Linux 5.1.15
[linux/fpc-iii.git] / net / tls / tls_sw.c
blob41e17ed0c94e92fb6ff9df7ff86a07afd3e5b670
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
42 #include <net/strparser.h>
43 #include <net/tls.h>
45 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48 unsigned int recursion_level)
50 int start = skb_headlen(skb);
51 int i, chunk = start - offset;
52 struct sk_buff *frag_iter;
53 int elt = 0;
55 if (unlikely(recursion_level >= 24))
56 return -EMSGSIZE;
58 if (chunk > 0) {
59 if (chunk > len)
60 chunk = len;
61 elt++;
62 len -= chunk;
63 if (len == 0)
64 return elt;
65 offset += chunk;
68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69 int end;
71 WARN_ON(start > offset + len);
73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74 chunk = end - offset;
75 if (chunk > 0) {
76 if (chunk > len)
77 chunk = len;
78 elt++;
79 len -= chunk;
80 if (len == 0)
81 return elt;
82 offset += chunk;
84 start = end;
87 if (unlikely(skb_has_frag_list(skb))) {
88 skb_walk_frags(skb, frag_iter) {
89 int end, ret;
91 WARN_ON(start > offset + len);
93 end = start + frag_iter->len;
94 chunk = end - offset;
95 if (chunk > 0) {
96 if (chunk > len)
97 chunk = len;
98 ret = __skb_nsg(frag_iter, offset - start, chunk,
99 recursion_level + 1);
100 if (unlikely(ret < 0))
101 return ret;
102 elt += ret;
103 len -= chunk;
104 if (len == 0)
105 return elt;
106 offset += chunk;
108 start = end;
111 BUG_ON(len);
112 return elt;
115 /* Return the number of scatterlist elements required to completely map the
116 * skb, or -EMSGSIZE if the recursion depth is exceeded.
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
120 return __skb_nsg(skb, offset, len, 0);
123 static int padding_length(struct tls_sw_context_rx *ctx,
124 struct tls_context *tls_ctx, struct sk_buff *skb)
126 struct strp_msg *rxm = strp_msg(skb);
127 int sub = 0;
129 /* Determine zero-padding length */
130 if (tls_ctx->prot_info.version == TLS_1_3_VERSION) {
131 char content_type = 0;
132 int err;
133 int back = 17;
135 while (content_type == 0) {
136 if (back > rxm->full_len)
137 return -EBADMSG;
138 err = skb_copy_bits(skb,
139 rxm->offset + rxm->full_len - back,
140 &content_type, 1);
141 if (content_type)
142 break;
143 sub++;
144 back++;
146 ctx->control = content_type;
148 return sub;
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
160 struct sk_buff *skb;
161 unsigned int pages;
162 int pending;
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
169 /* Propagate if there was an err */
170 if (err) {
171 ctx->async_wait.err = err;
172 tls_err_abort(skb->sk, err);
173 } else {
174 struct strp_msg *rxm = strp_msg(skb);
175 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
176 rxm->offset += prot->prepend_size;
177 rxm->full_len -= prot->overhead_size;
180 /* After using skb->sk to propagate sk through crypto async callback
181 * we need to NULL it again.
183 skb->sk = NULL;
186 /* Free the destination pages if skb was not decrypted inplace */
187 if (sgout != sgin) {
188 /* Skip the first S/G entry as it points to AAD */
189 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
190 if (!sg)
191 break;
192 put_page(sg_page(sg));
196 kfree(aead_req);
198 pending = atomic_dec_return(&ctx->decrypt_pending);
200 if (!pending && READ_ONCE(ctx->async_notify))
201 complete(&ctx->async_wait.completion);
204 static int tls_do_decryption(struct sock *sk,
205 struct sk_buff *skb,
206 struct scatterlist *sgin,
207 struct scatterlist *sgout,
208 char *iv_recv,
209 size_t data_len,
210 struct aead_request *aead_req,
211 bool async)
213 struct tls_context *tls_ctx = tls_get_ctx(sk);
214 struct tls_prot_info *prot = &tls_ctx->prot_info;
215 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
216 int ret;
218 aead_request_set_tfm(aead_req, ctx->aead_recv);
219 aead_request_set_ad(aead_req, prot->aad_size);
220 aead_request_set_crypt(aead_req, sgin, sgout,
221 data_len + prot->tag_size,
222 (u8 *)iv_recv);
224 if (async) {
225 /* Using skb->sk to push sk through to crypto async callback
226 * handler. This allows propagating errors up to the socket
227 * if needed. It _must_ be cleared in the async handler
228 * before kfree_skb is called. We _know_ skb->sk is NULL
229 * because it is a clone from strparser.
231 skb->sk = sk;
232 aead_request_set_callback(aead_req,
233 CRYPTO_TFM_REQ_MAY_BACKLOG,
234 tls_decrypt_done, skb);
235 atomic_inc(&ctx->decrypt_pending);
236 } else {
237 aead_request_set_callback(aead_req,
238 CRYPTO_TFM_REQ_MAY_BACKLOG,
239 crypto_req_done, &ctx->async_wait);
242 ret = crypto_aead_decrypt(aead_req);
243 if (ret == -EINPROGRESS) {
244 if (async)
245 return ret;
247 ret = crypto_wait_req(ret, &ctx->async_wait);
250 if (async)
251 atomic_dec(&ctx->decrypt_pending);
253 return ret;
256 static void tls_trim_both_msgs(struct sock *sk, int target_size)
258 struct tls_context *tls_ctx = tls_get_ctx(sk);
259 struct tls_prot_info *prot = &tls_ctx->prot_info;
260 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
261 struct tls_rec *rec = ctx->open_rec;
263 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
264 if (target_size > 0)
265 target_size += prot->overhead_size;
266 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
269 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
271 struct tls_context *tls_ctx = tls_get_ctx(sk);
272 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
273 struct tls_rec *rec = ctx->open_rec;
274 struct sk_msg *msg_en = &rec->msg_encrypted;
276 return sk_msg_alloc(sk, msg_en, len, 0);
279 static int tls_clone_plaintext_msg(struct sock *sk, int required)
281 struct tls_context *tls_ctx = tls_get_ctx(sk);
282 struct tls_prot_info *prot = &tls_ctx->prot_info;
283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 struct tls_rec *rec = ctx->open_rec;
285 struct sk_msg *msg_pl = &rec->msg_plaintext;
286 struct sk_msg *msg_en = &rec->msg_encrypted;
287 int skip, len;
289 /* We add page references worth len bytes from encrypted sg
290 * at the end of plaintext sg. It is guaranteed that msg_en
291 * has enough required room (ensured by caller).
293 len = required - msg_pl->sg.size;
295 /* Skip initial bytes in msg_en's data to be able to use
296 * same offset of both plain and encrypted data.
298 skip = prot->prepend_size + msg_pl->sg.size;
300 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
303 static struct tls_rec *tls_get_rec(struct sock *sk)
305 struct tls_context *tls_ctx = tls_get_ctx(sk);
306 struct tls_prot_info *prot = &tls_ctx->prot_info;
307 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
308 struct sk_msg *msg_pl, *msg_en;
309 struct tls_rec *rec;
310 int mem_size;
312 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
314 rec = kzalloc(mem_size, sk->sk_allocation);
315 if (!rec)
316 return NULL;
318 msg_pl = &rec->msg_plaintext;
319 msg_en = &rec->msg_encrypted;
321 sk_msg_init(msg_pl);
322 sk_msg_init(msg_en);
324 sg_init_table(rec->sg_aead_in, 2);
325 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
326 sg_unmark_end(&rec->sg_aead_in[1]);
328 sg_init_table(rec->sg_aead_out, 2);
329 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
330 sg_unmark_end(&rec->sg_aead_out[1]);
332 return rec;
335 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
337 sk_msg_free(sk, &rec->msg_encrypted);
338 sk_msg_free(sk, &rec->msg_plaintext);
339 kfree(rec);
342 static void tls_free_open_rec(struct sock *sk)
344 struct tls_context *tls_ctx = tls_get_ctx(sk);
345 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
346 struct tls_rec *rec = ctx->open_rec;
348 if (rec) {
349 tls_free_rec(sk, rec);
350 ctx->open_rec = NULL;
354 int tls_tx_records(struct sock *sk, int flags)
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
358 struct tls_rec *rec, *tmp;
359 struct sk_msg *msg_en;
360 int tx_flags, rc = 0;
362 if (tls_is_partially_sent_record(tls_ctx)) {
363 rec = list_first_entry(&ctx->tx_list,
364 struct tls_rec, list);
366 if (flags == -1)
367 tx_flags = rec->tx_flags;
368 else
369 tx_flags = flags;
371 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
372 if (rc)
373 goto tx_err;
375 /* Full record has been transmitted.
376 * Remove the head of tx_list
378 list_del(&rec->list);
379 sk_msg_free(sk, &rec->msg_plaintext);
380 kfree(rec);
383 /* Tx all ready records */
384 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
385 if (READ_ONCE(rec->tx_ready)) {
386 if (flags == -1)
387 tx_flags = rec->tx_flags;
388 else
389 tx_flags = flags;
391 msg_en = &rec->msg_encrypted;
392 rc = tls_push_sg(sk, tls_ctx,
393 &msg_en->sg.data[msg_en->sg.curr],
394 0, tx_flags);
395 if (rc)
396 goto tx_err;
398 list_del(&rec->list);
399 sk_msg_free(sk, &rec->msg_plaintext);
400 kfree(rec);
401 } else {
402 break;
406 tx_err:
407 if (rc < 0 && rc != -EAGAIN)
408 tls_err_abort(sk, EBADMSG);
410 return rc;
413 static void tls_encrypt_done(struct crypto_async_request *req, int err)
415 struct aead_request *aead_req = (struct aead_request *)req;
416 struct sock *sk = req->data;
417 struct tls_context *tls_ctx = tls_get_ctx(sk);
418 struct tls_prot_info *prot = &tls_ctx->prot_info;
419 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
420 struct scatterlist *sge;
421 struct sk_msg *msg_en;
422 struct tls_rec *rec;
423 bool ready = false;
424 int pending;
426 rec = container_of(aead_req, struct tls_rec, aead_req);
427 msg_en = &rec->msg_encrypted;
429 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
430 sge->offset -= prot->prepend_size;
431 sge->length += prot->prepend_size;
433 /* Check if error is previously set on socket */
434 if (err || sk->sk_err) {
435 rec = NULL;
437 /* If err is already set on socket, return the same code */
438 if (sk->sk_err) {
439 ctx->async_wait.err = sk->sk_err;
440 } else {
441 ctx->async_wait.err = err;
442 tls_err_abort(sk, err);
446 if (rec) {
447 struct tls_rec *first_rec;
449 /* Mark the record as ready for transmission */
450 smp_store_mb(rec->tx_ready, true);
452 /* If received record is at head of tx_list, schedule tx */
453 first_rec = list_first_entry(&ctx->tx_list,
454 struct tls_rec, list);
455 if (rec == first_rec)
456 ready = true;
459 pending = atomic_dec_return(&ctx->encrypt_pending);
461 if (!pending && READ_ONCE(ctx->async_notify))
462 complete(&ctx->async_wait.completion);
464 if (!ready)
465 return;
467 /* Schedule the transmission */
468 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
469 schedule_delayed_work(&ctx->tx_work.work, 1);
472 static int tls_do_encryption(struct sock *sk,
473 struct tls_context *tls_ctx,
474 struct tls_sw_context_tx *ctx,
475 struct aead_request *aead_req,
476 size_t data_len, u32 start)
478 struct tls_prot_info *prot = &tls_ctx->prot_info;
479 struct tls_rec *rec = ctx->open_rec;
480 struct sk_msg *msg_en = &rec->msg_encrypted;
481 struct scatterlist *sge = sk_msg_elem(msg_en, start);
482 int rc;
484 memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
485 xor_iv_with_seq(prot->version, rec->iv_data,
486 tls_ctx->tx.rec_seq);
488 sge->offset += prot->prepend_size;
489 sge->length -= prot->prepend_size;
491 msg_en->sg.curr = start;
493 aead_request_set_tfm(aead_req, ctx->aead_send);
494 aead_request_set_ad(aead_req, prot->aad_size);
495 aead_request_set_crypt(aead_req, rec->sg_aead_in,
496 rec->sg_aead_out,
497 data_len, rec->iv_data);
499 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
500 tls_encrypt_done, sk);
502 /* Add the record in tx_list */
503 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
504 atomic_inc(&ctx->encrypt_pending);
506 rc = crypto_aead_encrypt(aead_req);
507 if (!rc || rc != -EINPROGRESS) {
508 atomic_dec(&ctx->encrypt_pending);
509 sge->offset -= prot->prepend_size;
510 sge->length += prot->prepend_size;
513 if (!rc) {
514 WRITE_ONCE(rec->tx_ready, true);
515 } else if (rc != -EINPROGRESS) {
516 list_del(&rec->list);
517 return rc;
520 /* Unhook the record from context if encryption is not failure */
521 ctx->open_rec = NULL;
522 tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
523 return rc;
526 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
527 struct tls_rec **to, struct sk_msg *msg_opl,
528 struct sk_msg *msg_oen, u32 split_point,
529 u32 tx_overhead_size, u32 *orig_end)
531 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
532 struct scatterlist *sge, *osge, *nsge;
533 u32 orig_size = msg_opl->sg.size;
534 struct scatterlist tmp = { };
535 struct sk_msg *msg_npl;
536 struct tls_rec *new;
537 int ret;
539 new = tls_get_rec(sk);
540 if (!new)
541 return -ENOMEM;
542 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
543 tx_overhead_size, 0);
544 if (ret < 0) {
545 tls_free_rec(sk, new);
546 return ret;
549 *orig_end = msg_opl->sg.end;
550 i = msg_opl->sg.start;
551 sge = sk_msg_elem(msg_opl, i);
552 while (apply && sge->length) {
553 if (sge->length > apply) {
554 u32 len = sge->length - apply;
556 get_page(sg_page(sge));
557 sg_set_page(&tmp, sg_page(sge), len,
558 sge->offset + apply);
559 sge->length = apply;
560 bytes += apply;
561 apply = 0;
562 } else {
563 apply -= sge->length;
564 bytes += sge->length;
567 sk_msg_iter_var_next(i);
568 if (i == msg_opl->sg.end)
569 break;
570 sge = sk_msg_elem(msg_opl, i);
573 msg_opl->sg.end = i;
574 msg_opl->sg.curr = i;
575 msg_opl->sg.copybreak = 0;
576 msg_opl->apply_bytes = 0;
577 msg_opl->sg.size = bytes;
579 msg_npl = &new->msg_plaintext;
580 msg_npl->apply_bytes = apply;
581 msg_npl->sg.size = orig_size - bytes;
583 j = msg_npl->sg.start;
584 nsge = sk_msg_elem(msg_npl, j);
585 if (tmp.length) {
586 memcpy(nsge, &tmp, sizeof(*nsge));
587 sk_msg_iter_var_next(j);
588 nsge = sk_msg_elem(msg_npl, j);
591 osge = sk_msg_elem(msg_opl, i);
592 while (osge->length) {
593 memcpy(nsge, osge, sizeof(*nsge));
594 sg_unmark_end(nsge);
595 sk_msg_iter_var_next(i);
596 sk_msg_iter_var_next(j);
597 if (i == *orig_end)
598 break;
599 osge = sk_msg_elem(msg_opl, i);
600 nsge = sk_msg_elem(msg_npl, j);
603 msg_npl->sg.end = j;
604 msg_npl->sg.curr = j;
605 msg_npl->sg.copybreak = 0;
607 *to = new;
608 return 0;
611 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
612 struct tls_rec *from, u32 orig_end)
614 struct sk_msg *msg_npl = &from->msg_plaintext;
615 struct sk_msg *msg_opl = &to->msg_plaintext;
616 struct scatterlist *osge, *nsge;
617 u32 i, j;
619 i = msg_opl->sg.end;
620 sk_msg_iter_var_prev(i);
621 j = msg_npl->sg.start;
623 osge = sk_msg_elem(msg_opl, i);
624 nsge = sk_msg_elem(msg_npl, j);
626 if (sg_page(osge) == sg_page(nsge) &&
627 osge->offset + osge->length == nsge->offset) {
628 osge->length += nsge->length;
629 put_page(sg_page(nsge));
632 msg_opl->sg.end = orig_end;
633 msg_opl->sg.curr = orig_end;
634 msg_opl->sg.copybreak = 0;
635 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
636 msg_opl->sg.size += msg_npl->sg.size;
638 sk_msg_free(sk, &to->msg_encrypted);
639 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
641 kfree(from);
644 static int tls_push_record(struct sock *sk, int flags,
645 unsigned char record_type)
647 struct tls_context *tls_ctx = tls_get_ctx(sk);
648 struct tls_prot_info *prot = &tls_ctx->prot_info;
649 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
650 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
651 u32 i, split_point, uninitialized_var(orig_end);
652 struct sk_msg *msg_pl, *msg_en;
653 struct aead_request *req;
654 bool split;
655 int rc;
657 if (!rec)
658 return 0;
660 msg_pl = &rec->msg_plaintext;
661 msg_en = &rec->msg_encrypted;
663 split_point = msg_pl->apply_bytes;
664 split = split_point && split_point < msg_pl->sg.size;
665 if (split) {
666 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
667 split_point, prot->overhead_size,
668 &orig_end);
669 if (rc < 0)
670 return rc;
671 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
672 prot->overhead_size);
675 rec->tx_flags = flags;
676 req = &rec->aead_req;
678 i = msg_pl->sg.end;
679 sk_msg_iter_var_prev(i);
681 rec->content_type = record_type;
682 if (prot->version == TLS_1_3_VERSION) {
683 /* Add content type to end of message. No padding added */
684 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
685 sg_mark_end(&rec->sg_content_type);
686 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
687 &rec->sg_content_type);
688 } else {
689 sg_mark_end(sk_msg_elem(msg_pl, i));
692 i = msg_pl->sg.start;
693 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
694 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
696 i = msg_en->sg.end;
697 sk_msg_iter_var_prev(i);
698 sg_mark_end(sk_msg_elem(msg_en, i));
700 i = msg_en->sg.start;
701 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
703 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
704 tls_ctx->tx.rec_seq, prot->rec_seq_size,
705 record_type, prot->version);
707 tls_fill_prepend(tls_ctx,
708 page_address(sg_page(&msg_en->sg.data[i])) +
709 msg_en->sg.data[i].offset,
710 msg_pl->sg.size + prot->tail_size,
711 record_type, prot->version);
713 tls_ctx->pending_open_record_frags = false;
715 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
716 msg_pl->sg.size + prot->tail_size, i);
717 if (rc < 0) {
718 if (rc != -EINPROGRESS) {
719 tls_err_abort(sk, EBADMSG);
720 if (split) {
721 tls_ctx->pending_open_record_frags = true;
722 tls_merge_open_record(sk, rec, tmp, orig_end);
725 ctx->async_capable = 1;
726 return rc;
727 } else if (split) {
728 msg_pl = &tmp->msg_plaintext;
729 msg_en = &tmp->msg_encrypted;
730 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
731 tls_ctx->pending_open_record_frags = true;
732 ctx->open_rec = tmp;
735 return tls_tx_records(sk, flags);
738 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
739 bool full_record, u8 record_type,
740 size_t *copied, int flags)
742 struct tls_context *tls_ctx = tls_get_ctx(sk);
743 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
744 struct sk_msg msg_redir = { };
745 struct sk_psock *psock;
746 struct sock *sk_redir;
747 struct tls_rec *rec;
748 bool enospc, policy;
749 int err = 0, send;
750 u32 delta = 0;
752 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
753 psock = sk_psock_get(sk);
754 if (!psock || !policy)
755 return tls_push_record(sk, flags, record_type);
756 more_data:
757 enospc = sk_msg_full(msg);
758 if (psock->eval == __SK_NONE) {
759 delta = msg->sg.size;
760 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
761 if (delta < msg->sg.size)
762 delta -= msg->sg.size;
763 else
764 delta = 0;
766 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
767 !enospc && !full_record) {
768 err = -ENOSPC;
769 goto out_err;
771 msg->cork_bytes = 0;
772 send = msg->sg.size;
773 if (msg->apply_bytes && msg->apply_bytes < send)
774 send = msg->apply_bytes;
776 switch (psock->eval) {
777 case __SK_PASS:
778 err = tls_push_record(sk, flags, record_type);
779 if (err < 0) {
780 *copied -= sk_msg_free(sk, msg);
781 tls_free_open_rec(sk);
782 goto out_err;
784 break;
785 case __SK_REDIRECT:
786 sk_redir = psock->sk_redir;
787 memcpy(&msg_redir, msg, sizeof(*msg));
788 if (msg->apply_bytes < send)
789 msg->apply_bytes = 0;
790 else
791 msg->apply_bytes -= send;
792 sk_msg_return_zero(sk, msg, send);
793 msg->sg.size -= send;
794 release_sock(sk);
795 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
796 lock_sock(sk);
797 if (err < 0) {
798 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
799 msg->sg.size = 0;
801 if (msg->sg.size == 0)
802 tls_free_open_rec(sk);
803 break;
804 case __SK_DROP:
805 default:
806 sk_msg_free_partial(sk, msg, send);
807 if (msg->apply_bytes < send)
808 msg->apply_bytes = 0;
809 else
810 msg->apply_bytes -= send;
811 if (msg->sg.size == 0)
812 tls_free_open_rec(sk);
813 *copied -= (send + delta);
814 err = -EACCES;
817 if (likely(!err)) {
818 bool reset_eval = !ctx->open_rec;
820 rec = ctx->open_rec;
821 if (rec) {
822 msg = &rec->msg_plaintext;
823 if (!msg->apply_bytes)
824 reset_eval = true;
826 if (reset_eval) {
827 psock->eval = __SK_NONE;
828 if (psock->sk_redir) {
829 sock_put(psock->sk_redir);
830 psock->sk_redir = NULL;
833 if (rec)
834 goto more_data;
836 out_err:
837 sk_psock_put(sk, psock);
838 return err;
841 static int tls_sw_push_pending_record(struct sock *sk, int flags)
843 struct tls_context *tls_ctx = tls_get_ctx(sk);
844 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
845 struct tls_rec *rec = ctx->open_rec;
846 struct sk_msg *msg_pl;
847 size_t copied;
849 if (!rec)
850 return 0;
852 msg_pl = &rec->msg_plaintext;
853 copied = msg_pl->sg.size;
854 if (!copied)
855 return 0;
857 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
858 &copied, flags);
861 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
863 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
864 struct tls_context *tls_ctx = tls_get_ctx(sk);
865 struct tls_prot_info *prot = &tls_ctx->prot_info;
866 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
867 bool async_capable = ctx->async_capable;
868 unsigned char record_type = TLS_RECORD_TYPE_DATA;
869 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
870 bool eor = !(msg->msg_flags & MSG_MORE);
871 size_t try_to_copy, copied = 0;
872 struct sk_msg *msg_pl, *msg_en;
873 struct tls_rec *rec;
874 int required_size;
875 int num_async = 0;
876 bool full_record;
877 int record_room;
878 int num_zc = 0;
879 int orig_size;
880 int ret = 0;
882 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
883 return -ENOTSUPP;
885 lock_sock(sk);
887 /* Wait till there is any pending write on socket */
888 if (unlikely(sk->sk_write_pending)) {
889 ret = wait_on_pending_writer(sk, &timeo);
890 if (unlikely(ret))
891 goto send_end;
894 if (unlikely(msg->msg_controllen)) {
895 ret = tls_proccess_cmsg(sk, msg, &record_type);
896 if (ret) {
897 if (ret == -EINPROGRESS)
898 num_async++;
899 else if (ret != -EAGAIN)
900 goto send_end;
904 while (msg_data_left(msg)) {
905 if (sk->sk_err) {
906 ret = -sk->sk_err;
907 goto send_end;
910 if (ctx->open_rec)
911 rec = ctx->open_rec;
912 else
913 rec = ctx->open_rec = tls_get_rec(sk);
914 if (!rec) {
915 ret = -ENOMEM;
916 goto send_end;
919 msg_pl = &rec->msg_plaintext;
920 msg_en = &rec->msg_encrypted;
922 orig_size = msg_pl->sg.size;
923 full_record = false;
924 try_to_copy = msg_data_left(msg);
925 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
926 if (try_to_copy >= record_room) {
927 try_to_copy = record_room;
928 full_record = true;
931 required_size = msg_pl->sg.size + try_to_copy +
932 prot->overhead_size;
934 if (!sk_stream_memory_free(sk))
935 goto wait_for_sndbuf;
937 alloc_encrypted:
938 ret = tls_alloc_encrypted_msg(sk, required_size);
939 if (ret) {
940 if (ret != -ENOSPC)
941 goto wait_for_memory;
943 /* Adjust try_to_copy according to the amount that was
944 * actually allocated. The difference is due
945 * to max sg elements limit
947 try_to_copy -= required_size - msg_en->sg.size;
948 full_record = true;
951 if (!is_kvec && (full_record || eor) && !async_capable) {
952 u32 first = msg_pl->sg.end;
954 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
955 msg_pl, try_to_copy);
956 if (ret)
957 goto fallback_to_reg_send;
959 rec->inplace_crypto = 0;
961 num_zc++;
962 copied += try_to_copy;
964 sk_msg_sg_copy_set(msg_pl, first);
965 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
966 record_type, &copied,
967 msg->msg_flags);
968 if (ret) {
969 if (ret == -EINPROGRESS)
970 num_async++;
971 else if (ret == -ENOMEM)
972 goto wait_for_memory;
973 else if (ret == -ENOSPC)
974 goto rollback_iter;
975 else if (ret != -EAGAIN)
976 goto send_end;
978 continue;
979 rollback_iter:
980 copied -= try_to_copy;
981 sk_msg_sg_copy_clear(msg_pl, first);
982 iov_iter_revert(&msg->msg_iter,
983 msg_pl->sg.size - orig_size);
984 fallback_to_reg_send:
985 sk_msg_trim(sk, msg_pl, orig_size);
988 required_size = msg_pl->sg.size + try_to_copy;
990 ret = tls_clone_plaintext_msg(sk, required_size);
991 if (ret) {
992 if (ret != -ENOSPC)
993 goto send_end;
995 /* Adjust try_to_copy according to the amount that was
996 * actually allocated. The difference is due
997 * to max sg elements limit
999 try_to_copy -= required_size - msg_pl->sg.size;
1000 full_record = true;
1001 sk_msg_trim(sk, msg_en,
1002 msg_pl->sg.size + prot->overhead_size);
1005 if (try_to_copy) {
1006 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1007 msg_pl, try_to_copy);
1008 if (ret < 0)
1009 goto trim_sgl;
1012 /* Open records defined only if successfully copied, otherwise
1013 * we would trim the sg but not reset the open record frags.
1015 tls_ctx->pending_open_record_frags = true;
1016 copied += try_to_copy;
1017 if (full_record || eor) {
1018 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1019 record_type, &copied,
1020 msg->msg_flags);
1021 if (ret) {
1022 if (ret == -EINPROGRESS)
1023 num_async++;
1024 else if (ret == -ENOMEM)
1025 goto wait_for_memory;
1026 else if (ret != -EAGAIN) {
1027 if (ret == -ENOSPC)
1028 ret = 0;
1029 goto send_end;
1034 continue;
1036 wait_for_sndbuf:
1037 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1038 wait_for_memory:
1039 ret = sk_stream_wait_memory(sk, &timeo);
1040 if (ret) {
1041 trim_sgl:
1042 tls_trim_both_msgs(sk, orig_size);
1043 goto send_end;
1046 if (msg_en->sg.size < required_size)
1047 goto alloc_encrypted;
1050 if (!num_async) {
1051 goto send_end;
1052 } else if (num_zc) {
1053 /* Wait for pending encryptions to get completed */
1054 smp_store_mb(ctx->async_notify, true);
1056 if (atomic_read(&ctx->encrypt_pending))
1057 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1058 else
1059 reinit_completion(&ctx->async_wait.completion);
1061 WRITE_ONCE(ctx->async_notify, false);
1063 if (ctx->async_wait.err) {
1064 ret = ctx->async_wait.err;
1065 copied = 0;
1069 /* Transmit if any encryptions have completed */
1070 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1071 cancel_delayed_work(&ctx->tx_work.work);
1072 tls_tx_records(sk, msg->msg_flags);
1075 send_end:
1076 ret = sk_stream_error(sk, msg->msg_flags, ret);
1078 release_sock(sk);
1079 return copied ? copied : ret;
1082 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1083 int offset, size_t size, int flags)
1085 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086 struct tls_context *tls_ctx = tls_get_ctx(sk);
1087 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1088 struct tls_prot_info *prot = &tls_ctx->prot_info;
1089 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1090 struct sk_msg *msg_pl;
1091 struct tls_rec *rec;
1092 int num_async = 0;
1093 size_t copied = 0;
1094 bool full_record;
1095 int record_room;
1096 int ret = 0;
1097 bool eor;
1099 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1100 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1102 /* Wait till there is any pending write on socket */
1103 if (unlikely(sk->sk_write_pending)) {
1104 ret = wait_on_pending_writer(sk, &timeo);
1105 if (unlikely(ret))
1106 goto sendpage_end;
1109 /* Call the sk_stream functions to manage the sndbuf mem. */
1110 while (size > 0) {
1111 size_t copy, required_size;
1113 if (sk->sk_err) {
1114 ret = -sk->sk_err;
1115 goto sendpage_end;
1118 if (ctx->open_rec)
1119 rec = ctx->open_rec;
1120 else
1121 rec = ctx->open_rec = tls_get_rec(sk);
1122 if (!rec) {
1123 ret = -ENOMEM;
1124 goto sendpage_end;
1127 msg_pl = &rec->msg_plaintext;
1129 full_record = false;
1130 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1131 copy = size;
1132 if (copy >= record_room) {
1133 copy = record_room;
1134 full_record = true;
1137 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1139 if (!sk_stream_memory_free(sk))
1140 goto wait_for_sndbuf;
1141 alloc_payload:
1142 ret = tls_alloc_encrypted_msg(sk, required_size);
1143 if (ret) {
1144 if (ret != -ENOSPC)
1145 goto wait_for_memory;
1147 /* Adjust copy according to the amount that was
1148 * actually allocated. The difference is due
1149 * to max sg elements limit
1151 copy -= required_size - msg_pl->sg.size;
1152 full_record = true;
1155 sk_msg_page_add(msg_pl, page, copy, offset);
1156 sk_mem_charge(sk, copy);
1158 offset += copy;
1159 size -= copy;
1160 copied += copy;
1162 tls_ctx->pending_open_record_frags = true;
1163 if (full_record || eor || sk_msg_full(msg_pl)) {
1164 rec->inplace_crypto = 0;
1165 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1166 record_type, &copied, flags);
1167 if (ret) {
1168 if (ret == -EINPROGRESS)
1169 num_async++;
1170 else if (ret == -ENOMEM)
1171 goto wait_for_memory;
1172 else if (ret != -EAGAIN) {
1173 if (ret == -ENOSPC)
1174 ret = 0;
1175 goto sendpage_end;
1179 continue;
1180 wait_for_sndbuf:
1181 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1182 wait_for_memory:
1183 ret = sk_stream_wait_memory(sk, &timeo);
1184 if (ret) {
1185 tls_trim_both_msgs(sk, msg_pl->sg.size);
1186 goto sendpage_end;
1189 goto alloc_payload;
1192 if (num_async) {
1193 /* Transmit if any encryptions have completed */
1194 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1195 cancel_delayed_work(&ctx->tx_work.work);
1196 tls_tx_records(sk, flags);
1199 sendpage_end:
1200 ret = sk_stream_error(sk, flags, ret);
1201 return copied ? copied : ret;
1204 int tls_sw_sendpage(struct sock *sk, struct page *page,
1205 int offset, size_t size, int flags)
1207 int ret;
1209 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1210 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1211 return -ENOTSUPP;
1213 lock_sock(sk);
1214 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1215 release_sock(sk);
1216 return ret;
1219 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1220 int flags, long timeo, int *err)
1222 struct tls_context *tls_ctx = tls_get_ctx(sk);
1223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1224 struct sk_buff *skb;
1225 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1227 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1228 if (sk->sk_err) {
1229 *err = sock_error(sk);
1230 return NULL;
1233 if (sk->sk_shutdown & RCV_SHUTDOWN)
1234 return NULL;
1236 if (sock_flag(sk, SOCK_DONE))
1237 return NULL;
1239 if ((flags & MSG_DONTWAIT) || !timeo) {
1240 *err = -EAGAIN;
1241 return NULL;
1244 add_wait_queue(sk_sleep(sk), &wait);
1245 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1246 sk_wait_event(sk, &timeo,
1247 ctx->recv_pkt != skb ||
1248 !sk_psock_queue_empty(psock),
1249 &wait);
1250 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1251 remove_wait_queue(sk_sleep(sk), &wait);
1253 /* Handle signals */
1254 if (signal_pending(current)) {
1255 *err = sock_intr_errno(timeo);
1256 return NULL;
1260 return skb;
1263 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1264 int length, int *pages_used,
1265 unsigned int *size_used,
1266 struct scatterlist *to,
1267 int to_max_pages)
1269 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1270 struct page *pages[MAX_SKB_FRAGS];
1271 unsigned int size = *size_used;
1272 ssize_t copied, use;
1273 size_t offset;
1275 while (length > 0) {
1276 i = 0;
1277 maxpages = to_max_pages - num_elem;
1278 if (maxpages == 0) {
1279 rc = -EFAULT;
1280 goto out;
1282 copied = iov_iter_get_pages(from, pages,
1283 length,
1284 maxpages, &offset);
1285 if (copied <= 0) {
1286 rc = -EFAULT;
1287 goto out;
1290 iov_iter_advance(from, copied);
1292 length -= copied;
1293 size += copied;
1294 while (copied) {
1295 use = min_t(int, copied, PAGE_SIZE - offset);
1297 sg_set_page(&to[num_elem],
1298 pages[i], use, offset);
1299 sg_unmark_end(&to[num_elem]);
1300 /* We do not uncharge memory from this API */
1302 offset = 0;
1303 copied -= use;
1305 i++;
1306 num_elem++;
1309 /* Mark the end in the last sg entry if newly added */
1310 if (num_elem > *pages_used)
1311 sg_mark_end(&to[num_elem - 1]);
1312 out:
1313 if (rc)
1314 iov_iter_revert(from, size - *size_used);
1315 *size_used = size;
1316 *pages_used = num_elem;
1318 return rc;
1321 /* This function decrypts the input skb into either out_iov or in out_sg
1322 * or in skb buffers itself. The input parameter 'zc' indicates if
1323 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1324 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1325 * NULL, then the decryption happens inside skb buffers itself, i.e.
1326 * zero-copy gets disabled and 'zc' is updated.
1329 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1330 struct iov_iter *out_iov,
1331 struct scatterlist *out_sg,
1332 int *chunk, bool *zc, bool async)
1334 struct tls_context *tls_ctx = tls_get_ctx(sk);
1335 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1336 struct tls_prot_info *prot = &tls_ctx->prot_info;
1337 struct strp_msg *rxm = strp_msg(skb);
1338 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1339 struct aead_request *aead_req;
1340 struct sk_buff *unused;
1341 u8 *aad, *iv, *mem = NULL;
1342 struct scatterlist *sgin = NULL;
1343 struct scatterlist *sgout = NULL;
1344 const int data_len = rxm->full_len - prot->overhead_size +
1345 prot->tail_size;
1347 if (*zc && (out_iov || out_sg)) {
1348 if (out_iov)
1349 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1350 else
1351 n_sgout = sg_nents(out_sg);
1352 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1353 rxm->full_len - prot->prepend_size);
1354 } else {
1355 n_sgout = 0;
1356 *zc = false;
1357 n_sgin = skb_cow_data(skb, 0, &unused);
1360 if (n_sgin < 1)
1361 return -EBADMSG;
1363 /* Increment to accommodate AAD */
1364 n_sgin = n_sgin + 1;
1366 nsg = n_sgin + n_sgout;
1368 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1369 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1370 mem_size = mem_size + prot->aad_size;
1371 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1373 /* Allocate a single block of memory which contains
1374 * aead_req || sgin[] || sgout[] || aad || iv.
1375 * This order achieves correct alignment for aead_req, sgin, sgout.
1377 mem = kmalloc(mem_size, sk->sk_allocation);
1378 if (!mem)
1379 return -ENOMEM;
1381 /* Segment the allocated memory */
1382 aead_req = (struct aead_request *)mem;
1383 sgin = (struct scatterlist *)(mem + aead_size);
1384 sgout = sgin + n_sgin;
1385 aad = (u8 *)(sgout + n_sgout);
1386 iv = aad + prot->aad_size;
1388 /* Prepare IV */
1389 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1390 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1391 prot->iv_size);
1392 if (err < 0) {
1393 kfree(mem);
1394 return err;
1396 if (prot->version == TLS_1_3_VERSION)
1397 memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv));
1398 else
1399 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1401 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1403 /* Prepare AAD */
1404 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1405 prot->tail_size,
1406 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1407 ctx->control, prot->version);
1409 /* Prepare sgin */
1410 sg_init_table(sgin, n_sgin);
1411 sg_set_buf(&sgin[0], aad, prot->aad_size);
1412 err = skb_to_sgvec(skb, &sgin[1],
1413 rxm->offset + prot->prepend_size,
1414 rxm->full_len - prot->prepend_size);
1415 if (err < 0) {
1416 kfree(mem);
1417 return err;
1420 if (n_sgout) {
1421 if (out_iov) {
1422 sg_init_table(sgout, n_sgout);
1423 sg_set_buf(&sgout[0], aad, prot->aad_size);
1425 *chunk = 0;
1426 err = tls_setup_from_iter(sk, out_iov, data_len,
1427 &pages, chunk, &sgout[1],
1428 (n_sgout - 1));
1429 if (err < 0)
1430 goto fallback_to_reg_recv;
1431 } else if (out_sg) {
1432 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1433 } else {
1434 goto fallback_to_reg_recv;
1436 } else {
1437 fallback_to_reg_recv:
1438 sgout = sgin;
1439 pages = 0;
1440 *chunk = data_len;
1441 *zc = false;
1444 /* Prepare and submit AEAD request */
1445 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1446 data_len, aead_req, async);
1447 if (err == -EINPROGRESS)
1448 return err;
1450 /* Release the pages in case iov was mapped to pages */
1451 for (; pages > 0; pages--)
1452 put_page(sg_page(&sgout[pages]));
1454 kfree(mem);
1455 return err;
1458 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1459 struct iov_iter *dest, int *chunk, bool *zc,
1460 bool async)
1462 struct tls_context *tls_ctx = tls_get_ctx(sk);
1463 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1464 struct tls_prot_info *prot = &tls_ctx->prot_info;
1465 int version = prot->version;
1466 struct strp_msg *rxm = strp_msg(skb);
1467 int err = 0;
1469 if (!ctx->decrypted) {
1470 #ifdef CONFIG_TLS_DEVICE
1471 err = tls_device_decrypted(sk, skb);
1472 if (err < 0)
1473 return err;
1474 #endif
1475 /* Still not decrypted after tls_device */
1476 if (!ctx->decrypted) {
1477 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1478 async);
1479 if (err < 0) {
1480 if (err == -EINPROGRESS)
1481 tls_advance_record_sn(sk, &tls_ctx->rx,
1482 version);
1484 return err;
1486 } else {
1487 *zc = false;
1490 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
1491 rxm->offset += prot->prepend_size;
1492 rxm->full_len -= prot->overhead_size;
1493 tls_advance_record_sn(sk, &tls_ctx->rx, version);
1494 ctx->decrypted = true;
1495 ctx->saved_data_ready(sk);
1496 } else {
1497 *zc = false;
1500 return err;
1503 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1504 struct scatterlist *sgout)
1506 bool zc = true;
1507 int chunk;
1509 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1512 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1513 unsigned int len)
1515 struct tls_context *tls_ctx = tls_get_ctx(sk);
1516 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1518 if (skb) {
1519 struct strp_msg *rxm = strp_msg(skb);
1521 if (len < rxm->full_len) {
1522 rxm->offset += len;
1523 rxm->full_len -= len;
1524 return false;
1526 kfree_skb(skb);
1529 /* Finished with message */
1530 ctx->recv_pkt = NULL;
1531 __strp_unpause(&ctx->strp);
1533 return true;
1536 /* This function traverses the rx_list in tls receive context to copies the
1537 * decrypted records into the buffer provided by caller zero copy is not
1538 * true. Further, the records are removed from the rx_list if it is not a peek
1539 * case and the record has been consumed completely.
1541 static int process_rx_list(struct tls_sw_context_rx *ctx,
1542 struct msghdr *msg,
1543 u8 *control,
1544 bool *cmsg,
1545 size_t skip,
1546 size_t len,
1547 bool zc,
1548 bool is_peek)
1550 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1551 u8 ctrl = *control;
1552 u8 msgc = *cmsg;
1553 struct tls_msg *tlm;
1554 ssize_t copied = 0;
1556 /* Set the record type in 'control' if caller didn't pass it */
1557 if (!ctrl && skb) {
1558 tlm = tls_msg(skb);
1559 ctrl = tlm->control;
1562 while (skip && skb) {
1563 struct strp_msg *rxm = strp_msg(skb);
1564 tlm = tls_msg(skb);
1566 /* Cannot process a record of different type */
1567 if (ctrl != tlm->control)
1568 return 0;
1570 if (skip < rxm->full_len)
1571 break;
1573 skip = skip - rxm->full_len;
1574 skb = skb_peek_next(skb, &ctx->rx_list);
1577 while (len && skb) {
1578 struct sk_buff *next_skb;
1579 struct strp_msg *rxm = strp_msg(skb);
1580 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1582 tlm = tls_msg(skb);
1584 /* Cannot process a record of different type */
1585 if (ctrl != tlm->control)
1586 return 0;
1588 /* Set record type if not already done. For a non-data record,
1589 * do not proceed if record type could not be copied.
1591 if (!msgc) {
1592 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1593 sizeof(ctrl), &ctrl);
1594 msgc = true;
1595 if (ctrl != TLS_RECORD_TYPE_DATA) {
1596 if (cerr || msg->msg_flags & MSG_CTRUNC)
1597 return -EIO;
1599 *cmsg = msgc;
1603 if (!zc || (rxm->full_len - skip) > len) {
1604 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1605 msg, chunk);
1606 if (err < 0)
1607 return err;
1610 len = len - chunk;
1611 copied = copied + chunk;
1613 /* Consume the data from record if it is non-peek case*/
1614 if (!is_peek) {
1615 rxm->offset = rxm->offset + chunk;
1616 rxm->full_len = rxm->full_len - chunk;
1618 /* Return if there is unconsumed data in the record */
1619 if (rxm->full_len - skip)
1620 break;
1623 /* The remaining skip-bytes must lie in 1st record in rx_list.
1624 * So from the 2nd record, 'skip' should be 0.
1626 skip = 0;
1628 if (msg)
1629 msg->msg_flags |= MSG_EOR;
1631 next_skb = skb_peek_next(skb, &ctx->rx_list);
1633 if (!is_peek) {
1634 skb_unlink(skb, &ctx->rx_list);
1635 kfree_skb(skb);
1638 skb = next_skb;
1641 *control = ctrl;
1642 return copied;
1645 int tls_sw_recvmsg(struct sock *sk,
1646 struct msghdr *msg,
1647 size_t len,
1648 int nonblock,
1649 int flags,
1650 int *addr_len)
1652 struct tls_context *tls_ctx = tls_get_ctx(sk);
1653 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1654 struct tls_prot_info *prot = &tls_ctx->prot_info;
1655 struct sk_psock *psock;
1656 unsigned char control = 0;
1657 ssize_t decrypted = 0;
1658 struct strp_msg *rxm;
1659 struct tls_msg *tlm;
1660 struct sk_buff *skb;
1661 ssize_t copied = 0;
1662 bool cmsg = false;
1663 int target, err = 0;
1664 long timeo;
1665 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1666 bool is_peek = flags & MSG_PEEK;
1667 int num_async = 0;
1669 flags |= nonblock;
1671 if (unlikely(flags & MSG_ERRQUEUE))
1672 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1674 psock = sk_psock_get(sk);
1675 lock_sock(sk);
1677 /* Process pending decrypted records. It must be non-zero-copy */
1678 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1679 is_peek);
1680 if (err < 0) {
1681 tls_err_abort(sk, err);
1682 goto end;
1683 } else {
1684 copied = err;
1687 if (len <= copied)
1688 goto recv_end;
1690 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1691 len = len - copied;
1692 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1694 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1695 bool retain_skb = false;
1696 bool zc = false;
1697 int to_decrypt;
1698 int chunk = 0;
1699 bool async_capable;
1700 bool async = false;
1702 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1703 if (!skb) {
1704 if (psock) {
1705 int ret = __tcp_bpf_recvmsg(sk, psock,
1706 msg, len, flags);
1708 if (ret > 0) {
1709 decrypted += ret;
1710 len -= ret;
1711 continue;
1714 goto recv_end;
1715 } else {
1716 tlm = tls_msg(skb);
1717 if (prot->version == TLS_1_3_VERSION)
1718 tlm->control = 0;
1719 else
1720 tlm->control = ctx->control;
1723 rxm = strp_msg(skb);
1725 to_decrypt = rxm->full_len - prot->overhead_size;
1727 if (to_decrypt <= len && !is_kvec && !is_peek &&
1728 ctx->control == TLS_RECORD_TYPE_DATA &&
1729 prot->version != TLS_1_3_VERSION)
1730 zc = true;
1732 /* Do not use async mode if record is non-data */
1733 if (ctx->control == TLS_RECORD_TYPE_DATA)
1734 async_capable = ctx->async_capable;
1735 else
1736 async_capable = false;
1738 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1739 &chunk, &zc, async_capable);
1740 if (err < 0 && err != -EINPROGRESS) {
1741 tls_err_abort(sk, EBADMSG);
1742 goto recv_end;
1745 if (err == -EINPROGRESS) {
1746 async = true;
1747 num_async++;
1748 } else if (prot->version == TLS_1_3_VERSION) {
1749 tlm->control = ctx->control;
1752 /* If the type of records being processed is not known yet,
1753 * set it to record type just dequeued. If it is already known,
1754 * but does not match the record type just dequeued, go to end.
1755 * We always get record type here since for tls1.2, record type
1756 * is known just after record is dequeued from stream parser.
1757 * For tls1.3, we disable async.
1760 if (!control)
1761 control = tlm->control;
1762 else if (control != tlm->control)
1763 goto recv_end;
1765 if (!cmsg) {
1766 int cerr;
1768 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1769 sizeof(control), &control);
1770 cmsg = true;
1771 if (control != TLS_RECORD_TYPE_DATA) {
1772 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1773 err = -EIO;
1774 goto recv_end;
1779 if (async)
1780 goto pick_next_record;
1782 if (!zc) {
1783 if (rxm->full_len > len) {
1784 retain_skb = true;
1785 chunk = len;
1786 } else {
1787 chunk = rxm->full_len;
1790 err = skb_copy_datagram_msg(skb, rxm->offset,
1791 msg, chunk);
1792 if (err < 0)
1793 goto recv_end;
1795 if (!is_peek) {
1796 rxm->offset = rxm->offset + chunk;
1797 rxm->full_len = rxm->full_len - chunk;
1801 pick_next_record:
1802 if (chunk > len)
1803 chunk = len;
1805 decrypted += chunk;
1806 len -= chunk;
1808 /* For async or peek case, queue the current skb */
1809 if (async || is_peek || retain_skb) {
1810 skb_queue_tail(&ctx->rx_list, skb);
1811 skb = NULL;
1814 if (tls_sw_advance_skb(sk, skb, chunk)) {
1815 /* Return full control message to
1816 * userspace before trying to parse
1817 * another message type
1819 msg->msg_flags |= MSG_EOR;
1820 if (ctx->control != TLS_RECORD_TYPE_DATA)
1821 goto recv_end;
1822 } else {
1823 break;
1827 recv_end:
1828 if (num_async) {
1829 /* Wait for all previously submitted records to be decrypted */
1830 smp_store_mb(ctx->async_notify, true);
1831 if (atomic_read(&ctx->decrypt_pending)) {
1832 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1833 if (err) {
1834 /* one of async decrypt failed */
1835 tls_err_abort(sk, err);
1836 copied = 0;
1837 decrypted = 0;
1838 goto end;
1840 } else {
1841 reinit_completion(&ctx->async_wait.completion);
1843 WRITE_ONCE(ctx->async_notify, false);
1845 /* Drain records from the rx_list & copy if required */
1846 if (is_peek || is_kvec)
1847 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1848 decrypted, false, is_peek);
1849 else
1850 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1851 decrypted, true, is_peek);
1852 if (err < 0) {
1853 tls_err_abort(sk, err);
1854 copied = 0;
1855 goto end;
1859 copied += decrypted;
1861 end:
1862 release_sock(sk);
1863 if (psock)
1864 sk_psock_put(sk, psock);
1865 return copied ? : err;
1868 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1869 struct pipe_inode_info *pipe,
1870 size_t len, unsigned int flags)
1872 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1873 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1874 struct strp_msg *rxm = NULL;
1875 struct sock *sk = sock->sk;
1876 struct sk_buff *skb;
1877 ssize_t copied = 0;
1878 int err = 0;
1879 long timeo;
1880 int chunk;
1881 bool zc = false;
1883 lock_sock(sk);
1885 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1887 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1888 if (!skb)
1889 goto splice_read_end;
1891 if (!ctx->decrypted) {
1892 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1894 /* splice does not support reading control messages */
1895 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1896 err = -ENOTSUPP;
1897 goto splice_read_end;
1900 if (err < 0) {
1901 tls_err_abort(sk, EBADMSG);
1902 goto splice_read_end;
1904 ctx->decrypted = true;
1906 rxm = strp_msg(skb);
1908 chunk = min_t(unsigned int, rxm->full_len, len);
1909 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1910 if (copied < 0)
1911 goto splice_read_end;
1913 if (likely(!(flags & MSG_PEEK)))
1914 tls_sw_advance_skb(sk, skb, copied);
1916 splice_read_end:
1917 release_sock(sk);
1918 return copied ? : err;
1921 bool tls_sw_stream_read(const struct sock *sk)
1923 struct tls_context *tls_ctx = tls_get_ctx(sk);
1924 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1925 bool ingress_empty = true;
1926 struct sk_psock *psock;
1928 rcu_read_lock();
1929 psock = sk_psock(sk);
1930 if (psock)
1931 ingress_empty = list_empty(&psock->ingress_msg);
1932 rcu_read_unlock();
1934 return !ingress_empty || ctx->recv_pkt;
1937 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1939 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1940 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1941 struct tls_prot_info *prot = &tls_ctx->prot_info;
1942 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1943 struct strp_msg *rxm = strp_msg(skb);
1944 size_t cipher_overhead;
1945 size_t data_len = 0;
1946 int ret;
1948 /* Verify that we have a full TLS header, or wait for more data */
1949 if (rxm->offset + prot->prepend_size > skb->len)
1950 return 0;
1952 /* Sanity-check size of on-stack buffer. */
1953 if (WARN_ON(prot->prepend_size > sizeof(header))) {
1954 ret = -EINVAL;
1955 goto read_failure;
1958 /* Linearize header to local buffer */
1959 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1961 if (ret < 0)
1962 goto read_failure;
1964 ctx->control = header[0];
1966 data_len = ((header[4] & 0xFF) | (header[3] << 8));
1968 cipher_overhead = prot->tag_size;
1969 if (prot->version != TLS_1_3_VERSION)
1970 cipher_overhead += prot->iv_size;
1972 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
1973 prot->tail_size) {
1974 ret = -EMSGSIZE;
1975 goto read_failure;
1977 if (data_len < cipher_overhead) {
1978 ret = -EBADMSG;
1979 goto read_failure;
1982 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
1983 if (header[1] != TLS_1_2_VERSION_MINOR ||
1984 header[2] != TLS_1_2_VERSION_MAJOR) {
1985 ret = -EINVAL;
1986 goto read_failure;
1988 #ifdef CONFIG_TLS_DEVICE
1989 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1990 *(u64*)tls_ctx->rx.rec_seq);
1991 #endif
1992 return data_len + TLS_HEADER_SIZE;
1994 read_failure:
1995 tls_err_abort(strp->sk, ret);
1997 return ret;
2000 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2002 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2003 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2005 ctx->decrypted = false;
2007 ctx->recv_pkt = skb;
2008 strp_pause(strp);
2010 ctx->saved_data_ready(strp->sk);
2013 static void tls_data_ready(struct sock *sk)
2015 struct tls_context *tls_ctx = tls_get_ctx(sk);
2016 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2017 struct sk_psock *psock;
2019 strp_data_ready(&ctx->strp);
2021 psock = sk_psock_get(sk);
2022 if (psock && !list_empty(&psock->ingress_msg)) {
2023 ctx->saved_data_ready(sk);
2024 sk_psock_put(sk, psock);
2028 void tls_sw_free_resources_tx(struct sock *sk)
2030 struct tls_context *tls_ctx = tls_get_ctx(sk);
2031 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2032 struct tls_rec *rec, *tmp;
2034 /* Wait for any pending async encryptions to complete */
2035 smp_store_mb(ctx->async_notify, true);
2036 if (atomic_read(&ctx->encrypt_pending))
2037 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2039 release_sock(sk);
2040 cancel_delayed_work_sync(&ctx->tx_work.work);
2041 lock_sock(sk);
2043 /* Tx whatever records we can transmit and abandon the rest */
2044 tls_tx_records(sk, -1);
2046 /* Free up un-sent records in tx_list. First, free
2047 * the partially sent record if any at head of tx_list.
2049 if (tls_free_partial_record(sk, tls_ctx)) {
2050 rec = list_first_entry(&ctx->tx_list,
2051 struct tls_rec, list);
2052 list_del(&rec->list);
2053 sk_msg_free(sk, &rec->msg_plaintext);
2054 kfree(rec);
2057 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2058 list_del(&rec->list);
2059 sk_msg_free(sk, &rec->msg_encrypted);
2060 sk_msg_free(sk, &rec->msg_plaintext);
2061 kfree(rec);
2064 crypto_free_aead(ctx->aead_send);
2065 tls_free_open_rec(sk);
2067 kfree(ctx);
2070 void tls_sw_release_resources_rx(struct sock *sk)
2072 struct tls_context *tls_ctx = tls_get_ctx(sk);
2073 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2075 kfree(tls_ctx->rx.rec_seq);
2076 kfree(tls_ctx->rx.iv);
2078 if (ctx->aead_recv) {
2079 kfree_skb(ctx->recv_pkt);
2080 ctx->recv_pkt = NULL;
2081 skb_queue_purge(&ctx->rx_list);
2082 crypto_free_aead(ctx->aead_recv);
2083 strp_stop(&ctx->strp);
2084 write_lock_bh(&sk->sk_callback_lock);
2085 sk->sk_data_ready = ctx->saved_data_ready;
2086 write_unlock_bh(&sk->sk_callback_lock);
2087 release_sock(sk);
2088 strp_done(&ctx->strp);
2089 lock_sock(sk);
2093 void tls_sw_free_resources_rx(struct sock *sk)
2095 struct tls_context *tls_ctx = tls_get_ctx(sk);
2096 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2098 tls_sw_release_resources_rx(sk);
2100 kfree(ctx);
2103 /* The work handler to transmitt the encrypted records in tx_list */
2104 static void tx_work_handler(struct work_struct *work)
2106 struct delayed_work *delayed_work = to_delayed_work(work);
2107 struct tx_work *tx_work = container_of(delayed_work,
2108 struct tx_work, work);
2109 struct sock *sk = tx_work->sk;
2110 struct tls_context *tls_ctx = tls_get_ctx(sk);
2111 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2113 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2114 return;
2116 lock_sock(sk);
2117 tls_tx_records(sk, -1);
2118 release_sock(sk);
2121 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2123 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2125 /* Schedule the transmission if tx list is ready */
2126 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2127 /* Schedule the transmission */
2128 if (!test_and_set_bit(BIT_TX_SCHEDULED,
2129 &tx_ctx->tx_bitmask))
2130 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2134 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2136 struct tls_context *tls_ctx = tls_get_ctx(sk);
2137 struct tls_prot_info *prot = &tls_ctx->prot_info;
2138 struct tls_crypto_info *crypto_info;
2139 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2140 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2141 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2142 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2143 struct cipher_context *cctx;
2144 struct crypto_aead **aead;
2145 struct strp_callbacks cb;
2146 u16 nonce_size, tag_size, iv_size, rec_seq_size;
2147 struct crypto_tfm *tfm;
2148 char *iv, *rec_seq, *key, *salt;
2149 size_t keysize;
2150 int rc = 0;
2152 if (!ctx) {
2153 rc = -EINVAL;
2154 goto out;
2157 if (tx) {
2158 if (!ctx->priv_ctx_tx) {
2159 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2160 if (!sw_ctx_tx) {
2161 rc = -ENOMEM;
2162 goto out;
2164 ctx->priv_ctx_tx = sw_ctx_tx;
2165 } else {
2166 sw_ctx_tx =
2167 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2169 } else {
2170 if (!ctx->priv_ctx_rx) {
2171 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2172 if (!sw_ctx_rx) {
2173 rc = -ENOMEM;
2174 goto out;
2176 ctx->priv_ctx_rx = sw_ctx_rx;
2177 } else {
2178 sw_ctx_rx =
2179 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2183 if (tx) {
2184 crypto_init_wait(&sw_ctx_tx->async_wait);
2185 crypto_info = &ctx->crypto_send.info;
2186 cctx = &ctx->tx;
2187 aead = &sw_ctx_tx->aead_send;
2188 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2189 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2190 sw_ctx_tx->tx_work.sk = sk;
2191 } else {
2192 crypto_init_wait(&sw_ctx_rx->async_wait);
2193 crypto_info = &ctx->crypto_recv.info;
2194 cctx = &ctx->rx;
2195 skb_queue_head_init(&sw_ctx_rx->rx_list);
2196 aead = &sw_ctx_rx->aead_recv;
2199 switch (crypto_info->cipher_type) {
2200 case TLS_CIPHER_AES_GCM_128: {
2201 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2202 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2203 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2204 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2205 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2206 rec_seq =
2207 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2208 gcm_128_info =
2209 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2210 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2211 key = gcm_128_info->key;
2212 salt = gcm_128_info->salt;
2213 break;
2215 case TLS_CIPHER_AES_GCM_256: {
2216 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2217 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2218 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2219 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2220 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2221 rec_seq =
2222 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2223 gcm_256_info =
2224 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2225 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2226 key = gcm_256_info->key;
2227 salt = gcm_256_info->salt;
2228 break;
2230 default:
2231 rc = -EINVAL;
2232 goto free_priv;
2235 /* Sanity-check the IV size for stack allocations. */
2236 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2237 rc = -EINVAL;
2238 goto free_priv;
2241 if (crypto_info->version == TLS_1_3_VERSION) {
2242 nonce_size = 0;
2243 prot->aad_size = TLS_HEADER_SIZE;
2244 prot->tail_size = 1;
2245 } else {
2246 prot->aad_size = TLS_AAD_SPACE_SIZE;
2247 prot->tail_size = 0;
2250 prot->version = crypto_info->version;
2251 prot->cipher_type = crypto_info->cipher_type;
2252 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2253 prot->tag_size = tag_size;
2254 prot->overhead_size = prot->prepend_size +
2255 prot->tag_size + prot->tail_size;
2256 prot->iv_size = iv_size;
2257 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
2258 GFP_KERNEL);
2259 if (!cctx->iv) {
2260 rc = -ENOMEM;
2261 goto free_priv;
2263 /* Note: 128 & 256 bit salt are the same size */
2264 memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
2265 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
2266 prot->rec_seq_size = rec_seq_size;
2267 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2268 if (!cctx->rec_seq) {
2269 rc = -ENOMEM;
2270 goto free_iv;
2273 if (!*aead) {
2274 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
2275 if (IS_ERR(*aead)) {
2276 rc = PTR_ERR(*aead);
2277 *aead = NULL;
2278 goto free_rec_seq;
2282 ctx->push_pending_record = tls_sw_push_pending_record;
2284 rc = crypto_aead_setkey(*aead, key, keysize);
2286 if (rc)
2287 goto free_aead;
2289 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2290 if (rc)
2291 goto free_aead;
2293 if (sw_ctx_rx) {
2294 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2296 if (crypto_info->version == TLS_1_3_VERSION)
2297 sw_ctx_rx->async_capable = false;
2298 else
2299 sw_ctx_rx->async_capable =
2300 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2302 /* Set up strparser */
2303 memset(&cb, 0, sizeof(cb));
2304 cb.rcv_msg = tls_queue;
2305 cb.parse_msg = tls_read_size;
2307 strp_init(&sw_ctx_rx->strp, sk, &cb);
2309 write_lock_bh(&sk->sk_callback_lock);
2310 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2311 sk->sk_data_ready = tls_data_ready;
2312 write_unlock_bh(&sk->sk_callback_lock);
2314 strp_check_rcv(&sw_ctx_rx->strp);
2317 goto out;
2319 free_aead:
2320 crypto_free_aead(*aead);
2321 *aead = NULL;
2322 free_rec_seq:
2323 kfree(cctx->rec_seq);
2324 cctx->rec_seq = NULL;
2325 free_iv:
2326 kfree(cctx->iv);
2327 cctx->iv = NULL;
2328 free_priv:
2329 if (tx) {
2330 kfree(ctx->priv_ctx_tx);
2331 ctx->priv_ctx_tx = NULL;
2332 } else {
2333 kfree(ctx->priv_ctx_rx);
2334 ctx->priv_ctx_rx = NULL;
2336 out:
2337 return rc;