2 * Copyright (c) 2007-2017 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/skbuff.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
40 #include <net/sctp/checksum.h>
44 #include "conntrack.h"
46 #include "flow_netlink.h"
48 struct deferred_action
{
50 const struct nlattr
*actions
;
53 /* Store pkt_key clone when creating deferred action. */
54 struct sw_flow_key pkt_key
;
57 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
58 struct ovs_frag_data
{
62 __be16 inner_protocol
;
63 u16 network_offset
; /* valid only for MPLS */
68 u8 l2_data
[MAX_L2_LEN
];
71 static DEFINE_PER_CPU(struct ovs_frag_data
, ovs_frag_data_storage
);
73 #define DEFERRED_ACTION_FIFO_SIZE 10
74 #define OVS_RECURSION_LIMIT 5
75 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
79 /* Deferred action fifo queue storage. */
80 struct deferred_action fifo
[DEFERRED_ACTION_FIFO_SIZE
];
83 struct action_flow_keys
{
84 struct sw_flow_key key
[OVS_DEFERRED_ACTION_THRESHOLD
];
87 static struct action_fifo __percpu
*action_fifos
;
88 static struct action_flow_keys __percpu
*flow_keys
;
89 static DEFINE_PER_CPU(int, exec_actions_level
);
91 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
92 * space. Return NULL if out of key spaces.
94 static struct sw_flow_key
*clone_key(const struct sw_flow_key
*key_
)
96 struct action_flow_keys
*keys
= this_cpu_ptr(flow_keys
);
97 int level
= this_cpu_read(exec_actions_level
);
98 struct sw_flow_key
*key
= NULL
;
100 if (level
<= OVS_DEFERRED_ACTION_THRESHOLD
) {
101 key
= &keys
->key
[level
- 1];
108 static void action_fifo_init(struct action_fifo
*fifo
)
114 static bool action_fifo_is_empty(const struct action_fifo
*fifo
)
116 return (fifo
->head
== fifo
->tail
);
119 static struct deferred_action
*action_fifo_get(struct action_fifo
*fifo
)
121 if (action_fifo_is_empty(fifo
))
124 return &fifo
->fifo
[fifo
->tail
++];
127 static struct deferred_action
*action_fifo_put(struct action_fifo
*fifo
)
129 if (fifo
->head
>= DEFERRED_ACTION_FIFO_SIZE
- 1)
132 return &fifo
->fifo
[fifo
->head
++];
135 /* Return true if fifo is not full */
136 static struct deferred_action
*add_deferred_actions(struct sk_buff
*skb
,
137 const struct sw_flow_key
*key
,
138 const struct nlattr
*actions
,
139 const int actions_len
)
141 struct action_fifo
*fifo
;
142 struct deferred_action
*da
;
144 fifo
= this_cpu_ptr(action_fifos
);
145 da
= action_fifo_put(fifo
);
148 da
->actions
= actions
;
149 da
->actions_len
= actions_len
;
156 static void invalidate_flow_key(struct sw_flow_key
*key
)
158 key
->mac_proto
|= SW_FLOW_KEY_INVALID
;
161 static bool is_flow_key_valid(const struct sw_flow_key
*key
)
163 return !(key
->mac_proto
& SW_FLOW_KEY_INVALID
);
166 static int clone_execute(struct datapath
*dp
, struct sk_buff
*skb
,
167 struct sw_flow_key
*key
,
169 const struct nlattr
*actions
, int len
,
170 bool last
, bool clone_flow_key
);
172 static void update_ethertype(struct sk_buff
*skb
, struct ethhdr
*hdr
,
175 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
176 __be16 diff
[] = { ~(hdr
->h_proto
), ethertype
};
178 skb
->csum
= ~csum_partial((char *)diff
, sizeof(diff
),
182 hdr
->h_proto
= ethertype
;
185 static int push_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
186 const struct ovs_action_push_mpls
*mpls
)
188 struct mpls_shim_hdr
*new_mpls_lse
;
190 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
191 if (skb
->encapsulation
)
194 if (skb_cow_head(skb
, MPLS_HLEN
) < 0)
197 if (!skb
->inner_protocol
) {
198 skb_set_inner_network_header(skb
, skb
->mac_len
);
199 skb_set_inner_protocol(skb
, skb
->protocol
);
202 skb_push(skb
, MPLS_HLEN
);
203 memmove(skb_mac_header(skb
) - MPLS_HLEN
, skb_mac_header(skb
),
205 skb_reset_mac_header(skb
);
206 skb_set_network_header(skb
, skb
->mac_len
);
208 new_mpls_lse
= mpls_hdr(skb
);
209 new_mpls_lse
->label_stack_entry
= mpls
->mpls_lse
;
211 skb_postpush_rcsum(skb
, new_mpls_lse
, MPLS_HLEN
);
213 if (ovs_key_mac_proto(key
) == MAC_PROTO_ETHERNET
)
214 update_ethertype(skb
, eth_hdr(skb
), mpls
->mpls_ethertype
);
215 skb
->protocol
= mpls
->mpls_ethertype
;
217 invalidate_flow_key(key
);
221 static int pop_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
222 const __be16 ethertype
)
226 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
230 skb_postpull_rcsum(skb
, mpls_hdr(skb
), MPLS_HLEN
);
232 memmove(skb_mac_header(skb
) + MPLS_HLEN
, skb_mac_header(skb
),
235 __skb_pull(skb
, MPLS_HLEN
);
236 skb_reset_mac_header(skb
);
237 skb_set_network_header(skb
, skb
->mac_len
);
239 if (ovs_key_mac_proto(key
) == MAC_PROTO_ETHERNET
) {
242 /* mpls_hdr() is used to locate the ethertype field correctly in the
243 * presence of VLAN tags.
245 hdr
= (struct ethhdr
*)((void *)mpls_hdr(skb
) - ETH_HLEN
);
246 update_ethertype(skb
, hdr
, ethertype
);
248 if (eth_p_mpls(skb
->protocol
))
249 skb
->protocol
= ethertype
;
251 invalidate_flow_key(key
);
255 static int set_mpls(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
256 const __be32
*mpls_lse
, const __be32
*mask
)
258 struct mpls_shim_hdr
*stack
;
262 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
266 stack
= mpls_hdr(skb
);
267 lse
= OVS_MASKED(stack
->label_stack_entry
, *mpls_lse
, *mask
);
268 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
269 __be32 diff
[] = { ~(stack
->label_stack_entry
), lse
};
271 skb
->csum
= ~csum_partial((char *)diff
, sizeof(diff
),
275 stack
->label_stack_entry
= lse
;
276 flow_key
->mpls
.top_lse
= lse
;
280 static int pop_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
284 err
= skb_vlan_pop(skb
);
285 if (skb_vlan_tag_present(skb
)) {
286 invalidate_flow_key(key
);
288 key
->eth
.vlan
.tci
= 0;
289 key
->eth
.vlan
.tpid
= 0;
294 static int push_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
,
295 const struct ovs_action_push_vlan
*vlan
)
297 if (skb_vlan_tag_present(skb
)) {
298 invalidate_flow_key(key
);
300 key
->eth
.vlan
.tci
= vlan
->vlan_tci
;
301 key
->eth
.vlan
.tpid
= vlan
->vlan_tpid
;
303 return skb_vlan_push(skb
, vlan
->vlan_tpid
,
304 ntohs(vlan
->vlan_tci
) & ~VLAN_CFI_MASK
);
307 /* 'src' is already properly masked. */
308 static void ether_addr_copy_masked(u8
*dst_
, const u8
*src_
, const u8
*mask_
)
310 u16
*dst
= (u16
*)dst_
;
311 const u16
*src
= (const u16
*)src_
;
312 const u16
*mask
= (const u16
*)mask_
;
314 OVS_SET_MASKED(dst
[0], src
[0], mask
[0]);
315 OVS_SET_MASKED(dst
[1], src
[1], mask
[1]);
316 OVS_SET_MASKED(dst
[2], src
[2], mask
[2]);
319 static int set_eth_addr(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
320 const struct ovs_key_ethernet
*key
,
321 const struct ovs_key_ethernet
*mask
)
325 err
= skb_ensure_writable(skb
, ETH_HLEN
);
329 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
331 ether_addr_copy_masked(eth_hdr(skb
)->h_source
, key
->eth_src
,
333 ether_addr_copy_masked(eth_hdr(skb
)->h_dest
, key
->eth_dst
,
336 skb_postpush_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
338 ether_addr_copy(flow_key
->eth
.src
, eth_hdr(skb
)->h_source
);
339 ether_addr_copy(flow_key
->eth
.dst
, eth_hdr(skb
)->h_dest
);
343 /* pop_eth does not support VLAN packets as this action is never called
346 static int pop_eth(struct sk_buff
*skb
, struct sw_flow_key
*key
)
348 skb_pull_rcsum(skb
, ETH_HLEN
);
349 skb_reset_mac_header(skb
);
350 skb_reset_mac_len(skb
);
352 /* safe right before invalidate_flow_key */
353 key
->mac_proto
= MAC_PROTO_NONE
;
354 invalidate_flow_key(key
);
358 static int push_eth(struct sk_buff
*skb
, struct sw_flow_key
*key
,
359 const struct ovs_action_push_eth
*ethh
)
363 /* Add the new Ethernet header */
364 if (skb_cow_head(skb
, ETH_HLEN
) < 0)
367 skb_push(skb
, ETH_HLEN
);
368 skb_reset_mac_header(skb
);
369 skb_reset_mac_len(skb
);
372 ether_addr_copy(hdr
->h_source
, ethh
->addresses
.eth_src
);
373 ether_addr_copy(hdr
->h_dest
, ethh
->addresses
.eth_dst
);
374 hdr
->h_proto
= skb
->protocol
;
376 skb_postpush_rcsum(skb
, hdr
, ETH_HLEN
);
378 /* safe right before invalidate_flow_key */
379 key
->mac_proto
= MAC_PROTO_ETHERNET
;
380 invalidate_flow_key(key
);
384 static int push_nsh(struct sk_buff
*skb
, struct sw_flow_key
*key
,
385 const struct nshhdr
*nh
)
389 err
= nsh_push(skb
, nh
);
393 /* safe right before invalidate_flow_key */
394 key
->mac_proto
= MAC_PROTO_NONE
;
395 invalidate_flow_key(key
);
399 static int pop_nsh(struct sk_buff
*skb
, struct sw_flow_key
*key
)
407 /* safe right before invalidate_flow_key */
408 if (skb
->protocol
== htons(ETH_P_TEB
))
409 key
->mac_proto
= MAC_PROTO_ETHERNET
;
411 key
->mac_proto
= MAC_PROTO_NONE
;
412 invalidate_flow_key(key
);
416 static void update_ip_l4_checksum(struct sk_buff
*skb
, struct iphdr
*nh
,
417 __be32 addr
, __be32 new_addr
)
419 int transport_len
= skb
->len
- skb_transport_offset(skb
);
421 if (nh
->frag_off
& htons(IP_OFFSET
))
424 if (nh
->protocol
== IPPROTO_TCP
) {
425 if (likely(transport_len
>= sizeof(struct tcphdr
)))
426 inet_proto_csum_replace4(&tcp_hdr(skb
)->check
, skb
,
427 addr
, new_addr
, true);
428 } else if (nh
->protocol
== IPPROTO_UDP
) {
429 if (likely(transport_len
>= sizeof(struct udphdr
))) {
430 struct udphdr
*uh
= udp_hdr(skb
);
432 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
433 inet_proto_csum_replace4(&uh
->check
, skb
,
434 addr
, new_addr
, true);
436 uh
->check
= CSUM_MANGLED_0
;
442 static void set_ip_addr(struct sk_buff
*skb
, struct iphdr
*nh
,
443 __be32
*addr
, __be32 new_addr
)
445 update_ip_l4_checksum(skb
, nh
, *addr
, new_addr
);
446 csum_replace4(&nh
->check
, *addr
, new_addr
);
451 static void update_ipv6_checksum(struct sk_buff
*skb
, u8 l4_proto
,
452 __be32 addr
[4], const __be32 new_addr
[4])
454 int transport_len
= skb
->len
- skb_transport_offset(skb
);
456 if (l4_proto
== NEXTHDR_TCP
) {
457 if (likely(transport_len
>= sizeof(struct tcphdr
)))
458 inet_proto_csum_replace16(&tcp_hdr(skb
)->check
, skb
,
459 addr
, new_addr
, true);
460 } else if (l4_proto
== NEXTHDR_UDP
) {
461 if (likely(transport_len
>= sizeof(struct udphdr
))) {
462 struct udphdr
*uh
= udp_hdr(skb
);
464 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
465 inet_proto_csum_replace16(&uh
->check
, skb
,
466 addr
, new_addr
, true);
468 uh
->check
= CSUM_MANGLED_0
;
471 } else if (l4_proto
== NEXTHDR_ICMP
) {
472 if (likely(transport_len
>= sizeof(struct icmp6hdr
)))
473 inet_proto_csum_replace16(&icmp6_hdr(skb
)->icmp6_cksum
,
474 skb
, addr
, new_addr
, true);
478 static void mask_ipv6_addr(const __be32 old
[4], const __be32 addr
[4],
479 const __be32 mask
[4], __be32 masked
[4])
481 masked
[0] = OVS_MASKED(old
[0], addr
[0], mask
[0]);
482 masked
[1] = OVS_MASKED(old
[1], addr
[1], mask
[1]);
483 masked
[2] = OVS_MASKED(old
[2], addr
[2], mask
[2]);
484 masked
[3] = OVS_MASKED(old
[3], addr
[3], mask
[3]);
487 static void set_ipv6_addr(struct sk_buff
*skb
, u8 l4_proto
,
488 __be32 addr
[4], const __be32 new_addr
[4],
489 bool recalculate_csum
)
491 if (recalculate_csum
)
492 update_ipv6_checksum(skb
, l4_proto
, addr
, new_addr
);
495 memcpy(addr
, new_addr
, sizeof(__be32
[4]));
498 static void set_ipv6_fl(struct ipv6hdr
*nh
, u32 fl
, u32 mask
)
500 /* Bits 21-24 are always unmasked, so this retains their values. */
501 OVS_SET_MASKED(nh
->flow_lbl
[0], (u8
)(fl
>> 16), (u8
)(mask
>> 16));
502 OVS_SET_MASKED(nh
->flow_lbl
[1], (u8
)(fl
>> 8), (u8
)(mask
>> 8));
503 OVS_SET_MASKED(nh
->flow_lbl
[2], (u8
)fl
, (u8
)mask
);
506 static void set_ip_ttl(struct sk_buff
*skb
, struct iphdr
*nh
, u8 new_ttl
,
509 new_ttl
= OVS_MASKED(nh
->ttl
, new_ttl
, mask
);
511 csum_replace2(&nh
->check
, htons(nh
->ttl
<< 8), htons(new_ttl
<< 8));
515 static int set_ipv4(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
516 const struct ovs_key_ipv4
*key
,
517 const struct ovs_key_ipv4
*mask
)
523 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
524 sizeof(struct iphdr
));
530 /* Setting an IP addresses is typically only a side effect of
531 * matching on them in the current userspace implementation, so it
532 * makes sense to check if the value actually changed.
534 if (mask
->ipv4_src
) {
535 new_addr
= OVS_MASKED(nh
->saddr
, key
->ipv4_src
, mask
->ipv4_src
);
537 if (unlikely(new_addr
!= nh
->saddr
)) {
538 set_ip_addr(skb
, nh
, &nh
->saddr
, new_addr
);
539 flow_key
->ipv4
.addr
.src
= new_addr
;
542 if (mask
->ipv4_dst
) {
543 new_addr
= OVS_MASKED(nh
->daddr
, key
->ipv4_dst
, mask
->ipv4_dst
);
545 if (unlikely(new_addr
!= nh
->daddr
)) {
546 set_ip_addr(skb
, nh
, &nh
->daddr
, new_addr
);
547 flow_key
->ipv4
.addr
.dst
= new_addr
;
550 if (mask
->ipv4_tos
) {
551 ipv4_change_dsfield(nh
, ~mask
->ipv4_tos
, key
->ipv4_tos
);
552 flow_key
->ip
.tos
= nh
->tos
;
554 if (mask
->ipv4_ttl
) {
555 set_ip_ttl(skb
, nh
, key
->ipv4_ttl
, mask
->ipv4_ttl
);
556 flow_key
->ip
.ttl
= nh
->ttl
;
562 static bool is_ipv6_mask_nonzero(const __be32 addr
[4])
564 return !!(addr
[0] | addr
[1] | addr
[2] | addr
[3]);
567 static int set_ipv6(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
568 const struct ovs_key_ipv6
*key
,
569 const struct ovs_key_ipv6
*mask
)
574 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
575 sizeof(struct ipv6hdr
));
581 /* Setting an IP addresses is typically only a side effect of
582 * matching on them in the current userspace implementation, so it
583 * makes sense to check if the value actually changed.
585 if (is_ipv6_mask_nonzero(mask
->ipv6_src
)) {
586 __be32
*saddr
= (__be32
*)&nh
->saddr
;
589 mask_ipv6_addr(saddr
, key
->ipv6_src
, mask
->ipv6_src
, masked
);
591 if (unlikely(memcmp(saddr
, masked
, sizeof(masked
)))) {
592 set_ipv6_addr(skb
, flow_key
->ip
.proto
, saddr
, masked
,
594 memcpy(&flow_key
->ipv6
.addr
.src
, masked
,
595 sizeof(flow_key
->ipv6
.addr
.src
));
598 if (is_ipv6_mask_nonzero(mask
->ipv6_dst
)) {
599 unsigned int offset
= 0;
600 int flags
= IP6_FH_F_SKIP_RH
;
601 bool recalc_csum
= true;
602 __be32
*daddr
= (__be32
*)&nh
->daddr
;
605 mask_ipv6_addr(daddr
, key
->ipv6_dst
, mask
->ipv6_dst
, masked
);
607 if (unlikely(memcmp(daddr
, masked
, sizeof(masked
)))) {
608 if (ipv6_ext_hdr(nh
->nexthdr
))
609 recalc_csum
= (ipv6_find_hdr(skb
, &offset
,
614 set_ipv6_addr(skb
, flow_key
->ip
.proto
, daddr
, masked
,
616 memcpy(&flow_key
->ipv6
.addr
.dst
, masked
,
617 sizeof(flow_key
->ipv6
.addr
.dst
));
620 if (mask
->ipv6_tclass
) {
621 ipv6_change_dsfield(nh
, ~mask
->ipv6_tclass
, key
->ipv6_tclass
);
622 flow_key
->ip
.tos
= ipv6_get_dsfield(nh
);
624 if (mask
->ipv6_label
) {
625 set_ipv6_fl(nh
, ntohl(key
->ipv6_label
),
626 ntohl(mask
->ipv6_label
));
627 flow_key
->ipv6
.label
=
628 *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
630 if (mask
->ipv6_hlimit
) {
631 OVS_SET_MASKED(nh
->hop_limit
, key
->ipv6_hlimit
,
633 flow_key
->ip
.ttl
= nh
->hop_limit
;
638 static int set_nsh(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
639 const struct nlattr
*a
)
648 struct ovs_key_nsh key
;
649 struct ovs_key_nsh mask
;
651 err
= nsh_key_from_nlattr(a
, &key
, &mask
);
655 /* Make sure the NSH base header is there */
656 if (!pskb_may_pull(skb
, skb_network_offset(skb
) + NSH_BASE_HDR_LEN
))
660 length
= nsh_hdr_len(nh
);
662 /* Make sure the whole NSH header is there */
663 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
669 skb_postpull_rcsum(skb
, nh
, length
);
670 flags
= nsh_get_flags(nh
);
671 flags
= OVS_MASKED(flags
, key
.base
.flags
, mask
.base
.flags
);
672 flow_key
->nsh
.base
.flags
= flags
;
673 ttl
= nsh_get_ttl(nh
);
674 ttl
= OVS_MASKED(ttl
, key
.base
.ttl
, mask
.base
.ttl
);
675 flow_key
->nsh
.base
.ttl
= ttl
;
676 nsh_set_flags_and_ttl(nh
, flags
, ttl
);
677 nh
->path_hdr
= OVS_MASKED(nh
->path_hdr
, key
.base
.path_hdr
,
679 flow_key
->nsh
.base
.path_hdr
= nh
->path_hdr
;
680 switch (nh
->mdtype
) {
682 for (i
= 0; i
< NSH_MD1_CONTEXT_SIZE
; i
++) {
684 OVS_MASKED(nh
->md1
.context
[i
], key
.context
[i
],
687 memcpy(flow_key
->nsh
.context
, nh
->md1
.context
,
688 sizeof(nh
->md1
.context
));
691 memset(flow_key
->nsh
.context
, 0,
692 sizeof(flow_key
->nsh
.context
));
697 skb_postpush_rcsum(skb
, nh
, length
);
701 /* Must follow skb_ensure_writable() since that can move the skb data. */
702 static void set_tp_port(struct sk_buff
*skb
, __be16
*port
,
703 __be16 new_port
, __sum16
*check
)
705 inet_proto_csum_replace2(check
, skb
, *port
, new_port
, false);
709 static int set_udp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
710 const struct ovs_key_udp
*key
,
711 const struct ovs_key_udp
*mask
)
717 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
718 sizeof(struct udphdr
));
723 /* Either of the masks is non-zero, so do not bother checking them. */
724 src
= OVS_MASKED(uh
->source
, key
->udp_src
, mask
->udp_src
);
725 dst
= OVS_MASKED(uh
->dest
, key
->udp_dst
, mask
->udp_dst
);
727 if (uh
->check
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
728 if (likely(src
!= uh
->source
)) {
729 set_tp_port(skb
, &uh
->source
, src
, &uh
->check
);
730 flow_key
->tp
.src
= src
;
732 if (likely(dst
!= uh
->dest
)) {
733 set_tp_port(skb
, &uh
->dest
, dst
, &uh
->check
);
734 flow_key
->tp
.dst
= dst
;
737 if (unlikely(!uh
->check
))
738 uh
->check
= CSUM_MANGLED_0
;
742 flow_key
->tp
.src
= src
;
743 flow_key
->tp
.dst
= dst
;
751 static int set_tcp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
752 const struct ovs_key_tcp
*key
,
753 const struct ovs_key_tcp
*mask
)
759 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
760 sizeof(struct tcphdr
));
765 src
= OVS_MASKED(th
->source
, key
->tcp_src
, mask
->tcp_src
);
766 if (likely(src
!= th
->source
)) {
767 set_tp_port(skb
, &th
->source
, src
, &th
->check
);
768 flow_key
->tp
.src
= src
;
770 dst
= OVS_MASKED(th
->dest
, key
->tcp_dst
, mask
->tcp_dst
);
771 if (likely(dst
!= th
->dest
)) {
772 set_tp_port(skb
, &th
->dest
, dst
, &th
->check
);
773 flow_key
->tp
.dst
= dst
;
780 static int set_sctp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
781 const struct ovs_key_sctp
*key
,
782 const struct ovs_key_sctp
*mask
)
784 unsigned int sctphoff
= skb_transport_offset(skb
);
786 __le32 old_correct_csum
, new_csum
, old_csum
;
789 err
= skb_ensure_writable(skb
, sctphoff
+ sizeof(struct sctphdr
));
794 old_csum
= sh
->checksum
;
795 old_correct_csum
= sctp_compute_cksum(skb
, sctphoff
);
797 sh
->source
= OVS_MASKED(sh
->source
, key
->sctp_src
, mask
->sctp_src
);
798 sh
->dest
= OVS_MASKED(sh
->dest
, key
->sctp_dst
, mask
->sctp_dst
);
800 new_csum
= sctp_compute_cksum(skb
, sctphoff
);
802 /* Carry any checksum errors through. */
803 sh
->checksum
= old_csum
^ old_correct_csum
^ new_csum
;
806 flow_key
->tp
.src
= sh
->source
;
807 flow_key
->tp
.dst
= sh
->dest
;
812 static int ovs_vport_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
814 struct ovs_frag_data
*data
= this_cpu_ptr(&ovs_frag_data_storage
);
815 struct vport
*vport
= data
->vport
;
817 if (skb_cow_head(skb
, data
->l2_len
) < 0) {
822 __skb_dst_copy(skb
, data
->dst
);
823 *OVS_CB(skb
) = data
->cb
;
824 skb
->inner_protocol
= data
->inner_protocol
;
825 if (data
->vlan_tci
& VLAN_CFI_MASK
)
826 __vlan_hwaccel_put_tag(skb
, data
->vlan_proto
, data
->vlan_tci
& ~VLAN_CFI_MASK
);
828 __vlan_hwaccel_clear_tag(skb
);
830 /* Reconstruct the MAC header. */
831 skb_push(skb
, data
->l2_len
);
832 memcpy(skb
->data
, &data
->l2_data
, data
->l2_len
);
833 skb_postpush_rcsum(skb
, skb
->data
, data
->l2_len
);
834 skb_reset_mac_header(skb
);
836 if (eth_p_mpls(skb
->protocol
)) {
837 skb
->inner_network_header
= skb
->network_header
;
838 skb_set_network_header(skb
, data
->network_offset
);
839 skb_reset_mac_len(skb
);
842 ovs_vport_send(vport
, skb
, data
->mac_proto
);
847 ovs_dst_get_mtu(const struct dst_entry
*dst
)
849 return dst
->dev
->mtu
;
852 static struct dst_ops ovs_dst_ops
= {
854 .mtu
= ovs_dst_get_mtu
,
857 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
858 * ovs_vport_output(), which is called once per fragmented packet.
860 static void prepare_frag(struct vport
*vport
, struct sk_buff
*skb
,
861 u16 orig_network_offset
, u8 mac_proto
)
863 unsigned int hlen
= skb_network_offset(skb
);
864 struct ovs_frag_data
*data
;
866 data
= this_cpu_ptr(&ovs_frag_data_storage
);
867 data
->dst
= skb
->_skb_refdst
;
869 data
->cb
= *OVS_CB(skb
);
870 data
->inner_protocol
= skb
->inner_protocol
;
871 data
->network_offset
= orig_network_offset
;
872 if (skb_vlan_tag_present(skb
))
873 data
->vlan_tci
= skb_vlan_tag_get(skb
) | VLAN_CFI_MASK
;
876 data
->vlan_proto
= skb
->vlan_proto
;
877 data
->mac_proto
= mac_proto
;
879 memcpy(&data
->l2_data
, skb
->data
, hlen
);
881 memset(IPCB(skb
), 0, sizeof(struct inet_skb_parm
));
885 static void ovs_fragment(struct net
*net
, struct vport
*vport
,
886 struct sk_buff
*skb
, u16 mru
,
887 struct sw_flow_key
*key
)
889 u16 orig_network_offset
= 0;
891 if (eth_p_mpls(skb
->protocol
)) {
892 orig_network_offset
= skb_network_offset(skb
);
893 skb
->network_header
= skb
->inner_network_header
;
896 if (skb_network_offset(skb
) > MAX_L2_LEN
) {
897 OVS_NLERR(1, "L2 header too long to fragment");
901 if (key
->eth
.type
== htons(ETH_P_IP
)) {
902 struct dst_entry ovs_dst
;
903 unsigned long orig_dst
;
905 prepare_frag(vport
, skb
, orig_network_offset
,
906 ovs_key_mac_proto(key
));
907 dst_init(&ovs_dst
, &ovs_dst_ops
, NULL
, 1,
908 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
909 ovs_dst
.dev
= vport
->dev
;
911 orig_dst
= skb
->_skb_refdst
;
912 skb_dst_set_noref(skb
, &ovs_dst
);
913 IPCB(skb
)->frag_max_size
= mru
;
915 ip_do_fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
916 refdst_drop(orig_dst
);
917 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
918 const struct nf_ipv6_ops
*v6ops
= nf_get_ipv6_ops();
919 unsigned long orig_dst
;
920 struct rt6_info ovs_rt
;
925 prepare_frag(vport
, skb
, orig_network_offset
,
926 ovs_key_mac_proto(key
));
927 memset(&ovs_rt
, 0, sizeof(ovs_rt
));
928 dst_init(&ovs_rt
.dst
, &ovs_dst_ops
, NULL
, 1,
929 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
930 ovs_rt
.dst
.dev
= vport
->dev
;
932 orig_dst
= skb
->_skb_refdst
;
933 skb_dst_set_noref(skb
, &ovs_rt
.dst
);
934 IP6CB(skb
)->frag_max_size
= mru
;
936 v6ops
->fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
937 refdst_drop(orig_dst
);
939 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
940 ovs_vport_name(vport
), ntohs(key
->eth
.type
), mru
,
950 static void do_output(struct datapath
*dp
, struct sk_buff
*skb
, int out_port
,
951 struct sw_flow_key
*key
)
953 struct vport
*vport
= ovs_vport_rcu(dp
, out_port
);
956 u16 mru
= OVS_CB(skb
)->mru
;
957 u32 cutlen
= OVS_CB(skb
)->cutlen
;
959 if (unlikely(cutlen
> 0)) {
960 if (skb
->len
- cutlen
> ovs_mac_header_len(key
))
961 pskb_trim(skb
, skb
->len
- cutlen
);
963 pskb_trim(skb
, ovs_mac_header_len(key
));
967 (skb
->len
<= mru
+ vport
->dev
->hard_header_len
))) {
968 ovs_vport_send(vport
, skb
, ovs_key_mac_proto(key
));
969 } else if (mru
<= vport
->dev
->mtu
) {
970 struct net
*net
= read_pnet(&dp
->net
);
972 ovs_fragment(net
, vport
, skb
, mru
, key
);
981 static int output_userspace(struct datapath
*dp
, struct sk_buff
*skb
,
982 struct sw_flow_key
*key
, const struct nlattr
*attr
,
983 const struct nlattr
*actions
, int actions_len
,
986 struct dp_upcall_info upcall
;
987 const struct nlattr
*a
;
990 memset(&upcall
, 0, sizeof(upcall
));
991 upcall
.cmd
= OVS_PACKET_CMD_ACTION
;
992 upcall
.mru
= OVS_CB(skb
)->mru
;
994 for (a
= nla_data(attr
), rem
= nla_len(attr
); rem
> 0;
995 a
= nla_next(a
, &rem
)) {
996 switch (nla_type(a
)) {
997 case OVS_USERSPACE_ATTR_USERDATA
:
1001 case OVS_USERSPACE_ATTR_PID
:
1002 upcall
.portid
= nla_get_u32(a
);
1005 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT
: {
1006 /* Get out tunnel info. */
1007 struct vport
*vport
;
1009 vport
= ovs_vport_rcu(dp
, nla_get_u32(a
));
1013 err
= dev_fill_metadata_dst(vport
->dev
, skb
);
1015 upcall
.egress_tun_info
= skb_tunnel_info(skb
);
1021 case OVS_USERSPACE_ATTR_ACTIONS
: {
1022 /* Include actions. */
1023 upcall
.actions
= actions
;
1024 upcall
.actions_len
= actions_len
;
1028 } /* End of switch. */
1031 return ovs_dp_upcall(dp
, skb
, key
, &upcall
, cutlen
);
1034 /* When 'last' is true, sample() should always consume the 'skb'.
1035 * Otherwise, sample() should keep 'skb' intact regardless what
1036 * actions are executed within sample().
1038 static int sample(struct datapath
*dp
, struct sk_buff
*skb
,
1039 struct sw_flow_key
*key
, const struct nlattr
*attr
,
1042 struct nlattr
*actions
;
1043 struct nlattr
*sample_arg
;
1044 int rem
= nla_len(attr
);
1045 const struct sample_arg
*arg
;
1046 bool clone_flow_key
;
1048 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1049 sample_arg
= nla_data(attr
);
1050 arg
= nla_data(sample_arg
);
1051 actions
= nla_next(sample_arg
, &rem
);
1053 if ((arg
->probability
!= U32_MAX
) &&
1054 (!arg
->probability
|| prandom_u32() > arg
->probability
)) {
1060 clone_flow_key
= !arg
->exec
;
1061 return clone_execute(dp
, skb
, key
, 0, actions
, rem
, last
,
1065 /* When 'last' is true, clone() should always consume the 'skb'.
1066 * Otherwise, clone() should keep 'skb' intact regardless what
1067 * actions are executed within clone().
1069 static int clone(struct datapath
*dp
, struct sk_buff
*skb
,
1070 struct sw_flow_key
*key
, const struct nlattr
*attr
,
1073 struct nlattr
*actions
;
1074 struct nlattr
*clone_arg
;
1075 int rem
= nla_len(attr
);
1076 bool dont_clone_flow_key
;
1078 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1079 clone_arg
= nla_data(attr
);
1080 dont_clone_flow_key
= nla_get_u32(clone_arg
);
1081 actions
= nla_next(clone_arg
, &rem
);
1083 return clone_execute(dp
, skb
, key
, 0, actions
, rem
, last
,
1084 !dont_clone_flow_key
);
1087 static void execute_hash(struct sk_buff
*skb
, struct sw_flow_key
*key
,
1088 const struct nlattr
*attr
)
1090 struct ovs_action_hash
*hash_act
= nla_data(attr
);
1093 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1094 hash
= skb_get_hash(skb
);
1095 hash
= jhash_1word(hash
, hash_act
->hash_basis
);
1099 key
->ovs_flow_hash
= hash
;
1102 static int execute_set_action(struct sk_buff
*skb
,
1103 struct sw_flow_key
*flow_key
,
1104 const struct nlattr
*a
)
1106 /* Only tunnel set execution is supported without a mask. */
1107 if (nla_type(a
) == OVS_KEY_ATTR_TUNNEL_INFO
) {
1108 struct ovs_tunnel_info
*tun
= nla_data(a
);
1111 dst_hold((struct dst_entry
*)tun
->tun_dst
);
1112 skb_dst_set(skb
, (struct dst_entry
*)tun
->tun_dst
);
1119 /* Mask is at the midpoint of the data. */
1120 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1122 static int execute_masked_set_action(struct sk_buff
*skb
,
1123 struct sw_flow_key
*flow_key
,
1124 const struct nlattr
*a
)
1128 switch (nla_type(a
)) {
1129 case OVS_KEY_ATTR_PRIORITY
:
1130 OVS_SET_MASKED(skb
->priority
, nla_get_u32(a
),
1131 *get_mask(a
, u32
*));
1132 flow_key
->phy
.priority
= skb
->priority
;
1135 case OVS_KEY_ATTR_SKB_MARK
:
1136 OVS_SET_MASKED(skb
->mark
, nla_get_u32(a
), *get_mask(a
, u32
*));
1137 flow_key
->phy
.skb_mark
= skb
->mark
;
1140 case OVS_KEY_ATTR_TUNNEL_INFO
:
1141 /* Masked data not supported for tunnel. */
1145 case OVS_KEY_ATTR_ETHERNET
:
1146 err
= set_eth_addr(skb
, flow_key
, nla_data(a
),
1147 get_mask(a
, struct ovs_key_ethernet
*));
1150 case OVS_KEY_ATTR_NSH
:
1151 err
= set_nsh(skb
, flow_key
, a
);
1154 case OVS_KEY_ATTR_IPV4
:
1155 err
= set_ipv4(skb
, flow_key
, nla_data(a
),
1156 get_mask(a
, struct ovs_key_ipv4
*));
1159 case OVS_KEY_ATTR_IPV6
:
1160 err
= set_ipv6(skb
, flow_key
, nla_data(a
),
1161 get_mask(a
, struct ovs_key_ipv6
*));
1164 case OVS_KEY_ATTR_TCP
:
1165 err
= set_tcp(skb
, flow_key
, nla_data(a
),
1166 get_mask(a
, struct ovs_key_tcp
*));
1169 case OVS_KEY_ATTR_UDP
:
1170 err
= set_udp(skb
, flow_key
, nla_data(a
),
1171 get_mask(a
, struct ovs_key_udp
*));
1174 case OVS_KEY_ATTR_SCTP
:
1175 err
= set_sctp(skb
, flow_key
, nla_data(a
),
1176 get_mask(a
, struct ovs_key_sctp
*));
1179 case OVS_KEY_ATTR_MPLS
:
1180 err
= set_mpls(skb
, flow_key
, nla_data(a
), get_mask(a
,
1184 case OVS_KEY_ATTR_CT_STATE
:
1185 case OVS_KEY_ATTR_CT_ZONE
:
1186 case OVS_KEY_ATTR_CT_MARK
:
1187 case OVS_KEY_ATTR_CT_LABELS
:
1188 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4
:
1189 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6
:
1197 static int execute_recirc(struct datapath
*dp
, struct sk_buff
*skb
,
1198 struct sw_flow_key
*key
,
1199 const struct nlattr
*a
, bool last
)
1203 if (!is_flow_key_valid(key
)) {
1206 err
= ovs_flow_key_update(skb
, key
);
1210 BUG_ON(!is_flow_key_valid(key
));
1212 recirc_id
= nla_get_u32(a
);
1213 return clone_execute(dp
, skb
, key
, recirc_id
, NULL
, 0, last
, true);
1216 /* Execute a list of actions against 'skb'. */
1217 static int do_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1218 struct sw_flow_key
*key
,
1219 const struct nlattr
*attr
, int len
)
1221 const struct nlattr
*a
;
1224 for (a
= attr
, rem
= len
; rem
> 0;
1225 a
= nla_next(a
, &rem
)) {
1228 switch (nla_type(a
)) {
1229 case OVS_ACTION_ATTR_OUTPUT
: {
1230 int port
= nla_get_u32(a
);
1231 struct sk_buff
*clone
;
1233 /* Every output action needs a separate clone
1234 * of 'skb', In case the output action is the
1235 * last action, cloning can be avoided.
1237 if (nla_is_last(a
, rem
)) {
1238 do_output(dp
, skb
, port
, key
);
1239 /* 'skb' has been used for output.
1244 clone
= skb_clone(skb
, GFP_ATOMIC
);
1246 do_output(dp
, clone
, port
, key
);
1247 OVS_CB(skb
)->cutlen
= 0;
1251 case OVS_ACTION_ATTR_TRUNC
: {
1252 struct ovs_action_trunc
*trunc
= nla_data(a
);
1254 if (skb
->len
> trunc
->max_len
)
1255 OVS_CB(skb
)->cutlen
= skb
->len
- trunc
->max_len
;
1259 case OVS_ACTION_ATTR_USERSPACE
:
1260 output_userspace(dp
, skb
, key
, a
, attr
,
1261 len
, OVS_CB(skb
)->cutlen
);
1262 OVS_CB(skb
)->cutlen
= 0;
1265 case OVS_ACTION_ATTR_HASH
:
1266 execute_hash(skb
, key
, a
);
1269 case OVS_ACTION_ATTR_PUSH_MPLS
:
1270 err
= push_mpls(skb
, key
, nla_data(a
));
1273 case OVS_ACTION_ATTR_POP_MPLS
:
1274 err
= pop_mpls(skb
, key
, nla_get_be16(a
));
1277 case OVS_ACTION_ATTR_PUSH_VLAN
:
1278 err
= push_vlan(skb
, key
, nla_data(a
));
1281 case OVS_ACTION_ATTR_POP_VLAN
:
1282 err
= pop_vlan(skb
, key
);
1285 case OVS_ACTION_ATTR_RECIRC
: {
1286 bool last
= nla_is_last(a
, rem
);
1288 err
= execute_recirc(dp
, skb
, key
, a
, last
);
1290 /* If this is the last action, the skb has
1291 * been consumed or freed.
1292 * Return immediately.
1299 case OVS_ACTION_ATTR_SET
:
1300 err
= execute_set_action(skb
, key
, nla_data(a
));
1303 case OVS_ACTION_ATTR_SET_MASKED
:
1304 case OVS_ACTION_ATTR_SET_TO_MASKED
:
1305 err
= execute_masked_set_action(skb
, key
, nla_data(a
));
1308 case OVS_ACTION_ATTR_SAMPLE
: {
1309 bool last
= nla_is_last(a
, rem
);
1311 err
= sample(dp
, skb
, key
, a
, last
);
1318 case OVS_ACTION_ATTR_CT
:
1319 if (!is_flow_key_valid(key
)) {
1320 err
= ovs_flow_key_update(skb
, key
);
1325 err
= ovs_ct_execute(ovs_dp_get_net(dp
), skb
, key
,
1328 /* Hide stolen IP fragments from user space. */
1330 return err
== -EINPROGRESS
? 0 : err
;
1333 case OVS_ACTION_ATTR_CT_CLEAR
:
1334 err
= ovs_ct_clear(skb
, key
);
1337 case OVS_ACTION_ATTR_PUSH_ETH
:
1338 err
= push_eth(skb
, key
, nla_data(a
));
1341 case OVS_ACTION_ATTR_POP_ETH
:
1342 err
= pop_eth(skb
, key
);
1345 case OVS_ACTION_ATTR_PUSH_NSH
: {
1346 u8 buffer
[NSH_HDR_MAX_LEN
];
1347 struct nshhdr
*nh
= (struct nshhdr
*)buffer
;
1349 err
= nsh_hdr_from_nlattr(nla_data(a
), nh
,
1353 err
= push_nsh(skb
, key
, nh
);
1357 case OVS_ACTION_ATTR_POP_NSH
:
1358 err
= pop_nsh(skb
, key
);
1361 case OVS_ACTION_ATTR_METER
:
1362 if (ovs_meter_execute(dp
, skb
, key
, nla_get_u32(a
))) {
1368 case OVS_ACTION_ATTR_CLONE
: {
1369 bool last
= nla_is_last(a
, rem
);
1371 err
= clone(dp
, skb
, key
, a
, last
);
1379 if (unlikely(err
)) {
1389 /* Execute the actions on the clone of the packet. The effect of the
1390 * execution does not affect the original 'skb' nor the original 'key'.
1392 * The execution may be deferred in case the actions can not be executed
1395 static int clone_execute(struct datapath
*dp
, struct sk_buff
*skb
,
1396 struct sw_flow_key
*key
, u32 recirc_id
,
1397 const struct nlattr
*actions
, int len
,
1398 bool last
, bool clone_flow_key
)
1400 struct deferred_action
*da
;
1401 struct sw_flow_key
*clone
;
1403 skb
= last
? skb
: skb_clone(skb
, GFP_ATOMIC
);
1405 /* Out of memory, skip this action.
1410 /* When clone_flow_key is false, the 'key' will not be change
1411 * by the actions, then the 'key' can be used directly.
1412 * Otherwise, try to clone key from the next recursion level of
1413 * 'flow_keys'. If clone is successful, execute the actions
1414 * without deferring.
1416 clone
= clone_flow_key
? clone_key(key
) : key
;
1420 if (actions
) { /* Sample action */
1422 __this_cpu_inc(exec_actions_level
);
1424 err
= do_execute_actions(dp
, skb
, clone
,
1428 __this_cpu_dec(exec_actions_level
);
1429 } else { /* Recirc action */
1430 clone
->recirc_id
= recirc_id
;
1431 ovs_dp_process_packet(skb
, clone
);
1436 /* Out of 'flow_keys' space. Defer actions */
1437 da
= add_deferred_actions(skb
, key
, actions
, len
);
1439 if (!actions
) { /* Recirc action */
1441 key
->recirc_id
= recirc_id
;
1444 /* Out of per CPU action FIFO space. Drop the 'skb' and
1449 if (net_ratelimit()) {
1450 if (actions
) { /* Sample action */
1451 pr_warn("%s: deferred action limit reached, drop sample action\n",
1453 } else { /* Recirc action */
1454 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1462 static void process_deferred_actions(struct datapath
*dp
)
1464 struct action_fifo
*fifo
= this_cpu_ptr(action_fifos
);
1466 /* Do not touch the FIFO in case there is no deferred actions. */
1467 if (action_fifo_is_empty(fifo
))
1470 /* Finishing executing all deferred actions. */
1472 struct deferred_action
*da
= action_fifo_get(fifo
);
1473 struct sk_buff
*skb
= da
->skb
;
1474 struct sw_flow_key
*key
= &da
->pkt_key
;
1475 const struct nlattr
*actions
= da
->actions
;
1476 int actions_len
= da
->actions_len
;
1479 do_execute_actions(dp
, skb
, key
, actions
, actions_len
);
1481 ovs_dp_process_packet(skb
, key
);
1482 } while (!action_fifo_is_empty(fifo
));
1484 /* Reset FIFO for the next packet. */
1485 action_fifo_init(fifo
);
1488 /* Execute a list of actions against 'skb'. */
1489 int ovs_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1490 const struct sw_flow_actions
*acts
,
1491 struct sw_flow_key
*key
)
1495 level
= __this_cpu_inc_return(exec_actions_level
);
1496 if (unlikely(level
> OVS_RECURSION_LIMIT
)) {
1497 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1504 OVS_CB(skb
)->acts_origlen
= acts
->orig_len
;
1505 err
= do_execute_actions(dp
, skb
, key
,
1506 acts
->actions
, acts
->actions_len
);
1509 process_deferred_actions(dp
);
1512 __this_cpu_dec(exec_actions_level
);
1516 int action_fifos_init(void)
1518 action_fifos
= alloc_percpu(struct action_fifo
);
1522 flow_keys
= alloc_percpu(struct action_flow_keys
);
1524 free_percpu(action_fifos
);
1531 void action_fifos_exit(void)
1533 free_percpu(action_fifos
);
1534 free_percpu(flow_keys
);