Linux 5.1.15
[linux/fpc-iii.git] / net / ceph / messenger.c
blob3083988ce729dbe01771e9433b7de72e484394f9
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
86 * connection states
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag)
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 BUG_ON(!con_flag_valid(con_flag));
123 clear_bit(con_flag, &con->flags);
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 BUG_ON(!con_flag_valid(con_flag));
130 set_bit(con_flag, &con->flags);
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 BUG_ON(!con_flag_valid(con_flag));
137 return test_bit(con_flag, &con->flags);
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
143 BUG_ON(!con_flag_valid(con_flag));
145 return test_and_clear_bit(con_flag, &con->flags);
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
151 BUG_ON(!con_flag_valid(con_flag));
153 return test_and_set_bit(con_flag, &con->flags);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache *ceph_msg_cache;
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
176 * Nicely render a sockaddr as a string. An array of formatted
177 * strings is used, to approximate reentrancy.
179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
187 static struct page *zero_page; /* used in certain error cases */
189 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
191 int i;
192 char *s;
193 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
194 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
196 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
197 s = addr_str[i];
199 switch (ss->ss_family) {
200 case AF_INET:
201 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
202 ntohs(in4->sin_port));
203 break;
205 case AF_INET6:
206 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
207 ntohs(in6->sin6_port));
208 break;
210 default:
211 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
212 ss->ss_family);
215 return s;
217 EXPORT_SYMBOL(ceph_pr_addr);
219 static void encode_my_addr(struct ceph_messenger *msgr)
221 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
222 ceph_encode_addr(&msgr->my_enc_addr);
226 * work queue for all reading and writing to/from the socket.
228 static struct workqueue_struct *ceph_msgr_wq;
230 static int ceph_msgr_slab_init(void)
232 BUG_ON(ceph_msg_cache);
233 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
234 if (!ceph_msg_cache)
235 return -ENOMEM;
237 return 0;
240 static void ceph_msgr_slab_exit(void)
242 BUG_ON(!ceph_msg_cache);
243 kmem_cache_destroy(ceph_msg_cache);
244 ceph_msg_cache = NULL;
247 static void _ceph_msgr_exit(void)
249 if (ceph_msgr_wq) {
250 destroy_workqueue(ceph_msgr_wq);
251 ceph_msgr_wq = NULL;
254 BUG_ON(zero_page == NULL);
255 put_page(zero_page);
256 zero_page = NULL;
258 ceph_msgr_slab_exit();
261 int __init ceph_msgr_init(void)
263 if (ceph_msgr_slab_init())
264 return -ENOMEM;
266 BUG_ON(zero_page != NULL);
267 zero_page = ZERO_PAGE(0);
268 get_page(zero_page);
271 * The number of active work items is limited by the number of
272 * connections, so leave @max_active at default.
274 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
275 if (ceph_msgr_wq)
276 return 0;
278 pr_err("msgr_init failed to create workqueue\n");
279 _ceph_msgr_exit();
281 return -ENOMEM;
284 void ceph_msgr_exit(void)
286 BUG_ON(ceph_msgr_wq == NULL);
288 _ceph_msgr_exit();
291 void ceph_msgr_flush(void)
293 flush_workqueue(ceph_msgr_wq);
295 EXPORT_SYMBOL(ceph_msgr_flush);
297 /* Connection socket state transition functions */
299 static void con_sock_state_init(struct ceph_connection *con)
301 int old_state;
303 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
304 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
305 printk("%s: unexpected old state %d\n", __func__, old_state);
306 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
307 CON_SOCK_STATE_CLOSED);
310 static void con_sock_state_connecting(struct ceph_connection *con)
312 int old_state;
314 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
315 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
316 printk("%s: unexpected old state %d\n", __func__, old_state);
317 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318 CON_SOCK_STATE_CONNECTING);
321 static void con_sock_state_connected(struct ceph_connection *con)
323 int old_state;
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CONNECTED);
332 static void con_sock_state_closing(struct ceph_connection *con)
334 int old_state;
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
338 old_state != CON_SOCK_STATE_CONNECTED &&
339 old_state != CON_SOCK_STATE_CLOSING))
340 printk("%s: unexpected old state %d\n", __func__, old_state);
341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
342 CON_SOCK_STATE_CLOSING);
345 static void con_sock_state_closed(struct ceph_connection *con)
347 int old_state;
349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
351 old_state != CON_SOCK_STATE_CLOSING &&
352 old_state != CON_SOCK_STATE_CONNECTING &&
353 old_state != CON_SOCK_STATE_CLOSED))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CLOSED);
360 * socket callback functions
363 /* data available on socket, or listen socket received a connect */
364 static void ceph_sock_data_ready(struct sock *sk)
366 struct ceph_connection *con = sk->sk_user_data;
367 if (atomic_read(&con->msgr->stopping)) {
368 return;
371 if (sk->sk_state != TCP_CLOSE_WAIT) {
372 dout("%s on %p state = %lu, queueing work\n", __func__,
373 con, con->state);
374 queue_con(con);
378 /* socket has buffer space for writing */
379 static void ceph_sock_write_space(struct sock *sk)
381 struct ceph_connection *con = sk->sk_user_data;
383 /* only queue to workqueue if there is data we want to write,
384 * and there is sufficient space in the socket buffer to accept
385 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
386 * doesn't get called again until try_write() fills the socket
387 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
388 * and net/core/stream.c:sk_stream_write_space().
390 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
391 if (sk_stream_is_writeable(sk)) {
392 dout("%s %p queueing write work\n", __func__, con);
393 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
394 queue_con(con);
396 } else {
397 dout("%s %p nothing to write\n", __func__, con);
401 /* socket's state has changed */
402 static void ceph_sock_state_change(struct sock *sk)
404 struct ceph_connection *con = sk->sk_user_data;
406 dout("%s %p state = %lu sk_state = %u\n", __func__,
407 con, con->state, sk->sk_state);
409 switch (sk->sk_state) {
410 case TCP_CLOSE:
411 dout("%s TCP_CLOSE\n", __func__);
412 /* fall through */
413 case TCP_CLOSE_WAIT:
414 dout("%s TCP_CLOSE_WAIT\n", __func__);
415 con_sock_state_closing(con);
416 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
417 queue_con(con);
418 break;
419 case TCP_ESTABLISHED:
420 dout("%s TCP_ESTABLISHED\n", __func__);
421 con_sock_state_connected(con);
422 queue_con(con);
423 break;
424 default: /* Everything else is uninteresting */
425 break;
430 * set up socket callbacks
432 static void set_sock_callbacks(struct socket *sock,
433 struct ceph_connection *con)
435 struct sock *sk = sock->sk;
436 sk->sk_user_data = con;
437 sk->sk_data_ready = ceph_sock_data_ready;
438 sk->sk_write_space = ceph_sock_write_space;
439 sk->sk_state_change = ceph_sock_state_change;
444 * socket helpers
448 * initiate connection to a remote socket.
450 static int ceph_tcp_connect(struct ceph_connection *con)
452 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
453 struct socket *sock;
454 unsigned int noio_flag;
455 int ret;
457 BUG_ON(con->sock);
459 /* sock_create_kern() allocates with GFP_KERNEL */
460 noio_flag = memalloc_noio_save();
461 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
462 SOCK_STREAM, IPPROTO_TCP, &sock);
463 memalloc_noio_restore(noio_flag);
464 if (ret)
465 return ret;
466 sock->sk->sk_allocation = GFP_NOFS;
468 #ifdef CONFIG_LOCKDEP
469 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
470 #endif
472 set_sock_callbacks(sock, con);
474 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
476 con_sock_state_connecting(con);
477 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
478 O_NONBLOCK);
479 if (ret == -EINPROGRESS) {
480 dout("connect %s EINPROGRESS sk_state = %u\n",
481 ceph_pr_addr(&con->peer_addr.in_addr),
482 sock->sk->sk_state);
483 } else if (ret < 0) {
484 pr_err("connect %s error %d\n",
485 ceph_pr_addr(&con->peer_addr.in_addr), ret);
486 sock_release(sock);
487 return ret;
490 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
491 int optval = 1;
493 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
494 (char *)&optval, sizeof(optval));
495 if (ret)
496 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
497 ret);
500 con->sock = sock;
501 return 0;
505 * If @buf is NULL, discard up to @len bytes.
507 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
509 struct kvec iov = {buf, len};
510 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
511 int r;
513 if (!buf)
514 msg.msg_flags |= MSG_TRUNC;
516 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
517 r = sock_recvmsg(sock, &msg, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
526 struct bio_vec bvec = {
527 .bv_page = page,
528 .bv_offset = page_offset,
529 .bv_len = length
531 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
532 int r;
534 BUG_ON(page_offset + length > PAGE_SIZE);
535 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
536 r = sock_recvmsg(sock, &msg, msg.msg_flags);
537 if (r == -EAGAIN)
538 r = 0;
539 return r;
543 * write something. @more is true if caller will be sending more data
544 * shortly.
546 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
547 size_t kvlen, size_t len, bool more)
549 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
550 int r;
552 if (more)
553 msg.msg_flags |= MSG_MORE;
554 else
555 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
557 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
558 if (r == -EAGAIN)
559 r = 0;
560 return r;
564 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
566 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 int offset, size_t size, int more)
569 ssize_t (*sendpage)(struct socket *sock, struct page *page,
570 int offset, size_t size, int flags);
571 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
572 int ret;
575 * sendpage cannot properly handle pages with page_count == 0,
576 * we need to fall back to sendmsg if that's the case.
578 * Same goes for slab pages: skb_can_coalesce() allows
579 * coalescing neighboring slab objects into a single frag which
580 * triggers one of hardened usercopy checks.
582 if (page_count(page) >= 1 && !PageSlab(page))
583 sendpage = sock->ops->sendpage;
584 else
585 sendpage = sock_no_sendpage;
587 ret = sendpage(sock, page, offset, size, flags);
588 if (ret == -EAGAIN)
589 ret = 0;
591 return ret;
595 * Shutdown/close the socket for the given connection.
597 static int con_close_socket(struct ceph_connection *con)
599 int rc = 0;
601 dout("con_close_socket on %p sock %p\n", con, con->sock);
602 if (con->sock) {
603 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
604 sock_release(con->sock);
605 con->sock = NULL;
609 * Forcibly clear the SOCK_CLOSED flag. It gets set
610 * independent of the connection mutex, and we could have
611 * received a socket close event before we had the chance to
612 * shut the socket down.
614 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
616 con_sock_state_closed(con);
617 return rc;
621 * Reset a connection. Discard all incoming and outgoing messages
622 * and clear *_seq state.
624 static void ceph_msg_remove(struct ceph_msg *msg)
626 list_del_init(&msg->list_head);
628 ceph_msg_put(msg);
630 static void ceph_msg_remove_list(struct list_head *head)
632 while (!list_empty(head)) {
633 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
634 list_head);
635 ceph_msg_remove(msg);
639 static void reset_connection(struct ceph_connection *con)
641 /* reset connection, out_queue, msg_ and connect_seq */
642 /* discard existing out_queue and msg_seq */
643 dout("reset_connection %p\n", con);
644 ceph_msg_remove_list(&con->out_queue);
645 ceph_msg_remove_list(&con->out_sent);
647 if (con->in_msg) {
648 BUG_ON(con->in_msg->con != con);
649 ceph_msg_put(con->in_msg);
650 con->in_msg = NULL;
653 con->connect_seq = 0;
654 con->out_seq = 0;
655 if (con->out_msg) {
656 BUG_ON(con->out_msg->con != con);
657 ceph_msg_put(con->out_msg);
658 con->out_msg = NULL;
660 con->in_seq = 0;
661 con->in_seq_acked = 0;
663 con->out_skip = 0;
667 * mark a peer down. drop any open connections.
669 void ceph_con_close(struct ceph_connection *con)
671 mutex_lock(&con->mutex);
672 dout("con_close %p peer %s\n", con,
673 ceph_pr_addr(&con->peer_addr.in_addr));
674 con->state = CON_STATE_CLOSED;
676 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
677 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
678 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
679 con_flag_clear(con, CON_FLAG_BACKOFF);
681 reset_connection(con);
682 con->peer_global_seq = 0;
683 cancel_con(con);
684 con_close_socket(con);
685 mutex_unlock(&con->mutex);
687 EXPORT_SYMBOL(ceph_con_close);
690 * Reopen a closed connection, with a new peer address.
692 void ceph_con_open(struct ceph_connection *con,
693 __u8 entity_type, __u64 entity_num,
694 struct ceph_entity_addr *addr)
696 mutex_lock(&con->mutex);
697 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
699 WARN_ON(con->state != CON_STATE_CLOSED);
700 con->state = CON_STATE_PREOPEN;
702 con->peer_name.type = (__u8) entity_type;
703 con->peer_name.num = cpu_to_le64(entity_num);
705 memcpy(&con->peer_addr, addr, sizeof(*addr));
706 con->delay = 0; /* reset backoff memory */
707 mutex_unlock(&con->mutex);
708 queue_con(con);
710 EXPORT_SYMBOL(ceph_con_open);
713 * return true if this connection ever successfully opened
715 bool ceph_con_opened(struct ceph_connection *con)
717 return con->connect_seq > 0;
721 * initialize a new connection.
723 void ceph_con_init(struct ceph_connection *con, void *private,
724 const struct ceph_connection_operations *ops,
725 struct ceph_messenger *msgr)
727 dout("con_init %p\n", con);
728 memset(con, 0, sizeof(*con));
729 con->private = private;
730 con->ops = ops;
731 con->msgr = msgr;
733 con_sock_state_init(con);
735 mutex_init(&con->mutex);
736 INIT_LIST_HEAD(&con->out_queue);
737 INIT_LIST_HEAD(&con->out_sent);
738 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
740 con->state = CON_STATE_CLOSED;
742 EXPORT_SYMBOL(ceph_con_init);
746 * We maintain a global counter to order connection attempts. Get
747 * a unique seq greater than @gt.
749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
751 u32 ret;
753 spin_lock(&msgr->global_seq_lock);
754 if (msgr->global_seq < gt)
755 msgr->global_seq = gt;
756 ret = ++msgr->global_seq;
757 spin_unlock(&msgr->global_seq_lock);
758 return ret;
761 static void con_out_kvec_reset(struct ceph_connection *con)
763 BUG_ON(con->out_skip);
765 con->out_kvec_left = 0;
766 con->out_kvec_bytes = 0;
767 con->out_kvec_cur = &con->out_kvec[0];
770 static void con_out_kvec_add(struct ceph_connection *con,
771 size_t size, void *data)
773 int index = con->out_kvec_left;
775 BUG_ON(con->out_skip);
776 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
778 con->out_kvec[index].iov_len = size;
779 con->out_kvec[index].iov_base = data;
780 con->out_kvec_left++;
781 con->out_kvec_bytes += size;
785 * Chop off a kvec from the end. Return residual number of bytes for
786 * that kvec, i.e. how many bytes would have been written if the kvec
787 * hadn't been nuked.
789 static int con_out_kvec_skip(struct ceph_connection *con)
791 int off = con->out_kvec_cur - con->out_kvec;
792 int skip = 0;
794 if (con->out_kvec_bytes > 0) {
795 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
796 BUG_ON(con->out_kvec_bytes < skip);
797 BUG_ON(!con->out_kvec_left);
798 con->out_kvec_bytes -= skip;
799 con->out_kvec_left--;
802 return skip;
805 #ifdef CONFIG_BLOCK
808 * For a bio data item, a piece is whatever remains of the next
809 * entry in the current bio iovec, or the first entry in the next
810 * bio in the list.
812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
813 size_t length)
815 struct ceph_msg_data *data = cursor->data;
816 struct ceph_bio_iter *it = &cursor->bio_iter;
818 cursor->resid = min_t(size_t, length, data->bio_length);
819 *it = data->bio_pos;
820 if (cursor->resid < it->iter.bi_size)
821 it->iter.bi_size = cursor->resid;
823 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
824 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
828 size_t *page_offset,
829 size_t *length)
831 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
832 cursor->bio_iter.iter);
834 *page_offset = bv.bv_offset;
835 *length = bv.bv_len;
836 return bv.bv_page;
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
840 size_t bytes)
842 struct ceph_bio_iter *it = &cursor->bio_iter;
843 struct page *page = bio_iter_page(it->bio, it->iter);
845 BUG_ON(bytes > cursor->resid);
846 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
847 cursor->resid -= bytes;
848 bio_advance_iter(it->bio, &it->iter, bytes);
850 if (!cursor->resid) {
851 BUG_ON(!cursor->last_piece);
852 return false; /* no more data */
855 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
856 page == bio_iter_page(it->bio, it->iter)))
857 return false; /* more bytes to process in this segment */
859 if (!it->iter.bi_size) {
860 it->bio = it->bio->bi_next;
861 it->iter = it->bio->bi_iter;
862 if (cursor->resid < it->iter.bi_size)
863 it->iter.bi_size = cursor->resid;
866 BUG_ON(cursor->last_piece);
867 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
868 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
869 return true;
871 #endif /* CONFIG_BLOCK */
873 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
874 size_t length)
876 struct ceph_msg_data *data = cursor->data;
877 struct bio_vec *bvecs = data->bvec_pos.bvecs;
879 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
880 cursor->bvec_iter = data->bvec_pos.iter;
881 cursor->bvec_iter.bi_size = cursor->resid;
883 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
884 cursor->last_piece =
885 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
888 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
889 size_t *page_offset,
890 size_t *length)
892 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
893 cursor->bvec_iter);
895 *page_offset = bv.bv_offset;
896 *length = bv.bv_len;
897 return bv.bv_page;
900 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
901 size_t bytes)
903 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
904 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
906 BUG_ON(bytes > cursor->resid);
907 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
908 cursor->resid -= bytes;
909 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
911 if (!cursor->resid) {
912 BUG_ON(!cursor->last_piece);
913 return false; /* no more data */
916 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
917 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
918 return false; /* more bytes to process in this segment */
920 BUG_ON(cursor->last_piece);
921 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
922 cursor->last_piece =
923 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
924 return true;
928 * For a page array, a piece comes from the first page in the array
929 * that has not already been fully consumed.
931 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
932 size_t length)
934 struct ceph_msg_data *data = cursor->data;
935 int page_count;
937 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
939 BUG_ON(!data->pages);
940 BUG_ON(!data->length);
942 cursor->resid = min(length, data->length);
943 page_count = calc_pages_for(data->alignment, (u64)data->length);
944 cursor->page_offset = data->alignment & ~PAGE_MASK;
945 cursor->page_index = 0;
946 BUG_ON(page_count > (int)USHRT_MAX);
947 cursor->page_count = (unsigned short)page_count;
948 BUG_ON(length > SIZE_MAX - cursor->page_offset);
949 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
952 static struct page *
953 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
954 size_t *page_offset, size_t *length)
956 struct ceph_msg_data *data = cursor->data;
958 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
960 BUG_ON(cursor->page_index >= cursor->page_count);
961 BUG_ON(cursor->page_offset >= PAGE_SIZE);
963 *page_offset = cursor->page_offset;
964 if (cursor->last_piece)
965 *length = cursor->resid;
966 else
967 *length = PAGE_SIZE - *page_offset;
969 return data->pages[cursor->page_index];
972 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
973 size_t bytes)
975 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
977 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
979 /* Advance the cursor page offset */
981 cursor->resid -= bytes;
982 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
983 if (!bytes || cursor->page_offset)
984 return false; /* more bytes to process in the current page */
986 if (!cursor->resid)
987 return false; /* no more data */
989 /* Move on to the next page; offset is already at 0 */
991 BUG_ON(cursor->page_index >= cursor->page_count);
992 cursor->page_index++;
993 cursor->last_piece = cursor->resid <= PAGE_SIZE;
995 return true;
999 * For a pagelist, a piece is whatever remains to be consumed in the
1000 * first page in the list, or the front of the next page.
1002 static void
1003 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1004 size_t length)
1006 struct ceph_msg_data *data = cursor->data;
1007 struct ceph_pagelist *pagelist;
1008 struct page *page;
1010 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1012 pagelist = data->pagelist;
1013 BUG_ON(!pagelist);
1015 if (!length)
1016 return; /* pagelist can be assigned but empty */
1018 BUG_ON(list_empty(&pagelist->head));
1019 page = list_first_entry(&pagelist->head, struct page, lru);
1021 cursor->resid = min(length, pagelist->length);
1022 cursor->page = page;
1023 cursor->offset = 0;
1024 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1027 static struct page *
1028 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1029 size_t *page_offset, size_t *length)
1031 struct ceph_msg_data *data = cursor->data;
1032 struct ceph_pagelist *pagelist;
1034 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1036 pagelist = data->pagelist;
1037 BUG_ON(!pagelist);
1039 BUG_ON(!cursor->page);
1040 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1042 /* offset of first page in pagelist is always 0 */
1043 *page_offset = cursor->offset & ~PAGE_MASK;
1044 if (cursor->last_piece)
1045 *length = cursor->resid;
1046 else
1047 *length = PAGE_SIZE - *page_offset;
1049 return cursor->page;
1052 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1053 size_t bytes)
1055 struct ceph_msg_data *data = cursor->data;
1056 struct ceph_pagelist *pagelist;
1058 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1060 pagelist = data->pagelist;
1061 BUG_ON(!pagelist);
1063 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1064 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1066 /* Advance the cursor offset */
1068 cursor->resid -= bytes;
1069 cursor->offset += bytes;
1070 /* offset of first page in pagelist is always 0 */
1071 if (!bytes || cursor->offset & ~PAGE_MASK)
1072 return false; /* more bytes to process in the current page */
1074 if (!cursor->resid)
1075 return false; /* no more data */
1077 /* Move on to the next page */
1079 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1080 cursor->page = list_next_entry(cursor->page, lru);
1081 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1083 return true;
1087 * Message data is handled (sent or received) in pieces, where each
1088 * piece resides on a single page. The network layer might not
1089 * consume an entire piece at once. A data item's cursor keeps
1090 * track of which piece is next to process and how much remains to
1091 * be processed in that piece. It also tracks whether the current
1092 * piece is the last one in the data item.
1094 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1096 size_t length = cursor->total_resid;
1098 switch (cursor->data->type) {
1099 case CEPH_MSG_DATA_PAGELIST:
1100 ceph_msg_data_pagelist_cursor_init(cursor, length);
1101 break;
1102 case CEPH_MSG_DATA_PAGES:
1103 ceph_msg_data_pages_cursor_init(cursor, length);
1104 break;
1105 #ifdef CONFIG_BLOCK
1106 case CEPH_MSG_DATA_BIO:
1107 ceph_msg_data_bio_cursor_init(cursor, length);
1108 break;
1109 #endif /* CONFIG_BLOCK */
1110 case CEPH_MSG_DATA_BVECS:
1111 ceph_msg_data_bvecs_cursor_init(cursor, length);
1112 break;
1113 case CEPH_MSG_DATA_NONE:
1114 default:
1115 /* BUG(); */
1116 break;
1118 cursor->need_crc = true;
1121 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1123 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1125 BUG_ON(!length);
1126 BUG_ON(length > msg->data_length);
1127 BUG_ON(!msg->num_data_items);
1129 cursor->total_resid = length;
1130 cursor->data = msg->data;
1132 __ceph_msg_data_cursor_init(cursor);
1136 * Return the page containing the next piece to process for a given
1137 * data item, and supply the page offset and length of that piece.
1138 * Indicate whether this is the last piece in this data item.
1140 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1141 size_t *page_offset, size_t *length,
1142 bool *last_piece)
1144 struct page *page;
1146 switch (cursor->data->type) {
1147 case CEPH_MSG_DATA_PAGELIST:
1148 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1149 break;
1150 case CEPH_MSG_DATA_PAGES:
1151 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1152 break;
1153 #ifdef CONFIG_BLOCK
1154 case CEPH_MSG_DATA_BIO:
1155 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1156 break;
1157 #endif /* CONFIG_BLOCK */
1158 case CEPH_MSG_DATA_BVECS:
1159 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1160 break;
1161 case CEPH_MSG_DATA_NONE:
1162 default:
1163 page = NULL;
1164 break;
1167 BUG_ON(!page);
1168 BUG_ON(*page_offset + *length > PAGE_SIZE);
1169 BUG_ON(!*length);
1170 BUG_ON(*length > cursor->resid);
1171 if (last_piece)
1172 *last_piece = cursor->last_piece;
1174 return page;
1178 * Returns true if the result moves the cursor on to the next piece
1179 * of the data item.
1181 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1182 size_t bytes)
1184 bool new_piece;
1186 BUG_ON(bytes > cursor->resid);
1187 switch (cursor->data->type) {
1188 case CEPH_MSG_DATA_PAGELIST:
1189 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1190 break;
1191 case CEPH_MSG_DATA_PAGES:
1192 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1193 break;
1194 #ifdef CONFIG_BLOCK
1195 case CEPH_MSG_DATA_BIO:
1196 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1197 break;
1198 #endif /* CONFIG_BLOCK */
1199 case CEPH_MSG_DATA_BVECS:
1200 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1201 break;
1202 case CEPH_MSG_DATA_NONE:
1203 default:
1204 BUG();
1205 break;
1207 cursor->total_resid -= bytes;
1209 if (!cursor->resid && cursor->total_resid) {
1210 WARN_ON(!cursor->last_piece);
1211 cursor->data++;
1212 __ceph_msg_data_cursor_init(cursor);
1213 new_piece = true;
1215 cursor->need_crc = new_piece;
1218 static size_t sizeof_footer(struct ceph_connection *con)
1220 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1221 sizeof(struct ceph_msg_footer) :
1222 sizeof(struct ceph_msg_footer_old);
1225 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1227 /* Initialize data cursor */
1229 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1233 * Prepare footer for currently outgoing message, and finish things
1234 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1236 static void prepare_write_message_footer(struct ceph_connection *con)
1238 struct ceph_msg *m = con->out_msg;
1240 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1242 dout("prepare_write_message_footer %p\n", con);
1243 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1244 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1245 if (con->ops->sign_message)
1246 con->ops->sign_message(m);
1247 else
1248 m->footer.sig = 0;
1249 } else {
1250 m->old_footer.flags = m->footer.flags;
1252 con->out_more = m->more_to_follow;
1253 con->out_msg_done = true;
1257 * Prepare headers for the next outgoing message.
1259 static void prepare_write_message(struct ceph_connection *con)
1261 struct ceph_msg *m;
1262 u32 crc;
1264 con_out_kvec_reset(con);
1265 con->out_msg_done = false;
1267 /* Sneak an ack in there first? If we can get it into the same
1268 * TCP packet that's a good thing. */
1269 if (con->in_seq > con->in_seq_acked) {
1270 con->in_seq_acked = con->in_seq;
1271 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1272 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1273 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1274 &con->out_temp_ack);
1277 BUG_ON(list_empty(&con->out_queue));
1278 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1279 con->out_msg = m;
1280 BUG_ON(m->con != con);
1282 /* put message on sent list */
1283 ceph_msg_get(m);
1284 list_move_tail(&m->list_head, &con->out_sent);
1287 * only assign outgoing seq # if we haven't sent this message
1288 * yet. if it is requeued, resend with it's original seq.
1290 if (m->needs_out_seq) {
1291 m->hdr.seq = cpu_to_le64(++con->out_seq);
1292 m->needs_out_seq = false;
1294 if (con->ops->reencode_message)
1295 con->ops->reencode_message(m);
1298 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1299 m, con->out_seq, le16_to_cpu(m->hdr.type),
1300 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1301 m->data_length);
1302 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1303 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1305 /* tag + hdr + front + middle */
1306 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1307 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1308 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1310 if (m->middle)
1311 con_out_kvec_add(con, m->middle->vec.iov_len,
1312 m->middle->vec.iov_base);
1314 /* fill in hdr crc and finalize hdr */
1315 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1316 con->out_msg->hdr.crc = cpu_to_le32(crc);
1317 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1319 /* fill in front and middle crc, footer */
1320 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1321 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1322 if (m->middle) {
1323 crc = crc32c(0, m->middle->vec.iov_base,
1324 m->middle->vec.iov_len);
1325 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1326 } else
1327 con->out_msg->footer.middle_crc = 0;
1328 dout("%s front_crc %u middle_crc %u\n", __func__,
1329 le32_to_cpu(con->out_msg->footer.front_crc),
1330 le32_to_cpu(con->out_msg->footer.middle_crc));
1331 con->out_msg->footer.flags = 0;
1333 /* is there a data payload? */
1334 con->out_msg->footer.data_crc = 0;
1335 if (m->data_length) {
1336 prepare_message_data(con->out_msg, m->data_length);
1337 con->out_more = 1; /* data + footer will follow */
1338 } else {
1339 /* no, queue up footer too and be done */
1340 prepare_write_message_footer(con);
1343 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1347 * Prepare an ack.
1349 static void prepare_write_ack(struct ceph_connection *con)
1351 dout("prepare_write_ack %p %llu -> %llu\n", con,
1352 con->in_seq_acked, con->in_seq);
1353 con->in_seq_acked = con->in_seq;
1355 con_out_kvec_reset(con);
1357 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1359 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1360 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1361 &con->out_temp_ack);
1363 con->out_more = 1; /* more will follow.. eventually.. */
1364 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1368 * Prepare to share the seq during handshake
1370 static void prepare_write_seq(struct ceph_connection *con)
1372 dout("prepare_write_seq %p %llu -> %llu\n", con,
1373 con->in_seq_acked, con->in_seq);
1374 con->in_seq_acked = con->in_seq;
1376 con_out_kvec_reset(con);
1378 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1379 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1380 &con->out_temp_ack);
1382 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1386 * Prepare to write keepalive byte.
1388 static void prepare_write_keepalive(struct ceph_connection *con)
1390 dout("prepare_write_keepalive %p\n", con);
1391 con_out_kvec_reset(con);
1392 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1393 struct timespec64 now;
1395 ktime_get_real_ts64(&now);
1396 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1397 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1398 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1399 &con->out_temp_keepalive2);
1400 } else {
1401 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1403 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1407 * Connection negotiation.
1410 static int get_connect_authorizer(struct ceph_connection *con)
1412 struct ceph_auth_handshake *auth;
1413 int auth_proto;
1415 if (!con->ops->get_authorizer) {
1416 con->auth = NULL;
1417 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1418 con->out_connect.authorizer_len = 0;
1419 return 0;
1422 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1423 if (IS_ERR(auth))
1424 return PTR_ERR(auth);
1426 con->auth = auth;
1427 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1428 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1429 return 0;
1433 * We connected to a peer and are saying hello.
1435 static void prepare_write_banner(struct ceph_connection *con)
1437 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1438 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1439 &con->msgr->my_enc_addr);
1441 con->out_more = 0;
1442 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1445 static void __prepare_write_connect(struct ceph_connection *con)
1447 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1448 if (con->auth)
1449 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1450 con->auth->authorizer_buf);
1452 con->out_more = 0;
1453 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1456 static int prepare_write_connect(struct ceph_connection *con)
1458 unsigned int global_seq = get_global_seq(con->msgr, 0);
1459 int proto;
1460 int ret;
1462 switch (con->peer_name.type) {
1463 case CEPH_ENTITY_TYPE_MON:
1464 proto = CEPH_MONC_PROTOCOL;
1465 break;
1466 case CEPH_ENTITY_TYPE_OSD:
1467 proto = CEPH_OSDC_PROTOCOL;
1468 break;
1469 case CEPH_ENTITY_TYPE_MDS:
1470 proto = CEPH_MDSC_PROTOCOL;
1471 break;
1472 default:
1473 BUG();
1476 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1477 con->connect_seq, global_seq, proto);
1479 con->out_connect.features =
1480 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1481 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1482 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1483 con->out_connect.global_seq = cpu_to_le32(global_seq);
1484 con->out_connect.protocol_version = cpu_to_le32(proto);
1485 con->out_connect.flags = 0;
1487 ret = get_connect_authorizer(con);
1488 if (ret)
1489 return ret;
1491 __prepare_write_connect(con);
1492 return 0;
1496 * write as much of pending kvecs to the socket as we can.
1497 * 1 -> done
1498 * 0 -> socket full, but more to do
1499 * <0 -> error
1501 static int write_partial_kvec(struct ceph_connection *con)
1503 int ret;
1505 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1506 while (con->out_kvec_bytes > 0) {
1507 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1508 con->out_kvec_left, con->out_kvec_bytes,
1509 con->out_more);
1510 if (ret <= 0)
1511 goto out;
1512 con->out_kvec_bytes -= ret;
1513 if (con->out_kvec_bytes == 0)
1514 break; /* done */
1516 /* account for full iov entries consumed */
1517 while (ret >= con->out_kvec_cur->iov_len) {
1518 BUG_ON(!con->out_kvec_left);
1519 ret -= con->out_kvec_cur->iov_len;
1520 con->out_kvec_cur++;
1521 con->out_kvec_left--;
1523 /* and for a partially-consumed entry */
1524 if (ret) {
1525 con->out_kvec_cur->iov_len -= ret;
1526 con->out_kvec_cur->iov_base += ret;
1529 con->out_kvec_left = 0;
1530 ret = 1;
1531 out:
1532 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1533 con->out_kvec_bytes, con->out_kvec_left, ret);
1534 return ret; /* done! */
1537 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1538 unsigned int page_offset,
1539 unsigned int length)
1541 char *kaddr;
1543 kaddr = kmap(page);
1544 BUG_ON(kaddr == NULL);
1545 crc = crc32c(crc, kaddr + page_offset, length);
1546 kunmap(page);
1548 return crc;
1551 * Write as much message data payload as we can. If we finish, queue
1552 * up the footer.
1553 * 1 -> done, footer is now queued in out_kvec[].
1554 * 0 -> socket full, but more to do
1555 * <0 -> error
1557 static int write_partial_message_data(struct ceph_connection *con)
1559 struct ceph_msg *msg = con->out_msg;
1560 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1561 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1562 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1563 u32 crc;
1565 dout("%s %p msg %p\n", __func__, con, msg);
1567 if (!msg->num_data_items)
1568 return -EINVAL;
1571 * Iterate through each page that contains data to be
1572 * written, and send as much as possible for each.
1574 * If we are calculating the data crc (the default), we will
1575 * need to map the page. If we have no pages, they have
1576 * been revoked, so use the zero page.
1578 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1579 while (cursor->total_resid) {
1580 struct page *page;
1581 size_t page_offset;
1582 size_t length;
1583 int ret;
1585 if (!cursor->resid) {
1586 ceph_msg_data_advance(cursor, 0);
1587 continue;
1590 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1591 if (length == cursor->total_resid)
1592 more = MSG_MORE;
1593 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1594 more);
1595 if (ret <= 0) {
1596 if (do_datacrc)
1597 msg->footer.data_crc = cpu_to_le32(crc);
1599 return ret;
1601 if (do_datacrc && cursor->need_crc)
1602 crc = ceph_crc32c_page(crc, page, page_offset, length);
1603 ceph_msg_data_advance(cursor, (size_t)ret);
1606 dout("%s %p msg %p done\n", __func__, con, msg);
1608 /* prepare and queue up footer, too */
1609 if (do_datacrc)
1610 msg->footer.data_crc = cpu_to_le32(crc);
1611 else
1612 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1613 con_out_kvec_reset(con);
1614 prepare_write_message_footer(con);
1616 return 1; /* must return > 0 to indicate success */
1620 * write some zeros
1622 static int write_partial_skip(struct ceph_connection *con)
1624 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1625 int ret;
1627 dout("%s %p %d left\n", __func__, con, con->out_skip);
1628 while (con->out_skip > 0) {
1629 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1631 if (size == con->out_skip)
1632 more = MSG_MORE;
1633 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1634 if (ret <= 0)
1635 goto out;
1636 con->out_skip -= ret;
1638 ret = 1;
1639 out:
1640 return ret;
1644 * Prepare to read connection handshake, or an ack.
1646 static void prepare_read_banner(struct ceph_connection *con)
1648 dout("prepare_read_banner %p\n", con);
1649 con->in_base_pos = 0;
1652 static void prepare_read_connect(struct ceph_connection *con)
1654 dout("prepare_read_connect %p\n", con);
1655 con->in_base_pos = 0;
1658 static void prepare_read_ack(struct ceph_connection *con)
1660 dout("prepare_read_ack %p\n", con);
1661 con->in_base_pos = 0;
1664 static void prepare_read_seq(struct ceph_connection *con)
1666 dout("prepare_read_seq %p\n", con);
1667 con->in_base_pos = 0;
1668 con->in_tag = CEPH_MSGR_TAG_SEQ;
1671 static void prepare_read_tag(struct ceph_connection *con)
1673 dout("prepare_read_tag %p\n", con);
1674 con->in_base_pos = 0;
1675 con->in_tag = CEPH_MSGR_TAG_READY;
1678 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1680 dout("prepare_read_keepalive_ack %p\n", con);
1681 con->in_base_pos = 0;
1685 * Prepare to read a message.
1687 static int prepare_read_message(struct ceph_connection *con)
1689 dout("prepare_read_message %p\n", con);
1690 BUG_ON(con->in_msg != NULL);
1691 con->in_base_pos = 0;
1692 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1693 return 0;
1697 static int read_partial(struct ceph_connection *con,
1698 int end, int size, void *object)
1700 while (con->in_base_pos < end) {
1701 int left = end - con->in_base_pos;
1702 int have = size - left;
1703 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1704 if (ret <= 0)
1705 return ret;
1706 con->in_base_pos += ret;
1708 return 1;
1713 * Read all or part of the connect-side handshake on a new connection
1715 static int read_partial_banner(struct ceph_connection *con)
1717 int size;
1718 int end;
1719 int ret;
1721 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1723 /* peer's banner */
1724 size = strlen(CEPH_BANNER);
1725 end = size;
1726 ret = read_partial(con, end, size, con->in_banner);
1727 if (ret <= 0)
1728 goto out;
1730 size = sizeof (con->actual_peer_addr);
1731 end += size;
1732 ret = read_partial(con, end, size, &con->actual_peer_addr);
1733 if (ret <= 0)
1734 goto out;
1736 size = sizeof (con->peer_addr_for_me);
1737 end += size;
1738 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1739 if (ret <= 0)
1740 goto out;
1742 out:
1743 return ret;
1746 static int read_partial_connect(struct ceph_connection *con)
1748 int size;
1749 int end;
1750 int ret;
1752 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1754 size = sizeof (con->in_reply);
1755 end = size;
1756 ret = read_partial(con, end, size, &con->in_reply);
1757 if (ret <= 0)
1758 goto out;
1760 if (con->auth) {
1761 size = le32_to_cpu(con->in_reply.authorizer_len);
1762 if (size > con->auth->authorizer_reply_buf_len) {
1763 pr_err("authorizer reply too big: %d > %zu\n", size,
1764 con->auth->authorizer_reply_buf_len);
1765 ret = -EINVAL;
1766 goto out;
1769 end += size;
1770 ret = read_partial(con, end, size,
1771 con->auth->authorizer_reply_buf);
1772 if (ret <= 0)
1773 goto out;
1776 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1777 con, (int)con->in_reply.tag,
1778 le32_to_cpu(con->in_reply.connect_seq),
1779 le32_to_cpu(con->in_reply.global_seq));
1780 out:
1781 return ret;
1785 * Verify the hello banner looks okay.
1787 static int verify_hello(struct ceph_connection *con)
1789 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1790 pr_err("connect to %s got bad banner\n",
1791 ceph_pr_addr(&con->peer_addr.in_addr));
1792 con->error_msg = "protocol error, bad banner";
1793 return -1;
1795 return 0;
1798 static bool addr_is_blank(struct sockaddr_storage *ss)
1800 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1801 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1803 switch (ss->ss_family) {
1804 case AF_INET:
1805 return addr->s_addr == htonl(INADDR_ANY);
1806 case AF_INET6:
1807 return ipv6_addr_any(addr6);
1808 default:
1809 return true;
1813 static int addr_port(struct sockaddr_storage *ss)
1815 switch (ss->ss_family) {
1816 case AF_INET:
1817 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1818 case AF_INET6:
1819 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1821 return 0;
1824 static void addr_set_port(struct sockaddr_storage *ss, int p)
1826 switch (ss->ss_family) {
1827 case AF_INET:
1828 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1829 break;
1830 case AF_INET6:
1831 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1832 break;
1837 * Unlike other *_pton function semantics, zero indicates success.
1839 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1840 char delim, const char **ipend)
1842 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1843 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1845 memset(ss, 0, sizeof(*ss));
1847 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1848 ss->ss_family = AF_INET;
1849 return 0;
1852 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1853 ss->ss_family = AF_INET6;
1854 return 0;
1857 return -EINVAL;
1861 * Extract hostname string and resolve using kernel DNS facility.
1863 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1864 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1865 struct sockaddr_storage *ss, char delim, const char **ipend)
1867 const char *end, *delim_p;
1868 char *colon_p, *ip_addr = NULL;
1869 int ip_len, ret;
1872 * The end of the hostname occurs immediately preceding the delimiter or
1873 * the port marker (':') where the delimiter takes precedence.
1875 delim_p = memchr(name, delim, namelen);
1876 colon_p = memchr(name, ':', namelen);
1878 if (delim_p && colon_p)
1879 end = delim_p < colon_p ? delim_p : colon_p;
1880 else if (!delim_p && colon_p)
1881 end = colon_p;
1882 else {
1883 end = delim_p;
1884 if (!end) /* case: hostname:/ */
1885 end = name + namelen;
1888 if (end <= name)
1889 return -EINVAL;
1891 /* do dns_resolve upcall */
1892 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1893 if (ip_len > 0)
1894 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1895 else
1896 ret = -ESRCH;
1898 kfree(ip_addr);
1900 *ipend = end;
1902 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1903 ret, ret ? "failed" : ceph_pr_addr(ss));
1905 return ret;
1907 #else
1908 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1909 struct sockaddr_storage *ss, char delim, const char **ipend)
1911 return -EINVAL;
1913 #endif
1916 * Parse a server name (IP or hostname). If a valid IP address is not found
1917 * then try to extract a hostname to resolve using userspace DNS upcall.
1919 static int ceph_parse_server_name(const char *name, size_t namelen,
1920 struct sockaddr_storage *ss, char delim, const char **ipend)
1922 int ret;
1924 ret = ceph_pton(name, namelen, ss, delim, ipend);
1925 if (ret)
1926 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1928 return ret;
1932 * Parse an ip[:port] list into an addr array. Use the default
1933 * monitor port if a port isn't specified.
1935 int ceph_parse_ips(const char *c, const char *end,
1936 struct ceph_entity_addr *addr,
1937 int max_count, int *count)
1939 int i, ret = -EINVAL;
1940 const char *p = c;
1942 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1943 for (i = 0; i < max_count; i++) {
1944 const char *ipend;
1945 struct sockaddr_storage *ss = &addr[i].in_addr;
1946 int port;
1947 char delim = ',';
1949 if (*p == '[') {
1950 delim = ']';
1951 p++;
1954 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1955 if (ret)
1956 goto bad;
1957 ret = -EINVAL;
1959 p = ipend;
1961 if (delim == ']') {
1962 if (*p != ']') {
1963 dout("missing matching ']'\n");
1964 goto bad;
1966 p++;
1969 /* port? */
1970 if (p < end && *p == ':') {
1971 port = 0;
1972 p++;
1973 while (p < end && *p >= '0' && *p <= '9') {
1974 port = (port * 10) + (*p - '0');
1975 p++;
1977 if (port == 0)
1978 port = CEPH_MON_PORT;
1979 else if (port > 65535)
1980 goto bad;
1981 } else {
1982 port = CEPH_MON_PORT;
1985 addr_set_port(ss, port);
1987 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1989 if (p == end)
1990 break;
1991 if (*p != ',')
1992 goto bad;
1993 p++;
1996 if (p != end)
1997 goto bad;
1999 if (count)
2000 *count = i + 1;
2001 return 0;
2003 bad:
2004 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2005 return ret;
2007 EXPORT_SYMBOL(ceph_parse_ips);
2009 static int process_banner(struct ceph_connection *con)
2011 dout("process_banner on %p\n", con);
2013 if (verify_hello(con) < 0)
2014 return -1;
2016 ceph_decode_addr(&con->actual_peer_addr);
2017 ceph_decode_addr(&con->peer_addr_for_me);
2020 * Make sure the other end is who we wanted. note that the other
2021 * end may not yet know their ip address, so if it's 0.0.0.0, give
2022 * them the benefit of the doubt.
2024 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2025 sizeof(con->peer_addr)) != 0 &&
2026 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2027 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2028 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2029 ceph_pr_addr(&con->peer_addr.in_addr),
2030 (int)le32_to_cpu(con->peer_addr.nonce),
2031 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2032 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2033 con->error_msg = "wrong peer at address";
2034 return -1;
2038 * did we learn our address?
2040 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2041 int port = addr_port(&con->msgr->inst.addr.in_addr);
2043 memcpy(&con->msgr->inst.addr.in_addr,
2044 &con->peer_addr_for_me.in_addr,
2045 sizeof(con->peer_addr_for_me.in_addr));
2046 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2047 encode_my_addr(con->msgr);
2048 dout("process_banner learned my addr is %s\n",
2049 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2052 return 0;
2055 static int process_connect(struct ceph_connection *con)
2057 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2058 u64 req_feat = from_msgr(con->msgr)->required_features;
2059 u64 server_feat = le64_to_cpu(con->in_reply.features);
2060 int ret;
2062 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2064 if (con->auth) {
2065 int len = le32_to_cpu(con->in_reply.authorizer_len);
2068 * Any connection that defines ->get_authorizer()
2069 * should also define ->add_authorizer_challenge() and
2070 * ->verify_authorizer_reply().
2072 * See get_connect_authorizer().
2074 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2075 ret = con->ops->add_authorizer_challenge(
2076 con, con->auth->authorizer_reply_buf, len);
2077 if (ret < 0)
2078 return ret;
2080 con_out_kvec_reset(con);
2081 __prepare_write_connect(con);
2082 prepare_read_connect(con);
2083 return 0;
2086 if (len) {
2087 ret = con->ops->verify_authorizer_reply(con);
2088 if (ret < 0) {
2089 con->error_msg = "bad authorize reply";
2090 return ret;
2095 switch (con->in_reply.tag) {
2096 case CEPH_MSGR_TAG_FEATURES:
2097 pr_err("%s%lld %s feature set mismatch,"
2098 " my %llx < server's %llx, missing %llx\n",
2099 ENTITY_NAME(con->peer_name),
2100 ceph_pr_addr(&con->peer_addr.in_addr),
2101 sup_feat, server_feat, server_feat & ~sup_feat);
2102 con->error_msg = "missing required protocol features";
2103 reset_connection(con);
2104 return -1;
2106 case CEPH_MSGR_TAG_BADPROTOVER:
2107 pr_err("%s%lld %s protocol version mismatch,"
2108 " my %d != server's %d\n",
2109 ENTITY_NAME(con->peer_name),
2110 ceph_pr_addr(&con->peer_addr.in_addr),
2111 le32_to_cpu(con->out_connect.protocol_version),
2112 le32_to_cpu(con->in_reply.protocol_version));
2113 con->error_msg = "protocol version mismatch";
2114 reset_connection(con);
2115 return -1;
2117 case CEPH_MSGR_TAG_BADAUTHORIZER:
2118 con->auth_retry++;
2119 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2120 con->auth_retry);
2121 if (con->auth_retry == 2) {
2122 con->error_msg = "connect authorization failure";
2123 return -1;
2125 con_out_kvec_reset(con);
2126 ret = prepare_write_connect(con);
2127 if (ret < 0)
2128 return ret;
2129 prepare_read_connect(con);
2130 break;
2132 case CEPH_MSGR_TAG_RESETSESSION:
2134 * If we connected with a large connect_seq but the peer
2135 * has no record of a session with us (no connection, or
2136 * connect_seq == 0), they will send RESETSESION to indicate
2137 * that they must have reset their session, and may have
2138 * dropped messages.
2140 dout("process_connect got RESET peer seq %u\n",
2141 le32_to_cpu(con->in_reply.connect_seq));
2142 pr_err("%s%lld %s connection reset\n",
2143 ENTITY_NAME(con->peer_name),
2144 ceph_pr_addr(&con->peer_addr.in_addr));
2145 reset_connection(con);
2146 con_out_kvec_reset(con);
2147 ret = prepare_write_connect(con);
2148 if (ret < 0)
2149 return ret;
2150 prepare_read_connect(con);
2152 /* Tell ceph about it. */
2153 mutex_unlock(&con->mutex);
2154 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2155 if (con->ops->peer_reset)
2156 con->ops->peer_reset(con);
2157 mutex_lock(&con->mutex);
2158 if (con->state != CON_STATE_NEGOTIATING)
2159 return -EAGAIN;
2160 break;
2162 case CEPH_MSGR_TAG_RETRY_SESSION:
2164 * If we sent a smaller connect_seq than the peer has, try
2165 * again with a larger value.
2167 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2168 le32_to_cpu(con->out_connect.connect_seq),
2169 le32_to_cpu(con->in_reply.connect_seq));
2170 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2171 con_out_kvec_reset(con);
2172 ret = prepare_write_connect(con);
2173 if (ret < 0)
2174 return ret;
2175 prepare_read_connect(con);
2176 break;
2178 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2180 * If we sent a smaller global_seq than the peer has, try
2181 * again with a larger value.
2183 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2184 con->peer_global_seq,
2185 le32_to_cpu(con->in_reply.global_seq));
2186 get_global_seq(con->msgr,
2187 le32_to_cpu(con->in_reply.global_seq));
2188 con_out_kvec_reset(con);
2189 ret = prepare_write_connect(con);
2190 if (ret < 0)
2191 return ret;
2192 prepare_read_connect(con);
2193 break;
2195 case CEPH_MSGR_TAG_SEQ:
2196 case CEPH_MSGR_TAG_READY:
2197 if (req_feat & ~server_feat) {
2198 pr_err("%s%lld %s protocol feature mismatch,"
2199 " my required %llx > server's %llx, need %llx\n",
2200 ENTITY_NAME(con->peer_name),
2201 ceph_pr_addr(&con->peer_addr.in_addr),
2202 req_feat, server_feat, req_feat & ~server_feat);
2203 con->error_msg = "missing required protocol features";
2204 reset_connection(con);
2205 return -1;
2208 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2209 con->state = CON_STATE_OPEN;
2210 con->auth_retry = 0; /* we authenticated; clear flag */
2211 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2212 con->connect_seq++;
2213 con->peer_features = server_feat;
2214 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2215 con->peer_global_seq,
2216 le32_to_cpu(con->in_reply.connect_seq),
2217 con->connect_seq);
2218 WARN_ON(con->connect_seq !=
2219 le32_to_cpu(con->in_reply.connect_seq));
2221 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2222 con_flag_set(con, CON_FLAG_LOSSYTX);
2224 con->delay = 0; /* reset backoff memory */
2226 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2227 prepare_write_seq(con);
2228 prepare_read_seq(con);
2229 } else {
2230 prepare_read_tag(con);
2232 break;
2234 case CEPH_MSGR_TAG_WAIT:
2236 * If there is a connection race (we are opening
2237 * connections to each other), one of us may just have
2238 * to WAIT. This shouldn't happen if we are the
2239 * client.
2241 con->error_msg = "protocol error, got WAIT as client";
2242 return -1;
2244 default:
2245 con->error_msg = "protocol error, garbage tag during connect";
2246 return -1;
2248 return 0;
2253 * read (part of) an ack
2255 static int read_partial_ack(struct ceph_connection *con)
2257 int size = sizeof (con->in_temp_ack);
2258 int end = size;
2260 return read_partial(con, end, size, &con->in_temp_ack);
2264 * We can finally discard anything that's been acked.
2266 static void process_ack(struct ceph_connection *con)
2268 struct ceph_msg *m;
2269 u64 ack = le64_to_cpu(con->in_temp_ack);
2270 u64 seq;
2271 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2272 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2275 * In the reconnect case, con_fault() has requeued messages
2276 * in out_sent. We should cleanup old messages according to
2277 * the reconnect seq.
2279 while (!list_empty(list)) {
2280 m = list_first_entry(list, struct ceph_msg, list_head);
2281 if (reconnect && m->needs_out_seq)
2282 break;
2283 seq = le64_to_cpu(m->hdr.seq);
2284 if (seq > ack)
2285 break;
2286 dout("got ack for seq %llu type %d at %p\n", seq,
2287 le16_to_cpu(m->hdr.type), m);
2288 m->ack_stamp = jiffies;
2289 ceph_msg_remove(m);
2292 prepare_read_tag(con);
2296 static int read_partial_message_section(struct ceph_connection *con,
2297 struct kvec *section,
2298 unsigned int sec_len, u32 *crc)
2300 int ret, left;
2302 BUG_ON(!section);
2304 while (section->iov_len < sec_len) {
2305 BUG_ON(section->iov_base == NULL);
2306 left = sec_len - section->iov_len;
2307 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2308 section->iov_len, left);
2309 if (ret <= 0)
2310 return ret;
2311 section->iov_len += ret;
2313 if (section->iov_len == sec_len)
2314 *crc = crc32c(0, section->iov_base, section->iov_len);
2316 return 1;
2319 static int read_partial_msg_data(struct ceph_connection *con)
2321 struct ceph_msg *msg = con->in_msg;
2322 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2323 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2324 struct page *page;
2325 size_t page_offset;
2326 size_t length;
2327 u32 crc = 0;
2328 int ret;
2330 if (!msg->num_data_items)
2331 return -EIO;
2333 if (do_datacrc)
2334 crc = con->in_data_crc;
2335 while (cursor->total_resid) {
2336 if (!cursor->resid) {
2337 ceph_msg_data_advance(cursor, 0);
2338 continue;
2341 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2342 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2343 if (ret <= 0) {
2344 if (do_datacrc)
2345 con->in_data_crc = crc;
2347 return ret;
2350 if (do_datacrc)
2351 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2352 ceph_msg_data_advance(cursor, (size_t)ret);
2354 if (do_datacrc)
2355 con->in_data_crc = crc;
2357 return 1; /* must return > 0 to indicate success */
2361 * read (part of) a message.
2363 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2365 static int read_partial_message(struct ceph_connection *con)
2367 struct ceph_msg *m = con->in_msg;
2368 int size;
2369 int end;
2370 int ret;
2371 unsigned int front_len, middle_len, data_len;
2372 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2373 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2374 u64 seq;
2375 u32 crc;
2377 dout("read_partial_message con %p msg %p\n", con, m);
2379 /* header */
2380 size = sizeof (con->in_hdr);
2381 end = size;
2382 ret = read_partial(con, end, size, &con->in_hdr);
2383 if (ret <= 0)
2384 return ret;
2386 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2387 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2388 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2389 crc, con->in_hdr.crc);
2390 return -EBADMSG;
2393 front_len = le32_to_cpu(con->in_hdr.front_len);
2394 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2395 return -EIO;
2396 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2397 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2398 return -EIO;
2399 data_len = le32_to_cpu(con->in_hdr.data_len);
2400 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2401 return -EIO;
2403 /* verify seq# */
2404 seq = le64_to_cpu(con->in_hdr.seq);
2405 if ((s64)seq - (s64)con->in_seq < 1) {
2406 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2407 ENTITY_NAME(con->peer_name),
2408 ceph_pr_addr(&con->peer_addr.in_addr),
2409 seq, con->in_seq + 1);
2410 con->in_base_pos = -front_len - middle_len - data_len -
2411 sizeof_footer(con);
2412 con->in_tag = CEPH_MSGR_TAG_READY;
2413 return 1;
2414 } else if ((s64)seq - (s64)con->in_seq > 1) {
2415 pr_err("read_partial_message bad seq %lld expected %lld\n",
2416 seq, con->in_seq + 1);
2417 con->error_msg = "bad message sequence # for incoming message";
2418 return -EBADE;
2421 /* allocate message? */
2422 if (!con->in_msg) {
2423 int skip = 0;
2425 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2426 front_len, data_len);
2427 ret = ceph_con_in_msg_alloc(con, &skip);
2428 if (ret < 0)
2429 return ret;
2431 BUG_ON(!con->in_msg ^ skip);
2432 if (skip) {
2433 /* skip this message */
2434 dout("alloc_msg said skip message\n");
2435 con->in_base_pos = -front_len - middle_len - data_len -
2436 sizeof_footer(con);
2437 con->in_tag = CEPH_MSGR_TAG_READY;
2438 con->in_seq++;
2439 return 1;
2442 BUG_ON(!con->in_msg);
2443 BUG_ON(con->in_msg->con != con);
2444 m = con->in_msg;
2445 m->front.iov_len = 0; /* haven't read it yet */
2446 if (m->middle)
2447 m->middle->vec.iov_len = 0;
2449 /* prepare for data payload, if any */
2451 if (data_len)
2452 prepare_message_data(con->in_msg, data_len);
2455 /* front */
2456 ret = read_partial_message_section(con, &m->front, front_len,
2457 &con->in_front_crc);
2458 if (ret <= 0)
2459 return ret;
2461 /* middle */
2462 if (m->middle) {
2463 ret = read_partial_message_section(con, &m->middle->vec,
2464 middle_len,
2465 &con->in_middle_crc);
2466 if (ret <= 0)
2467 return ret;
2470 /* (page) data */
2471 if (data_len) {
2472 ret = read_partial_msg_data(con);
2473 if (ret <= 0)
2474 return ret;
2477 /* footer */
2478 size = sizeof_footer(con);
2479 end += size;
2480 ret = read_partial(con, end, size, &m->footer);
2481 if (ret <= 0)
2482 return ret;
2484 if (!need_sign) {
2485 m->footer.flags = m->old_footer.flags;
2486 m->footer.sig = 0;
2489 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2490 m, front_len, m->footer.front_crc, middle_len,
2491 m->footer.middle_crc, data_len, m->footer.data_crc);
2493 /* crc ok? */
2494 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2495 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2496 m, con->in_front_crc, m->footer.front_crc);
2497 return -EBADMSG;
2499 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2500 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2501 m, con->in_middle_crc, m->footer.middle_crc);
2502 return -EBADMSG;
2504 if (do_datacrc &&
2505 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2506 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2507 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2508 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2509 return -EBADMSG;
2512 if (need_sign && con->ops->check_message_signature &&
2513 con->ops->check_message_signature(m)) {
2514 pr_err("read_partial_message %p signature check failed\n", m);
2515 return -EBADMSG;
2518 return 1; /* done! */
2522 * Process message. This happens in the worker thread. The callback should
2523 * be careful not to do anything that waits on other incoming messages or it
2524 * may deadlock.
2526 static void process_message(struct ceph_connection *con)
2528 struct ceph_msg *msg = con->in_msg;
2530 BUG_ON(con->in_msg->con != con);
2531 con->in_msg = NULL;
2533 /* if first message, set peer_name */
2534 if (con->peer_name.type == 0)
2535 con->peer_name = msg->hdr.src;
2537 con->in_seq++;
2538 mutex_unlock(&con->mutex);
2540 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2541 msg, le64_to_cpu(msg->hdr.seq),
2542 ENTITY_NAME(msg->hdr.src),
2543 le16_to_cpu(msg->hdr.type),
2544 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2545 le32_to_cpu(msg->hdr.front_len),
2546 le32_to_cpu(msg->hdr.data_len),
2547 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2548 con->ops->dispatch(con, msg);
2550 mutex_lock(&con->mutex);
2553 static int read_keepalive_ack(struct ceph_connection *con)
2555 struct ceph_timespec ceph_ts;
2556 size_t size = sizeof(ceph_ts);
2557 int ret = read_partial(con, size, size, &ceph_ts);
2558 if (ret <= 0)
2559 return ret;
2560 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2561 prepare_read_tag(con);
2562 return 1;
2566 * Write something to the socket. Called in a worker thread when the
2567 * socket appears to be writeable and we have something ready to send.
2569 static int try_write(struct ceph_connection *con)
2571 int ret = 1;
2573 dout("try_write start %p state %lu\n", con, con->state);
2574 if (con->state != CON_STATE_PREOPEN &&
2575 con->state != CON_STATE_CONNECTING &&
2576 con->state != CON_STATE_NEGOTIATING &&
2577 con->state != CON_STATE_OPEN)
2578 return 0;
2580 /* open the socket first? */
2581 if (con->state == CON_STATE_PREOPEN) {
2582 BUG_ON(con->sock);
2583 con->state = CON_STATE_CONNECTING;
2585 con_out_kvec_reset(con);
2586 prepare_write_banner(con);
2587 prepare_read_banner(con);
2589 BUG_ON(con->in_msg);
2590 con->in_tag = CEPH_MSGR_TAG_READY;
2591 dout("try_write initiating connect on %p new state %lu\n",
2592 con, con->state);
2593 ret = ceph_tcp_connect(con);
2594 if (ret < 0) {
2595 con->error_msg = "connect error";
2596 goto out;
2600 more:
2601 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2602 BUG_ON(!con->sock);
2604 /* kvec data queued? */
2605 if (con->out_kvec_left) {
2606 ret = write_partial_kvec(con);
2607 if (ret <= 0)
2608 goto out;
2610 if (con->out_skip) {
2611 ret = write_partial_skip(con);
2612 if (ret <= 0)
2613 goto out;
2616 /* msg pages? */
2617 if (con->out_msg) {
2618 if (con->out_msg_done) {
2619 ceph_msg_put(con->out_msg);
2620 con->out_msg = NULL; /* we're done with this one */
2621 goto do_next;
2624 ret = write_partial_message_data(con);
2625 if (ret == 1)
2626 goto more; /* we need to send the footer, too! */
2627 if (ret == 0)
2628 goto out;
2629 if (ret < 0) {
2630 dout("try_write write_partial_message_data err %d\n",
2631 ret);
2632 goto out;
2636 do_next:
2637 if (con->state == CON_STATE_OPEN) {
2638 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2639 prepare_write_keepalive(con);
2640 goto more;
2642 /* is anything else pending? */
2643 if (!list_empty(&con->out_queue)) {
2644 prepare_write_message(con);
2645 goto more;
2647 if (con->in_seq > con->in_seq_acked) {
2648 prepare_write_ack(con);
2649 goto more;
2653 /* Nothing to do! */
2654 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2655 dout("try_write nothing else to write.\n");
2656 ret = 0;
2657 out:
2658 dout("try_write done on %p ret %d\n", con, ret);
2659 return ret;
2663 * Read what we can from the socket.
2665 static int try_read(struct ceph_connection *con)
2667 int ret = -1;
2669 more:
2670 dout("try_read start on %p state %lu\n", con, con->state);
2671 if (con->state != CON_STATE_CONNECTING &&
2672 con->state != CON_STATE_NEGOTIATING &&
2673 con->state != CON_STATE_OPEN)
2674 return 0;
2676 BUG_ON(!con->sock);
2678 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2679 con->in_base_pos);
2681 if (con->state == CON_STATE_CONNECTING) {
2682 dout("try_read connecting\n");
2683 ret = read_partial_banner(con);
2684 if (ret <= 0)
2685 goto out;
2686 ret = process_banner(con);
2687 if (ret < 0)
2688 goto out;
2690 con->state = CON_STATE_NEGOTIATING;
2693 * Received banner is good, exchange connection info.
2694 * Do not reset out_kvec, as sending our banner raced
2695 * with receiving peer banner after connect completed.
2697 ret = prepare_write_connect(con);
2698 if (ret < 0)
2699 goto out;
2700 prepare_read_connect(con);
2702 /* Send connection info before awaiting response */
2703 goto out;
2706 if (con->state == CON_STATE_NEGOTIATING) {
2707 dout("try_read negotiating\n");
2708 ret = read_partial_connect(con);
2709 if (ret <= 0)
2710 goto out;
2711 ret = process_connect(con);
2712 if (ret < 0)
2713 goto out;
2714 goto more;
2717 WARN_ON(con->state != CON_STATE_OPEN);
2719 if (con->in_base_pos < 0) {
2721 * skipping + discarding content.
2723 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2724 if (ret <= 0)
2725 goto out;
2726 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2727 con->in_base_pos += ret;
2728 if (con->in_base_pos)
2729 goto more;
2731 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2733 * what's next?
2735 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2736 if (ret <= 0)
2737 goto out;
2738 dout("try_read got tag %d\n", (int)con->in_tag);
2739 switch (con->in_tag) {
2740 case CEPH_MSGR_TAG_MSG:
2741 prepare_read_message(con);
2742 break;
2743 case CEPH_MSGR_TAG_ACK:
2744 prepare_read_ack(con);
2745 break;
2746 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2747 prepare_read_keepalive_ack(con);
2748 break;
2749 case CEPH_MSGR_TAG_CLOSE:
2750 con_close_socket(con);
2751 con->state = CON_STATE_CLOSED;
2752 goto out;
2753 default:
2754 goto bad_tag;
2757 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2758 ret = read_partial_message(con);
2759 if (ret <= 0) {
2760 switch (ret) {
2761 case -EBADMSG:
2762 con->error_msg = "bad crc/signature";
2763 /* fall through */
2764 case -EBADE:
2765 ret = -EIO;
2766 break;
2767 case -EIO:
2768 con->error_msg = "io error";
2769 break;
2771 goto out;
2773 if (con->in_tag == CEPH_MSGR_TAG_READY)
2774 goto more;
2775 process_message(con);
2776 if (con->state == CON_STATE_OPEN)
2777 prepare_read_tag(con);
2778 goto more;
2780 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2781 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2783 * the final handshake seq exchange is semantically
2784 * equivalent to an ACK
2786 ret = read_partial_ack(con);
2787 if (ret <= 0)
2788 goto out;
2789 process_ack(con);
2790 goto more;
2792 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2793 ret = read_keepalive_ack(con);
2794 if (ret <= 0)
2795 goto out;
2796 goto more;
2799 out:
2800 dout("try_read done on %p ret %d\n", con, ret);
2801 return ret;
2803 bad_tag:
2804 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2805 con->error_msg = "protocol error, garbage tag";
2806 ret = -1;
2807 goto out;
2812 * Atomically queue work on a connection after the specified delay.
2813 * Bump @con reference to avoid races with connection teardown.
2814 * Returns 0 if work was queued, or an error code otherwise.
2816 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2818 if (!con->ops->get(con)) {
2819 dout("%s %p ref count 0\n", __func__, con);
2820 return -ENOENT;
2823 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2824 dout("%s %p - already queued\n", __func__, con);
2825 con->ops->put(con);
2826 return -EBUSY;
2829 dout("%s %p %lu\n", __func__, con, delay);
2830 return 0;
2833 static void queue_con(struct ceph_connection *con)
2835 (void) queue_con_delay(con, 0);
2838 static void cancel_con(struct ceph_connection *con)
2840 if (cancel_delayed_work(&con->work)) {
2841 dout("%s %p\n", __func__, con);
2842 con->ops->put(con);
2846 static bool con_sock_closed(struct ceph_connection *con)
2848 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2849 return false;
2851 #define CASE(x) \
2852 case CON_STATE_ ## x: \
2853 con->error_msg = "socket closed (con state " #x ")"; \
2854 break;
2856 switch (con->state) {
2857 CASE(CLOSED);
2858 CASE(PREOPEN);
2859 CASE(CONNECTING);
2860 CASE(NEGOTIATING);
2861 CASE(OPEN);
2862 CASE(STANDBY);
2863 default:
2864 pr_warn("%s con %p unrecognized state %lu\n",
2865 __func__, con, con->state);
2866 con->error_msg = "unrecognized con state";
2867 BUG();
2868 break;
2870 #undef CASE
2872 return true;
2875 static bool con_backoff(struct ceph_connection *con)
2877 int ret;
2879 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2880 return false;
2882 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2883 if (ret) {
2884 dout("%s: con %p FAILED to back off %lu\n", __func__,
2885 con, con->delay);
2886 BUG_ON(ret == -ENOENT);
2887 con_flag_set(con, CON_FLAG_BACKOFF);
2890 return true;
2893 /* Finish fault handling; con->mutex must *not* be held here */
2895 static void con_fault_finish(struct ceph_connection *con)
2897 dout("%s %p\n", __func__, con);
2900 * in case we faulted due to authentication, invalidate our
2901 * current tickets so that we can get new ones.
2903 if (con->auth_retry) {
2904 dout("auth_retry %d, invalidating\n", con->auth_retry);
2905 if (con->ops->invalidate_authorizer)
2906 con->ops->invalidate_authorizer(con);
2907 con->auth_retry = 0;
2910 if (con->ops->fault)
2911 con->ops->fault(con);
2915 * Do some work on a connection. Drop a connection ref when we're done.
2917 static void ceph_con_workfn(struct work_struct *work)
2919 struct ceph_connection *con = container_of(work, struct ceph_connection,
2920 work.work);
2921 bool fault;
2923 mutex_lock(&con->mutex);
2924 while (true) {
2925 int ret;
2927 if ((fault = con_sock_closed(con))) {
2928 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2929 break;
2931 if (con_backoff(con)) {
2932 dout("%s: con %p BACKOFF\n", __func__, con);
2933 break;
2935 if (con->state == CON_STATE_STANDBY) {
2936 dout("%s: con %p STANDBY\n", __func__, con);
2937 break;
2939 if (con->state == CON_STATE_CLOSED) {
2940 dout("%s: con %p CLOSED\n", __func__, con);
2941 BUG_ON(con->sock);
2942 break;
2944 if (con->state == CON_STATE_PREOPEN) {
2945 dout("%s: con %p PREOPEN\n", __func__, con);
2946 BUG_ON(con->sock);
2949 ret = try_read(con);
2950 if (ret < 0) {
2951 if (ret == -EAGAIN)
2952 continue;
2953 if (!con->error_msg)
2954 con->error_msg = "socket error on read";
2955 fault = true;
2956 break;
2959 ret = try_write(con);
2960 if (ret < 0) {
2961 if (ret == -EAGAIN)
2962 continue;
2963 if (!con->error_msg)
2964 con->error_msg = "socket error on write";
2965 fault = true;
2968 break; /* If we make it to here, we're done */
2970 if (fault)
2971 con_fault(con);
2972 mutex_unlock(&con->mutex);
2974 if (fault)
2975 con_fault_finish(con);
2977 con->ops->put(con);
2981 * Generic error/fault handler. A retry mechanism is used with
2982 * exponential backoff
2984 static void con_fault(struct ceph_connection *con)
2986 dout("fault %p state %lu to peer %s\n",
2987 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2989 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2990 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2991 con->error_msg = NULL;
2993 WARN_ON(con->state != CON_STATE_CONNECTING &&
2994 con->state != CON_STATE_NEGOTIATING &&
2995 con->state != CON_STATE_OPEN);
2997 con_close_socket(con);
2999 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3000 dout("fault on LOSSYTX channel, marking CLOSED\n");
3001 con->state = CON_STATE_CLOSED;
3002 return;
3005 if (con->in_msg) {
3006 BUG_ON(con->in_msg->con != con);
3007 ceph_msg_put(con->in_msg);
3008 con->in_msg = NULL;
3011 /* Requeue anything that hasn't been acked */
3012 list_splice_init(&con->out_sent, &con->out_queue);
3014 /* If there are no messages queued or keepalive pending, place
3015 * the connection in a STANDBY state */
3016 if (list_empty(&con->out_queue) &&
3017 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3018 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3019 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3020 con->state = CON_STATE_STANDBY;
3021 } else {
3022 /* retry after a delay. */
3023 con->state = CON_STATE_PREOPEN;
3024 if (con->delay == 0)
3025 con->delay = BASE_DELAY_INTERVAL;
3026 else if (con->delay < MAX_DELAY_INTERVAL)
3027 con->delay *= 2;
3028 con_flag_set(con, CON_FLAG_BACKOFF);
3029 queue_con(con);
3036 * initialize a new messenger instance
3038 void ceph_messenger_init(struct ceph_messenger *msgr,
3039 struct ceph_entity_addr *myaddr)
3041 spin_lock_init(&msgr->global_seq_lock);
3043 if (myaddr)
3044 msgr->inst.addr = *myaddr;
3046 /* select a random nonce */
3047 msgr->inst.addr.type = 0;
3048 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3049 encode_my_addr(msgr);
3051 atomic_set(&msgr->stopping, 0);
3052 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3054 dout("%s %p\n", __func__, msgr);
3056 EXPORT_SYMBOL(ceph_messenger_init);
3058 void ceph_messenger_fini(struct ceph_messenger *msgr)
3060 put_net(read_pnet(&msgr->net));
3062 EXPORT_SYMBOL(ceph_messenger_fini);
3064 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3066 if (msg->con)
3067 msg->con->ops->put(msg->con);
3069 msg->con = con ? con->ops->get(con) : NULL;
3070 BUG_ON(msg->con != con);
3073 static void clear_standby(struct ceph_connection *con)
3075 /* come back from STANDBY? */
3076 if (con->state == CON_STATE_STANDBY) {
3077 dout("clear_standby %p and ++connect_seq\n", con);
3078 con->state = CON_STATE_PREOPEN;
3079 con->connect_seq++;
3080 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3081 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3086 * Queue up an outgoing message on the given connection.
3088 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3090 /* set src+dst */
3091 msg->hdr.src = con->msgr->inst.name;
3092 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3093 msg->needs_out_seq = true;
3095 mutex_lock(&con->mutex);
3097 if (con->state == CON_STATE_CLOSED) {
3098 dout("con_send %p closed, dropping %p\n", con, msg);
3099 ceph_msg_put(msg);
3100 mutex_unlock(&con->mutex);
3101 return;
3104 msg_con_set(msg, con);
3106 BUG_ON(!list_empty(&msg->list_head));
3107 list_add_tail(&msg->list_head, &con->out_queue);
3108 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3109 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3110 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3111 le32_to_cpu(msg->hdr.front_len),
3112 le32_to_cpu(msg->hdr.middle_len),
3113 le32_to_cpu(msg->hdr.data_len));
3115 clear_standby(con);
3116 mutex_unlock(&con->mutex);
3118 /* if there wasn't anything waiting to send before, queue
3119 * new work */
3120 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3121 queue_con(con);
3123 EXPORT_SYMBOL(ceph_con_send);
3126 * Revoke a message that was previously queued for send
3128 void ceph_msg_revoke(struct ceph_msg *msg)
3130 struct ceph_connection *con = msg->con;
3132 if (!con) {
3133 dout("%s msg %p null con\n", __func__, msg);
3134 return; /* Message not in our possession */
3137 mutex_lock(&con->mutex);
3138 if (!list_empty(&msg->list_head)) {
3139 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3140 list_del_init(&msg->list_head);
3141 msg->hdr.seq = 0;
3143 ceph_msg_put(msg);
3145 if (con->out_msg == msg) {
3146 BUG_ON(con->out_skip);
3147 /* footer */
3148 if (con->out_msg_done) {
3149 con->out_skip += con_out_kvec_skip(con);
3150 } else {
3151 BUG_ON(!msg->data_length);
3152 con->out_skip += sizeof_footer(con);
3154 /* data, middle, front */
3155 if (msg->data_length)
3156 con->out_skip += msg->cursor.total_resid;
3157 if (msg->middle)
3158 con->out_skip += con_out_kvec_skip(con);
3159 con->out_skip += con_out_kvec_skip(con);
3161 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3162 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3163 msg->hdr.seq = 0;
3164 con->out_msg = NULL;
3165 ceph_msg_put(msg);
3168 mutex_unlock(&con->mutex);
3172 * Revoke a message that we may be reading data into
3174 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3176 struct ceph_connection *con = msg->con;
3178 if (!con) {
3179 dout("%s msg %p null con\n", __func__, msg);
3180 return; /* Message not in our possession */
3183 mutex_lock(&con->mutex);
3184 if (con->in_msg == msg) {
3185 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3186 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3187 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3189 /* skip rest of message */
3190 dout("%s %p msg %p revoked\n", __func__, con, msg);
3191 con->in_base_pos = con->in_base_pos -
3192 sizeof(struct ceph_msg_header) -
3193 front_len -
3194 middle_len -
3195 data_len -
3196 sizeof(struct ceph_msg_footer);
3197 ceph_msg_put(con->in_msg);
3198 con->in_msg = NULL;
3199 con->in_tag = CEPH_MSGR_TAG_READY;
3200 con->in_seq++;
3201 } else {
3202 dout("%s %p in_msg %p msg %p no-op\n",
3203 __func__, con, con->in_msg, msg);
3205 mutex_unlock(&con->mutex);
3209 * Queue a keepalive byte to ensure the tcp connection is alive.
3211 void ceph_con_keepalive(struct ceph_connection *con)
3213 dout("con_keepalive %p\n", con);
3214 mutex_lock(&con->mutex);
3215 clear_standby(con);
3216 con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3217 mutex_unlock(&con->mutex);
3219 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3220 queue_con(con);
3222 EXPORT_SYMBOL(ceph_con_keepalive);
3224 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3225 unsigned long interval)
3227 if (interval > 0 &&
3228 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3229 struct timespec64 now;
3230 struct timespec64 ts;
3231 ktime_get_real_ts64(&now);
3232 jiffies_to_timespec64(interval, &ts);
3233 ts = timespec64_add(con->last_keepalive_ack, ts);
3234 return timespec64_compare(&now, &ts) >= 0;
3236 return false;
3239 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3241 BUG_ON(msg->num_data_items >= msg->max_data_items);
3242 return &msg->data[msg->num_data_items++];
3245 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3247 if (data->type == CEPH_MSG_DATA_PAGELIST)
3248 ceph_pagelist_release(data->pagelist);
3251 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3252 size_t length, size_t alignment)
3254 struct ceph_msg_data *data;
3256 BUG_ON(!pages);
3257 BUG_ON(!length);
3259 data = ceph_msg_data_add(msg);
3260 data->type = CEPH_MSG_DATA_PAGES;
3261 data->pages = pages;
3262 data->length = length;
3263 data->alignment = alignment & ~PAGE_MASK;
3265 msg->data_length += length;
3267 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3269 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3270 struct ceph_pagelist *pagelist)
3272 struct ceph_msg_data *data;
3274 BUG_ON(!pagelist);
3275 BUG_ON(!pagelist->length);
3277 data = ceph_msg_data_add(msg);
3278 data->type = CEPH_MSG_DATA_PAGELIST;
3279 refcount_inc(&pagelist->refcnt);
3280 data->pagelist = pagelist;
3282 msg->data_length += pagelist->length;
3284 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3286 #ifdef CONFIG_BLOCK
3287 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3288 u32 length)
3290 struct ceph_msg_data *data;
3292 data = ceph_msg_data_add(msg);
3293 data->type = CEPH_MSG_DATA_BIO;
3294 data->bio_pos = *bio_pos;
3295 data->bio_length = length;
3297 msg->data_length += length;
3299 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3300 #endif /* CONFIG_BLOCK */
3302 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3303 struct ceph_bvec_iter *bvec_pos)
3305 struct ceph_msg_data *data;
3307 data = ceph_msg_data_add(msg);
3308 data->type = CEPH_MSG_DATA_BVECS;
3309 data->bvec_pos = *bvec_pos;
3311 msg->data_length += bvec_pos->iter.bi_size;
3313 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3316 * construct a new message with given type, size
3317 * the new msg has a ref count of 1.
3319 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3320 gfp_t flags, bool can_fail)
3322 struct ceph_msg *m;
3324 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3325 if (m == NULL)
3326 goto out;
3328 m->hdr.type = cpu_to_le16(type);
3329 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3330 m->hdr.front_len = cpu_to_le32(front_len);
3332 INIT_LIST_HEAD(&m->list_head);
3333 kref_init(&m->kref);
3335 /* front */
3336 if (front_len) {
3337 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3338 if (m->front.iov_base == NULL) {
3339 dout("ceph_msg_new can't allocate %d bytes\n",
3340 front_len);
3341 goto out2;
3343 } else {
3344 m->front.iov_base = NULL;
3346 m->front_alloc_len = m->front.iov_len = front_len;
3348 if (max_data_items) {
3349 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3350 flags);
3351 if (!m->data)
3352 goto out2;
3354 m->max_data_items = max_data_items;
3357 dout("ceph_msg_new %p front %d\n", m, front_len);
3358 return m;
3360 out2:
3361 ceph_msg_put(m);
3362 out:
3363 if (!can_fail) {
3364 pr_err("msg_new can't create type %d front %d\n", type,
3365 front_len);
3366 WARN_ON(1);
3367 } else {
3368 dout("msg_new can't create type %d front %d\n", type,
3369 front_len);
3371 return NULL;
3373 EXPORT_SYMBOL(ceph_msg_new2);
3375 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3376 bool can_fail)
3378 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3380 EXPORT_SYMBOL(ceph_msg_new);
3383 * Allocate "middle" portion of a message, if it is needed and wasn't
3384 * allocated by alloc_msg. This allows us to read a small fixed-size
3385 * per-type header in the front and then gracefully fail (i.e.,
3386 * propagate the error to the caller based on info in the front) when
3387 * the middle is too large.
3389 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3391 int type = le16_to_cpu(msg->hdr.type);
3392 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3394 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3395 ceph_msg_type_name(type), middle_len);
3396 BUG_ON(!middle_len);
3397 BUG_ON(msg->middle);
3399 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3400 if (!msg->middle)
3401 return -ENOMEM;
3402 return 0;
3406 * Allocate a message for receiving an incoming message on a
3407 * connection, and save the result in con->in_msg. Uses the
3408 * connection's private alloc_msg op if available.
3410 * Returns 0 on success, or a negative error code.
3412 * On success, if we set *skip = 1:
3413 * - the next message should be skipped and ignored.
3414 * - con->in_msg == NULL
3415 * or if we set *skip = 0:
3416 * - con->in_msg is non-null.
3417 * On error (ENOMEM, EAGAIN, ...),
3418 * - con->in_msg == NULL
3420 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3422 struct ceph_msg_header *hdr = &con->in_hdr;
3423 int middle_len = le32_to_cpu(hdr->middle_len);
3424 struct ceph_msg *msg;
3425 int ret = 0;
3427 BUG_ON(con->in_msg != NULL);
3428 BUG_ON(!con->ops->alloc_msg);
3430 mutex_unlock(&con->mutex);
3431 msg = con->ops->alloc_msg(con, hdr, skip);
3432 mutex_lock(&con->mutex);
3433 if (con->state != CON_STATE_OPEN) {
3434 if (msg)
3435 ceph_msg_put(msg);
3436 return -EAGAIN;
3438 if (msg) {
3439 BUG_ON(*skip);
3440 msg_con_set(msg, con);
3441 con->in_msg = msg;
3442 } else {
3444 * Null message pointer means either we should skip
3445 * this message or we couldn't allocate memory. The
3446 * former is not an error.
3448 if (*skip)
3449 return 0;
3451 con->error_msg = "error allocating memory for incoming message";
3452 return -ENOMEM;
3454 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3456 if (middle_len && !con->in_msg->middle) {
3457 ret = ceph_alloc_middle(con, con->in_msg);
3458 if (ret < 0) {
3459 ceph_msg_put(con->in_msg);
3460 con->in_msg = NULL;
3464 return ret;
3469 * Free a generically kmalloc'd message.
3471 static void ceph_msg_free(struct ceph_msg *m)
3473 dout("%s %p\n", __func__, m);
3474 kvfree(m->front.iov_base);
3475 kfree(m->data);
3476 kmem_cache_free(ceph_msg_cache, m);
3479 static void ceph_msg_release(struct kref *kref)
3481 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3482 int i;
3484 dout("%s %p\n", __func__, m);
3485 WARN_ON(!list_empty(&m->list_head));
3487 msg_con_set(m, NULL);
3489 /* drop middle, data, if any */
3490 if (m->middle) {
3491 ceph_buffer_put(m->middle);
3492 m->middle = NULL;
3495 for (i = 0; i < m->num_data_items; i++)
3496 ceph_msg_data_destroy(&m->data[i]);
3498 if (m->pool)
3499 ceph_msgpool_put(m->pool, m);
3500 else
3501 ceph_msg_free(m);
3504 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3506 dout("%s %p (was %d)\n", __func__, msg,
3507 kref_read(&msg->kref));
3508 kref_get(&msg->kref);
3509 return msg;
3511 EXPORT_SYMBOL(ceph_msg_get);
3513 void ceph_msg_put(struct ceph_msg *msg)
3515 dout("%s %p (was %d)\n", __func__, msg,
3516 kref_read(&msg->kref));
3517 kref_put(&msg->kref, ceph_msg_release);
3519 EXPORT_SYMBOL(ceph_msg_put);
3521 void ceph_msg_dump(struct ceph_msg *msg)
3523 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3524 msg->front_alloc_len, msg->data_length);
3525 print_hex_dump(KERN_DEBUG, "header: ",
3526 DUMP_PREFIX_OFFSET, 16, 1,
3527 &msg->hdr, sizeof(msg->hdr), true);
3528 print_hex_dump(KERN_DEBUG, " front: ",
3529 DUMP_PREFIX_OFFSET, 16, 1,
3530 msg->front.iov_base, msg->front.iov_len, true);
3531 if (msg->middle)
3532 print_hex_dump(KERN_DEBUG, "middle: ",
3533 DUMP_PREFIX_OFFSET, 16, 1,
3534 msg->middle->vec.iov_base,
3535 msg->middle->vec.iov_len, true);
3536 print_hex_dump(KERN_DEBUG, "footer: ",
3537 DUMP_PREFIX_OFFSET, 16, 1,
3538 &msg->footer, sizeof(msg->footer), true);
3540 EXPORT_SYMBOL(ceph_msg_dump);