Linux 5.1.15
[linux/fpc-iii.git] / net / vmw_vsock / af_vsock.c
blobd892000770cf6e9d658096607ff41c33acd49d34
1 /*
2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the TCP_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Lock ordering for pending or accept queue sockets is:
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/random.h>
111 #include <linux/skbuff.h>
112 #include <linux/smp.h>
113 #include <linux/socket.h>
114 #include <linux/stddef.h>
115 #include <linux/unistd.h>
116 #include <linux/wait.h>
117 #include <linux/workqueue.h>
118 #include <net/sock.h>
119 #include <net/af_vsock.h>
121 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122 static void vsock_sk_destruct(struct sock *sk);
123 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
125 /* Protocol family. */
126 static struct proto vsock_proto = {
127 .name = "AF_VSOCK",
128 .owner = THIS_MODULE,
129 .obj_size = sizeof(struct vsock_sock),
132 /* The default peer timeout indicates how long we will wait for a peer response
133 * to a control message.
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 static const struct vsock_transport *transport;
138 static DEFINE_MUTEX(vsock_register_mutex);
140 /**** EXPORTS ****/
142 /* Get the ID of the local context. This is transport dependent. */
144 int vm_sockets_get_local_cid(void)
146 return transport->get_local_cid();
148 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
150 /**** UTILS ****/
152 /* Each bound VSocket is stored in the bind hash table and each connected
153 * VSocket is stored in the connected hash table.
155 * Unbound sockets are all put on the same list attached to the end of the hash
156 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
157 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158 * represents the list that addr hashes to).
160 * Specifically, we initialize the vsock_bind_table array to a size of
161 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
164 * mods with VSOCK_HASH_SIZE to ensure this.
166 #define MAX_PORT_RETRIES 24
168 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
172 /* XXX This can probably be implemented in a better way. */
173 #define VSOCK_CONN_HASH(src, dst) \
174 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175 #define vsock_connected_sockets(src, dst) \
176 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177 #define vsock_connected_sockets_vsk(vsk) \
178 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181 EXPORT_SYMBOL_GPL(vsock_bind_table);
182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 EXPORT_SYMBOL_GPL(vsock_connected_table);
184 DEFINE_SPINLOCK(vsock_table_lock);
185 EXPORT_SYMBOL_GPL(vsock_table_lock);
187 /* Autobind this socket to the local address if necessary. */
188 static int vsock_auto_bind(struct vsock_sock *vsk)
190 struct sock *sk = sk_vsock(vsk);
191 struct sockaddr_vm local_addr;
193 if (vsock_addr_bound(&vsk->local_addr))
194 return 0;
195 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196 return __vsock_bind(sk, &local_addr);
199 static int __init vsock_init_tables(void)
201 int i;
203 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204 INIT_LIST_HEAD(&vsock_bind_table[i]);
206 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207 INIT_LIST_HEAD(&vsock_connected_table[i]);
208 return 0;
211 static void __vsock_insert_bound(struct list_head *list,
212 struct vsock_sock *vsk)
214 sock_hold(&vsk->sk);
215 list_add(&vsk->bound_table, list);
218 static void __vsock_insert_connected(struct list_head *list,
219 struct vsock_sock *vsk)
221 sock_hold(&vsk->sk);
222 list_add(&vsk->connected_table, list);
225 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 list_del_init(&vsk->bound_table);
228 sock_put(&vsk->sk);
231 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 list_del_init(&vsk->connected_table);
234 sock_put(&vsk->sk);
237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 struct vsock_sock *vsk;
241 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
242 if (addr->svm_port == vsk->local_addr.svm_port)
243 return sk_vsock(vsk);
245 return NULL;
248 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
249 struct sockaddr_vm *dst)
251 struct vsock_sock *vsk;
253 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
254 connected_table) {
255 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
256 dst->svm_port == vsk->local_addr.svm_port) {
257 return sk_vsock(vsk);
261 return NULL;
264 static void vsock_insert_unbound(struct vsock_sock *vsk)
266 spin_lock_bh(&vsock_table_lock);
267 __vsock_insert_bound(vsock_unbound_sockets, vsk);
268 spin_unlock_bh(&vsock_table_lock);
271 void vsock_insert_connected(struct vsock_sock *vsk)
273 struct list_head *list = vsock_connected_sockets(
274 &vsk->remote_addr, &vsk->local_addr);
276 spin_lock_bh(&vsock_table_lock);
277 __vsock_insert_connected(list, vsk);
278 spin_unlock_bh(&vsock_table_lock);
280 EXPORT_SYMBOL_GPL(vsock_insert_connected);
282 void vsock_remove_bound(struct vsock_sock *vsk)
284 spin_lock_bh(&vsock_table_lock);
285 __vsock_remove_bound(vsk);
286 spin_unlock_bh(&vsock_table_lock);
288 EXPORT_SYMBOL_GPL(vsock_remove_bound);
290 void vsock_remove_connected(struct vsock_sock *vsk)
292 spin_lock_bh(&vsock_table_lock);
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300 struct sock *sk;
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
307 spin_unlock_bh(&vsock_table_lock);
309 return sk;
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
316 struct sock *sk;
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
323 spin_unlock_bh(&vsock_table_lock);
325 return sk;
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329 static bool vsock_in_bound_table(struct vsock_sock *vsk)
331 bool ret;
333 spin_lock_bh(&vsock_table_lock);
334 ret = __vsock_in_bound_table(vsk);
335 spin_unlock_bh(&vsock_table_lock);
337 return ret;
340 static bool vsock_in_connected_table(struct vsock_sock *vsk)
342 bool ret;
344 spin_lock_bh(&vsock_table_lock);
345 ret = __vsock_in_connected_table(vsk);
346 spin_unlock_bh(&vsock_table_lock);
348 return ret;
351 void vsock_remove_sock(struct vsock_sock *vsk)
353 if (vsock_in_bound_table(vsk))
354 vsock_remove_bound(vsk);
356 if (vsock_in_connected_table(vsk))
357 vsock_remove_connected(vsk);
359 EXPORT_SYMBOL_GPL(vsock_remove_sock);
361 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
363 int i;
365 spin_lock_bh(&vsock_table_lock);
367 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
368 struct vsock_sock *vsk;
369 list_for_each_entry(vsk, &vsock_connected_table[i],
370 connected_table)
371 fn(sk_vsock(vsk));
374 spin_unlock_bh(&vsock_table_lock);
376 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
378 void vsock_add_pending(struct sock *listener, struct sock *pending)
380 struct vsock_sock *vlistener;
381 struct vsock_sock *vpending;
383 vlistener = vsock_sk(listener);
384 vpending = vsock_sk(pending);
386 sock_hold(pending);
387 sock_hold(listener);
388 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
390 EXPORT_SYMBOL_GPL(vsock_add_pending);
392 void vsock_remove_pending(struct sock *listener, struct sock *pending)
394 struct vsock_sock *vpending = vsock_sk(pending);
396 list_del_init(&vpending->pending_links);
397 sock_put(listener);
398 sock_put(pending);
400 EXPORT_SYMBOL_GPL(vsock_remove_pending);
402 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
404 struct vsock_sock *vlistener;
405 struct vsock_sock *vconnected;
407 vlistener = vsock_sk(listener);
408 vconnected = vsock_sk(connected);
410 sock_hold(connected);
411 sock_hold(listener);
412 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
414 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
416 static struct sock *vsock_dequeue_accept(struct sock *listener)
418 struct vsock_sock *vlistener;
419 struct vsock_sock *vconnected;
421 vlistener = vsock_sk(listener);
423 if (list_empty(&vlistener->accept_queue))
424 return NULL;
426 vconnected = list_entry(vlistener->accept_queue.next,
427 struct vsock_sock, accept_queue);
429 list_del_init(&vconnected->accept_queue);
430 sock_put(listener);
431 /* The caller will need a reference on the connected socket so we let
432 * it call sock_put().
435 return sk_vsock(vconnected);
438 static bool vsock_is_accept_queue_empty(struct sock *sk)
440 struct vsock_sock *vsk = vsock_sk(sk);
441 return list_empty(&vsk->accept_queue);
444 static bool vsock_is_pending(struct sock *sk)
446 struct vsock_sock *vsk = vsock_sk(sk);
447 return !list_empty(&vsk->pending_links);
450 static int vsock_send_shutdown(struct sock *sk, int mode)
452 return transport->shutdown(vsock_sk(sk), mode);
455 static void vsock_pending_work(struct work_struct *work)
457 struct sock *sk;
458 struct sock *listener;
459 struct vsock_sock *vsk;
460 bool cleanup;
462 vsk = container_of(work, struct vsock_sock, pending_work.work);
463 sk = sk_vsock(vsk);
464 listener = vsk->listener;
465 cleanup = true;
467 lock_sock(listener);
468 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
470 if (vsock_is_pending(sk)) {
471 vsock_remove_pending(listener, sk);
473 listener->sk_ack_backlog--;
474 } else if (!vsk->rejected) {
475 /* We are not on the pending list and accept() did not reject
476 * us, so we must have been accepted by our user process. We
477 * just need to drop our references to the sockets and be on
478 * our way.
480 cleanup = false;
481 goto out;
484 /* We need to remove ourself from the global connected sockets list so
485 * incoming packets can't find this socket, and to reduce the reference
486 * count.
488 if (vsock_in_connected_table(vsk))
489 vsock_remove_connected(vsk);
491 sk->sk_state = TCP_CLOSE;
493 out:
494 release_sock(sk);
495 release_sock(listener);
496 if (cleanup)
497 sock_put(sk);
499 sock_put(sk);
500 sock_put(listener);
503 /**** SOCKET OPERATIONS ****/
505 static int __vsock_bind_stream(struct vsock_sock *vsk,
506 struct sockaddr_vm *addr)
508 static u32 port;
509 struct sockaddr_vm new_addr;
511 if (!port)
512 port = LAST_RESERVED_PORT + 1 +
513 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
515 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
517 if (addr->svm_port == VMADDR_PORT_ANY) {
518 bool found = false;
519 unsigned int i;
521 for (i = 0; i < MAX_PORT_RETRIES; i++) {
522 if (port <= LAST_RESERVED_PORT)
523 port = LAST_RESERVED_PORT + 1;
525 new_addr.svm_port = port++;
527 if (!__vsock_find_bound_socket(&new_addr)) {
528 found = true;
529 break;
533 if (!found)
534 return -EADDRNOTAVAIL;
535 } else {
536 /* If port is in reserved range, ensure caller
537 * has necessary privileges.
539 if (addr->svm_port <= LAST_RESERVED_PORT &&
540 !capable(CAP_NET_BIND_SERVICE)) {
541 return -EACCES;
544 if (__vsock_find_bound_socket(&new_addr))
545 return -EADDRINUSE;
548 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
550 /* Remove stream sockets from the unbound list and add them to the hash
551 * table for easy lookup by its address. The unbound list is simply an
552 * extra entry at the end of the hash table, a trick used by AF_UNIX.
554 __vsock_remove_bound(vsk);
555 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
557 return 0;
560 static int __vsock_bind_dgram(struct vsock_sock *vsk,
561 struct sockaddr_vm *addr)
563 return transport->dgram_bind(vsk, addr);
566 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
568 struct vsock_sock *vsk = vsock_sk(sk);
569 u32 cid;
570 int retval;
572 /* First ensure this socket isn't already bound. */
573 if (vsock_addr_bound(&vsk->local_addr))
574 return -EINVAL;
576 /* Now bind to the provided address or select appropriate values if
577 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
578 * like AF_INET prevents binding to a non-local IP address (in most
579 * cases), we only allow binding to the local CID.
581 cid = transport->get_local_cid();
582 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
583 return -EADDRNOTAVAIL;
585 switch (sk->sk_socket->type) {
586 case SOCK_STREAM:
587 spin_lock_bh(&vsock_table_lock);
588 retval = __vsock_bind_stream(vsk, addr);
589 spin_unlock_bh(&vsock_table_lock);
590 break;
592 case SOCK_DGRAM:
593 retval = __vsock_bind_dgram(vsk, addr);
594 break;
596 default:
597 retval = -EINVAL;
598 break;
601 return retval;
604 static void vsock_connect_timeout(struct work_struct *work);
606 struct sock *__vsock_create(struct net *net,
607 struct socket *sock,
608 struct sock *parent,
609 gfp_t priority,
610 unsigned short type,
611 int kern)
613 struct sock *sk;
614 struct vsock_sock *psk;
615 struct vsock_sock *vsk;
617 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
618 if (!sk)
619 return NULL;
621 sock_init_data(sock, sk);
623 /* sk->sk_type is normally set in sock_init_data, but only if sock is
624 * non-NULL. We make sure that our sockets always have a type by
625 * setting it here if needed.
627 if (!sock)
628 sk->sk_type = type;
630 vsk = vsock_sk(sk);
631 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
632 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
634 sk->sk_destruct = vsock_sk_destruct;
635 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
636 sock_reset_flag(sk, SOCK_DONE);
638 INIT_LIST_HEAD(&vsk->bound_table);
639 INIT_LIST_HEAD(&vsk->connected_table);
640 vsk->listener = NULL;
641 INIT_LIST_HEAD(&vsk->pending_links);
642 INIT_LIST_HEAD(&vsk->accept_queue);
643 vsk->rejected = false;
644 vsk->sent_request = false;
645 vsk->ignore_connecting_rst = false;
646 vsk->peer_shutdown = 0;
647 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
648 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
650 psk = parent ? vsock_sk(parent) : NULL;
651 if (parent) {
652 vsk->trusted = psk->trusted;
653 vsk->owner = get_cred(psk->owner);
654 vsk->connect_timeout = psk->connect_timeout;
655 } else {
656 vsk->trusted = capable(CAP_NET_ADMIN);
657 vsk->owner = get_current_cred();
658 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
661 if (transport->init(vsk, psk) < 0) {
662 sk_free(sk);
663 return NULL;
666 if (sock)
667 vsock_insert_unbound(vsk);
669 return sk;
671 EXPORT_SYMBOL_GPL(__vsock_create);
673 static void __vsock_release(struct sock *sk)
675 if (sk) {
676 struct sk_buff *skb;
677 struct sock *pending;
678 struct vsock_sock *vsk;
680 vsk = vsock_sk(sk);
681 pending = NULL; /* Compiler warning. */
683 transport->release(vsk);
685 lock_sock(sk);
686 sock_orphan(sk);
687 sk->sk_shutdown = SHUTDOWN_MASK;
689 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
690 kfree_skb(skb);
692 /* Clean up any sockets that never were accepted. */
693 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
694 __vsock_release(pending);
695 sock_put(pending);
698 release_sock(sk);
699 sock_put(sk);
703 static void vsock_sk_destruct(struct sock *sk)
705 struct vsock_sock *vsk = vsock_sk(sk);
707 transport->destruct(vsk);
709 /* When clearing these addresses, there's no need to set the family and
710 * possibly register the address family with the kernel.
712 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
713 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
715 put_cred(vsk->owner);
718 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
720 int err;
722 err = sock_queue_rcv_skb(sk, skb);
723 if (err)
724 kfree_skb(skb);
726 return err;
729 s64 vsock_stream_has_data(struct vsock_sock *vsk)
731 return transport->stream_has_data(vsk);
733 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
735 s64 vsock_stream_has_space(struct vsock_sock *vsk)
737 return transport->stream_has_space(vsk);
739 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
741 static int vsock_release(struct socket *sock)
743 __vsock_release(sock->sk);
744 sock->sk = NULL;
745 sock->state = SS_FREE;
747 return 0;
750 static int
751 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
753 int err;
754 struct sock *sk;
755 struct sockaddr_vm *vm_addr;
757 sk = sock->sk;
759 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
760 return -EINVAL;
762 lock_sock(sk);
763 err = __vsock_bind(sk, vm_addr);
764 release_sock(sk);
766 return err;
769 static int vsock_getname(struct socket *sock,
770 struct sockaddr *addr, int peer)
772 int err;
773 struct sock *sk;
774 struct vsock_sock *vsk;
775 struct sockaddr_vm *vm_addr;
777 sk = sock->sk;
778 vsk = vsock_sk(sk);
779 err = 0;
781 lock_sock(sk);
783 if (peer) {
784 if (sock->state != SS_CONNECTED) {
785 err = -ENOTCONN;
786 goto out;
788 vm_addr = &vsk->remote_addr;
789 } else {
790 vm_addr = &vsk->local_addr;
793 if (!vm_addr) {
794 err = -EINVAL;
795 goto out;
798 /* sys_getsockname() and sys_getpeername() pass us a
799 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
800 * that macro is defined in socket.c instead of .h, so we hardcode its
801 * value here.
803 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
804 memcpy(addr, vm_addr, sizeof(*vm_addr));
805 err = sizeof(*vm_addr);
807 out:
808 release_sock(sk);
809 return err;
812 static int vsock_shutdown(struct socket *sock, int mode)
814 int err;
815 struct sock *sk;
817 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
818 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
819 * here like the other address families do. Note also that the
820 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
821 * which is what we want.
823 mode++;
825 if ((mode & ~SHUTDOWN_MASK) || !mode)
826 return -EINVAL;
828 /* If this is a STREAM socket and it is not connected then bail out
829 * immediately. If it is a DGRAM socket then we must first kick the
830 * socket so that it wakes up from any sleeping calls, for example
831 * recv(), and then afterwards return the error.
834 sk = sock->sk;
835 if (sock->state == SS_UNCONNECTED) {
836 err = -ENOTCONN;
837 if (sk->sk_type == SOCK_STREAM)
838 return err;
839 } else {
840 sock->state = SS_DISCONNECTING;
841 err = 0;
844 /* Receive and send shutdowns are treated alike. */
845 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
846 if (mode) {
847 lock_sock(sk);
848 sk->sk_shutdown |= mode;
849 sk->sk_state_change(sk);
850 release_sock(sk);
852 if (sk->sk_type == SOCK_STREAM) {
853 sock_reset_flag(sk, SOCK_DONE);
854 vsock_send_shutdown(sk, mode);
858 return err;
861 static __poll_t vsock_poll(struct file *file, struct socket *sock,
862 poll_table *wait)
864 struct sock *sk;
865 __poll_t mask;
866 struct vsock_sock *vsk;
868 sk = sock->sk;
869 vsk = vsock_sk(sk);
871 poll_wait(file, sk_sleep(sk), wait);
872 mask = 0;
874 if (sk->sk_err)
875 /* Signify that there has been an error on this socket. */
876 mask |= EPOLLERR;
878 /* INET sockets treat local write shutdown and peer write shutdown as a
879 * case of EPOLLHUP set.
881 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
882 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
883 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
884 mask |= EPOLLHUP;
887 if (sk->sk_shutdown & RCV_SHUTDOWN ||
888 vsk->peer_shutdown & SEND_SHUTDOWN) {
889 mask |= EPOLLRDHUP;
892 if (sock->type == SOCK_DGRAM) {
893 /* For datagram sockets we can read if there is something in
894 * the queue and write as long as the socket isn't shutdown for
895 * sending.
897 if (!skb_queue_empty(&sk->sk_receive_queue) ||
898 (sk->sk_shutdown & RCV_SHUTDOWN)) {
899 mask |= EPOLLIN | EPOLLRDNORM;
902 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
903 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
905 } else if (sock->type == SOCK_STREAM) {
906 lock_sock(sk);
908 /* Listening sockets that have connections in their accept
909 * queue can be read.
911 if (sk->sk_state == TCP_LISTEN
912 && !vsock_is_accept_queue_empty(sk))
913 mask |= EPOLLIN | EPOLLRDNORM;
915 /* If there is something in the queue then we can read. */
916 if (transport->stream_is_active(vsk) &&
917 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
918 bool data_ready_now = false;
919 int ret = transport->notify_poll_in(
920 vsk, 1, &data_ready_now);
921 if (ret < 0) {
922 mask |= EPOLLERR;
923 } else {
924 if (data_ready_now)
925 mask |= EPOLLIN | EPOLLRDNORM;
930 /* Sockets whose connections have been closed, reset, or
931 * terminated should also be considered read, and we check the
932 * shutdown flag for that.
934 if (sk->sk_shutdown & RCV_SHUTDOWN ||
935 vsk->peer_shutdown & SEND_SHUTDOWN) {
936 mask |= EPOLLIN | EPOLLRDNORM;
939 /* Connected sockets that can produce data can be written. */
940 if (sk->sk_state == TCP_ESTABLISHED) {
941 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
942 bool space_avail_now = false;
943 int ret = transport->notify_poll_out(
944 vsk, 1, &space_avail_now);
945 if (ret < 0) {
946 mask |= EPOLLERR;
947 } else {
948 if (space_avail_now)
949 /* Remove EPOLLWRBAND since INET
950 * sockets are not setting it.
952 mask |= EPOLLOUT | EPOLLWRNORM;
958 /* Simulate INET socket poll behaviors, which sets
959 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
960 * but local send is not shutdown.
962 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
963 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
964 mask |= EPOLLOUT | EPOLLWRNORM;
968 release_sock(sk);
971 return mask;
974 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
975 size_t len)
977 int err;
978 struct sock *sk;
979 struct vsock_sock *vsk;
980 struct sockaddr_vm *remote_addr;
982 if (msg->msg_flags & MSG_OOB)
983 return -EOPNOTSUPP;
985 /* For now, MSG_DONTWAIT is always assumed... */
986 err = 0;
987 sk = sock->sk;
988 vsk = vsock_sk(sk);
990 lock_sock(sk);
992 err = vsock_auto_bind(vsk);
993 if (err)
994 goto out;
997 /* If the provided message contains an address, use that. Otherwise
998 * fall back on the socket's remote handle (if it has been connected).
1000 if (msg->msg_name &&
1001 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1002 &remote_addr) == 0) {
1003 /* Ensure this address is of the right type and is a valid
1004 * destination.
1007 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1008 remote_addr->svm_cid = transport->get_local_cid();
1010 if (!vsock_addr_bound(remote_addr)) {
1011 err = -EINVAL;
1012 goto out;
1014 } else if (sock->state == SS_CONNECTED) {
1015 remote_addr = &vsk->remote_addr;
1017 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1018 remote_addr->svm_cid = transport->get_local_cid();
1020 /* XXX Should connect() or this function ensure remote_addr is
1021 * bound?
1023 if (!vsock_addr_bound(&vsk->remote_addr)) {
1024 err = -EINVAL;
1025 goto out;
1027 } else {
1028 err = -EINVAL;
1029 goto out;
1032 if (!transport->dgram_allow(remote_addr->svm_cid,
1033 remote_addr->svm_port)) {
1034 err = -EINVAL;
1035 goto out;
1038 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1040 out:
1041 release_sock(sk);
1042 return err;
1045 static int vsock_dgram_connect(struct socket *sock,
1046 struct sockaddr *addr, int addr_len, int flags)
1048 int err;
1049 struct sock *sk;
1050 struct vsock_sock *vsk;
1051 struct sockaddr_vm *remote_addr;
1053 sk = sock->sk;
1054 vsk = vsock_sk(sk);
1056 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1057 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1058 lock_sock(sk);
1059 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1060 VMADDR_PORT_ANY);
1061 sock->state = SS_UNCONNECTED;
1062 release_sock(sk);
1063 return 0;
1064 } else if (err != 0)
1065 return -EINVAL;
1067 lock_sock(sk);
1069 err = vsock_auto_bind(vsk);
1070 if (err)
1071 goto out;
1073 if (!transport->dgram_allow(remote_addr->svm_cid,
1074 remote_addr->svm_port)) {
1075 err = -EINVAL;
1076 goto out;
1079 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1080 sock->state = SS_CONNECTED;
1082 out:
1083 release_sock(sk);
1084 return err;
1087 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1088 size_t len, int flags)
1090 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1093 static const struct proto_ops vsock_dgram_ops = {
1094 .family = PF_VSOCK,
1095 .owner = THIS_MODULE,
1096 .release = vsock_release,
1097 .bind = vsock_bind,
1098 .connect = vsock_dgram_connect,
1099 .socketpair = sock_no_socketpair,
1100 .accept = sock_no_accept,
1101 .getname = vsock_getname,
1102 .poll = vsock_poll,
1103 .ioctl = sock_no_ioctl,
1104 .listen = sock_no_listen,
1105 .shutdown = vsock_shutdown,
1106 .setsockopt = sock_no_setsockopt,
1107 .getsockopt = sock_no_getsockopt,
1108 .sendmsg = vsock_dgram_sendmsg,
1109 .recvmsg = vsock_dgram_recvmsg,
1110 .mmap = sock_no_mmap,
1111 .sendpage = sock_no_sendpage,
1114 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1116 if (!transport->cancel_pkt)
1117 return -EOPNOTSUPP;
1119 return transport->cancel_pkt(vsk);
1122 static void vsock_connect_timeout(struct work_struct *work)
1124 struct sock *sk;
1125 struct vsock_sock *vsk;
1126 int cancel = 0;
1128 vsk = container_of(work, struct vsock_sock, connect_work.work);
1129 sk = sk_vsock(vsk);
1131 lock_sock(sk);
1132 if (sk->sk_state == TCP_SYN_SENT &&
1133 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1134 sk->sk_state = TCP_CLOSE;
1135 sk->sk_err = ETIMEDOUT;
1136 sk->sk_error_report(sk);
1137 cancel = 1;
1139 release_sock(sk);
1140 if (cancel)
1141 vsock_transport_cancel_pkt(vsk);
1143 sock_put(sk);
1146 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1147 int addr_len, int flags)
1149 int err;
1150 struct sock *sk;
1151 struct vsock_sock *vsk;
1152 struct sockaddr_vm *remote_addr;
1153 long timeout;
1154 DEFINE_WAIT(wait);
1156 err = 0;
1157 sk = sock->sk;
1158 vsk = vsock_sk(sk);
1160 lock_sock(sk);
1162 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1163 switch (sock->state) {
1164 case SS_CONNECTED:
1165 err = -EISCONN;
1166 goto out;
1167 case SS_DISCONNECTING:
1168 err = -EINVAL;
1169 goto out;
1170 case SS_CONNECTING:
1171 /* This continues on so we can move sock into the SS_CONNECTED
1172 * state once the connection has completed (at which point err
1173 * will be set to zero also). Otherwise, we will either wait
1174 * for the connection or return -EALREADY should this be a
1175 * non-blocking call.
1177 err = -EALREADY;
1178 break;
1179 default:
1180 if ((sk->sk_state == TCP_LISTEN) ||
1181 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1182 err = -EINVAL;
1183 goto out;
1186 /* The hypervisor and well-known contexts do not have socket
1187 * endpoints.
1189 if (!transport->stream_allow(remote_addr->svm_cid,
1190 remote_addr->svm_port)) {
1191 err = -ENETUNREACH;
1192 goto out;
1195 /* Set the remote address that we are connecting to. */
1196 memcpy(&vsk->remote_addr, remote_addr,
1197 sizeof(vsk->remote_addr));
1199 err = vsock_auto_bind(vsk);
1200 if (err)
1201 goto out;
1203 sk->sk_state = TCP_SYN_SENT;
1205 err = transport->connect(vsk);
1206 if (err < 0)
1207 goto out;
1209 /* Mark sock as connecting and set the error code to in
1210 * progress in case this is a non-blocking connect.
1212 sock->state = SS_CONNECTING;
1213 err = -EINPROGRESS;
1216 /* The receive path will handle all communication until we are able to
1217 * enter the connected state. Here we wait for the connection to be
1218 * completed or a notification of an error.
1220 timeout = vsk->connect_timeout;
1221 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1223 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1224 if (flags & O_NONBLOCK) {
1225 /* If we're not going to block, we schedule a timeout
1226 * function to generate a timeout on the connection
1227 * attempt, in case the peer doesn't respond in a
1228 * timely manner. We hold on to the socket until the
1229 * timeout fires.
1231 sock_hold(sk);
1232 schedule_delayed_work(&vsk->connect_work, timeout);
1234 /* Skip ahead to preserve error code set above. */
1235 goto out_wait;
1238 release_sock(sk);
1239 timeout = schedule_timeout(timeout);
1240 lock_sock(sk);
1242 if (signal_pending(current)) {
1243 err = sock_intr_errno(timeout);
1244 sk->sk_state = TCP_CLOSE;
1245 sock->state = SS_UNCONNECTED;
1246 vsock_transport_cancel_pkt(vsk);
1247 goto out_wait;
1248 } else if (timeout == 0) {
1249 err = -ETIMEDOUT;
1250 sk->sk_state = TCP_CLOSE;
1251 sock->state = SS_UNCONNECTED;
1252 vsock_transport_cancel_pkt(vsk);
1253 goto out_wait;
1256 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1259 if (sk->sk_err) {
1260 err = -sk->sk_err;
1261 sk->sk_state = TCP_CLOSE;
1262 sock->state = SS_UNCONNECTED;
1263 } else {
1264 err = 0;
1267 out_wait:
1268 finish_wait(sk_sleep(sk), &wait);
1269 out:
1270 release_sock(sk);
1271 return err;
1274 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1275 bool kern)
1277 struct sock *listener;
1278 int err;
1279 struct sock *connected;
1280 struct vsock_sock *vconnected;
1281 long timeout;
1282 DEFINE_WAIT(wait);
1284 err = 0;
1285 listener = sock->sk;
1287 lock_sock(listener);
1289 if (sock->type != SOCK_STREAM) {
1290 err = -EOPNOTSUPP;
1291 goto out;
1294 if (listener->sk_state != TCP_LISTEN) {
1295 err = -EINVAL;
1296 goto out;
1299 /* Wait for children sockets to appear; these are the new sockets
1300 * created upon connection establishment.
1302 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1303 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1305 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1306 listener->sk_err == 0) {
1307 release_sock(listener);
1308 timeout = schedule_timeout(timeout);
1309 finish_wait(sk_sleep(listener), &wait);
1310 lock_sock(listener);
1312 if (signal_pending(current)) {
1313 err = sock_intr_errno(timeout);
1314 goto out;
1315 } else if (timeout == 0) {
1316 err = -EAGAIN;
1317 goto out;
1320 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1322 finish_wait(sk_sleep(listener), &wait);
1324 if (listener->sk_err)
1325 err = -listener->sk_err;
1327 if (connected) {
1328 listener->sk_ack_backlog--;
1330 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1331 vconnected = vsock_sk(connected);
1333 /* If the listener socket has received an error, then we should
1334 * reject this socket and return. Note that we simply mark the
1335 * socket rejected, drop our reference, and let the cleanup
1336 * function handle the cleanup; the fact that we found it in
1337 * the listener's accept queue guarantees that the cleanup
1338 * function hasn't run yet.
1340 if (err) {
1341 vconnected->rejected = true;
1342 } else {
1343 newsock->state = SS_CONNECTED;
1344 sock_graft(connected, newsock);
1347 release_sock(connected);
1348 sock_put(connected);
1351 out:
1352 release_sock(listener);
1353 return err;
1356 static int vsock_listen(struct socket *sock, int backlog)
1358 int err;
1359 struct sock *sk;
1360 struct vsock_sock *vsk;
1362 sk = sock->sk;
1364 lock_sock(sk);
1366 if (sock->type != SOCK_STREAM) {
1367 err = -EOPNOTSUPP;
1368 goto out;
1371 if (sock->state != SS_UNCONNECTED) {
1372 err = -EINVAL;
1373 goto out;
1376 vsk = vsock_sk(sk);
1378 if (!vsock_addr_bound(&vsk->local_addr)) {
1379 err = -EINVAL;
1380 goto out;
1383 sk->sk_max_ack_backlog = backlog;
1384 sk->sk_state = TCP_LISTEN;
1386 err = 0;
1388 out:
1389 release_sock(sk);
1390 return err;
1393 static int vsock_stream_setsockopt(struct socket *sock,
1394 int level,
1395 int optname,
1396 char __user *optval,
1397 unsigned int optlen)
1399 int err;
1400 struct sock *sk;
1401 struct vsock_sock *vsk;
1402 u64 val;
1404 if (level != AF_VSOCK)
1405 return -ENOPROTOOPT;
1407 #define COPY_IN(_v) \
1408 do { \
1409 if (optlen < sizeof(_v)) { \
1410 err = -EINVAL; \
1411 goto exit; \
1413 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1414 err = -EFAULT; \
1415 goto exit; \
1417 } while (0)
1419 err = 0;
1420 sk = sock->sk;
1421 vsk = vsock_sk(sk);
1423 lock_sock(sk);
1425 switch (optname) {
1426 case SO_VM_SOCKETS_BUFFER_SIZE:
1427 COPY_IN(val);
1428 transport->set_buffer_size(vsk, val);
1429 break;
1431 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1432 COPY_IN(val);
1433 transport->set_max_buffer_size(vsk, val);
1434 break;
1436 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1437 COPY_IN(val);
1438 transport->set_min_buffer_size(vsk, val);
1439 break;
1441 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1442 struct __kernel_old_timeval tv;
1443 COPY_IN(tv);
1444 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1445 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1446 vsk->connect_timeout = tv.tv_sec * HZ +
1447 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1448 if (vsk->connect_timeout == 0)
1449 vsk->connect_timeout =
1450 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1452 } else {
1453 err = -ERANGE;
1455 break;
1458 default:
1459 err = -ENOPROTOOPT;
1460 break;
1463 #undef COPY_IN
1465 exit:
1466 release_sock(sk);
1467 return err;
1470 static int vsock_stream_getsockopt(struct socket *sock,
1471 int level, int optname,
1472 char __user *optval,
1473 int __user *optlen)
1475 int err;
1476 int len;
1477 struct sock *sk;
1478 struct vsock_sock *vsk;
1479 u64 val;
1481 if (level != AF_VSOCK)
1482 return -ENOPROTOOPT;
1484 err = get_user(len, optlen);
1485 if (err != 0)
1486 return err;
1488 #define COPY_OUT(_v) \
1489 do { \
1490 if (len < sizeof(_v)) \
1491 return -EINVAL; \
1493 len = sizeof(_v); \
1494 if (copy_to_user(optval, &_v, len) != 0) \
1495 return -EFAULT; \
1497 } while (0)
1499 err = 0;
1500 sk = sock->sk;
1501 vsk = vsock_sk(sk);
1503 switch (optname) {
1504 case SO_VM_SOCKETS_BUFFER_SIZE:
1505 val = transport->get_buffer_size(vsk);
1506 COPY_OUT(val);
1507 break;
1509 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1510 val = transport->get_max_buffer_size(vsk);
1511 COPY_OUT(val);
1512 break;
1514 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1515 val = transport->get_min_buffer_size(vsk);
1516 COPY_OUT(val);
1517 break;
1519 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1520 struct __kernel_old_timeval tv;
1521 tv.tv_sec = vsk->connect_timeout / HZ;
1522 tv.tv_usec =
1523 (vsk->connect_timeout -
1524 tv.tv_sec * HZ) * (1000000 / HZ);
1525 COPY_OUT(tv);
1526 break;
1528 default:
1529 return -ENOPROTOOPT;
1532 err = put_user(len, optlen);
1533 if (err != 0)
1534 return -EFAULT;
1536 #undef COPY_OUT
1538 return 0;
1541 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1542 size_t len)
1544 struct sock *sk;
1545 struct vsock_sock *vsk;
1546 ssize_t total_written;
1547 long timeout;
1548 int err;
1549 struct vsock_transport_send_notify_data send_data;
1550 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1552 sk = sock->sk;
1553 vsk = vsock_sk(sk);
1554 total_written = 0;
1555 err = 0;
1557 if (msg->msg_flags & MSG_OOB)
1558 return -EOPNOTSUPP;
1560 lock_sock(sk);
1562 /* Callers should not provide a destination with stream sockets. */
1563 if (msg->msg_namelen) {
1564 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1565 goto out;
1568 /* Send data only if both sides are not shutdown in the direction. */
1569 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1570 vsk->peer_shutdown & RCV_SHUTDOWN) {
1571 err = -EPIPE;
1572 goto out;
1575 if (sk->sk_state != TCP_ESTABLISHED ||
1576 !vsock_addr_bound(&vsk->local_addr)) {
1577 err = -ENOTCONN;
1578 goto out;
1581 if (!vsock_addr_bound(&vsk->remote_addr)) {
1582 err = -EDESTADDRREQ;
1583 goto out;
1586 /* Wait for room in the produce queue to enqueue our user's data. */
1587 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1589 err = transport->notify_send_init(vsk, &send_data);
1590 if (err < 0)
1591 goto out;
1593 while (total_written < len) {
1594 ssize_t written;
1596 add_wait_queue(sk_sleep(sk), &wait);
1597 while (vsock_stream_has_space(vsk) == 0 &&
1598 sk->sk_err == 0 &&
1599 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1600 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1602 /* Don't wait for non-blocking sockets. */
1603 if (timeout == 0) {
1604 err = -EAGAIN;
1605 remove_wait_queue(sk_sleep(sk), &wait);
1606 goto out_err;
1609 err = transport->notify_send_pre_block(vsk, &send_data);
1610 if (err < 0) {
1611 remove_wait_queue(sk_sleep(sk), &wait);
1612 goto out_err;
1615 release_sock(sk);
1616 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1617 lock_sock(sk);
1618 if (signal_pending(current)) {
1619 err = sock_intr_errno(timeout);
1620 remove_wait_queue(sk_sleep(sk), &wait);
1621 goto out_err;
1622 } else if (timeout == 0) {
1623 err = -EAGAIN;
1624 remove_wait_queue(sk_sleep(sk), &wait);
1625 goto out_err;
1628 remove_wait_queue(sk_sleep(sk), &wait);
1630 /* These checks occur both as part of and after the loop
1631 * conditional since we need to check before and after
1632 * sleeping.
1634 if (sk->sk_err) {
1635 err = -sk->sk_err;
1636 goto out_err;
1637 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1638 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1639 err = -EPIPE;
1640 goto out_err;
1643 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1644 if (err < 0)
1645 goto out_err;
1647 /* Note that enqueue will only write as many bytes as are free
1648 * in the produce queue, so we don't need to ensure len is
1649 * smaller than the queue size. It is the caller's
1650 * responsibility to check how many bytes we were able to send.
1653 written = transport->stream_enqueue(
1654 vsk, msg,
1655 len - total_written);
1656 if (written < 0) {
1657 err = -ENOMEM;
1658 goto out_err;
1661 total_written += written;
1663 err = transport->notify_send_post_enqueue(
1664 vsk, written, &send_data);
1665 if (err < 0)
1666 goto out_err;
1670 out_err:
1671 if (total_written > 0)
1672 err = total_written;
1673 out:
1674 release_sock(sk);
1675 return err;
1679 static int
1680 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1681 int flags)
1683 struct sock *sk;
1684 struct vsock_sock *vsk;
1685 int err;
1686 size_t target;
1687 ssize_t copied;
1688 long timeout;
1689 struct vsock_transport_recv_notify_data recv_data;
1691 DEFINE_WAIT(wait);
1693 sk = sock->sk;
1694 vsk = vsock_sk(sk);
1695 err = 0;
1697 lock_sock(sk);
1699 if (sk->sk_state != TCP_ESTABLISHED) {
1700 /* Recvmsg is supposed to return 0 if a peer performs an
1701 * orderly shutdown. Differentiate between that case and when a
1702 * peer has not connected or a local shutdown occured with the
1703 * SOCK_DONE flag.
1705 if (sock_flag(sk, SOCK_DONE))
1706 err = 0;
1707 else
1708 err = -ENOTCONN;
1710 goto out;
1713 if (flags & MSG_OOB) {
1714 err = -EOPNOTSUPP;
1715 goto out;
1718 /* We don't check peer_shutdown flag here since peer may actually shut
1719 * down, but there can be data in the queue that a local socket can
1720 * receive.
1722 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1723 err = 0;
1724 goto out;
1727 /* It is valid on Linux to pass in a zero-length receive buffer. This
1728 * is not an error. We may as well bail out now.
1730 if (!len) {
1731 err = 0;
1732 goto out;
1735 /* We must not copy less than target bytes into the user's buffer
1736 * before returning successfully, so we wait for the consume queue to
1737 * have that much data to consume before dequeueing. Note that this
1738 * makes it impossible to handle cases where target is greater than the
1739 * queue size.
1741 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1742 if (target >= transport->stream_rcvhiwat(vsk)) {
1743 err = -ENOMEM;
1744 goto out;
1746 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1747 copied = 0;
1749 err = transport->notify_recv_init(vsk, target, &recv_data);
1750 if (err < 0)
1751 goto out;
1754 while (1) {
1755 s64 ready;
1757 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1758 ready = vsock_stream_has_data(vsk);
1760 if (ready == 0) {
1761 if (sk->sk_err != 0 ||
1762 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1763 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1764 finish_wait(sk_sleep(sk), &wait);
1765 break;
1767 /* Don't wait for non-blocking sockets. */
1768 if (timeout == 0) {
1769 err = -EAGAIN;
1770 finish_wait(sk_sleep(sk), &wait);
1771 break;
1774 err = transport->notify_recv_pre_block(
1775 vsk, target, &recv_data);
1776 if (err < 0) {
1777 finish_wait(sk_sleep(sk), &wait);
1778 break;
1780 release_sock(sk);
1781 timeout = schedule_timeout(timeout);
1782 lock_sock(sk);
1784 if (signal_pending(current)) {
1785 err = sock_intr_errno(timeout);
1786 finish_wait(sk_sleep(sk), &wait);
1787 break;
1788 } else if (timeout == 0) {
1789 err = -EAGAIN;
1790 finish_wait(sk_sleep(sk), &wait);
1791 break;
1793 } else {
1794 ssize_t read;
1796 finish_wait(sk_sleep(sk), &wait);
1798 if (ready < 0) {
1799 /* Invalid queue pair content. XXX This should
1800 * be changed to a connection reset in a later
1801 * change.
1804 err = -ENOMEM;
1805 goto out;
1808 err = transport->notify_recv_pre_dequeue(
1809 vsk, target, &recv_data);
1810 if (err < 0)
1811 break;
1813 read = transport->stream_dequeue(
1814 vsk, msg,
1815 len - copied, flags);
1816 if (read < 0) {
1817 err = -ENOMEM;
1818 break;
1821 copied += read;
1823 err = transport->notify_recv_post_dequeue(
1824 vsk, target, read,
1825 !(flags & MSG_PEEK), &recv_data);
1826 if (err < 0)
1827 goto out;
1829 if (read >= target || flags & MSG_PEEK)
1830 break;
1832 target -= read;
1836 if (sk->sk_err)
1837 err = -sk->sk_err;
1838 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1839 err = 0;
1841 if (copied > 0)
1842 err = copied;
1844 out:
1845 release_sock(sk);
1846 return err;
1849 static const struct proto_ops vsock_stream_ops = {
1850 .family = PF_VSOCK,
1851 .owner = THIS_MODULE,
1852 .release = vsock_release,
1853 .bind = vsock_bind,
1854 .connect = vsock_stream_connect,
1855 .socketpair = sock_no_socketpair,
1856 .accept = vsock_accept,
1857 .getname = vsock_getname,
1858 .poll = vsock_poll,
1859 .ioctl = sock_no_ioctl,
1860 .listen = vsock_listen,
1861 .shutdown = vsock_shutdown,
1862 .setsockopt = vsock_stream_setsockopt,
1863 .getsockopt = vsock_stream_getsockopt,
1864 .sendmsg = vsock_stream_sendmsg,
1865 .recvmsg = vsock_stream_recvmsg,
1866 .mmap = sock_no_mmap,
1867 .sendpage = sock_no_sendpage,
1870 static int vsock_create(struct net *net, struct socket *sock,
1871 int protocol, int kern)
1873 if (!sock)
1874 return -EINVAL;
1876 if (protocol && protocol != PF_VSOCK)
1877 return -EPROTONOSUPPORT;
1879 switch (sock->type) {
1880 case SOCK_DGRAM:
1881 sock->ops = &vsock_dgram_ops;
1882 break;
1883 case SOCK_STREAM:
1884 sock->ops = &vsock_stream_ops;
1885 break;
1886 default:
1887 return -ESOCKTNOSUPPORT;
1890 sock->state = SS_UNCONNECTED;
1892 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1895 static const struct net_proto_family vsock_family_ops = {
1896 .family = AF_VSOCK,
1897 .create = vsock_create,
1898 .owner = THIS_MODULE,
1901 static long vsock_dev_do_ioctl(struct file *filp,
1902 unsigned int cmd, void __user *ptr)
1904 u32 __user *p = ptr;
1905 int retval = 0;
1907 switch (cmd) {
1908 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1909 if (put_user(transport->get_local_cid(), p) != 0)
1910 retval = -EFAULT;
1911 break;
1913 default:
1914 pr_err("Unknown ioctl %d\n", cmd);
1915 retval = -EINVAL;
1918 return retval;
1921 static long vsock_dev_ioctl(struct file *filp,
1922 unsigned int cmd, unsigned long arg)
1924 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1927 #ifdef CONFIG_COMPAT
1928 static long vsock_dev_compat_ioctl(struct file *filp,
1929 unsigned int cmd, unsigned long arg)
1931 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1933 #endif
1935 static const struct file_operations vsock_device_ops = {
1936 .owner = THIS_MODULE,
1937 .unlocked_ioctl = vsock_dev_ioctl,
1938 #ifdef CONFIG_COMPAT
1939 .compat_ioctl = vsock_dev_compat_ioctl,
1940 #endif
1941 .open = nonseekable_open,
1944 static struct miscdevice vsock_device = {
1945 .name = "vsock",
1946 .fops = &vsock_device_ops,
1949 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1951 int err = mutex_lock_interruptible(&vsock_register_mutex);
1953 if (err)
1954 return err;
1956 if (transport) {
1957 err = -EBUSY;
1958 goto err_busy;
1961 /* Transport must be the owner of the protocol so that it can't
1962 * unload while there are open sockets.
1964 vsock_proto.owner = owner;
1965 transport = t;
1967 vsock_device.minor = MISC_DYNAMIC_MINOR;
1968 err = misc_register(&vsock_device);
1969 if (err) {
1970 pr_err("Failed to register misc device\n");
1971 goto err_reset_transport;
1974 err = proto_register(&vsock_proto, 1); /* we want our slab */
1975 if (err) {
1976 pr_err("Cannot register vsock protocol\n");
1977 goto err_deregister_misc;
1980 err = sock_register(&vsock_family_ops);
1981 if (err) {
1982 pr_err("could not register af_vsock (%d) address family: %d\n",
1983 AF_VSOCK, err);
1984 goto err_unregister_proto;
1987 mutex_unlock(&vsock_register_mutex);
1988 return 0;
1990 err_unregister_proto:
1991 proto_unregister(&vsock_proto);
1992 err_deregister_misc:
1993 misc_deregister(&vsock_device);
1994 err_reset_transport:
1995 transport = NULL;
1996 err_busy:
1997 mutex_unlock(&vsock_register_mutex);
1998 return err;
2000 EXPORT_SYMBOL_GPL(__vsock_core_init);
2002 void vsock_core_exit(void)
2004 mutex_lock(&vsock_register_mutex);
2006 misc_deregister(&vsock_device);
2007 sock_unregister(AF_VSOCK);
2008 proto_unregister(&vsock_proto);
2010 /* We do not want the assignment below re-ordered. */
2011 mb();
2012 transport = NULL;
2014 mutex_unlock(&vsock_register_mutex);
2016 EXPORT_SYMBOL_GPL(vsock_core_exit);
2018 const struct vsock_transport *vsock_core_get_transport(void)
2020 /* vsock_register_mutex not taken since only the transport uses this
2021 * function and only while registered.
2023 return transport;
2025 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2027 static void __exit vsock_exit(void)
2029 /* Do nothing. This function makes this module removable. */
2032 module_init(vsock_init_tables);
2033 module_exit(vsock_exit);
2035 MODULE_AUTHOR("VMware, Inc.");
2036 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2037 MODULE_VERSION("1.0.2.0-k");
2038 MODULE_LICENSE("GPL v2");