1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
162 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
163 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
164 static char tag_keepalive2
= CEPH_MSGR_TAG_KEEPALIVE2
;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class
;
170 static void queue_con(struct ceph_connection
*con
);
171 static void cancel_con(struct ceph_connection
*con
);
172 static void ceph_con_workfn(struct work_struct
*);
173 static void con_fault(struct ceph_connection
*con
);
176 * Nicely render a sockaddr as a string. An array of formatted
177 * strings is used, to approximate reentrancy.
179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
184 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
185 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
187 static struct page
*zero_page
; /* used in certain error cases */
189 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
193 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
194 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
196 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
199 switch (ss
->ss_family
) {
201 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
202 ntohs(in4
->sin_port
));
206 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
207 ntohs(in6
->sin6_port
));
211 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
217 EXPORT_SYMBOL(ceph_pr_addr
);
219 static void encode_my_addr(struct ceph_messenger
*msgr
)
221 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
222 ceph_encode_addr(&msgr
->my_enc_addr
);
226 * work queue for all reading and writing to/from the socket.
228 static struct workqueue_struct
*ceph_msgr_wq
;
230 static int ceph_msgr_slab_init(void)
232 BUG_ON(ceph_msg_cache
);
233 ceph_msg_cache
= KMEM_CACHE(ceph_msg
, 0);
240 static void ceph_msgr_slab_exit(void)
242 BUG_ON(!ceph_msg_cache
);
243 kmem_cache_destroy(ceph_msg_cache
);
244 ceph_msg_cache
= NULL
;
247 static void _ceph_msgr_exit(void)
250 destroy_workqueue(ceph_msgr_wq
);
254 BUG_ON(zero_page
== NULL
);
258 ceph_msgr_slab_exit();
261 int __init
ceph_msgr_init(void)
263 if (ceph_msgr_slab_init())
266 BUG_ON(zero_page
!= NULL
);
267 zero_page
= ZERO_PAGE(0);
271 * The number of active work items is limited by the number of
272 * connections, so leave @max_active at default.
274 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
278 pr_err("msgr_init failed to create workqueue\n");
284 void ceph_msgr_exit(void)
286 BUG_ON(ceph_msgr_wq
== NULL
);
291 void ceph_msgr_flush(void)
293 flush_workqueue(ceph_msgr_wq
);
295 EXPORT_SYMBOL(ceph_msgr_flush
);
297 /* Connection socket state transition functions */
299 static void con_sock_state_init(struct ceph_connection
*con
)
303 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
304 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
305 printk("%s: unexpected old state %d\n", __func__
, old_state
);
306 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
307 CON_SOCK_STATE_CLOSED
);
310 static void con_sock_state_connecting(struct ceph_connection
*con
)
314 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
315 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
316 printk("%s: unexpected old state %d\n", __func__
, old_state
);
317 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
318 CON_SOCK_STATE_CONNECTING
);
321 static void con_sock_state_connected(struct ceph_connection
*con
)
325 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
326 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
327 printk("%s: unexpected old state %d\n", __func__
, old_state
);
328 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
329 CON_SOCK_STATE_CONNECTED
);
332 static void con_sock_state_closing(struct ceph_connection
*con
)
336 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
337 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
338 old_state
!= CON_SOCK_STATE_CONNECTED
&&
339 old_state
!= CON_SOCK_STATE_CLOSING
))
340 printk("%s: unexpected old state %d\n", __func__
, old_state
);
341 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
342 CON_SOCK_STATE_CLOSING
);
345 static void con_sock_state_closed(struct ceph_connection
*con
)
349 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
350 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
351 old_state
!= CON_SOCK_STATE_CLOSING
&&
352 old_state
!= CON_SOCK_STATE_CONNECTING
&&
353 old_state
!= CON_SOCK_STATE_CLOSED
))
354 printk("%s: unexpected old state %d\n", __func__
, old_state
);
355 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
356 CON_SOCK_STATE_CLOSED
);
360 * socket callback functions
363 /* data available on socket, or listen socket received a connect */
364 static void ceph_sock_data_ready(struct sock
*sk
)
366 struct ceph_connection
*con
= sk
->sk_user_data
;
367 if (atomic_read(&con
->msgr
->stopping
)) {
371 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
372 dout("%s on %p state = %lu, queueing work\n", __func__
,
378 /* socket has buffer space for writing */
379 static void ceph_sock_write_space(struct sock
*sk
)
381 struct ceph_connection
*con
= sk
->sk_user_data
;
383 /* only queue to workqueue if there is data we want to write,
384 * and there is sufficient space in the socket buffer to accept
385 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
386 * doesn't get called again until try_write() fills the socket
387 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
388 * and net/core/stream.c:sk_stream_write_space().
390 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
391 if (sk_stream_is_writeable(sk
)) {
392 dout("%s %p queueing write work\n", __func__
, con
);
393 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
397 dout("%s %p nothing to write\n", __func__
, con
);
401 /* socket's state has changed */
402 static void ceph_sock_state_change(struct sock
*sk
)
404 struct ceph_connection
*con
= sk
->sk_user_data
;
406 dout("%s %p state = %lu sk_state = %u\n", __func__
,
407 con
, con
->state
, sk
->sk_state
);
409 switch (sk
->sk_state
) {
411 dout("%s TCP_CLOSE\n", __func__
);
414 dout("%s TCP_CLOSE_WAIT\n", __func__
);
415 con_sock_state_closing(con
);
416 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
419 case TCP_ESTABLISHED
:
420 dout("%s TCP_ESTABLISHED\n", __func__
);
421 con_sock_state_connected(con
);
424 default: /* Everything else is uninteresting */
430 * set up socket callbacks
432 static void set_sock_callbacks(struct socket
*sock
,
433 struct ceph_connection
*con
)
435 struct sock
*sk
= sock
->sk
;
436 sk
->sk_user_data
= con
;
437 sk
->sk_data_ready
= ceph_sock_data_ready
;
438 sk
->sk_write_space
= ceph_sock_write_space
;
439 sk
->sk_state_change
= ceph_sock_state_change
;
448 * initiate connection to a remote socket.
450 static int ceph_tcp_connect(struct ceph_connection
*con
)
452 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
454 unsigned int noio_flag
;
459 /* sock_create_kern() allocates with GFP_KERNEL */
460 noio_flag
= memalloc_noio_save();
461 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), paddr
->ss_family
,
462 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
463 memalloc_noio_restore(noio_flag
);
466 sock
->sk
->sk_allocation
= GFP_NOFS
;
468 #ifdef CONFIG_LOCKDEP
469 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
472 set_sock_callbacks(sock
, con
);
474 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
476 con_sock_state_connecting(con
);
477 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
479 if (ret
== -EINPROGRESS
) {
480 dout("connect %s EINPROGRESS sk_state = %u\n",
481 ceph_pr_addr(&con
->peer_addr
.in_addr
),
483 } else if (ret
< 0) {
484 pr_err("connect %s error %d\n",
485 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
490 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
)) {
493 ret
= kernel_setsockopt(sock
, SOL_TCP
, TCP_NODELAY
,
494 (char *)&optval
, sizeof(optval
));
496 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
505 * If @buf is NULL, discard up to @len bytes.
507 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
509 struct kvec iov
= {buf
, len
};
510 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
514 msg
.msg_flags
|= MSG_TRUNC
;
516 iov_iter_kvec(&msg
.msg_iter
, READ
, &iov
, 1, len
);
517 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
523 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
524 int page_offset
, size_t length
)
526 struct bio_vec bvec
= {
528 .bv_offset
= page_offset
,
531 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
534 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
535 iov_iter_bvec(&msg
.msg_iter
, READ
, &bvec
, 1, length
);
536 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
543 * write something. @more is true if caller will be sending more data
546 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
547 size_t kvlen
, size_t len
, bool more
)
549 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
553 msg
.msg_flags
|= MSG_MORE
;
555 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
557 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
564 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
566 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
567 int offset
, size_t size
, int more
)
569 ssize_t (*sendpage
)(struct socket
*sock
, struct page
*page
,
570 int offset
, size_t size
, int flags
);
571 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| more
;
575 * sendpage cannot properly handle pages with page_count == 0,
576 * we need to fall back to sendmsg if that's the case.
578 * Same goes for slab pages: skb_can_coalesce() allows
579 * coalescing neighboring slab objects into a single frag which
580 * triggers one of hardened usercopy checks.
582 if (page_count(page
) >= 1 && !PageSlab(page
))
583 sendpage
= sock
->ops
->sendpage
;
585 sendpage
= sock_no_sendpage
;
587 ret
= sendpage(sock
, page
, offset
, size
, flags
);
595 * Shutdown/close the socket for the given connection.
597 static int con_close_socket(struct ceph_connection
*con
)
601 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
603 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
604 sock_release(con
->sock
);
609 * Forcibly clear the SOCK_CLOSED flag. It gets set
610 * independent of the connection mutex, and we could have
611 * received a socket close event before we had the chance to
612 * shut the socket down.
614 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
616 con_sock_state_closed(con
);
621 * Reset a connection. Discard all incoming and outgoing messages
622 * and clear *_seq state.
624 static void ceph_msg_remove(struct ceph_msg
*msg
)
626 list_del_init(&msg
->list_head
);
630 static void ceph_msg_remove_list(struct list_head
*head
)
632 while (!list_empty(head
)) {
633 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
635 ceph_msg_remove(msg
);
639 static void reset_connection(struct ceph_connection
*con
)
641 /* reset connection, out_queue, msg_ and connect_seq */
642 /* discard existing out_queue and msg_seq */
643 dout("reset_connection %p\n", con
);
644 ceph_msg_remove_list(&con
->out_queue
);
645 ceph_msg_remove_list(&con
->out_sent
);
648 BUG_ON(con
->in_msg
->con
!= con
);
649 ceph_msg_put(con
->in_msg
);
653 con
->connect_seq
= 0;
656 BUG_ON(con
->out_msg
->con
!= con
);
657 ceph_msg_put(con
->out_msg
);
661 con
->in_seq_acked
= 0;
667 * mark a peer down. drop any open connections.
669 void ceph_con_close(struct ceph_connection
*con
)
671 mutex_lock(&con
->mutex
);
672 dout("con_close %p peer %s\n", con
,
673 ceph_pr_addr(&con
->peer_addr
.in_addr
));
674 con
->state
= CON_STATE_CLOSED
;
676 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
677 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
678 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
679 con_flag_clear(con
, CON_FLAG_BACKOFF
);
681 reset_connection(con
);
682 con
->peer_global_seq
= 0;
684 con_close_socket(con
);
685 mutex_unlock(&con
->mutex
);
687 EXPORT_SYMBOL(ceph_con_close
);
690 * Reopen a closed connection, with a new peer address.
692 void ceph_con_open(struct ceph_connection
*con
,
693 __u8 entity_type
, __u64 entity_num
,
694 struct ceph_entity_addr
*addr
)
696 mutex_lock(&con
->mutex
);
697 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
699 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
700 con
->state
= CON_STATE_PREOPEN
;
702 con
->peer_name
.type
= (__u8
) entity_type
;
703 con
->peer_name
.num
= cpu_to_le64(entity_num
);
705 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
706 con
->delay
= 0; /* reset backoff memory */
707 mutex_unlock(&con
->mutex
);
710 EXPORT_SYMBOL(ceph_con_open
);
713 * return true if this connection ever successfully opened
715 bool ceph_con_opened(struct ceph_connection
*con
)
717 return con
->connect_seq
> 0;
721 * initialize a new connection.
723 void ceph_con_init(struct ceph_connection
*con
, void *private,
724 const struct ceph_connection_operations
*ops
,
725 struct ceph_messenger
*msgr
)
727 dout("con_init %p\n", con
);
728 memset(con
, 0, sizeof(*con
));
729 con
->private = private;
733 con_sock_state_init(con
);
735 mutex_init(&con
->mutex
);
736 INIT_LIST_HEAD(&con
->out_queue
);
737 INIT_LIST_HEAD(&con
->out_sent
);
738 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
740 con
->state
= CON_STATE_CLOSED
;
742 EXPORT_SYMBOL(ceph_con_init
);
746 * We maintain a global counter to order connection attempts. Get
747 * a unique seq greater than @gt.
749 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
753 spin_lock(&msgr
->global_seq_lock
);
754 if (msgr
->global_seq
< gt
)
755 msgr
->global_seq
= gt
;
756 ret
= ++msgr
->global_seq
;
757 spin_unlock(&msgr
->global_seq_lock
);
761 static void con_out_kvec_reset(struct ceph_connection
*con
)
763 BUG_ON(con
->out_skip
);
765 con
->out_kvec_left
= 0;
766 con
->out_kvec_bytes
= 0;
767 con
->out_kvec_cur
= &con
->out_kvec
[0];
770 static void con_out_kvec_add(struct ceph_connection
*con
,
771 size_t size
, void *data
)
773 int index
= con
->out_kvec_left
;
775 BUG_ON(con
->out_skip
);
776 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
778 con
->out_kvec
[index
].iov_len
= size
;
779 con
->out_kvec
[index
].iov_base
= data
;
780 con
->out_kvec_left
++;
781 con
->out_kvec_bytes
+= size
;
785 * Chop off a kvec from the end. Return residual number of bytes for
786 * that kvec, i.e. how many bytes would have been written if the kvec
789 static int con_out_kvec_skip(struct ceph_connection
*con
)
791 int off
= con
->out_kvec_cur
- con
->out_kvec
;
794 if (con
->out_kvec_bytes
> 0) {
795 skip
= con
->out_kvec
[off
+ con
->out_kvec_left
- 1].iov_len
;
796 BUG_ON(con
->out_kvec_bytes
< skip
);
797 BUG_ON(!con
->out_kvec_left
);
798 con
->out_kvec_bytes
-= skip
;
799 con
->out_kvec_left
--;
808 * For a bio data item, a piece is whatever remains of the next
809 * entry in the current bio iovec, or the first entry in the next
812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
815 struct ceph_msg_data
*data
= cursor
->data
;
816 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
818 cursor
->resid
= min_t(size_t, length
, data
->bio_length
);
820 if (cursor
->resid
< it
->iter
.bi_size
)
821 it
->iter
.bi_size
= cursor
->resid
;
823 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
824 cursor
->last_piece
= cursor
->resid
== bio_iter_len(it
->bio
, it
->iter
);
827 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
831 struct bio_vec bv
= bio_iter_iovec(cursor
->bio_iter
.bio
,
832 cursor
->bio_iter
.iter
);
834 *page_offset
= bv
.bv_offset
;
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
842 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
843 struct page
*page
= bio_iter_page(it
->bio
, it
->iter
);
845 BUG_ON(bytes
> cursor
->resid
);
846 BUG_ON(bytes
> bio_iter_len(it
->bio
, it
->iter
));
847 cursor
->resid
-= bytes
;
848 bio_advance_iter(it
->bio
, &it
->iter
, bytes
);
850 if (!cursor
->resid
) {
851 BUG_ON(!cursor
->last_piece
);
852 return false; /* no more data */
855 if (!bytes
|| (it
->iter
.bi_size
&& it
->iter
.bi_bvec_done
&&
856 page
== bio_iter_page(it
->bio
, it
->iter
)))
857 return false; /* more bytes to process in this segment */
859 if (!it
->iter
.bi_size
) {
860 it
->bio
= it
->bio
->bi_next
;
861 it
->iter
= it
->bio
->bi_iter
;
862 if (cursor
->resid
< it
->iter
.bi_size
)
863 it
->iter
.bi_size
= cursor
->resid
;
866 BUG_ON(cursor
->last_piece
);
867 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
868 cursor
->last_piece
= cursor
->resid
== bio_iter_len(it
->bio
, it
->iter
);
871 #endif /* CONFIG_BLOCK */
873 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor
*cursor
,
876 struct ceph_msg_data
*data
= cursor
->data
;
877 struct bio_vec
*bvecs
= data
->bvec_pos
.bvecs
;
879 cursor
->resid
= min_t(size_t, length
, data
->bvec_pos
.iter
.bi_size
);
880 cursor
->bvec_iter
= data
->bvec_pos
.iter
;
881 cursor
->bvec_iter
.bi_size
= cursor
->resid
;
883 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
885 cursor
->resid
== bvec_iter_len(bvecs
, cursor
->bvec_iter
);
888 static struct page
*ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor
*cursor
,
892 struct bio_vec bv
= bvec_iter_bvec(cursor
->data
->bvec_pos
.bvecs
,
895 *page_offset
= bv
.bv_offset
;
900 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor
*cursor
,
903 struct bio_vec
*bvecs
= cursor
->data
->bvec_pos
.bvecs
;
904 struct page
*page
= bvec_iter_page(bvecs
, cursor
->bvec_iter
);
906 BUG_ON(bytes
> cursor
->resid
);
907 BUG_ON(bytes
> bvec_iter_len(bvecs
, cursor
->bvec_iter
));
908 cursor
->resid
-= bytes
;
909 bvec_iter_advance(bvecs
, &cursor
->bvec_iter
, bytes
);
911 if (!cursor
->resid
) {
912 BUG_ON(!cursor
->last_piece
);
913 return false; /* no more data */
916 if (!bytes
|| (cursor
->bvec_iter
.bi_bvec_done
&&
917 page
== bvec_iter_page(bvecs
, cursor
->bvec_iter
)))
918 return false; /* more bytes to process in this segment */
920 BUG_ON(cursor
->last_piece
);
921 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
923 cursor
->resid
== bvec_iter_len(bvecs
, cursor
->bvec_iter
);
928 * For a page array, a piece comes from the first page in the array
929 * that has not already been fully consumed.
931 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
934 struct ceph_msg_data
*data
= cursor
->data
;
937 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
939 BUG_ON(!data
->pages
);
940 BUG_ON(!data
->length
);
942 cursor
->resid
= min(length
, data
->length
);
943 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
944 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
945 cursor
->page_index
= 0;
946 BUG_ON(page_count
> (int)USHRT_MAX
);
947 cursor
->page_count
= (unsigned short)page_count
;
948 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
949 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
953 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
954 size_t *page_offset
, size_t *length
)
956 struct ceph_msg_data
*data
= cursor
->data
;
958 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
960 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
961 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
963 *page_offset
= cursor
->page_offset
;
964 if (cursor
->last_piece
)
965 *length
= cursor
->resid
;
967 *length
= PAGE_SIZE
- *page_offset
;
969 return data
->pages
[cursor
->page_index
];
972 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
975 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
977 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
979 /* Advance the cursor page offset */
981 cursor
->resid
-= bytes
;
982 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
983 if (!bytes
|| cursor
->page_offset
)
984 return false; /* more bytes to process in the current page */
987 return false; /* no more data */
989 /* Move on to the next page; offset is already at 0 */
991 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
992 cursor
->page_index
++;
993 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
999 * For a pagelist, a piece is whatever remains to be consumed in the
1000 * first page in the list, or the front of the next page.
1003 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
1006 struct ceph_msg_data
*data
= cursor
->data
;
1007 struct ceph_pagelist
*pagelist
;
1010 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1012 pagelist
= data
->pagelist
;
1016 return; /* pagelist can be assigned but empty */
1018 BUG_ON(list_empty(&pagelist
->head
));
1019 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
1021 cursor
->resid
= min(length
, pagelist
->length
);
1022 cursor
->page
= page
;
1024 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1027 static struct page
*
1028 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
1029 size_t *page_offset
, size_t *length
)
1031 struct ceph_msg_data
*data
= cursor
->data
;
1032 struct ceph_pagelist
*pagelist
;
1034 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1036 pagelist
= data
->pagelist
;
1039 BUG_ON(!cursor
->page
);
1040 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1042 /* offset of first page in pagelist is always 0 */
1043 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1044 if (cursor
->last_piece
)
1045 *length
= cursor
->resid
;
1047 *length
= PAGE_SIZE
- *page_offset
;
1049 return cursor
->page
;
1052 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1055 struct ceph_msg_data
*data
= cursor
->data
;
1056 struct ceph_pagelist
*pagelist
;
1058 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1060 pagelist
= data
->pagelist
;
1063 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1064 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1066 /* Advance the cursor offset */
1068 cursor
->resid
-= bytes
;
1069 cursor
->offset
+= bytes
;
1070 /* offset of first page in pagelist is always 0 */
1071 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1072 return false; /* more bytes to process in the current page */
1075 return false; /* no more data */
1077 /* Move on to the next page */
1079 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1080 cursor
->page
= list_next_entry(cursor
->page
, lru
);
1081 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1087 * Message data is handled (sent or received) in pieces, where each
1088 * piece resides on a single page. The network layer might not
1089 * consume an entire piece at once. A data item's cursor keeps
1090 * track of which piece is next to process and how much remains to
1091 * be processed in that piece. It also tracks whether the current
1092 * piece is the last one in the data item.
1094 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1096 size_t length
= cursor
->total_resid
;
1098 switch (cursor
->data
->type
) {
1099 case CEPH_MSG_DATA_PAGELIST
:
1100 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1102 case CEPH_MSG_DATA_PAGES
:
1103 ceph_msg_data_pages_cursor_init(cursor
, length
);
1106 case CEPH_MSG_DATA_BIO
:
1107 ceph_msg_data_bio_cursor_init(cursor
, length
);
1109 #endif /* CONFIG_BLOCK */
1110 case CEPH_MSG_DATA_BVECS
:
1111 ceph_msg_data_bvecs_cursor_init(cursor
, length
);
1113 case CEPH_MSG_DATA_NONE
:
1118 cursor
->need_crc
= true;
1121 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1123 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1126 BUG_ON(length
> msg
->data_length
);
1127 BUG_ON(!msg
->num_data_items
);
1129 cursor
->total_resid
= length
;
1130 cursor
->data
= msg
->data
;
1132 __ceph_msg_data_cursor_init(cursor
);
1136 * Return the page containing the next piece to process for a given
1137 * data item, and supply the page offset and length of that piece.
1138 * Indicate whether this is the last piece in this data item.
1140 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1141 size_t *page_offset
, size_t *length
,
1146 switch (cursor
->data
->type
) {
1147 case CEPH_MSG_DATA_PAGELIST
:
1148 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1150 case CEPH_MSG_DATA_PAGES
:
1151 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1154 case CEPH_MSG_DATA_BIO
:
1155 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1157 #endif /* CONFIG_BLOCK */
1158 case CEPH_MSG_DATA_BVECS
:
1159 page
= ceph_msg_data_bvecs_next(cursor
, page_offset
, length
);
1161 case CEPH_MSG_DATA_NONE
:
1168 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1170 BUG_ON(*length
> cursor
->resid
);
1172 *last_piece
= cursor
->last_piece
;
1178 * Returns true if the result moves the cursor on to the next piece
1181 static void ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1186 BUG_ON(bytes
> cursor
->resid
);
1187 switch (cursor
->data
->type
) {
1188 case CEPH_MSG_DATA_PAGELIST
:
1189 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1191 case CEPH_MSG_DATA_PAGES
:
1192 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1195 case CEPH_MSG_DATA_BIO
:
1196 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1198 #endif /* CONFIG_BLOCK */
1199 case CEPH_MSG_DATA_BVECS
:
1200 new_piece
= ceph_msg_data_bvecs_advance(cursor
, bytes
);
1202 case CEPH_MSG_DATA_NONE
:
1207 cursor
->total_resid
-= bytes
;
1209 if (!cursor
->resid
&& cursor
->total_resid
) {
1210 WARN_ON(!cursor
->last_piece
);
1212 __ceph_msg_data_cursor_init(cursor
);
1215 cursor
->need_crc
= new_piece
;
1218 static size_t sizeof_footer(struct ceph_connection
*con
)
1220 return (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) ?
1221 sizeof(struct ceph_msg_footer
) :
1222 sizeof(struct ceph_msg_footer_old
);
1225 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1227 /* Initialize data cursor */
1229 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1233 * Prepare footer for currently outgoing message, and finish things
1234 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1236 static void prepare_write_message_footer(struct ceph_connection
*con
)
1238 struct ceph_msg
*m
= con
->out_msg
;
1240 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1242 dout("prepare_write_message_footer %p\n", con
);
1243 con_out_kvec_add(con
, sizeof_footer(con
), &m
->footer
);
1244 if (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) {
1245 if (con
->ops
->sign_message
)
1246 con
->ops
->sign_message(m
);
1250 m
->old_footer
.flags
= m
->footer
.flags
;
1252 con
->out_more
= m
->more_to_follow
;
1253 con
->out_msg_done
= true;
1257 * Prepare headers for the next outgoing message.
1259 static void prepare_write_message(struct ceph_connection
*con
)
1264 con_out_kvec_reset(con
);
1265 con
->out_msg_done
= false;
1267 /* Sneak an ack in there first? If we can get it into the same
1268 * TCP packet that's a good thing. */
1269 if (con
->in_seq
> con
->in_seq_acked
) {
1270 con
->in_seq_acked
= con
->in_seq
;
1271 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1272 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1273 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1274 &con
->out_temp_ack
);
1277 BUG_ON(list_empty(&con
->out_queue
));
1278 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1280 BUG_ON(m
->con
!= con
);
1282 /* put message on sent list */
1284 list_move_tail(&m
->list_head
, &con
->out_sent
);
1287 * only assign outgoing seq # if we haven't sent this message
1288 * yet. if it is requeued, resend with it's original seq.
1290 if (m
->needs_out_seq
) {
1291 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1292 m
->needs_out_seq
= false;
1294 if (con
->ops
->reencode_message
)
1295 con
->ops
->reencode_message(m
);
1298 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1299 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1300 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1302 WARN_ON(m
->front
.iov_len
!= le32_to_cpu(m
->hdr
.front_len
));
1303 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1305 /* tag + hdr + front + middle */
1306 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1307 con_out_kvec_add(con
, sizeof(con
->out_hdr
), &con
->out_hdr
);
1308 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1311 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1312 m
->middle
->vec
.iov_base
);
1314 /* fill in hdr crc and finalize hdr */
1315 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1316 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1317 memcpy(&con
->out_hdr
, &con
->out_msg
->hdr
, sizeof(con
->out_hdr
));
1319 /* fill in front and middle crc, footer */
1320 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1321 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1323 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1324 m
->middle
->vec
.iov_len
);
1325 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1327 con
->out_msg
->footer
.middle_crc
= 0;
1328 dout("%s front_crc %u middle_crc %u\n", __func__
,
1329 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1330 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1331 con
->out_msg
->footer
.flags
= 0;
1333 /* is there a data payload? */
1334 con
->out_msg
->footer
.data_crc
= 0;
1335 if (m
->data_length
) {
1336 prepare_message_data(con
->out_msg
, m
->data_length
);
1337 con
->out_more
= 1; /* data + footer will follow */
1339 /* no, queue up footer too and be done */
1340 prepare_write_message_footer(con
);
1343 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1349 static void prepare_write_ack(struct ceph_connection
*con
)
1351 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1352 con
->in_seq_acked
, con
->in_seq
);
1353 con
->in_seq_acked
= con
->in_seq
;
1355 con_out_kvec_reset(con
);
1357 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1359 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1360 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1361 &con
->out_temp_ack
);
1363 con
->out_more
= 1; /* more will follow.. eventually.. */
1364 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1368 * Prepare to share the seq during handshake
1370 static void prepare_write_seq(struct ceph_connection
*con
)
1372 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1373 con
->in_seq_acked
, con
->in_seq
);
1374 con
->in_seq_acked
= con
->in_seq
;
1376 con_out_kvec_reset(con
);
1378 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1379 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1380 &con
->out_temp_ack
);
1382 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1386 * Prepare to write keepalive byte.
1388 static void prepare_write_keepalive(struct ceph_connection
*con
)
1390 dout("prepare_write_keepalive %p\n", con
);
1391 con_out_kvec_reset(con
);
1392 if (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
) {
1393 struct timespec64 now
;
1395 ktime_get_real_ts64(&now
);
1396 con_out_kvec_add(con
, sizeof(tag_keepalive2
), &tag_keepalive2
);
1397 ceph_encode_timespec64(&con
->out_temp_keepalive2
, &now
);
1398 con_out_kvec_add(con
, sizeof(con
->out_temp_keepalive2
),
1399 &con
->out_temp_keepalive2
);
1401 con_out_kvec_add(con
, sizeof(tag_keepalive
), &tag_keepalive
);
1403 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1407 * Connection negotiation.
1410 static int get_connect_authorizer(struct ceph_connection
*con
)
1412 struct ceph_auth_handshake
*auth
;
1415 if (!con
->ops
->get_authorizer
) {
1417 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1418 con
->out_connect
.authorizer_len
= 0;
1422 auth
= con
->ops
->get_authorizer(con
, &auth_proto
, con
->auth_retry
);
1424 return PTR_ERR(auth
);
1427 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1428 con
->out_connect
.authorizer_len
= cpu_to_le32(auth
->authorizer_buf_len
);
1433 * We connected to a peer and are saying hello.
1435 static void prepare_write_banner(struct ceph_connection
*con
)
1437 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1438 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1439 &con
->msgr
->my_enc_addr
);
1442 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1445 static void __prepare_write_connect(struct ceph_connection
*con
)
1447 con_out_kvec_add(con
, sizeof(con
->out_connect
), &con
->out_connect
);
1449 con_out_kvec_add(con
, con
->auth
->authorizer_buf_len
,
1450 con
->auth
->authorizer_buf
);
1453 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1456 static int prepare_write_connect(struct ceph_connection
*con
)
1458 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1462 switch (con
->peer_name
.type
) {
1463 case CEPH_ENTITY_TYPE_MON
:
1464 proto
= CEPH_MONC_PROTOCOL
;
1466 case CEPH_ENTITY_TYPE_OSD
:
1467 proto
= CEPH_OSDC_PROTOCOL
;
1469 case CEPH_ENTITY_TYPE_MDS
:
1470 proto
= CEPH_MDSC_PROTOCOL
;
1476 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1477 con
->connect_seq
, global_seq
, proto
);
1479 con
->out_connect
.features
=
1480 cpu_to_le64(from_msgr(con
->msgr
)->supported_features
);
1481 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1482 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1483 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1484 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1485 con
->out_connect
.flags
= 0;
1487 ret
= get_connect_authorizer(con
);
1491 __prepare_write_connect(con
);
1496 * write as much of pending kvecs to the socket as we can.
1498 * 0 -> socket full, but more to do
1501 static int write_partial_kvec(struct ceph_connection
*con
)
1505 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1506 while (con
->out_kvec_bytes
> 0) {
1507 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1508 con
->out_kvec_left
, con
->out_kvec_bytes
,
1512 con
->out_kvec_bytes
-= ret
;
1513 if (con
->out_kvec_bytes
== 0)
1516 /* account for full iov entries consumed */
1517 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1518 BUG_ON(!con
->out_kvec_left
);
1519 ret
-= con
->out_kvec_cur
->iov_len
;
1520 con
->out_kvec_cur
++;
1521 con
->out_kvec_left
--;
1523 /* and for a partially-consumed entry */
1525 con
->out_kvec_cur
->iov_len
-= ret
;
1526 con
->out_kvec_cur
->iov_base
+= ret
;
1529 con
->out_kvec_left
= 0;
1532 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1533 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1534 return ret
; /* done! */
1537 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1538 unsigned int page_offset
,
1539 unsigned int length
)
1544 BUG_ON(kaddr
== NULL
);
1545 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1551 * Write as much message data payload as we can. If we finish, queue
1553 * 1 -> done, footer is now queued in out_kvec[].
1554 * 0 -> socket full, but more to do
1557 static int write_partial_message_data(struct ceph_connection
*con
)
1559 struct ceph_msg
*msg
= con
->out_msg
;
1560 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1561 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
1562 int more
= MSG_MORE
| MSG_SENDPAGE_NOTLAST
;
1565 dout("%s %p msg %p\n", __func__
, con
, msg
);
1567 if (!msg
->num_data_items
)
1571 * Iterate through each page that contains data to be
1572 * written, and send as much as possible for each.
1574 * If we are calculating the data crc (the default), we will
1575 * need to map the page. If we have no pages, they have
1576 * been revoked, so use the zero page.
1578 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1579 while (cursor
->total_resid
) {
1585 if (!cursor
->resid
) {
1586 ceph_msg_data_advance(cursor
, 0);
1590 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
1591 if (length
== cursor
->total_resid
)
1593 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
, length
,
1597 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1601 if (do_datacrc
&& cursor
->need_crc
)
1602 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1603 ceph_msg_data_advance(cursor
, (size_t)ret
);
1606 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1608 /* prepare and queue up footer, too */
1610 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1612 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1613 con_out_kvec_reset(con
);
1614 prepare_write_message_footer(con
);
1616 return 1; /* must return > 0 to indicate success */
1622 static int write_partial_skip(struct ceph_connection
*con
)
1624 int more
= MSG_MORE
| MSG_SENDPAGE_NOTLAST
;
1627 dout("%s %p %d left\n", __func__
, con
, con
->out_skip
);
1628 while (con
->out_skip
> 0) {
1629 size_t size
= min(con
->out_skip
, (int) PAGE_SIZE
);
1631 if (size
== con
->out_skip
)
1633 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, more
);
1636 con
->out_skip
-= ret
;
1644 * Prepare to read connection handshake, or an ack.
1646 static void prepare_read_banner(struct ceph_connection
*con
)
1648 dout("prepare_read_banner %p\n", con
);
1649 con
->in_base_pos
= 0;
1652 static void prepare_read_connect(struct ceph_connection
*con
)
1654 dout("prepare_read_connect %p\n", con
);
1655 con
->in_base_pos
= 0;
1658 static void prepare_read_ack(struct ceph_connection
*con
)
1660 dout("prepare_read_ack %p\n", con
);
1661 con
->in_base_pos
= 0;
1664 static void prepare_read_seq(struct ceph_connection
*con
)
1666 dout("prepare_read_seq %p\n", con
);
1667 con
->in_base_pos
= 0;
1668 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1671 static void prepare_read_tag(struct ceph_connection
*con
)
1673 dout("prepare_read_tag %p\n", con
);
1674 con
->in_base_pos
= 0;
1675 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1678 static void prepare_read_keepalive_ack(struct ceph_connection
*con
)
1680 dout("prepare_read_keepalive_ack %p\n", con
);
1681 con
->in_base_pos
= 0;
1685 * Prepare to read a message.
1687 static int prepare_read_message(struct ceph_connection
*con
)
1689 dout("prepare_read_message %p\n", con
);
1690 BUG_ON(con
->in_msg
!= NULL
);
1691 con
->in_base_pos
= 0;
1692 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1697 static int read_partial(struct ceph_connection
*con
,
1698 int end
, int size
, void *object
)
1700 while (con
->in_base_pos
< end
) {
1701 int left
= end
- con
->in_base_pos
;
1702 int have
= size
- left
;
1703 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1706 con
->in_base_pos
+= ret
;
1713 * Read all or part of the connect-side handshake on a new connection
1715 static int read_partial_banner(struct ceph_connection
*con
)
1721 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1724 size
= strlen(CEPH_BANNER
);
1726 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1730 size
= sizeof (con
->actual_peer_addr
);
1732 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1736 size
= sizeof (con
->peer_addr_for_me
);
1738 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1746 static int read_partial_connect(struct ceph_connection
*con
)
1752 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1754 size
= sizeof (con
->in_reply
);
1756 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1761 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1762 if (size
> con
->auth
->authorizer_reply_buf_len
) {
1763 pr_err("authorizer reply too big: %d > %zu\n", size
,
1764 con
->auth
->authorizer_reply_buf_len
);
1770 ret
= read_partial(con
, end
, size
,
1771 con
->auth
->authorizer_reply_buf
);
1776 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1777 con
, (int)con
->in_reply
.tag
,
1778 le32_to_cpu(con
->in_reply
.connect_seq
),
1779 le32_to_cpu(con
->in_reply
.global_seq
));
1785 * Verify the hello banner looks okay.
1787 static int verify_hello(struct ceph_connection
*con
)
1789 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1790 pr_err("connect to %s got bad banner\n",
1791 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1792 con
->error_msg
= "protocol error, bad banner";
1798 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1800 struct in_addr
*addr
= &((struct sockaddr_in
*)ss
)->sin_addr
;
1801 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)ss
)->sin6_addr
;
1803 switch (ss
->ss_family
) {
1805 return addr
->s_addr
== htonl(INADDR_ANY
);
1807 return ipv6_addr_any(addr6
);
1813 static int addr_port(struct sockaddr_storage
*ss
)
1815 switch (ss
->ss_family
) {
1817 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1819 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1824 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1826 switch (ss
->ss_family
) {
1828 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1831 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1837 * Unlike other *_pton function semantics, zero indicates success.
1839 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1840 char delim
, const char **ipend
)
1842 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1843 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1845 memset(ss
, 0, sizeof(*ss
));
1847 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1848 ss
->ss_family
= AF_INET
;
1852 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1853 ss
->ss_family
= AF_INET6
;
1861 * Extract hostname string and resolve using kernel DNS facility.
1863 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1864 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1865 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1867 const char *end
, *delim_p
;
1868 char *colon_p
, *ip_addr
= NULL
;
1872 * The end of the hostname occurs immediately preceding the delimiter or
1873 * the port marker (':') where the delimiter takes precedence.
1875 delim_p
= memchr(name
, delim
, namelen
);
1876 colon_p
= memchr(name
, ':', namelen
);
1878 if (delim_p
&& colon_p
)
1879 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1880 else if (!delim_p
&& colon_p
)
1884 if (!end
) /* case: hostname:/ */
1885 end
= name
+ namelen
;
1891 /* do dns_resolve upcall */
1892 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1894 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1902 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1903 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1908 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1909 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1916 * Parse a server name (IP or hostname). If a valid IP address is not found
1917 * then try to extract a hostname to resolve using userspace DNS upcall.
1919 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1920 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1924 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1926 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1932 * Parse an ip[:port] list into an addr array. Use the default
1933 * monitor port if a port isn't specified.
1935 int ceph_parse_ips(const char *c
, const char *end
,
1936 struct ceph_entity_addr
*addr
,
1937 int max_count
, int *count
)
1939 int i
, ret
= -EINVAL
;
1942 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1943 for (i
= 0; i
< max_count
; i
++) {
1945 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1954 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1963 dout("missing matching ']'\n");
1970 if (p
< end
&& *p
== ':') {
1973 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1974 port
= (port
* 10) + (*p
- '0');
1978 port
= CEPH_MON_PORT
;
1979 else if (port
> 65535)
1982 port
= CEPH_MON_PORT
;
1985 addr_set_port(ss
, port
);
1987 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
2004 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
2007 EXPORT_SYMBOL(ceph_parse_ips
);
2009 static int process_banner(struct ceph_connection
*con
)
2011 dout("process_banner on %p\n", con
);
2013 if (verify_hello(con
) < 0)
2016 ceph_decode_addr(&con
->actual_peer_addr
);
2017 ceph_decode_addr(&con
->peer_addr_for_me
);
2020 * Make sure the other end is who we wanted. note that the other
2021 * end may not yet know their ip address, so if it's 0.0.0.0, give
2022 * them the benefit of the doubt.
2024 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
2025 sizeof(con
->peer_addr
)) != 0 &&
2026 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
2027 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
2028 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2029 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2030 (int)le32_to_cpu(con
->peer_addr
.nonce
),
2031 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
2032 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
2033 con
->error_msg
= "wrong peer at address";
2038 * did we learn our address?
2040 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
2041 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
2043 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
2044 &con
->peer_addr_for_me
.in_addr
,
2045 sizeof(con
->peer_addr_for_me
.in_addr
));
2046 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
2047 encode_my_addr(con
->msgr
);
2048 dout("process_banner learned my addr is %s\n",
2049 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
2055 static int process_connect(struct ceph_connection
*con
)
2057 u64 sup_feat
= from_msgr(con
->msgr
)->supported_features
;
2058 u64 req_feat
= from_msgr(con
->msgr
)->required_features
;
2059 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
2062 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
2065 int len
= le32_to_cpu(con
->in_reply
.authorizer_len
);
2068 * Any connection that defines ->get_authorizer()
2069 * should also define ->add_authorizer_challenge() and
2070 * ->verify_authorizer_reply().
2072 * See get_connect_authorizer().
2074 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER
) {
2075 ret
= con
->ops
->add_authorizer_challenge(
2076 con
, con
->auth
->authorizer_reply_buf
, len
);
2080 con_out_kvec_reset(con
);
2081 __prepare_write_connect(con
);
2082 prepare_read_connect(con
);
2087 ret
= con
->ops
->verify_authorizer_reply(con
);
2089 con
->error_msg
= "bad authorize reply";
2095 switch (con
->in_reply
.tag
) {
2096 case CEPH_MSGR_TAG_FEATURES
:
2097 pr_err("%s%lld %s feature set mismatch,"
2098 " my %llx < server's %llx, missing %llx\n",
2099 ENTITY_NAME(con
->peer_name
),
2100 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2101 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2102 con
->error_msg
= "missing required protocol features";
2103 reset_connection(con
);
2106 case CEPH_MSGR_TAG_BADPROTOVER
:
2107 pr_err("%s%lld %s protocol version mismatch,"
2108 " my %d != server's %d\n",
2109 ENTITY_NAME(con
->peer_name
),
2110 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2111 le32_to_cpu(con
->out_connect
.protocol_version
),
2112 le32_to_cpu(con
->in_reply
.protocol_version
));
2113 con
->error_msg
= "protocol version mismatch";
2114 reset_connection(con
);
2117 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2119 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2121 if (con
->auth_retry
== 2) {
2122 con
->error_msg
= "connect authorization failure";
2125 con_out_kvec_reset(con
);
2126 ret
= prepare_write_connect(con
);
2129 prepare_read_connect(con
);
2132 case CEPH_MSGR_TAG_RESETSESSION
:
2134 * If we connected with a large connect_seq but the peer
2135 * has no record of a session with us (no connection, or
2136 * connect_seq == 0), they will send RESETSESION to indicate
2137 * that they must have reset their session, and may have
2140 dout("process_connect got RESET peer seq %u\n",
2141 le32_to_cpu(con
->in_reply
.connect_seq
));
2142 pr_err("%s%lld %s connection reset\n",
2143 ENTITY_NAME(con
->peer_name
),
2144 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2145 reset_connection(con
);
2146 con_out_kvec_reset(con
);
2147 ret
= prepare_write_connect(con
);
2150 prepare_read_connect(con
);
2152 /* Tell ceph about it. */
2153 mutex_unlock(&con
->mutex
);
2154 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2155 if (con
->ops
->peer_reset
)
2156 con
->ops
->peer_reset(con
);
2157 mutex_lock(&con
->mutex
);
2158 if (con
->state
!= CON_STATE_NEGOTIATING
)
2162 case CEPH_MSGR_TAG_RETRY_SESSION
:
2164 * If we sent a smaller connect_seq than the peer has, try
2165 * again with a larger value.
2167 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2168 le32_to_cpu(con
->out_connect
.connect_seq
),
2169 le32_to_cpu(con
->in_reply
.connect_seq
));
2170 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2171 con_out_kvec_reset(con
);
2172 ret
= prepare_write_connect(con
);
2175 prepare_read_connect(con
);
2178 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2180 * If we sent a smaller global_seq than the peer has, try
2181 * again with a larger value.
2183 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2184 con
->peer_global_seq
,
2185 le32_to_cpu(con
->in_reply
.global_seq
));
2186 get_global_seq(con
->msgr
,
2187 le32_to_cpu(con
->in_reply
.global_seq
));
2188 con_out_kvec_reset(con
);
2189 ret
= prepare_write_connect(con
);
2192 prepare_read_connect(con
);
2195 case CEPH_MSGR_TAG_SEQ
:
2196 case CEPH_MSGR_TAG_READY
:
2197 if (req_feat
& ~server_feat
) {
2198 pr_err("%s%lld %s protocol feature mismatch,"
2199 " my required %llx > server's %llx, need %llx\n",
2200 ENTITY_NAME(con
->peer_name
),
2201 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2202 req_feat
, server_feat
, req_feat
& ~server_feat
);
2203 con
->error_msg
= "missing required protocol features";
2204 reset_connection(con
);
2208 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2209 con
->state
= CON_STATE_OPEN
;
2210 con
->auth_retry
= 0; /* we authenticated; clear flag */
2211 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2213 con
->peer_features
= server_feat
;
2214 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2215 con
->peer_global_seq
,
2216 le32_to_cpu(con
->in_reply
.connect_seq
),
2218 WARN_ON(con
->connect_seq
!=
2219 le32_to_cpu(con
->in_reply
.connect_seq
));
2221 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2222 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2224 con
->delay
= 0; /* reset backoff memory */
2226 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2227 prepare_write_seq(con
);
2228 prepare_read_seq(con
);
2230 prepare_read_tag(con
);
2234 case CEPH_MSGR_TAG_WAIT
:
2236 * If there is a connection race (we are opening
2237 * connections to each other), one of us may just have
2238 * to WAIT. This shouldn't happen if we are the
2241 con
->error_msg
= "protocol error, got WAIT as client";
2245 con
->error_msg
= "protocol error, garbage tag during connect";
2253 * read (part of) an ack
2255 static int read_partial_ack(struct ceph_connection
*con
)
2257 int size
= sizeof (con
->in_temp_ack
);
2260 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2264 * We can finally discard anything that's been acked.
2266 static void process_ack(struct ceph_connection
*con
)
2269 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2271 bool reconnect
= (con
->in_tag
== CEPH_MSGR_TAG_SEQ
);
2272 struct list_head
*list
= reconnect
? &con
->out_queue
: &con
->out_sent
;
2275 * In the reconnect case, con_fault() has requeued messages
2276 * in out_sent. We should cleanup old messages according to
2277 * the reconnect seq.
2279 while (!list_empty(list
)) {
2280 m
= list_first_entry(list
, struct ceph_msg
, list_head
);
2281 if (reconnect
&& m
->needs_out_seq
)
2283 seq
= le64_to_cpu(m
->hdr
.seq
);
2286 dout("got ack for seq %llu type %d at %p\n", seq
,
2287 le16_to_cpu(m
->hdr
.type
), m
);
2288 m
->ack_stamp
= jiffies
;
2292 prepare_read_tag(con
);
2296 static int read_partial_message_section(struct ceph_connection
*con
,
2297 struct kvec
*section
,
2298 unsigned int sec_len
, u32
*crc
)
2304 while (section
->iov_len
< sec_len
) {
2305 BUG_ON(section
->iov_base
== NULL
);
2306 left
= sec_len
- section
->iov_len
;
2307 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2308 section
->iov_len
, left
);
2311 section
->iov_len
+= ret
;
2313 if (section
->iov_len
== sec_len
)
2314 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2319 static int read_partial_msg_data(struct ceph_connection
*con
)
2321 struct ceph_msg
*msg
= con
->in_msg
;
2322 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2323 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2330 if (!msg
->num_data_items
)
2334 crc
= con
->in_data_crc
;
2335 while (cursor
->total_resid
) {
2336 if (!cursor
->resid
) {
2337 ceph_msg_data_advance(cursor
, 0);
2341 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
2342 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2345 con
->in_data_crc
= crc
;
2351 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2352 ceph_msg_data_advance(cursor
, (size_t)ret
);
2355 con
->in_data_crc
= crc
;
2357 return 1; /* must return > 0 to indicate success */
2361 * read (part of) a message.
2363 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2365 static int read_partial_message(struct ceph_connection
*con
)
2367 struct ceph_msg
*m
= con
->in_msg
;
2371 unsigned int front_len
, middle_len
, data_len
;
2372 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2373 bool need_sign
= (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
);
2377 dout("read_partial_message con %p msg %p\n", con
, m
);
2380 size
= sizeof (con
->in_hdr
);
2382 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2386 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2387 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2388 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2389 crc
, con
->in_hdr
.crc
);
2393 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2394 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2396 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2397 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2399 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2400 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2404 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2405 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2406 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2407 ENTITY_NAME(con
->peer_name
),
2408 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2409 seq
, con
->in_seq
+ 1);
2410 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2412 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2414 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2415 pr_err("read_partial_message bad seq %lld expected %lld\n",
2416 seq
, con
->in_seq
+ 1);
2417 con
->error_msg
= "bad message sequence # for incoming message";
2421 /* allocate message? */
2425 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2426 front_len
, data_len
);
2427 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2431 BUG_ON(!con
->in_msg
^ skip
);
2433 /* skip this message */
2434 dout("alloc_msg said skip message\n");
2435 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2437 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2442 BUG_ON(!con
->in_msg
);
2443 BUG_ON(con
->in_msg
->con
!= con
);
2445 m
->front
.iov_len
= 0; /* haven't read it yet */
2447 m
->middle
->vec
.iov_len
= 0;
2449 /* prepare for data payload, if any */
2452 prepare_message_data(con
->in_msg
, data_len
);
2456 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2457 &con
->in_front_crc
);
2463 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2465 &con
->in_middle_crc
);
2472 ret
= read_partial_msg_data(con
);
2478 size
= sizeof_footer(con
);
2480 ret
= read_partial(con
, end
, size
, &m
->footer
);
2485 m
->footer
.flags
= m
->old_footer
.flags
;
2489 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2490 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2491 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2494 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2495 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2496 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2499 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2500 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2501 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2505 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2506 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2507 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2508 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2512 if (need_sign
&& con
->ops
->check_message_signature
&&
2513 con
->ops
->check_message_signature(m
)) {
2514 pr_err("read_partial_message %p signature check failed\n", m
);
2518 return 1; /* done! */
2522 * Process message. This happens in the worker thread. The callback should
2523 * be careful not to do anything that waits on other incoming messages or it
2526 static void process_message(struct ceph_connection
*con
)
2528 struct ceph_msg
*msg
= con
->in_msg
;
2530 BUG_ON(con
->in_msg
->con
!= con
);
2533 /* if first message, set peer_name */
2534 if (con
->peer_name
.type
== 0)
2535 con
->peer_name
= msg
->hdr
.src
;
2538 mutex_unlock(&con
->mutex
);
2540 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2541 msg
, le64_to_cpu(msg
->hdr
.seq
),
2542 ENTITY_NAME(msg
->hdr
.src
),
2543 le16_to_cpu(msg
->hdr
.type
),
2544 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2545 le32_to_cpu(msg
->hdr
.front_len
),
2546 le32_to_cpu(msg
->hdr
.data_len
),
2547 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2548 con
->ops
->dispatch(con
, msg
);
2550 mutex_lock(&con
->mutex
);
2553 static int read_keepalive_ack(struct ceph_connection
*con
)
2555 struct ceph_timespec ceph_ts
;
2556 size_t size
= sizeof(ceph_ts
);
2557 int ret
= read_partial(con
, size
, size
, &ceph_ts
);
2560 ceph_decode_timespec64(&con
->last_keepalive_ack
, &ceph_ts
);
2561 prepare_read_tag(con
);
2566 * Write something to the socket. Called in a worker thread when the
2567 * socket appears to be writeable and we have something ready to send.
2569 static int try_write(struct ceph_connection
*con
)
2573 dout("try_write start %p state %lu\n", con
, con
->state
);
2574 if (con
->state
!= CON_STATE_PREOPEN
&&
2575 con
->state
!= CON_STATE_CONNECTING
&&
2576 con
->state
!= CON_STATE_NEGOTIATING
&&
2577 con
->state
!= CON_STATE_OPEN
)
2580 /* open the socket first? */
2581 if (con
->state
== CON_STATE_PREOPEN
) {
2583 con
->state
= CON_STATE_CONNECTING
;
2585 con_out_kvec_reset(con
);
2586 prepare_write_banner(con
);
2587 prepare_read_banner(con
);
2589 BUG_ON(con
->in_msg
);
2590 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2591 dout("try_write initiating connect on %p new state %lu\n",
2593 ret
= ceph_tcp_connect(con
);
2595 con
->error_msg
= "connect error";
2601 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2604 /* kvec data queued? */
2605 if (con
->out_kvec_left
) {
2606 ret
= write_partial_kvec(con
);
2610 if (con
->out_skip
) {
2611 ret
= write_partial_skip(con
);
2618 if (con
->out_msg_done
) {
2619 ceph_msg_put(con
->out_msg
);
2620 con
->out_msg
= NULL
; /* we're done with this one */
2624 ret
= write_partial_message_data(con
);
2626 goto more
; /* we need to send the footer, too! */
2630 dout("try_write write_partial_message_data err %d\n",
2637 if (con
->state
== CON_STATE_OPEN
) {
2638 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2639 prepare_write_keepalive(con
);
2642 /* is anything else pending? */
2643 if (!list_empty(&con
->out_queue
)) {
2644 prepare_write_message(con
);
2647 if (con
->in_seq
> con
->in_seq_acked
) {
2648 prepare_write_ack(con
);
2653 /* Nothing to do! */
2654 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2655 dout("try_write nothing else to write.\n");
2658 dout("try_write done on %p ret %d\n", con
, ret
);
2663 * Read what we can from the socket.
2665 static int try_read(struct ceph_connection
*con
)
2670 dout("try_read start on %p state %lu\n", con
, con
->state
);
2671 if (con
->state
!= CON_STATE_CONNECTING
&&
2672 con
->state
!= CON_STATE_NEGOTIATING
&&
2673 con
->state
!= CON_STATE_OPEN
)
2678 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2681 if (con
->state
== CON_STATE_CONNECTING
) {
2682 dout("try_read connecting\n");
2683 ret
= read_partial_banner(con
);
2686 ret
= process_banner(con
);
2690 con
->state
= CON_STATE_NEGOTIATING
;
2693 * Received banner is good, exchange connection info.
2694 * Do not reset out_kvec, as sending our banner raced
2695 * with receiving peer banner after connect completed.
2697 ret
= prepare_write_connect(con
);
2700 prepare_read_connect(con
);
2702 /* Send connection info before awaiting response */
2706 if (con
->state
== CON_STATE_NEGOTIATING
) {
2707 dout("try_read negotiating\n");
2708 ret
= read_partial_connect(con
);
2711 ret
= process_connect(con
);
2717 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2719 if (con
->in_base_pos
< 0) {
2721 * skipping + discarding content.
2723 ret
= ceph_tcp_recvmsg(con
->sock
, NULL
, -con
->in_base_pos
);
2726 dout("skipped %d / %d bytes\n", ret
, -con
->in_base_pos
);
2727 con
->in_base_pos
+= ret
;
2728 if (con
->in_base_pos
)
2731 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2735 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2738 dout("try_read got tag %d\n", (int)con
->in_tag
);
2739 switch (con
->in_tag
) {
2740 case CEPH_MSGR_TAG_MSG
:
2741 prepare_read_message(con
);
2743 case CEPH_MSGR_TAG_ACK
:
2744 prepare_read_ack(con
);
2746 case CEPH_MSGR_TAG_KEEPALIVE2_ACK
:
2747 prepare_read_keepalive_ack(con
);
2749 case CEPH_MSGR_TAG_CLOSE
:
2750 con_close_socket(con
);
2751 con
->state
= CON_STATE_CLOSED
;
2757 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2758 ret
= read_partial_message(con
);
2762 con
->error_msg
= "bad crc/signature";
2768 con
->error_msg
= "io error";
2773 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2775 process_message(con
);
2776 if (con
->state
== CON_STATE_OPEN
)
2777 prepare_read_tag(con
);
2780 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2781 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2783 * the final handshake seq exchange is semantically
2784 * equivalent to an ACK
2786 ret
= read_partial_ack(con
);
2792 if (con
->in_tag
== CEPH_MSGR_TAG_KEEPALIVE2_ACK
) {
2793 ret
= read_keepalive_ack(con
);
2800 dout("try_read done on %p ret %d\n", con
, ret
);
2804 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2805 con
->error_msg
= "protocol error, garbage tag";
2812 * Atomically queue work on a connection after the specified delay.
2813 * Bump @con reference to avoid races with connection teardown.
2814 * Returns 0 if work was queued, or an error code otherwise.
2816 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2818 if (!con
->ops
->get(con
)) {
2819 dout("%s %p ref count 0\n", __func__
, con
);
2823 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2824 dout("%s %p - already queued\n", __func__
, con
);
2829 dout("%s %p %lu\n", __func__
, con
, delay
);
2833 static void queue_con(struct ceph_connection
*con
)
2835 (void) queue_con_delay(con
, 0);
2838 static void cancel_con(struct ceph_connection
*con
)
2840 if (cancel_delayed_work(&con
->work
)) {
2841 dout("%s %p\n", __func__
, con
);
2846 static bool con_sock_closed(struct ceph_connection
*con
)
2848 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2852 case CON_STATE_ ## x: \
2853 con->error_msg = "socket closed (con state " #x ")"; \
2856 switch (con
->state
) {
2864 pr_warn("%s con %p unrecognized state %lu\n",
2865 __func__
, con
, con
->state
);
2866 con
->error_msg
= "unrecognized con state";
2875 static bool con_backoff(struct ceph_connection
*con
)
2879 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2882 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2884 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2886 BUG_ON(ret
== -ENOENT
);
2887 con_flag_set(con
, CON_FLAG_BACKOFF
);
2893 /* Finish fault handling; con->mutex must *not* be held here */
2895 static void con_fault_finish(struct ceph_connection
*con
)
2897 dout("%s %p\n", __func__
, con
);
2900 * in case we faulted due to authentication, invalidate our
2901 * current tickets so that we can get new ones.
2903 if (con
->auth_retry
) {
2904 dout("auth_retry %d, invalidating\n", con
->auth_retry
);
2905 if (con
->ops
->invalidate_authorizer
)
2906 con
->ops
->invalidate_authorizer(con
);
2907 con
->auth_retry
= 0;
2910 if (con
->ops
->fault
)
2911 con
->ops
->fault(con
);
2915 * Do some work on a connection. Drop a connection ref when we're done.
2917 static void ceph_con_workfn(struct work_struct
*work
)
2919 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2923 mutex_lock(&con
->mutex
);
2927 if ((fault
= con_sock_closed(con
))) {
2928 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2931 if (con_backoff(con
)) {
2932 dout("%s: con %p BACKOFF\n", __func__
, con
);
2935 if (con
->state
== CON_STATE_STANDBY
) {
2936 dout("%s: con %p STANDBY\n", __func__
, con
);
2939 if (con
->state
== CON_STATE_CLOSED
) {
2940 dout("%s: con %p CLOSED\n", __func__
, con
);
2944 if (con
->state
== CON_STATE_PREOPEN
) {
2945 dout("%s: con %p PREOPEN\n", __func__
, con
);
2949 ret
= try_read(con
);
2953 if (!con
->error_msg
)
2954 con
->error_msg
= "socket error on read";
2959 ret
= try_write(con
);
2963 if (!con
->error_msg
)
2964 con
->error_msg
= "socket error on write";
2968 break; /* If we make it to here, we're done */
2972 mutex_unlock(&con
->mutex
);
2975 con_fault_finish(con
);
2981 * Generic error/fault handler. A retry mechanism is used with
2982 * exponential backoff
2984 static void con_fault(struct ceph_connection
*con
)
2986 dout("fault %p state %lu to peer %s\n",
2987 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2989 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2990 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2991 con
->error_msg
= NULL
;
2993 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2994 con
->state
!= CON_STATE_NEGOTIATING
&&
2995 con
->state
!= CON_STATE_OPEN
);
2997 con_close_socket(con
);
2999 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
3000 dout("fault on LOSSYTX channel, marking CLOSED\n");
3001 con
->state
= CON_STATE_CLOSED
;
3006 BUG_ON(con
->in_msg
->con
!= con
);
3007 ceph_msg_put(con
->in_msg
);
3011 /* Requeue anything that hasn't been acked */
3012 list_splice_init(&con
->out_sent
, &con
->out_queue
);
3014 /* If there are no messages queued or keepalive pending, place
3015 * the connection in a STANDBY state */
3016 if (list_empty(&con
->out_queue
) &&
3017 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
3018 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
3019 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
3020 con
->state
= CON_STATE_STANDBY
;
3022 /* retry after a delay. */
3023 con
->state
= CON_STATE_PREOPEN
;
3024 if (con
->delay
== 0)
3025 con
->delay
= BASE_DELAY_INTERVAL
;
3026 else if (con
->delay
< MAX_DELAY_INTERVAL
)
3028 con_flag_set(con
, CON_FLAG_BACKOFF
);
3036 * initialize a new messenger instance
3038 void ceph_messenger_init(struct ceph_messenger
*msgr
,
3039 struct ceph_entity_addr
*myaddr
)
3041 spin_lock_init(&msgr
->global_seq_lock
);
3044 msgr
->inst
.addr
= *myaddr
;
3046 /* select a random nonce */
3047 msgr
->inst
.addr
.type
= 0;
3048 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
3049 encode_my_addr(msgr
);
3051 atomic_set(&msgr
->stopping
, 0);
3052 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
3054 dout("%s %p\n", __func__
, msgr
);
3056 EXPORT_SYMBOL(ceph_messenger_init
);
3058 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
3060 put_net(read_pnet(&msgr
->net
));
3062 EXPORT_SYMBOL(ceph_messenger_fini
);
3064 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
3067 msg
->con
->ops
->put(msg
->con
);
3069 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
3070 BUG_ON(msg
->con
!= con
);
3073 static void clear_standby(struct ceph_connection
*con
)
3075 /* come back from STANDBY? */
3076 if (con
->state
== CON_STATE_STANDBY
) {
3077 dout("clear_standby %p and ++connect_seq\n", con
);
3078 con
->state
= CON_STATE_PREOPEN
;
3080 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
3081 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
3086 * Queue up an outgoing message on the given connection.
3088 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3091 msg
->hdr
.src
= con
->msgr
->inst
.name
;
3092 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
3093 msg
->needs_out_seq
= true;
3095 mutex_lock(&con
->mutex
);
3097 if (con
->state
== CON_STATE_CLOSED
) {
3098 dout("con_send %p closed, dropping %p\n", con
, msg
);
3100 mutex_unlock(&con
->mutex
);
3104 msg_con_set(msg
, con
);
3106 BUG_ON(!list_empty(&msg
->list_head
));
3107 list_add_tail(&msg
->list_head
, &con
->out_queue
);
3108 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
3109 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
3110 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
3111 le32_to_cpu(msg
->hdr
.front_len
),
3112 le32_to_cpu(msg
->hdr
.middle_len
),
3113 le32_to_cpu(msg
->hdr
.data_len
));
3116 mutex_unlock(&con
->mutex
);
3118 /* if there wasn't anything waiting to send before, queue
3120 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3123 EXPORT_SYMBOL(ceph_con_send
);
3126 * Revoke a message that was previously queued for send
3128 void ceph_msg_revoke(struct ceph_msg
*msg
)
3130 struct ceph_connection
*con
= msg
->con
;
3133 dout("%s msg %p null con\n", __func__
, msg
);
3134 return; /* Message not in our possession */
3137 mutex_lock(&con
->mutex
);
3138 if (!list_empty(&msg
->list_head
)) {
3139 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
3140 list_del_init(&msg
->list_head
);
3145 if (con
->out_msg
== msg
) {
3146 BUG_ON(con
->out_skip
);
3148 if (con
->out_msg_done
) {
3149 con
->out_skip
+= con_out_kvec_skip(con
);
3151 BUG_ON(!msg
->data_length
);
3152 con
->out_skip
+= sizeof_footer(con
);
3154 /* data, middle, front */
3155 if (msg
->data_length
)
3156 con
->out_skip
+= msg
->cursor
.total_resid
;
3158 con
->out_skip
+= con_out_kvec_skip(con
);
3159 con
->out_skip
+= con_out_kvec_skip(con
);
3161 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3162 __func__
, con
, msg
, con
->out_kvec_bytes
, con
->out_skip
);
3164 con
->out_msg
= NULL
;
3168 mutex_unlock(&con
->mutex
);
3172 * Revoke a message that we may be reading data into
3174 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3176 struct ceph_connection
*con
= msg
->con
;
3179 dout("%s msg %p null con\n", __func__
, msg
);
3180 return; /* Message not in our possession */
3183 mutex_lock(&con
->mutex
);
3184 if (con
->in_msg
== msg
) {
3185 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3186 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3187 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3189 /* skip rest of message */
3190 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3191 con
->in_base_pos
= con
->in_base_pos
-
3192 sizeof(struct ceph_msg_header
) -
3196 sizeof(struct ceph_msg_footer
);
3197 ceph_msg_put(con
->in_msg
);
3199 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3202 dout("%s %p in_msg %p msg %p no-op\n",
3203 __func__
, con
, con
->in_msg
, msg
);
3205 mutex_unlock(&con
->mutex
);
3209 * Queue a keepalive byte to ensure the tcp connection is alive.
3211 void ceph_con_keepalive(struct ceph_connection
*con
)
3213 dout("con_keepalive %p\n", con
);
3214 mutex_lock(&con
->mutex
);
3216 con_flag_set(con
, CON_FLAG_KEEPALIVE_PENDING
);
3217 mutex_unlock(&con
->mutex
);
3219 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3222 EXPORT_SYMBOL(ceph_con_keepalive
);
3224 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
3225 unsigned long interval
)
3228 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
3229 struct timespec64 now
;
3230 struct timespec64 ts
;
3231 ktime_get_real_ts64(&now
);
3232 jiffies_to_timespec64(interval
, &ts
);
3233 ts
= timespec64_add(con
->last_keepalive_ack
, ts
);
3234 return timespec64_compare(&now
, &ts
) >= 0;
3239 static struct ceph_msg_data
*ceph_msg_data_add(struct ceph_msg
*msg
)
3241 BUG_ON(msg
->num_data_items
>= msg
->max_data_items
);
3242 return &msg
->data
[msg
->num_data_items
++];
3245 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3247 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3248 ceph_pagelist_release(data
->pagelist
);
3251 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3252 size_t length
, size_t alignment
)
3254 struct ceph_msg_data
*data
;
3259 data
= ceph_msg_data_add(msg
);
3260 data
->type
= CEPH_MSG_DATA_PAGES
;
3261 data
->pages
= pages
;
3262 data
->length
= length
;
3263 data
->alignment
= alignment
& ~PAGE_MASK
;
3265 msg
->data_length
+= length
;
3267 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3269 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3270 struct ceph_pagelist
*pagelist
)
3272 struct ceph_msg_data
*data
;
3275 BUG_ON(!pagelist
->length
);
3277 data
= ceph_msg_data_add(msg
);
3278 data
->type
= CEPH_MSG_DATA_PAGELIST
;
3279 refcount_inc(&pagelist
->refcnt
);
3280 data
->pagelist
= pagelist
;
3282 msg
->data_length
+= pagelist
->length
;
3284 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3287 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct ceph_bio_iter
*bio_pos
,
3290 struct ceph_msg_data
*data
;
3292 data
= ceph_msg_data_add(msg
);
3293 data
->type
= CEPH_MSG_DATA_BIO
;
3294 data
->bio_pos
= *bio_pos
;
3295 data
->bio_length
= length
;
3297 msg
->data_length
+= length
;
3299 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3300 #endif /* CONFIG_BLOCK */
3302 void ceph_msg_data_add_bvecs(struct ceph_msg
*msg
,
3303 struct ceph_bvec_iter
*bvec_pos
)
3305 struct ceph_msg_data
*data
;
3307 data
= ceph_msg_data_add(msg
);
3308 data
->type
= CEPH_MSG_DATA_BVECS
;
3309 data
->bvec_pos
= *bvec_pos
;
3311 msg
->data_length
+= bvec_pos
->iter
.bi_size
;
3313 EXPORT_SYMBOL(ceph_msg_data_add_bvecs
);
3316 * construct a new message with given type, size
3317 * the new msg has a ref count of 1.
3319 struct ceph_msg
*ceph_msg_new2(int type
, int front_len
, int max_data_items
,
3320 gfp_t flags
, bool can_fail
)
3324 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3328 m
->hdr
.type
= cpu_to_le16(type
);
3329 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3330 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3332 INIT_LIST_HEAD(&m
->list_head
);
3333 kref_init(&m
->kref
);
3337 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3338 if (m
->front
.iov_base
== NULL
) {
3339 dout("ceph_msg_new can't allocate %d bytes\n",
3344 m
->front
.iov_base
= NULL
;
3346 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3348 if (max_data_items
) {
3349 m
->data
= kmalloc_array(max_data_items
, sizeof(*m
->data
),
3354 m
->max_data_items
= max_data_items
;
3357 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3364 pr_err("msg_new can't create type %d front %d\n", type
,
3368 dout("msg_new can't create type %d front %d\n", type
,
3373 EXPORT_SYMBOL(ceph_msg_new2
);
3375 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3378 return ceph_msg_new2(type
, front_len
, 0, flags
, can_fail
);
3380 EXPORT_SYMBOL(ceph_msg_new
);
3383 * Allocate "middle" portion of a message, if it is needed and wasn't
3384 * allocated by alloc_msg. This allows us to read a small fixed-size
3385 * per-type header in the front and then gracefully fail (i.e.,
3386 * propagate the error to the caller based on info in the front) when
3387 * the middle is too large.
3389 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3391 int type
= le16_to_cpu(msg
->hdr
.type
);
3392 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3394 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3395 ceph_msg_type_name(type
), middle_len
);
3396 BUG_ON(!middle_len
);
3397 BUG_ON(msg
->middle
);
3399 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3406 * Allocate a message for receiving an incoming message on a
3407 * connection, and save the result in con->in_msg. Uses the
3408 * connection's private alloc_msg op if available.
3410 * Returns 0 on success, or a negative error code.
3412 * On success, if we set *skip = 1:
3413 * - the next message should be skipped and ignored.
3414 * - con->in_msg == NULL
3415 * or if we set *skip = 0:
3416 * - con->in_msg is non-null.
3417 * On error (ENOMEM, EAGAIN, ...),
3418 * - con->in_msg == NULL
3420 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3422 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3423 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3424 struct ceph_msg
*msg
;
3427 BUG_ON(con
->in_msg
!= NULL
);
3428 BUG_ON(!con
->ops
->alloc_msg
);
3430 mutex_unlock(&con
->mutex
);
3431 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3432 mutex_lock(&con
->mutex
);
3433 if (con
->state
!= CON_STATE_OPEN
) {
3440 msg_con_set(msg
, con
);
3444 * Null message pointer means either we should skip
3445 * this message or we couldn't allocate memory. The
3446 * former is not an error.
3451 con
->error_msg
= "error allocating memory for incoming message";
3454 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3456 if (middle_len
&& !con
->in_msg
->middle
) {
3457 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3459 ceph_msg_put(con
->in_msg
);
3469 * Free a generically kmalloc'd message.
3471 static void ceph_msg_free(struct ceph_msg
*m
)
3473 dout("%s %p\n", __func__
, m
);
3474 kvfree(m
->front
.iov_base
);
3476 kmem_cache_free(ceph_msg_cache
, m
);
3479 static void ceph_msg_release(struct kref
*kref
)
3481 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3484 dout("%s %p\n", __func__
, m
);
3485 WARN_ON(!list_empty(&m
->list_head
));
3487 msg_con_set(m
, NULL
);
3489 /* drop middle, data, if any */
3491 ceph_buffer_put(m
->middle
);
3495 for (i
= 0; i
< m
->num_data_items
; i
++)
3496 ceph_msg_data_destroy(&m
->data
[i
]);
3499 ceph_msgpool_put(m
->pool
, m
);
3504 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3506 dout("%s %p (was %d)\n", __func__
, msg
,
3507 kref_read(&msg
->kref
));
3508 kref_get(&msg
->kref
);
3511 EXPORT_SYMBOL(ceph_msg_get
);
3513 void ceph_msg_put(struct ceph_msg
*msg
)
3515 dout("%s %p (was %d)\n", __func__
, msg
,
3516 kref_read(&msg
->kref
));
3517 kref_put(&msg
->kref
, ceph_msg_release
);
3519 EXPORT_SYMBOL(ceph_msg_put
);
3521 void ceph_msg_dump(struct ceph_msg
*msg
)
3523 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3524 msg
->front_alloc_len
, msg
->data_length
);
3525 print_hex_dump(KERN_DEBUG
, "header: ",
3526 DUMP_PREFIX_OFFSET
, 16, 1,
3527 &msg
->hdr
, sizeof(msg
->hdr
), true);
3528 print_hex_dump(KERN_DEBUG
, " front: ",
3529 DUMP_PREFIX_OFFSET
, 16, 1,
3530 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3532 print_hex_dump(KERN_DEBUG
, "middle: ",
3533 DUMP_PREFIX_OFFSET
, 16, 1,
3534 msg
->middle
->vec
.iov_base
,
3535 msg
->middle
->vec
.iov_len
, true);
3536 print_hex_dump(KERN_DEBUG
, "footer: ",
3537 DUMP_PREFIX_OFFSET
, 16, 1,
3538 &msg
->footer
, sizeof(msg
->footer
), true);
3540 EXPORT_SYMBOL(ceph_msg_dump
);