist
) {
1242 if (!info
->swapped
) {
1243 list_del_init(&info
->swaplist
);
1247 * Drop the swaplist mutex while searching the inode for swap;
1248 * but before doing so, make sure shmem_evict_inode() will not
1249 * remove placeholder inode from swaplist, nor let it be freed
1250 * (igrab() would protect from unlink, but not from unmount).
1252 atomic_inc(&info
->stop_eviction
);
1253 mutex_unlock(&shmem_swaplist_mutex
);
1255 error
= shmem_unuse_inode(&info
->vfs_inode
, type
, frontswap
,
1259 mutex_lock(&shmem_swaplist_mutex
);
1260 next
= list_next_entry(info
, swaplist
);
1262 list_del_init(&info
->swaplist
);
1263 if (atomic_dec_and_test(&info
->stop_eviction
))
1264 wake_up_var(&info
->stop_eviction
);
1268 mutex_unlock(&shmem_swaplist_mutex
);
1274 * Move the page from the page cache to the swap cache.
1276 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1278 struct shmem_inode_info
*info
;
1279 struct address_space
*mapping
;
1280 struct inode
*inode
;
1284 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1285 BUG_ON(!PageLocked(page
));
1286 mapping
= page
->mapping
;
1287 index
= page
->index
;
1288 inode
= mapping
->host
;
1289 info
= SHMEM_I(inode
);
1290 if (info
->flags
& VM_LOCKED
)
1292 if (!total_swap_pages
)
1296 * Our capabilities prevent regular writeback or sync from ever calling
1297 * shmem_writepage; but a stacking filesystem might use ->writepage of
1298 * its underlying filesystem, in which case tmpfs should write out to
1299 * swap only in response to memory pressure, and not for the writeback
1302 if (!wbc
->for_reclaim
) {
1303 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1308 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1309 * value into swapfile.c, the only way we can correctly account for a
1310 * fallocated page arriving here is now to initialize it and write it.
1312 * That's okay for a page already fallocated earlier, but if we have
1313 * not yet completed the fallocation, then (a) we want to keep track
1314 * of this page in case we have to undo it, and (b) it may not be a
1315 * good idea to continue anyway, once we're pushing into swap. So
1316 * reactivate the page, and let shmem_fallocate() quit when too many.
1318 if (!PageUptodate(page
)) {
1319 if (inode
->i_private
) {
1320 struct shmem_falloc
*shmem_falloc
;
1321 spin_lock(&inode
->i_lock
);
1322 shmem_falloc
= inode
->i_private
;
1324 !shmem_falloc
->waitq
&&
1325 index
>= shmem_falloc
->start
&&
1326 index
< shmem_falloc
->next
)
1327 shmem_falloc
->nr_unswapped
++;
1329 shmem_falloc
= NULL
;
1330 spin_unlock(&inode
->i_lock
);
1334 clear_highpage(page
);
1335 flush_dcache_page(page
);
1336 SetPageUptodate(page
);
1339 swap
= get_swap_page(page
);
1344 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1345 * if it's not already there. Do it now before the page is
1346 * moved to swap cache, when its pagelock no longer protects
1347 * the inode from eviction. But don't unlock the mutex until
1348 * we've incremented swapped, because shmem_unuse_inode() will
1349 * prune a !swapped inode from the swaplist under this mutex.
1351 mutex_lock(&shmem_swaplist_mutex
);
1352 if (list_empty(&info
->swaplist
))
1353 list_add(&info
->swaplist
, &shmem_swaplist
);
1355 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1356 spin_lock_irq(&info
->lock
);
1357 shmem_recalc_inode(inode
);
1359 spin_unlock_irq(&info
->lock
);
1361 swap_shmem_alloc(swap
);
1362 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1364 mutex_unlock(&shmem_swaplist_mutex
);
1365 BUG_ON(page_mapped(page
));
1366 swap_writepage(page
, wbc
);
1370 mutex_unlock(&shmem_swaplist_mutex
);
1371 put_swap_page(page
, swap
);
1373 set_page_dirty(page
);
1374 if (wbc
->for_reclaim
)
1375 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1380 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1381 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1385 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1386 return; /* show nothing */
1388 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1390 seq_printf(seq
, ",mpol=%s", buffer
);
1393 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1395 struct mempolicy
*mpol
= NULL
;
1397 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1398 mpol
= sbinfo
->mpol
;
1400 spin_unlock(&sbinfo
->stat_lock
);
1404 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1405 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1408 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1412 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1414 #define vm_policy vm_private_data
1417 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1418 struct shmem_inode_info
*info
, pgoff_t index
)
1420 /* Create a pseudo vma that just contains the policy */
1421 vma_init(vma
, NULL
);
1422 /* Bias interleave by inode number to distribute better across nodes */
1423 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1424 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1427 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1429 /* Drop reference taken by mpol_shared_policy_lookup() */
1430 mpol_cond_put(vma
->vm_policy
);
1433 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1434 struct shmem_inode_info
*info
, pgoff_t index
)
1436 struct vm_area_struct pvma
;
1438 struct vm_fault vmf
;
1440 shmem_pseudo_vma_init(&pvma
, info
, index
);
1443 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1444 shmem_pseudo_vma_destroy(&pvma
);
1449 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1450 struct shmem_inode_info
*info
, pgoff_t index
)
1452 struct vm_area_struct pvma
;
1453 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1457 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1460 hindex
= round_down(index
, HPAGE_PMD_NR
);
1461 if (xa_find(&mapping
->i_pages
, &hindex
, hindex
+ HPAGE_PMD_NR
- 1,
1465 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1466 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1467 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1468 shmem_pseudo_vma_destroy(&pvma
);
1470 prep_transhuge_page(page
);
1474 static struct page
*shmem_alloc_page(gfp_t gfp
,
1475 struct shmem_inode_info
*info
, pgoff_t index
)
1477 struct vm_area_struct pvma
;
1480 shmem_pseudo_vma_init(&pvma
, info
, index
);
1481 page
= alloc_page_vma(gfp
, &pvma
, 0);
1482 shmem_pseudo_vma_destroy(&pvma
);
1487 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1488 struct inode
*inode
,
1489 pgoff_t index
, bool huge
)
1491 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1496 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1498 nr
= huge
? HPAGE_PMD_NR
: 1;
1500 if (!shmem_inode_acct_block(inode
, nr
))
1504 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1506 page
= shmem_alloc_page(gfp
, info
, index
);
1508 __SetPageLocked(page
);
1509 __SetPageSwapBacked(page
);
1514 shmem_inode_unacct_blocks(inode
, nr
);
1516 return ERR_PTR(err
);
1520 * When a page is moved from swapcache to shmem filecache (either by the
1521 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1522 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1523 * ignorance of the mapping it belongs to. If that mapping has special
1524 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1525 * we may need to copy to a suitable page before moving to filecache.
1527 * In a future release, this may well be extended to respect cpuset and
1528 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1529 * but for now it is a simple matter of zone.
1531 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1533 return page_zonenum(page
) > gfp_zone(gfp
);
1536 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1537 struct shmem_inode_info
*info
, pgoff_t index
)
1539 struct page
*oldpage
, *newpage
;
1540 struct address_space
*swap_mapping
;
1546 entry
.val
= page_private(oldpage
);
1547 swap_index
= swp_offset(entry
);
1548 swap_mapping
= page_mapping(oldpage
);
1551 * We have arrived here because our zones are constrained, so don't
1552 * limit chance of success by further cpuset and node constraints.
1554 gfp
&= ~GFP_CONSTRAINT_MASK
;
1555 newpage
= shmem_alloc_page(gfp
, info
, index
);
1560 copy_highpage(newpage
, oldpage
);
1561 flush_dcache_page(newpage
);
1563 __SetPageLocked(newpage
);
1564 __SetPageSwapBacked(newpage
);
1565 SetPageUptodate(newpage
);
1566 set_page_private(newpage
, entry
.val
);
1567 SetPageSwapCache(newpage
);
1570 * Our caller will very soon move newpage out of swapcache, but it's
1571 * a nice clean interface for us to replace oldpage by newpage there.
1573 xa_lock_irq(&swap_mapping
->i_pages
);
1574 error
= shmem_replace_entry(swap_mapping
, swap_index
, oldpage
, newpage
);
1576 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1577 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1579 xa_unlock_irq(&swap_mapping
->i_pages
);
1581 if (unlikely(error
)) {
1583 * Is this possible? I think not, now that our callers check
1584 * both PageSwapCache and page_private after getting page lock;
1585 * but be defensive. Reverse old to newpage for clear and free.
1589 mem_cgroup_migrate(oldpage
, newpage
);
1590 lru_cache_add_anon(newpage
);
1594 ClearPageSwapCache(oldpage
);
1595 set_page_private(oldpage
, 0);
1597 unlock_page(oldpage
);
1604 * Swap in the page pointed to by *pagep.
1605 * Caller has to make sure that *pagep contains a valid swapped page.
1606 * Returns 0 and the page in pagep if success. On failure, returns the
1607 * the error code and NULL in *pagep.
1609 static int shmem_swapin_page(struct inode
*inode
, pgoff_t index
,
1610 struct page
**pagep
, enum sgp_type sgp
,
1611 gfp_t gfp
, struct vm_area_struct
*vma
,
1612 vm_fault_t
*fault_type
)
1614 struct address_space
*mapping
= inode
->i_mapping
;
1615 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1616 struct mm_struct
*charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1617 struct mem_cgroup
*memcg
;
1622 VM_BUG_ON(!*pagep
|| !xa_is_value(*pagep
));
1623 swap
= radix_to_swp_entry(*pagep
);
1626 /* Look it up and read it in.. */
1627 page
= lookup_swap_cache(swap
, NULL
, 0);
1629 /* Or update major stats only when swapin succeeds?? */
1631 *fault_type
|= VM_FAULT_MAJOR
;
1632 count_vm_event(PGMAJFAULT
);
1633 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1635 /* Here we actually start the io */
1636 page
= shmem_swapin(swap
, gfp
, info
, index
);
1643 /* We have to do this with page locked to prevent races */
1645 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1646 !shmem_confirm_swap(mapping
, index
, swap
)) {
1650 if (!PageUptodate(page
)) {
1654 wait_on_page_writeback(page
);
1656 if (shmem_should_replace_page(page
, gfp
)) {
1657 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1662 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1665 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1666 swp_to_radix_entry(swap
), gfp
);
1668 * We already confirmed swap under page lock, and make
1669 * no memory allocation here, so usually no possibility
1670 * of error; but free_swap_and_cache() only trylocks a
1671 * page, so it is just possible that the entry has been
1672 * truncated or holepunched since swap was confirmed.
1673 * shmem_undo_range() will have done some of the
1674 * unaccounting, now delete_from_swap_cache() will do
1678 mem_cgroup_cancel_charge(page
, memcg
, false);
1679 delete_from_swap_cache(page
);
1685 mem_cgroup_commit_charge(page
, memcg
, true, false);
1687 spin_lock_irq(&info
->lock
);
1689 shmem_recalc_inode(inode
);
1690 spin_unlock_irq(&info
->lock
);
1692 if (sgp
== SGP_WRITE
)
1693 mark_page_accessed(page
);
1695 delete_from_swap_cache(page
);
1696 set_page_dirty(page
);
1702 if (!shmem_confirm_swap(mapping
, index
, swap
))
1714 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1716 * If we allocate a new one we do not mark it dirty. That's up to the
1717 * vm. If we swap it in we mark it dirty since we also free the swap
1718 * entry since a page cannot live in both the swap and page cache.
1720 * fault_mm and fault_type are only supplied by shmem_fault:
1721 * otherwise they are NULL.
1723 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1724 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1725 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1726 vm_fault_t
*fault_type
)
1728 struct address_space
*mapping
= inode
->i_mapping
;
1729 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1730 struct shmem_sb_info
*sbinfo
;
1731 struct mm_struct
*charge_mm
;
1732 struct mem_cgroup
*memcg
;
1734 enum sgp_type sgp_huge
= sgp
;
1735 pgoff_t hindex
= index
;
1740 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1742 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1745 if (sgp
<= SGP_CACHE
&&
1746 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1750 sbinfo
= SHMEM_SB(inode
->i_sb
);
1751 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1753 page
= find_lock_entry(mapping
, index
);
1754 if (xa_is_value(page
)) {
1755 error
= shmem_swapin_page(inode
, index
, &page
,
1756 sgp
, gfp
, vma
, fault_type
);
1757 if (error
== -EEXIST
)
1764 if (page
&& sgp
== SGP_WRITE
)
1765 mark_page_accessed(page
);
1767 /* fallocated page? */
1768 if (page
&& !PageUptodate(page
)) {
1769 if (sgp
!= SGP_READ
)
1775 if (page
|| sgp
== SGP_READ
) {
1781 * Fast cache lookup did not find it:
1782 * bring it back from swap or allocate.
1785 if (vma
&& userfaultfd_missing(vma
)) {
1786 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1790 /* shmem_symlink() */
1791 if (mapping
->a_ops
!= &shmem_aops
)
1793 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1795 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1797 switch (sbinfo
->huge
) {
1800 case SHMEM_HUGE_NEVER
:
1802 case SHMEM_HUGE_WITHIN_SIZE
:
1803 off
= round_up(index
, HPAGE_PMD_NR
);
1804 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1805 if (i_size
>= HPAGE_PMD_SIZE
&&
1806 i_size
>> PAGE_SHIFT
>= off
)
1809 case SHMEM_HUGE_ADVISE
:
1810 if (sgp_huge
== SGP_HUGE
)
1812 /* TODO: implement fadvise() hints */
1817 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1820 page
= shmem_alloc_and_acct_page(gfp
, inode
,
1826 error
= PTR_ERR(page
);
1828 if (error
!= -ENOSPC
)
1831 * Try to reclaim some space by splitting a huge page
1832 * beyond i_size on the filesystem.
1837 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1838 if (ret
== SHRINK_STOP
)
1846 if (PageTransHuge(page
))
1847 hindex
= round_down(index
, HPAGE_PMD_NR
);
1851 if (sgp
== SGP_WRITE
)
1852 __SetPageReferenced(page
);
1854 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1855 PageTransHuge(page
));
1858 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1859 NULL
, gfp
& GFP_RECLAIM_MASK
);
1861 mem_cgroup_cancel_charge(page
, memcg
,
1862 PageTransHuge(page
));
1865 mem_cgroup_commit_charge(page
, memcg
, false,
1866 PageTransHuge(page
));
1867 lru_cache_add_anon(page
);
1869 spin_lock_irq(&info
->lock
);
1870 info
->alloced
+= 1 << compound_order(page
);
1871 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1872 shmem_recalc_inode(inode
);
1873 spin_unlock_irq(&info
->lock
);
1876 if (PageTransHuge(page
) &&
1877 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1878 hindex
+ HPAGE_PMD_NR
- 1) {
1880 * Part of the huge page is beyond i_size: subject
1881 * to shrink under memory pressure.
1883 spin_lock(&sbinfo
->shrinklist_lock
);
1885 * _careful to defend against unlocked access to
1886 * ->shrink_list in shmem_unused_huge_shrink()
1888 if (list_empty_careful(&info
->shrinklist
)) {
1889 list_add_tail(&info
->shrinklist
,
1890 &sbinfo
->shrinklist
);
1891 sbinfo
->shrinklist_len
++;
1893 spin_unlock(&sbinfo
->shrinklist_lock
);
1897 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1899 if (sgp
== SGP_FALLOC
)
1903 * Let SGP_WRITE caller clear ends if write does not fill page;
1904 * but SGP_FALLOC on a page fallocated earlier must initialize
1905 * it now, lest undo on failure cancel our earlier guarantee.
1907 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1908 struct page
*head
= compound_head(page
);
1911 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1912 clear_highpage(head
+ i
);
1913 flush_dcache_page(head
+ i
);
1915 SetPageUptodate(head
);
1918 /* Perhaps the file has been truncated since we checked */
1919 if (sgp
<= SGP_CACHE
&&
1920 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1922 ClearPageDirty(page
);
1923 delete_from_page_cache(page
);
1924 spin_lock_irq(&info
->lock
);
1925 shmem_recalc_inode(inode
);
1926 spin_unlock_irq(&info
->lock
);
1931 *pagep
= page
+ index
- hindex
;
1938 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1940 if (PageTransHuge(page
)) {
1950 if (error
== -ENOSPC
&& !once
++) {
1951 spin_lock_irq(&info
->lock
);
1952 shmem_recalc_inode(inode
);
1953 spin_unlock_irq(&info
->lock
);
1956 if (error
== -EEXIST
)
1962 * This is like autoremove_wake_function, but it removes the wait queue
1963 * entry unconditionally - even if something else had already woken the
1966 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1968 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1969 list_del_init(&wait
->entry
);
1973 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1975 struct vm_area_struct
*vma
= vmf
->vma
;
1976 struct inode
*inode
= file_inode(vma
->vm_file
);
1977 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1980 vm_fault_t ret
= VM_FAULT_LOCKED
;
1983 * Trinity finds that probing a hole which tmpfs is punching can
1984 * prevent the hole-punch from ever completing: which in turn
1985 * locks writers out with its hold on i_mutex. So refrain from
1986 * faulting pages into the hole while it's being punched. Although
1987 * shmem_undo_range() does remove the additions, it may be unable to
1988 * keep up, as each new page needs its own unmap_mapping_range() call,
1989 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1991 * It does not matter if we sometimes reach this check just before the
1992 * hole-punch begins, so that one fault then races with the punch:
1993 * we just need to make racing faults a rare case.
1995 * The implementation below would be much simpler if we just used a
1996 * standard mutex or completion: but we cannot take i_mutex in fault,
1997 * and bloating every shmem inode for this unlikely case would be sad.
1999 if (unlikely(inode
->i_private
)) {
2000 struct shmem_falloc
*shmem_falloc
;
2002 spin_lock(&inode
->i_lock
);
2003 shmem_falloc
= inode
->i_private
;
2005 shmem_falloc
->waitq
&&
2006 vmf
->pgoff
>= shmem_falloc
->start
&&
2007 vmf
->pgoff
< shmem_falloc
->next
) {
2008 wait_queue_head_t
*shmem_falloc_waitq
;
2009 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
2011 ret
= VM_FAULT_NOPAGE
;
2012 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
2013 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
2014 /* It's polite to up mmap_sem if we can */
2015 up_read(&vma
->vm_mm
->mmap_sem
);
2016 ret
= VM_FAULT_RETRY
;
2019 shmem_falloc_waitq
= shmem_falloc
->waitq
;
2020 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
2021 TASK_UNINTERRUPTIBLE
);
2022 spin_unlock(&inode
->i_lock
);
2026 * shmem_falloc_waitq points into the shmem_fallocate()
2027 * stack of the hole-punching task: shmem_falloc_waitq
2028 * is usually invalid by the time we reach here, but
2029 * finish_wait() does not dereference it in that case;
2030 * though i_lock needed lest racing with wake_up_all().
2032 spin_lock(&inode
->i_lock
);
2033 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
2034 spin_unlock(&inode
->i_lock
);
2037 spin_unlock(&inode
->i_lock
);
2042 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2043 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2045 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2048 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2049 gfp
, vma
, vmf
, &ret
);
2051 return vmf_error(err
);
2055 unsigned long shmem_get_unmapped_area(struct file
*file
,
2056 unsigned long uaddr
, unsigned long len
,
2057 unsigned long pgoff
, unsigned long flags
)
2059 unsigned long (*get_area
)(struct file
*,
2060 unsigned long, unsigned long, unsigned long, unsigned long);
2062 unsigned long offset
;
2063 unsigned long inflated_len
;
2064 unsigned long inflated_addr
;
2065 unsigned long inflated_offset
;
2067 if (len
> TASK_SIZE
)
2070 get_area
= current
->mm
->get_unmapped_area
;
2071 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2073 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2075 if (IS_ERR_VALUE(addr
))
2077 if (addr
& ~PAGE_MASK
)
2079 if (addr
> TASK_SIZE
- len
)
2082 if (shmem_huge
== SHMEM_HUGE_DENY
)
2084 if (len
< HPAGE_PMD_SIZE
)
2086 if (flags
& MAP_FIXED
)
2089 * Our priority is to support MAP_SHARED mapped hugely;
2090 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2091 * But if caller specified an address hint, respect that as before.
2096 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2097 struct super_block
*sb
;
2100 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2101 sb
= file_inode(file
)->i_sb
;
2104 * Called directly from mm/mmap.c, or drivers/char/mem.c
2105 * for "/dev/zero", to create a shared anonymous object.
2107 if (IS_ERR(shm_mnt
))
2109 sb
= shm_mnt
->mnt_sb
;
2111 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2115 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2116 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2118 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2121 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2122 if (inflated_len
> TASK_SIZE
)
2124 if (inflated_len
< len
)
2127 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2128 if (IS_ERR_VALUE(inflated_addr
))
2130 if (inflated_addr
& ~PAGE_MASK
)
2133 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2134 inflated_addr
+= offset
- inflated_offset
;
2135 if (inflated_offset
> offset
)
2136 inflated_addr
+= HPAGE_PMD_SIZE
;
2138 if (inflated_addr
> TASK_SIZE
- len
)
2140 return inflated_addr
;
2144 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2146 struct inode
*inode
= file_inode(vma
->vm_file
);
2147 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2150 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2153 struct inode
*inode
= file_inode(vma
->vm_file
);
2156 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2157 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2161 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2163 struct inode
*inode
= file_inode(file
);
2164 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2165 int retval
= -ENOMEM
;
2167 spin_lock_irq(&info
->lock
);
2168 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2169 if (!user_shm_lock(inode
->i_size
, user
))
2171 info
->flags
|= VM_LOCKED
;
2172 mapping_set_unevictable(file
->f_mapping
);
2174 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2175 user_shm_unlock(inode
->i_size
, user
);
2176 info
->flags
&= ~VM_LOCKED
;
2177 mapping_clear_unevictable(file
->f_mapping
);
2182 spin_unlock_irq(&info
->lock
);
2186 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2188 struct shmem_inode_info
*info
= SHMEM_I(file_inode(file
));
2190 if (info
->seals
& F_SEAL_FUTURE_WRITE
) {
2192 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2193 * "future write" seal active.
2195 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_WRITE
))
2199 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2200 * read-only mapping, take care to not allow mprotect to revert
2203 vma
->vm_flags
&= ~(VM_MAYWRITE
);
2206 file_accessed(file
);
2207 vma
->vm_ops
= &shmem_vm_ops
;
2208 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2209 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2210 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2211 khugepaged_enter(vma
, vma
->vm_flags
);
2216 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2217 umode_t mode
, dev_t dev
, unsigned long flags
)
2219 struct inode
*inode
;
2220 struct shmem_inode_info
*info
;
2221 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2223 if (shmem_reserve_inode(sb
))
2226 inode
= new_inode(sb
);
2228 inode
->i_ino
= get_next_ino();
2229 inode_init_owner(inode
, dir
, mode
);
2230 inode
->i_blocks
= 0;
2231 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2232 inode
->i_generation
= prandom_u32();
2233 info
= SHMEM_I(inode
);
2234 memset(info
, 0, (char *)inode
- (char *)info
);
2235 spin_lock_init(&info
->lock
);
2236 atomic_set(&info
->stop_eviction
, 0);
2237 info
->seals
= F_SEAL_SEAL
;
2238 info
->flags
= flags
& VM_NORESERVE
;
2239 INIT_LIST_HEAD(&info
->shrinklist
);
2240 INIT_LIST_HEAD(&info
->swaplist
);
2241 simple_xattrs_init(&info
->xattrs
);
2242 cache_no_acl(inode
);
2244 switch (mode
& S_IFMT
) {
2246 inode
->i_op
= &shmem_special_inode_operations
;
2247 init_special_inode(inode
, mode
, dev
);
2250 inode
->i_mapping
->a_ops
= &shmem_aops
;
2251 inode
->i_op
= &shmem_inode_operations
;
2252 inode
->i_fop
= &shmem_file_operations
;
2253 mpol_shared_policy_init(&info
->policy
,
2254 shmem_get_sbmpol(sbinfo
));
2258 /* Some things misbehave if size == 0 on a directory */
2259 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2260 inode
->i_op
= &shmem_dir_inode_operations
;
2261 inode
->i_fop
= &simple_dir_operations
;
2265 * Must not load anything in the rbtree,
2266 * mpol_free_shared_policy will not be called.
2268 mpol_shared_policy_init(&info
->policy
, NULL
);
2272 lockdep_annotate_inode_mutex_key(inode
);
2274 shmem_free_inode(sb
);
2278 bool shmem_mapping(struct address_space
*mapping
)
2280 return mapping
->a_ops
== &shmem_aops
;
2283 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2285 struct vm_area_struct
*dst_vma
,
2286 unsigned long dst_addr
,
2287 unsigned long src_addr
,
2289 struct page
**pagep
)
2291 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2292 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2293 struct address_space
*mapping
= inode
->i_mapping
;
2294 gfp_t gfp
= mapping_gfp_mask(mapping
);
2295 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2296 struct mem_cgroup
*memcg
;
2300 pte_t _dst_pte
, *dst_pte
;
2302 pgoff_t offset
, max_off
;
2305 if (!shmem_inode_acct_block(inode
, 1))
2309 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2311 goto out_unacct_blocks
;
2313 if (!zeropage
) { /* mcopy_atomic */
2314 page_kaddr
= kmap_atomic(page
);
2315 ret
= copy_from_user(page_kaddr
,
2316 (const void __user
*)src_addr
,
2318 kunmap_atomic(page_kaddr
);
2320 /* fallback to copy_from_user outside mmap_sem */
2321 if (unlikely(ret
)) {
2323 shmem_inode_unacct_blocks(inode
, 1);
2324 /* don't free the page */
2327 } else { /* mfill_zeropage_atomic */
2328 clear_highpage(page
);
2335 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2336 __SetPageLocked(page
);
2337 __SetPageSwapBacked(page
);
2338 __SetPageUptodate(page
);
2341 offset
= linear_page_index(dst_vma
, dst_addr
);
2342 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2343 if (unlikely(offset
>= max_off
))
2346 ret
= mem_cgroup_try_charge_delay(page
, dst_mm
, gfp
, &memcg
, false);
2350 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
,
2351 gfp
& GFP_RECLAIM_MASK
);
2353 goto out_release_uncharge
;
2355 mem_cgroup_commit_charge(page
, memcg
, false, false);
2357 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2358 if (dst_vma
->vm_flags
& VM_WRITE
)
2359 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2362 * We don't set the pte dirty if the vma has no
2363 * VM_WRITE permission, so mark the page dirty or it
2364 * could be freed from under us. We could do it
2365 * unconditionally before unlock_page(), but doing it
2366 * only if VM_WRITE is not set is faster.
2368 set_page_dirty(page
);
2371 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2374 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2375 if (unlikely(offset
>= max_off
))
2376 goto out_release_uncharge_unlock
;
2379 if (!pte_none(*dst_pte
))
2380 goto out_release_uncharge_unlock
;
2382 lru_cache_add_anon(page
);
2384 spin_lock(&info
->lock
);
2386 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2387 shmem_recalc_inode(inode
);
2388 spin_unlock(&info
->lock
);
2390 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2391 page_add_file_rmap(page
, false);
2392 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2394 /* No need to invalidate - it was non-present before */
2395 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2396 pte_unmap_unlock(dst_pte
, ptl
);
2401 out_release_uncharge_unlock
:
2402 pte_unmap_unlock(dst_pte
, ptl
);
2403 ClearPageDirty(page
);
2404 delete_from_page_cache(page
);
2405 out_release_uncharge
:
2406 mem_cgroup_cancel_charge(page
, memcg
, false);
2411 shmem_inode_unacct_blocks(inode
, 1);
2415 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2417 struct vm_area_struct
*dst_vma
,
2418 unsigned long dst_addr
,
2419 unsigned long src_addr
,
2420 struct page
**pagep
)
2422 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2423 dst_addr
, src_addr
, false, pagep
);
2426 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2428 struct vm_area_struct
*dst_vma
,
2429 unsigned long dst_addr
)
2431 struct page
*page
= NULL
;
2433 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2434 dst_addr
, 0, true, &page
);
2438 static const struct inode_operations shmem_symlink_inode_operations
;
2439 static const struct inode_operations shmem_short_symlink_operations
;
2441 #ifdef CONFIG_TMPFS_XATTR
2442 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2444 #define shmem_initxattrs NULL
2448 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2449 loff_t pos
, unsigned len
, unsigned flags
,
2450 struct page
**pagep
, void **fsdata
)
2452 struct inode
*inode
= mapping
->host
;
2453 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2454 pgoff_t index
= pos
>> PAGE_SHIFT
;
2456 /* i_mutex is held by caller */
2457 if (unlikely(info
->seals
& (F_SEAL_GROW
|
2458 F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
))) {
2459 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
))
2461 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2465 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2469 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2470 loff_t pos
, unsigned len
, unsigned copied
,
2471 struct page
*page
, void *fsdata
)
2473 struct inode
*inode
= mapping
->host
;
2475 if (pos
+ copied
> inode
->i_size
)
2476 i_size_write(inode
, pos
+ copied
);
2478 if (!PageUptodate(page
)) {
2479 struct page
*head
= compound_head(page
);
2480 if (PageTransCompound(page
)) {
2483 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2484 if (head
+ i
== page
)
2486 clear_highpage(head
+ i
);
2487 flush_dcache_page(head
+ i
);
2490 if (copied
< PAGE_SIZE
) {
2491 unsigned from
= pos
& (PAGE_SIZE
- 1);
2492 zero_user_segments(page
, 0, from
,
2493 from
+ copied
, PAGE_SIZE
);
2495 SetPageUptodate(head
);
2497 set_page_dirty(page
);
2504 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2506 struct file
*file
= iocb
->ki_filp
;
2507 struct inode
*inode
= file_inode(file
);
2508 struct address_space
*mapping
= inode
->i_mapping
;
2510 unsigned long offset
;
2511 enum sgp_type sgp
= SGP_READ
;
2514 loff_t
*ppos
= &iocb
->ki_pos
;
2517 * Might this read be for a stacking filesystem? Then when reading
2518 * holes of a sparse file, we actually need to allocate those pages,
2519 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2521 if (!iter_is_iovec(to
))
2524 index
= *ppos
>> PAGE_SHIFT
;
2525 offset
= *ppos
& ~PAGE_MASK
;
2528 struct page
*page
= NULL
;
2530 unsigned long nr
, ret
;
2531 loff_t i_size
= i_size_read(inode
);
2533 end_index
= i_size
>> PAGE_SHIFT
;
2534 if (index
> end_index
)
2536 if (index
== end_index
) {
2537 nr
= i_size
& ~PAGE_MASK
;
2542 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2544 if (error
== -EINVAL
)
2549 if (sgp
== SGP_CACHE
)
2550 set_page_dirty(page
);
2555 * We must evaluate after, since reads (unlike writes)
2556 * are called without i_mutex protection against truncate
2559 i_size
= i_size_read(inode
);
2560 end_index
= i_size
>> PAGE_SHIFT
;
2561 if (index
== end_index
) {
2562 nr
= i_size
& ~PAGE_MASK
;
2573 * If users can be writing to this page using arbitrary
2574 * virtual addresses, take care about potential aliasing
2575 * before reading the page on the kernel side.
2577 if (mapping_writably_mapped(mapping
))
2578 flush_dcache_page(page
);
2580 * Mark the page accessed if we read the beginning.
2583 mark_page_accessed(page
);
2585 page
= ZERO_PAGE(0);
2590 * Ok, we have the page, and it's up-to-date, so
2591 * now we can copy it to user space...
2593 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2596 index
+= offset
>> PAGE_SHIFT
;
2597 offset
&= ~PAGE_MASK
;
2600 if (!iov_iter_count(to
))
2609 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2610 file_accessed(file
);
2611 return retval
? retval
: error
;
2615 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2617 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2618 pgoff_t index
, pgoff_t end
, int whence
)
2621 struct pagevec pvec
;
2622 pgoff_t indices
[PAGEVEC_SIZE
];
2626 pagevec_init(&pvec
);
2627 pvec
.nr
= 1; /* start small: we may be there already */
2629 pvec
.nr
= find_get_entries(mapping
, index
,
2630 pvec
.nr
, pvec
.pages
, indices
);
2632 if (whence
== SEEK_DATA
)
2636 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2637 if (index
< indices
[i
]) {
2638 if (whence
== SEEK_HOLE
) {
2644 page
= pvec
.pages
[i
];
2645 if (page
&& !xa_is_value(page
)) {
2646 if (!PageUptodate(page
))
2650 (page
&& whence
== SEEK_DATA
) ||
2651 (!page
&& whence
== SEEK_HOLE
)) {
2656 pagevec_remove_exceptionals(&pvec
);
2657 pagevec_release(&pvec
);
2658 pvec
.nr
= PAGEVEC_SIZE
;
2664 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2666 struct address_space
*mapping
= file
->f_mapping
;
2667 struct inode
*inode
= mapping
->host
;
2671 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2672 return generic_file_llseek_size(file
, offset
, whence
,
2673 MAX_LFS_FILESIZE
, i_size_read(inode
));
2675 /* We're holding i_mutex so we can access i_size directly */
2677 if (offset
< 0 || offset
>= inode
->i_size
)
2680 start
= offset
>> PAGE_SHIFT
;
2681 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2682 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2683 new_offset
<<= PAGE_SHIFT
;
2684 if (new_offset
> offset
) {
2685 if (new_offset
< inode
->i_size
)
2686 offset
= new_offset
;
2687 else if (whence
== SEEK_DATA
)
2690 offset
= inode
->i_size
;
2695 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2696 inode_unlock(inode
);
2700 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2703 struct inode
*inode
= file_inode(file
);
2704 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2705 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2706 struct shmem_falloc shmem_falloc
;
2707 pgoff_t start
, index
, end
;
2710 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2715 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2716 struct address_space
*mapping
= file
->f_mapping
;
2717 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2718 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2719 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2721 /* protected by i_mutex */
2722 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
2727 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2728 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2729 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2730 spin_lock(&inode
->i_lock
);
2731 inode
->i_private
= &shmem_falloc
;
2732 spin_unlock(&inode
->i_lock
);
2734 if ((u64
)unmap_end
> (u64
)unmap_start
)
2735 unmap_mapping_range(mapping
, unmap_start
,
2736 1 + unmap_end
- unmap_start
, 0);
2737 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2738 /* No need to unmap again: hole-punching leaves COWed pages */
2740 spin_lock(&inode
->i_lock
);
2741 inode
->i_private
= NULL
;
2742 wake_up_all(&shmem_falloc_waitq
);
2743 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2744 spin_unlock(&inode
->i_lock
);
2749 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2750 error
= inode_newsize_ok(inode
, offset
+ len
);
2754 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2759 start
= offset
>> PAGE_SHIFT
;
2760 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2761 /* Try to avoid a swapstorm if len is impossible to satisfy */
2762 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2767 shmem_falloc
.waitq
= NULL
;
2768 shmem_falloc
.start
= start
;
2769 shmem_falloc
.next
= start
;
2770 shmem_falloc
.nr_falloced
= 0;
2771 shmem_falloc
.nr_unswapped
= 0;
2772 spin_lock(&inode
->i_lock
);
2773 inode
->i_private
= &shmem_falloc
;
2774 spin_unlock(&inode
->i_lock
);
2776 for (index
= start
; index
< end
; index
++) {
2780 * Good, the fallocate(2) manpage permits EINTR: we may have
2781 * been interrupted because we are using up too much memory.
2783 if (signal_pending(current
))
2785 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2788 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2790 /* Remove the !PageUptodate pages we added */
2791 if (index
> start
) {
2792 shmem_undo_range(inode
,
2793 (loff_t
)start
<< PAGE_SHIFT
,
2794 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2800 * Inform shmem_writepage() how far we have reached.
2801 * No need for lock or barrier: we have the page lock.
2803 shmem_falloc
.next
++;
2804 if (!PageUptodate(page
))
2805 shmem_falloc
.nr_falloced
++;
2808 * If !PageUptodate, leave it that way so that freeable pages
2809 * can be recognized if we need to rollback on error later.
2810 * But set_page_dirty so that memory pressure will swap rather
2811 * than free the pages we are allocating (and SGP_CACHE pages
2812 * might still be clean: we now need to mark those dirty too).
2814 set_page_dirty(page
);
2820 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2821 i_size_write(inode
, offset
+ len
);
2822 inode
->i_ctime
= current_time(inode
);
2824 spin_lock(&inode
->i_lock
);
2825 inode
->i_private
= NULL
;
2826 spin_unlock(&inode
->i_lock
);
2828 inode_unlock(inode
);
2832 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2834 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2836 buf
->f_type
= TMPFS_MAGIC
;
2837 buf
->f_bsize
= PAGE_SIZE
;
2838 buf
->f_namelen
= NAME_MAX
;
2839 if (sbinfo
->max_blocks
) {
2840 buf
->f_blocks
= sbinfo
->max_blocks
;
2842 buf
->f_bfree
= sbinfo
->max_blocks
-
2843 percpu_counter_sum(&sbinfo
->used_blocks
);
2845 if (sbinfo
->max_inodes
) {
2846 buf
->f_files
= sbinfo
->max_inodes
;
2847 buf
->f_ffree
= sbinfo
->free_inodes
;
2849 /* else leave those fields 0 like simple_statfs */
2854 * File creation. Allocate an inode, and we're done..
2857 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2859 struct inode
*inode
;
2860 int error
= -ENOSPC
;
2862 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2864 error
= simple_acl_create(dir
, inode
);
2867 error
= security_inode_init_security(inode
, dir
,
2869 shmem_initxattrs
, NULL
);
2870 if (error
&& error
!= -EOPNOTSUPP
)
2874 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2875 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2876 d_instantiate(dentry
, inode
);
2877 dget(dentry
); /* Extra count - pin the dentry in core */
2886 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2888 struct inode
*inode
;
2889 int error
= -ENOSPC
;
2891 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2893 error
= security_inode_init_security(inode
, dir
,
2895 shmem_initxattrs
, NULL
);
2896 if (error
&& error
!= -EOPNOTSUPP
)
2898 error
= simple_acl_create(dir
, inode
);
2901 d_tmpfile(dentry
, inode
);
2909 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2913 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2919 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2922 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2928 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2930 struct inode
*inode
= d_inode(old_dentry
);
2934 * No ordinary (disk based) filesystem counts links as inodes;
2935 * but each new link needs a new dentry, pinning lowmem, and
2936 * tmpfs dentries cannot be pruned until they are unlinked.
2937 * But if an O_TMPFILE file is linked into the tmpfs, the
2938 * first link must skip that, to get the accounting right.
2940 if (inode
->i_nlink
) {
2941 ret
= shmem_reserve_inode(inode
->i_sb
);
2946 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2947 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2949 ihold(inode
); /* New dentry reference */
2950 dget(dentry
); /* Extra pinning count for the created dentry */
2951 d_instantiate(dentry
, inode
);
2956 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2958 struct inode
*inode
= d_inode(dentry
);
2960 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2961 shmem_free_inode(inode
->i_sb
);
2963 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2964 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2966 dput(dentry
); /* Undo the count from "create" - this does all the work */
2970 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2972 if (!simple_empty(dentry
))
2975 drop_nlink(d_inode(dentry
));
2977 return shmem_unlink(dir
, dentry
);
2980 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2982 bool old_is_dir
= d_is_dir(old_dentry
);
2983 bool new_is_dir
= d_is_dir(new_dentry
);
2985 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2987 drop_nlink(old_dir
);
2990 drop_nlink(new_dir
);
2994 old_dir
->i_ctime
= old_dir
->i_mtime
=
2995 new_dir
->i_ctime
= new_dir
->i_mtime
=
2996 d_inode(old_dentry
)->i_ctime
=
2997 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3002 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3004 struct dentry
*whiteout
;
3007 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3011 error
= shmem_mknod(old_dir
, whiteout
,
3012 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3018 * Cheat and hash the whiteout while the old dentry is still in
3019 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3021 * d_lookup() will consistently find one of them at this point,
3022 * not sure which one, but that isn't even important.
3029 * The VFS layer already does all the dentry stuff for rename,
3030 * we just have to decrement the usage count for the target if
3031 * it exists so that the VFS layer correctly free's it when it
3034 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3036 struct inode
*inode
= d_inode(old_dentry
);
3037 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3039 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3042 if (flags
& RENAME_EXCHANGE
)
3043 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3045 if (!simple_empty(new_dentry
))
3048 if (flags
& RENAME_WHITEOUT
) {
3051 error
= shmem_whiteout(old_dir
, old_dentry
);
3056 if (d_really_is_positive(new_dentry
)) {
3057 (void) shmem_unlink(new_dir
, new_dentry
);
3058 if (they_are_dirs
) {
3059 drop_nlink(d_inode(new_dentry
));
3060 drop_nlink(old_dir
);
3062 } else if (they_are_dirs
) {
3063 drop_nlink(old_dir
);
3067 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3068 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3069 old_dir
->i_ctime
= old_dir
->i_mtime
=
3070 new_dir
->i_ctime
= new_dir
->i_mtime
=
3071 inode
->i_ctime
= current_time(old_dir
);
3075 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3079 struct inode
*inode
;
3082 len
= strlen(symname
) + 1;
3083 if (len
> PAGE_SIZE
)
3084 return -ENAMETOOLONG
;
3086 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3091 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3092 shmem_initxattrs
, NULL
);
3094 if (error
!= -EOPNOTSUPP
) {
3101 inode
->i_size
= len
-1;
3102 if (len
<= SHORT_SYMLINK_LEN
) {
3103 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3104 if (!inode
->i_link
) {
3108 inode
->i_op
= &shmem_short_symlink_operations
;
3110 inode_nohighmem(inode
);
3111 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3116 inode
->i_mapping
->a_ops
= &shmem_aops
;
3117 inode
->i_op
= &shmem_symlink_inode_operations
;
3118 memcpy(page_address(page
), symname
, len
);
3119 SetPageUptodate(page
);
3120 set_page_dirty(page
);
3124 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3125 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3126 d_instantiate(dentry
, inode
);
3131 static void shmem_put_link(void *arg
)
3133 mark_page_accessed(arg
);
3137 static const char *shmem_get_link(struct dentry
*dentry
,
3138 struct inode
*inode
,
3139 struct delayed_call
*done
)
3141 struct page
*page
= NULL
;
3144 page
= find_get_page(inode
->i_mapping
, 0);
3146 return ERR_PTR(-ECHILD
);
3147 if (!PageUptodate(page
)) {
3149 return ERR_PTR(-ECHILD
);
3152 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3154 return ERR_PTR(error
);
3157 set_delayed_call(done
, shmem_put_link
, page
);
3158 return page_address(page
);
3161 #ifdef CONFIG_TMPFS_XATTR
3163 * Superblocks without xattr inode operations may get some security.* xattr
3164 * support from the LSM "for free". As soon as we have any other xattrs
3165 * like ACLs, we also need to implement the security.* handlers at
3166 * filesystem level, though.
3170 * Callback for security_inode_init_security() for acquiring xattrs.
3172 static int shmem_initxattrs(struct inode
*inode
,
3173 const struct xattr
*xattr_array
,
3176 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3177 const struct xattr
*xattr
;
3178 struct simple_xattr
*new_xattr
;
3181 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3182 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3186 len
= strlen(xattr
->name
) + 1;
3187 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3189 if (!new_xattr
->name
) {
3194 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3195 XATTR_SECURITY_PREFIX_LEN
);
3196 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3199 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3205 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3206 struct dentry
*unused
, struct inode
*inode
,
3207 const char *name
, void *buffer
, size_t size
)
3209 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3211 name
= xattr_full_name(handler
, name
);
3212 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3215 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3216 struct dentry
*unused
, struct inode
*inode
,
3217 const char *name
, const void *value
,
3218 size_t size
, int flags
)
3220 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3222 name
= xattr_full_name(handler
, name
);
3223 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3226 static const struct xattr_handler shmem_security_xattr_handler
= {
3227 .prefix
= XATTR_SECURITY_PREFIX
,
3228 .get
= shmem_xattr_handler_get
,
3229 .set
= shmem_xattr_handler_set
,
3232 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3233 .prefix
= XATTR_TRUSTED_PREFIX
,
3234 .get
= shmem_xattr_handler_get
,
3235 .set
= shmem_xattr_handler_set
,
3238 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3239 #ifdef CONFIG_TMPFS_POSIX_ACL
3240 &posix_acl_access_xattr_handler
,
3241 &posix_acl_default_xattr_handler
,
3243 &shmem_security_xattr_handler
,
3244 &shmem_trusted_xattr_handler
,
3248 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3250 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3251 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3253 #endif /* CONFIG_TMPFS_XATTR */
3255 static const struct inode_operations shmem_short_symlink_operations
= {
3256 .get_link
= simple_get_link
,
3257 #ifdef CONFIG_TMPFS_XATTR
3258 .listxattr
= shmem_listxattr
,
3262 static const struct inode_operations shmem_symlink_inode_operations
= {
3263 .get_link
= shmem_get_link
,
3264 #ifdef CONFIG_TMPFS_XATTR
3265 .listxattr
= shmem_listxattr
,
3269 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3271 return ERR_PTR(-ESTALE
);
3274 static int shmem_match(struct inode
*ino
, void *vfh
)
3278 inum
= (inum
<< 32) | fh
[1];
3279 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3282 /* Find any alias of inode, but prefer a hashed alias */
3283 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3285 struct dentry
*alias
= d_find_alias(inode
);
3287 return alias
?: d_find_any_alias(inode
);
3291 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3292 struct fid
*fid
, int fh_len
, int fh_type
)
3294 struct inode
*inode
;
3295 struct dentry
*dentry
= NULL
;
3302 inum
= (inum
<< 32) | fid
->raw
[1];
3304 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3305 shmem_match
, fid
->raw
);
3307 dentry
= shmem_find_alias(inode
);
3314 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3315 struct inode
*parent
)
3319 return FILEID_INVALID
;
3322 if (inode_unhashed(inode
)) {
3323 /* Unfortunately insert_inode_hash is not idempotent,
3324 * so as we hash inodes here rather than at creation
3325 * time, we need a lock to ensure we only try
3328 static DEFINE_SPINLOCK(lock
);
3330 if (inode_unhashed(inode
))
3331 __insert_inode_hash(inode
,
3332 inode
->i_ino
+ inode
->i_generation
);
3336 fh
[0] = inode
->i_generation
;
3337 fh
[1] = inode
->i_ino
;
3338 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3344 static const struct export_operations shmem_export_ops
= {
3345 .get_parent
= shmem_get_parent
,
3346 .encode_fh
= shmem_encode_fh
,
3347 .fh_to_dentry
= shmem_fh_to_dentry
,
3350 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3353 char *this_char
, *value
, *rest
;
3354 struct mempolicy
*mpol
= NULL
;
3358 while (options
!= NULL
) {
3359 this_char
= options
;
3362 * NUL-terminate this option: unfortunately,
3363 * mount options form a comma-separated list,
3364 * but mpol's nodelist may also contain commas.
3366 options
= strchr(options
, ',');
3367 if (options
== NULL
)
3370 if (!isdigit(*options
)) {
3377 if ((value
= strchr(this_char
,'=')) != NULL
) {
3380 pr_err("tmpfs: No value for mount option '%s'\n",
3385 if (!strcmp(this_char
,"size")) {
3386 unsigned long long size
;
3387 size
= memparse(value
,&rest
);
3389 size
<<= PAGE_SHIFT
;
3390 size
*= totalram_pages();
3396 sbinfo
->max_blocks
=
3397 DIV_ROUND_UP(size
, PAGE_SIZE
);
3398 } else if (!strcmp(this_char
,"nr_blocks")) {
3399 sbinfo
->max_blocks
= memparse(value
, &rest
);
3402 } else if (!strcmp(this_char
,"nr_inodes")) {
3403 sbinfo
->max_inodes
= memparse(value
, &rest
);
3406 } else if (!strcmp(this_char
,"mode")) {
3409 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3412 } else if (!strcmp(this_char
,"uid")) {
3415 uid
= simple_strtoul(value
, &rest
, 0);
3418 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3419 if (!uid_valid(sbinfo
->uid
))
3421 } else if (!strcmp(this_char
,"gid")) {
3424 gid
= simple_strtoul(value
, &rest
, 0);
3427 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3428 if (!gid_valid(sbinfo
->gid
))
3430 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3431 } else if (!strcmp(this_char
, "huge")) {
3433 huge
= shmem_parse_huge(value
);
3436 if (!has_transparent_hugepage() &&
3437 huge
!= SHMEM_HUGE_NEVER
)
3439 sbinfo
->huge
= huge
;
3442 } else if (!strcmp(this_char
,"mpol")) {
3445 if (mpol_parse_str(value
, &mpol
))
3449 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3453 sbinfo
->mpol
= mpol
;
3457 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3465 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3467 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3468 struct shmem_sb_info config
= *sbinfo
;
3469 unsigned long inodes
;
3470 int error
= -EINVAL
;
3473 if (shmem_parse_options(data
, &config
, true))
3476 spin_lock(&sbinfo
->stat_lock
);
3477 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3478 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3480 if (config
.max_inodes
< inodes
)
3483 * Those tests disallow limited->unlimited while any are in use;
3484 * but we must separately disallow unlimited->limited, because
3485 * in that case we have no record of how much is already in use.
3487 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3489 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3493 sbinfo
->huge
= config
.huge
;
3494 sbinfo
->max_blocks
= config
.max_blocks
;
3495 sbinfo
->max_inodes
= config
.max_inodes
;
3496 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3499 * Preserve previous mempolicy unless mpol remount option was specified.
3502 mpol_put(sbinfo
->mpol
);
3503 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3506 spin_unlock(&sbinfo
->stat_lock
);
3510 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3512 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3514 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3515 seq_printf(seq
, ",size=%luk",
3516 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3517 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3518 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3519 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3520 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3521 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3522 seq_printf(seq
, ",uid=%u",
3523 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3524 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3525 seq_printf(seq
, ",gid=%u",
3526 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3527 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3528 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3530 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3532 shmem_show_mpol(seq
, sbinfo
->mpol
);
3536 #endif /* CONFIG_TMPFS */
3538 static void shmem_put_super(struct super_block
*sb
)
3540 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3542 percpu_counter_destroy(&sbinfo
->used_blocks
);
3543 mpol_put(sbinfo
->mpol
);
3545 sb
->s_fs_info
= NULL
;
3548 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3550 struct inode
*inode
;
3551 struct shmem_sb_info
*sbinfo
;
3554 /* Round up to L1_CACHE_BYTES to resist false sharing */
3555 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3556 L1_CACHE_BYTES
), GFP_KERNEL
);
3560 sbinfo
->mode
= 0777 | S_ISVTX
;
3561 sbinfo
->uid
= current_fsuid();
3562 sbinfo
->gid
= current_fsgid();
3563 sb
->s_fs_info
= sbinfo
;
3567 * Per default we only allow half of the physical ram per
3568 * tmpfs instance, limiting inodes to one per page of lowmem;
3569 * but the internal instance is left unlimited.
3571 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3572 sbinfo
->max_blocks
= shmem_default_max_blocks();
3573 sbinfo
->max_inodes
= shmem_default_max_inodes();
3574 if (shmem_parse_options(data
, sbinfo
, false)) {
3579 sb
->s_flags
|= SB_NOUSER
;
3581 sb
->s_export_op
= &shmem_export_ops
;
3582 sb
->s_flags
|= SB_NOSEC
;
3584 sb
->s_flags
|= SB_NOUSER
;
3587 spin_lock_init(&sbinfo
->stat_lock
);
3588 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3590 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3591 spin_lock_init(&sbinfo
->shrinklist_lock
);
3592 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3594 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3595 sb
->s_blocksize
= PAGE_SIZE
;
3596 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3597 sb
->s_magic
= TMPFS_MAGIC
;
3598 sb
->s_op
= &shmem_ops
;
3599 sb
->s_time_gran
= 1;
3600 #ifdef CONFIG_TMPFS_XATTR
3601 sb
->s_xattr
= shmem_xattr_handlers
;
3603 #ifdef CONFIG_TMPFS_POSIX_ACL
3604 sb
->s_flags
|= SB_POSIXACL
;
3606 uuid_gen(&sb
->s_uuid
);
3608 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3611 inode
->i_uid
= sbinfo
->uid
;
3612 inode
->i_gid
= sbinfo
->gid
;
3613 sb
->s_root
= d_make_root(inode
);
3619 shmem_put_super(sb
);
3623 static struct kmem_cache
*shmem_inode_cachep
;
3625 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3627 struct shmem_inode_info
*info
;
3628 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3631 return &info
->vfs_inode
;
3634 static void shmem_destroy_callback(struct rcu_head
*head
)
3636 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3637 if (S_ISLNK(inode
->i_mode
))
3638 kfree(inode
->i_link
);
3639 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3642 static void shmem_destroy_inode(struct inode
*inode
)
3644 if (S_ISREG(inode
->i_mode
))
3645 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3646 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3649 static void shmem_init_inode(void *foo
)
3651 struct shmem_inode_info
*info
= foo
;
3652 inode_init_once(&info
->vfs_inode
);
3655 static void shmem_init_inodecache(void)
3657 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3658 sizeof(struct shmem_inode_info
),
3659 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3662 static void shmem_destroy_inodecache(void)
3664 kmem_cache_destroy(shmem_inode_cachep
);
3667 static const struct address_space_operations shmem_aops
= {
3668 .writepage
= shmem_writepage
,
3669 .set_page_dirty
= __set_page_dirty_no_writeback
,
3671 .write_begin
= shmem_write_begin
,
3672 .write_end
= shmem_write_end
,
3674 #ifdef CONFIG_MIGRATION
3675 .migratepage
= migrate_page
,
3677 .error_remove_page
= generic_error_remove_page
,
3680 static const struct file_operations shmem_file_operations
= {
3682 .get_unmapped_area
= shmem_get_unmapped_area
,
3684 .llseek
= shmem_file_llseek
,
3685 .read_iter
= shmem_file_read_iter
,
3686 .write_iter
= generic_file_write_iter
,
3687 .fsync
= noop_fsync
,
3688 .splice_read
= generic_file_splice_read
,
3689 .splice_write
= iter_file_splice_write
,
3690 .fallocate
= shmem_fallocate
,
3694 static const struct inode_operations shmem_inode_operations
= {
3695 .getattr
= shmem_getattr
,
3696 .setattr
= shmem_setattr
,
3697 #ifdef CONFIG_TMPFS_XATTR
3698 .listxattr
= shmem_listxattr
,
3699 .set_acl
= simple_set_acl
,
3703 static const struct inode_operations shmem_dir_inode_operations
= {
3705 .create
= shmem_create
,
3706 .lookup
= simple_lookup
,
3708 .unlink
= shmem_unlink
,
3709 .symlink
= shmem_symlink
,
3710 .mkdir
= shmem_mkdir
,
3711 .rmdir
= shmem_rmdir
,
3712 .mknod
= shmem_mknod
,
3713 .rename
= shmem_rename2
,
3714 .tmpfile
= shmem_tmpfile
,
3716 #ifdef CONFIG_TMPFS_XATTR
3717 .listxattr
= shmem_listxattr
,
3719 #ifdef CONFIG_TMPFS_POSIX_ACL
3720 .setattr
= shmem_setattr
,
3721 .set_acl
= simple_set_acl
,
3725 static const struct inode_operations shmem_special_inode_operations
= {
3726 #ifdef CONFIG_TMPFS_XATTR
3727 .listxattr
= shmem_listxattr
,
3729 #ifdef CONFIG_TMPFS_POSIX_ACL
3730 .setattr
= shmem_setattr
,
3731 .set_acl
= simple_set_acl
,
3735 static const struct super_operations shmem_ops
= {
3736 .alloc_inode
= shmem_alloc_inode
,
3737 .destroy_inode
= shmem_destroy_inode
,
3739 .statfs
= shmem_statfs
,
3740 .remount_fs
= shmem_remount_fs
,
3741 .show_options
= shmem_show_options
,
3743 .evict_inode
= shmem_evict_inode
,
3744 .drop_inode
= generic_delete_inode
,
3745 .put_super
= shmem_put_super
,
3746 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3747 .nr_cached_objects
= shmem_unused_huge_count
,
3748 .free_cached_objects
= shmem_unused_huge_scan
,
3752 static const struct vm_operations_struct shmem_vm_ops
= {
3753 .fault
= shmem_fault
,
3754 .map_pages
= filemap_map_pages
,
3756 .set_policy
= shmem_set_policy
,
3757 .get_policy
= shmem_get_policy
,
3761 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3762 int flags
, const char *dev_name
, void *data
)
3764 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3767 static struct file_system_type shmem_fs_type
= {
3768 .owner
= THIS_MODULE
,
3770 .mount
= shmem_mount
,
3771 .kill_sb
= kill_litter_super
,
3772 .fs_flags
= FS_USERNS_MOUNT
,
3775 int __init
shmem_init(void)
3779 /* If rootfs called this, don't re-init */
3780 if (shmem_inode_cachep
)
3783 shmem_init_inodecache();
3785 error
= register_filesystem(&shmem_fs_type
);
3787 pr_err("Could not register tmpfs\n");
3791 shm_mnt
= kern_mount(&shmem_fs_type
);
3792 if (IS_ERR(shm_mnt
)) {
3793 error
= PTR_ERR(shm_mnt
);
3794 pr_err("Could not kern_mount tmpfs\n");
3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3799 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3800 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3802 shmem_huge
= 0; /* just in case it was patched */
3807 unregister_filesystem(&shmem_fs_type
);
3809 shmem_destroy_inodecache();
3810 shm_mnt
= ERR_PTR(error
);
3814 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3815 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3816 struct kobj_attribute
*attr
, char *buf
)
3820 SHMEM_HUGE_WITHIN_SIZE
,
3828 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3829 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3831 count
+= sprintf(buf
+ count
, fmt
,
3832 shmem_format_huge(values
[i
]));
3834 buf
[count
- 1] = '\n';
3838 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3839 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3844 if (count
+ 1 > sizeof(tmp
))
3846 memcpy(tmp
, buf
, count
);
3848 if (count
&& tmp
[count
- 1] == '\n')
3849 tmp
[count
- 1] = '\0';
3851 huge
= shmem_parse_huge(tmp
);
3852 if (huge
== -EINVAL
)
3854 if (!has_transparent_hugepage() &&
3855 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3859 if (shmem_huge
> SHMEM_HUGE_DENY
)
3860 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3864 struct kobj_attribute shmem_enabled_attr
=
3865 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3866 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3868 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3869 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3871 struct inode
*inode
= file_inode(vma
->vm_file
);
3872 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3876 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3878 if (shmem_huge
== SHMEM_HUGE_DENY
)
3880 switch (sbinfo
->huge
) {
3881 case SHMEM_HUGE_NEVER
:
3883 case SHMEM_HUGE_ALWAYS
:
3885 case SHMEM_HUGE_WITHIN_SIZE
:
3886 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3887 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3888 if (i_size
>= HPAGE_PMD_SIZE
&&
3889 i_size
>> PAGE_SHIFT
>= off
)
3892 case SHMEM_HUGE_ADVISE
:
3893 /* TODO: implement fadvise() hints */
3894 return (vma
->vm_flags
& VM_HUGEPAGE
);
3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3902 #else /* !CONFIG_SHMEM */
3905 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3907 * This is intended for small system where the benefits of the full
3908 * shmem code (swap-backed and resource-limited) are outweighed by
3909 * their complexity. On systems without swap this code should be
3910 * effectively equivalent, but much lighter weight.
3913 static struct file_system_type shmem_fs_type
= {
3915 .mount
= ramfs_mount
,
3916 .kill_sb
= kill_litter_super
,
3917 .fs_flags
= FS_USERNS_MOUNT
,
3920 int __init
shmem_init(void)
3922 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3924 shm_mnt
= kern_mount(&shmem_fs_type
);
3925 BUG_ON(IS_ERR(shm_mnt
));
3930 int shmem_unuse(unsigned int type
, bool frontswap
,
3931 unsigned long *fs_pages_to_unuse
)
3936 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3941 void shmem_unlock_mapping(struct address_space
*mapping
)
3946 unsigned long shmem_get_unmapped_area(struct file
*file
,
3947 unsigned long addr
, unsigned long len
,
3948 unsigned long pgoff
, unsigned long flags
)
3950 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3954 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3956 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3958 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3960 #define shmem_vm_ops generic_file_vm_ops
3961 #define shmem_file_operations ramfs_file_operations
3962 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3963 #define shmem_acct_size(flags, size) 0
3964 #define shmem_unacct_size(flags, size) do {} while (0)
3966 #endif /* CONFIG_SHMEM */
3970 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3971 unsigned long flags
, unsigned int i_flags
)
3973 struct inode
*inode
;
3977 return ERR_CAST(mnt
);
3979 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3980 return ERR_PTR(-EINVAL
);
3982 if (shmem_acct_size(flags
, size
))
3983 return ERR_PTR(-ENOMEM
);
3985 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
3987 if (unlikely(!inode
)) {
3988 shmem_unacct_size(flags
, size
);
3989 return ERR_PTR(-ENOSPC
);
3991 inode
->i_flags
|= i_flags
;
3992 inode
->i_size
= size
;
3993 clear_nlink(inode
); /* It is unlinked */
3994 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3996 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
3997 &shmem_file_operations
);
4004 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4005 * kernel internal. There will be NO LSM permission checks against the
4006 * underlying inode. So users of this interface must do LSM checks at a
4007 * higher layer. The users are the big_key and shm implementations. LSM
4008 * checks are provided at the key or shm level rather than the inode.
4009 * @name: name for dentry (to be seen in /proc/<pid>/maps
4010 * @size: size to be set for the file
4011 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4013 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4015 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
4019 * shmem_file_setup - get an unlinked file living in tmpfs
4020 * @name: name for dentry (to be seen in /proc/<pid>/maps
4021 * @size: size to be set for the file
4022 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4024 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4026 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
4028 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4031 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4032 * @mnt: the tmpfs mount where the file will be created
4033 * @name: name for dentry (to be seen in /proc/<pid>/maps
4034 * @size: size to be set for the file
4035 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4037 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
4038 loff_t size
, unsigned long flags
)
4040 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
4042 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
4045 * shmem_zero_setup - setup a shared anonymous mapping
4046 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4048 int shmem_zero_setup(struct vm_area_struct
*vma
)
4051 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4054 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4055 * between XFS directory reading and selinux: since this file is only
4056 * accessible to the user through its mapping, use S_PRIVATE flag to
4057 * bypass file security, in the same way as shmem_kernel_file_setup().
4059 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
4061 return PTR_ERR(file
);
4065 vma
->vm_file
= file
;
4066 vma
->vm_ops
= &shmem_vm_ops
;
4068 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4069 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4070 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4071 khugepaged_enter(vma
, vma
->vm_flags
);
4078 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4079 * @mapping: the page's address_space
4080 * @index: the page index
4081 * @gfp: the page allocator flags to use if allocating
4083 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4084 * with any new page allocations done using the specified allocation flags.
4085 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4086 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4087 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4089 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4090 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4092 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4093 pgoff_t index
, gfp_t gfp
)
4096 struct inode
*inode
= mapping
->host
;
4100 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4101 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4102 gfp
, NULL
, NULL
, NULL
);
4104 page
= ERR_PTR(error
);
4110 * The tiny !SHMEM case uses ramfs without swap
4112 return read_cache_page_gfp(mapping
, index
, gfp
);
4115 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);