Linux 5.1.15
[linux/fpc-iii.git] / tools / perf / util / header.c
blob2d2af2ac2b1e976041b5e05eca4374c6b424b8fa
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 #include <bpf/libbpf.h>
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "header.h"
26 #include "memswap.h"
27 #include "../perf.h"
28 #include "trace-event.h"
29 #include "session.h"
30 #include "symbol.h"
31 #include "debug.h"
32 #include "cpumap.h"
33 #include "pmu.h"
34 #include "vdso.h"
35 #include "strbuf.h"
36 #include "build-id.h"
37 #include "data.h"
38 #include <api/fs/fs.h>
39 #include "asm/bug.h"
40 #include "tool.h"
41 #include "time-utils.h"
42 #include "units.h"
43 #include "cputopo.h"
44 #include "bpf-event.h"
46 #include "sane_ctype.h"
49 * magic2 = "PERFILE2"
50 * must be a numerical value to let the endianness
51 * determine the memory layout. That way we are able
52 * to detect endianness when reading the perf.data file
53 * back.
55 * we check for legacy (PERFFILE) format.
57 static const char *__perf_magic1 = "PERFFILE";
58 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
59 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
61 #define PERF_MAGIC __perf_magic2
63 const char perf_version_string[] = PERF_VERSION;
65 struct perf_file_attr {
66 struct perf_event_attr attr;
67 struct perf_file_section ids;
70 struct feat_fd {
71 struct perf_header *ph;
72 int fd;
73 void *buf; /* Either buf != NULL or fd >= 0 */
74 ssize_t offset;
75 size_t size;
76 struct perf_evsel *events;
79 void perf_header__set_feat(struct perf_header *header, int feat)
81 set_bit(feat, header->adds_features);
84 void perf_header__clear_feat(struct perf_header *header, int feat)
86 clear_bit(feat, header->adds_features);
89 bool perf_header__has_feat(const struct perf_header *header, int feat)
91 return test_bit(feat, header->adds_features);
94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96 ssize_t ret = writen(ff->fd, buf, size);
98 if (ret != (ssize_t)size)
99 return ret < 0 ? (int)ret : -1;
100 return 0;
103 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
105 /* struct perf_event_header::size is u16 */
106 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
107 size_t new_size = ff->size;
108 void *addr;
110 if (size + ff->offset > max_size)
111 return -E2BIG;
113 while (size > (new_size - ff->offset))
114 new_size <<= 1;
115 new_size = min(max_size, new_size);
117 if (ff->size < new_size) {
118 addr = realloc(ff->buf, new_size);
119 if (!addr)
120 return -ENOMEM;
121 ff->buf = addr;
122 ff->size = new_size;
125 memcpy(ff->buf + ff->offset, buf, size);
126 ff->offset += size;
128 return 0;
131 /* Return: 0 if succeded, -ERR if failed. */
132 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 if (!ff->buf)
135 return __do_write_fd(ff, buf, size);
136 return __do_write_buf(ff, buf, size);
139 /* Return: 0 if succeded, -ERR if failed. */
140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142 u64 *p = (u64 *) set;
143 int i, ret;
145 ret = do_write(ff, &size, sizeof(size));
146 if (ret < 0)
147 return ret;
149 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
150 ret = do_write(ff, p + i, sizeof(*p));
151 if (ret < 0)
152 return ret;
155 return 0;
158 /* Return: 0 if succeded, -ERR if failed. */
159 int write_padded(struct feat_fd *ff, const void *bf,
160 size_t count, size_t count_aligned)
162 static const char zero_buf[NAME_ALIGN];
163 int err = do_write(ff, bf, count);
165 if (!err)
166 err = do_write(ff, zero_buf, count_aligned - count);
168 return err;
171 #define string_size(str) \
172 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174 /* Return: 0 if succeded, -ERR if failed. */
175 static int do_write_string(struct feat_fd *ff, const char *str)
177 u32 len, olen;
178 int ret;
180 olen = strlen(str) + 1;
181 len = PERF_ALIGN(olen, NAME_ALIGN);
183 /* write len, incl. \0 */
184 ret = do_write(ff, &len, sizeof(len));
185 if (ret < 0)
186 return ret;
188 return write_padded(ff, str, olen, len);
191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193 ssize_t ret = readn(ff->fd, addr, size);
195 if (ret != size)
196 return ret < 0 ? (int)ret : -1;
197 return 0;
200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202 if (size > (ssize_t)ff->size - ff->offset)
203 return -1;
205 memcpy(addr, ff->buf + ff->offset, size);
206 ff->offset += size;
208 return 0;
212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 if (!ff->buf)
215 return __do_read_fd(ff, addr, size);
216 return __do_read_buf(ff, addr, size);
219 static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 int ret;
223 ret = __do_read(ff, addr, sizeof(*addr));
224 if (ret)
225 return ret;
227 if (ff->ph->needs_swap)
228 *addr = bswap_32(*addr);
229 return 0;
232 static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 int ret;
236 ret = __do_read(ff, addr, sizeof(*addr));
237 if (ret)
238 return ret;
240 if (ff->ph->needs_swap)
241 *addr = bswap_64(*addr);
242 return 0;
245 static char *do_read_string(struct feat_fd *ff)
247 u32 len;
248 char *buf;
250 if (do_read_u32(ff, &len))
251 return NULL;
253 buf = malloc(len);
254 if (!buf)
255 return NULL;
257 if (!__do_read(ff, buf, len)) {
259 * strings are padded by zeroes
260 * thus the actual strlen of buf
261 * may be less than len
263 return buf;
266 free(buf);
267 return NULL;
270 /* Return: 0 if succeded, -ERR if failed. */
271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273 unsigned long *set;
274 u64 size, *p;
275 int i, ret;
277 ret = do_read_u64(ff, &size);
278 if (ret)
279 return ret;
281 set = bitmap_alloc(size);
282 if (!set)
283 return -ENOMEM;
285 p = (u64 *) set;
287 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
288 ret = do_read_u64(ff, p + i);
289 if (ret < 0) {
290 free(set);
291 return ret;
295 *pset = set;
296 *psize = size;
297 return 0;
300 static int write_tracing_data(struct feat_fd *ff,
301 struct perf_evlist *evlist)
303 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
304 return -1;
306 return read_tracing_data(ff->fd, &evlist->entries);
309 static int write_build_id(struct feat_fd *ff,
310 struct perf_evlist *evlist __maybe_unused)
312 struct perf_session *session;
313 int err;
315 session = container_of(ff->ph, struct perf_session, header);
317 if (!perf_session__read_build_ids(session, true))
318 return -1;
320 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
321 return -1;
323 err = perf_session__write_buildid_table(session, ff);
324 if (err < 0) {
325 pr_debug("failed to write buildid table\n");
326 return err;
328 perf_session__cache_build_ids(session);
330 return 0;
333 static int write_hostname(struct feat_fd *ff,
334 struct perf_evlist *evlist __maybe_unused)
336 struct utsname uts;
337 int ret;
339 ret = uname(&uts);
340 if (ret < 0)
341 return -1;
343 return do_write_string(ff, uts.nodename);
346 static int write_osrelease(struct feat_fd *ff,
347 struct perf_evlist *evlist __maybe_unused)
349 struct utsname uts;
350 int ret;
352 ret = uname(&uts);
353 if (ret < 0)
354 return -1;
356 return do_write_string(ff, uts.release);
359 static int write_arch(struct feat_fd *ff,
360 struct perf_evlist *evlist __maybe_unused)
362 struct utsname uts;
363 int ret;
365 ret = uname(&uts);
366 if (ret < 0)
367 return -1;
369 return do_write_string(ff, uts.machine);
372 static int write_version(struct feat_fd *ff,
373 struct perf_evlist *evlist __maybe_unused)
375 return do_write_string(ff, perf_version_string);
378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 FILE *file;
381 char *buf = NULL;
382 char *s, *p;
383 const char *search = cpuinfo_proc;
384 size_t len = 0;
385 int ret = -1;
387 if (!search)
388 return -1;
390 file = fopen("/proc/cpuinfo", "r");
391 if (!file)
392 return -1;
394 while (getline(&buf, &len, file) > 0) {
395 ret = strncmp(buf, search, strlen(search));
396 if (!ret)
397 break;
400 if (ret) {
401 ret = -1;
402 goto done;
405 s = buf;
407 p = strchr(buf, ':');
408 if (p && *(p+1) == ' ' && *(p+2))
409 s = p + 2;
410 p = strchr(s, '\n');
411 if (p)
412 *p = '\0';
414 /* squash extra space characters (branding string) */
415 p = s;
416 while (*p) {
417 if (isspace(*p)) {
418 char *r = p + 1;
419 char *q = r;
420 *p = ' ';
421 while (*q && isspace(*q))
422 q++;
423 if (q != (p+1))
424 while ((*r++ = *q++));
426 p++;
428 ret = do_write_string(ff, s);
429 done:
430 free(buf);
431 fclose(file);
432 return ret;
435 static int write_cpudesc(struct feat_fd *ff,
436 struct perf_evlist *evlist __maybe_unused)
438 const char *cpuinfo_procs[] = CPUINFO_PROC;
439 unsigned int i;
441 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
442 int ret;
443 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 if (ret >= 0)
445 return ret;
447 return -1;
451 static int write_nrcpus(struct feat_fd *ff,
452 struct perf_evlist *evlist __maybe_unused)
454 long nr;
455 u32 nrc, nra;
456 int ret;
458 nrc = cpu__max_present_cpu();
460 nr = sysconf(_SC_NPROCESSORS_ONLN);
461 if (nr < 0)
462 return -1;
464 nra = (u32)(nr & UINT_MAX);
466 ret = do_write(ff, &nrc, sizeof(nrc));
467 if (ret < 0)
468 return ret;
470 return do_write(ff, &nra, sizeof(nra));
473 static int write_event_desc(struct feat_fd *ff,
474 struct perf_evlist *evlist)
476 struct perf_evsel *evsel;
477 u32 nre, nri, sz;
478 int ret;
480 nre = evlist->nr_entries;
483 * write number of events
485 ret = do_write(ff, &nre, sizeof(nre));
486 if (ret < 0)
487 return ret;
490 * size of perf_event_attr struct
492 sz = (u32)sizeof(evsel->attr);
493 ret = do_write(ff, &sz, sizeof(sz));
494 if (ret < 0)
495 return ret;
497 evlist__for_each_entry(evlist, evsel) {
498 ret = do_write(ff, &evsel->attr, sz);
499 if (ret < 0)
500 return ret;
502 * write number of unique id per event
503 * there is one id per instance of an event
505 * copy into an nri to be independent of the
506 * type of ids,
508 nri = evsel->ids;
509 ret = do_write(ff, &nri, sizeof(nri));
510 if (ret < 0)
511 return ret;
514 * write event string as passed on cmdline
516 ret = do_write_string(ff, perf_evsel__name(evsel));
517 if (ret < 0)
518 return ret;
520 * write unique ids for this event
522 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 if (ret < 0)
524 return ret;
526 return 0;
529 static int write_cmdline(struct feat_fd *ff,
530 struct perf_evlist *evlist __maybe_unused)
532 char pbuf[MAXPATHLEN], *buf;
533 int i, ret, n;
535 /* actual path to perf binary */
536 buf = perf_exe(pbuf, MAXPATHLEN);
538 /* account for binary path */
539 n = perf_env.nr_cmdline + 1;
541 ret = do_write(ff, &n, sizeof(n));
542 if (ret < 0)
543 return ret;
545 ret = do_write_string(ff, buf);
546 if (ret < 0)
547 return ret;
549 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 if (ret < 0)
552 return ret;
554 return 0;
558 static int write_cpu_topology(struct feat_fd *ff,
559 struct perf_evlist *evlist __maybe_unused)
561 struct cpu_topology *tp;
562 u32 i;
563 int ret, j;
565 tp = cpu_topology__new();
566 if (!tp)
567 return -1;
569 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 if (ret < 0)
571 goto done;
573 for (i = 0; i < tp->core_sib; i++) {
574 ret = do_write_string(ff, tp->core_siblings[i]);
575 if (ret < 0)
576 goto done;
578 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 if (ret < 0)
580 goto done;
582 for (i = 0; i < tp->thread_sib; i++) {
583 ret = do_write_string(ff, tp->thread_siblings[i]);
584 if (ret < 0)
585 break;
588 ret = perf_env__read_cpu_topology_map(&perf_env);
589 if (ret < 0)
590 goto done;
592 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593 ret = do_write(ff, &perf_env.cpu[j].core_id,
594 sizeof(perf_env.cpu[j].core_id));
595 if (ret < 0)
596 return ret;
597 ret = do_write(ff, &perf_env.cpu[j].socket_id,
598 sizeof(perf_env.cpu[j].socket_id));
599 if (ret < 0)
600 return ret;
602 done:
603 cpu_topology__delete(tp);
604 return ret;
609 static int write_total_mem(struct feat_fd *ff,
610 struct perf_evlist *evlist __maybe_unused)
612 char *buf = NULL;
613 FILE *fp;
614 size_t len = 0;
615 int ret = -1, n;
616 uint64_t mem;
618 fp = fopen("/proc/meminfo", "r");
619 if (!fp)
620 return -1;
622 while (getline(&buf, &len, fp) > 0) {
623 ret = strncmp(buf, "MemTotal:", 9);
624 if (!ret)
625 break;
627 if (!ret) {
628 n = sscanf(buf, "%*s %"PRIu64, &mem);
629 if (n == 1)
630 ret = do_write(ff, &mem, sizeof(mem));
631 } else
632 ret = -1;
633 free(buf);
634 fclose(fp);
635 return ret;
638 static int write_numa_topology(struct feat_fd *ff,
639 struct perf_evlist *evlist __maybe_unused)
641 struct numa_topology *tp;
642 int ret = -1;
643 u32 i;
645 tp = numa_topology__new();
646 if (!tp)
647 return -ENOMEM;
649 ret = do_write(ff, &tp->nr, sizeof(u32));
650 if (ret < 0)
651 goto err;
653 for (i = 0; i < tp->nr; i++) {
654 struct numa_topology_node *n = &tp->nodes[i];
656 ret = do_write(ff, &n->node, sizeof(u32));
657 if (ret < 0)
658 goto err;
660 ret = do_write(ff, &n->mem_total, sizeof(u64));
661 if (ret)
662 goto err;
664 ret = do_write(ff, &n->mem_free, sizeof(u64));
665 if (ret)
666 goto err;
668 ret = do_write_string(ff, n->cpus);
669 if (ret < 0)
670 goto err;
673 ret = 0;
675 err:
676 numa_topology__delete(tp);
677 return ret;
681 * File format:
683 * struct pmu_mappings {
684 * u32 pmu_num;
685 * struct pmu_map {
686 * u32 type;
687 * char name[];
688 * }[pmu_num];
689 * };
692 static int write_pmu_mappings(struct feat_fd *ff,
693 struct perf_evlist *evlist __maybe_unused)
695 struct perf_pmu *pmu = NULL;
696 u32 pmu_num = 0;
697 int ret;
700 * Do a first pass to count number of pmu to avoid lseek so this
701 * works in pipe mode as well.
703 while ((pmu = perf_pmu__scan(pmu))) {
704 if (!pmu->name)
705 continue;
706 pmu_num++;
709 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710 if (ret < 0)
711 return ret;
713 while ((pmu = perf_pmu__scan(pmu))) {
714 if (!pmu->name)
715 continue;
717 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718 if (ret < 0)
719 return ret;
721 ret = do_write_string(ff, pmu->name);
722 if (ret < 0)
723 return ret;
726 return 0;
730 * File format:
732 * struct group_descs {
733 * u32 nr_groups;
734 * struct group_desc {
735 * char name[];
736 * u32 leader_idx;
737 * u32 nr_members;
738 * }[nr_groups];
739 * };
741 static int write_group_desc(struct feat_fd *ff,
742 struct perf_evlist *evlist)
744 u32 nr_groups = evlist->nr_groups;
745 struct perf_evsel *evsel;
746 int ret;
748 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749 if (ret < 0)
750 return ret;
752 evlist__for_each_entry(evlist, evsel) {
753 if (perf_evsel__is_group_leader(evsel) &&
754 evsel->nr_members > 1) {
755 const char *name = evsel->group_name ?: "{anon_group}";
756 u32 leader_idx = evsel->idx;
757 u32 nr_members = evsel->nr_members;
759 ret = do_write_string(ff, name);
760 if (ret < 0)
761 return ret;
763 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764 if (ret < 0)
765 return ret;
767 ret = do_write(ff, &nr_members, sizeof(nr_members));
768 if (ret < 0)
769 return ret;
772 return 0;
776 * Return the CPU id as a raw string.
778 * Each architecture should provide a more precise id string that
779 * can be use to match the architecture's "mapfile".
781 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
783 return NULL;
786 /* Return zero when the cpuid from the mapfile.csv matches the
787 * cpuid string generated on this platform.
788 * Otherwise return non-zero.
790 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
792 regex_t re;
793 regmatch_t pmatch[1];
794 int match;
796 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
797 /* Warn unable to generate match particular string. */
798 pr_info("Invalid regular expression %s\n", mapcpuid);
799 return 1;
802 match = !regexec(&re, cpuid, 1, pmatch, 0);
803 regfree(&re);
804 if (match) {
805 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
807 /* Verify the entire string matched. */
808 if (match_len == strlen(cpuid))
809 return 0;
811 return 1;
815 * default get_cpuid(): nothing gets recorded
816 * actual implementation must be in arch/$(SRCARCH)/util/header.c
818 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
820 return -1;
823 static int write_cpuid(struct feat_fd *ff,
824 struct perf_evlist *evlist __maybe_unused)
826 char buffer[64];
827 int ret;
829 ret = get_cpuid(buffer, sizeof(buffer));
830 if (ret)
831 return -1;
833 return do_write_string(ff, buffer);
836 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
837 struct perf_evlist *evlist __maybe_unused)
839 return 0;
842 static int write_auxtrace(struct feat_fd *ff,
843 struct perf_evlist *evlist __maybe_unused)
845 struct perf_session *session;
846 int err;
848 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
849 return -1;
851 session = container_of(ff->ph, struct perf_session, header);
853 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854 if (err < 0)
855 pr_err("Failed to write auxtrace index\n");
856 return err;
859 static int write_clockid(struct feat_fd *ff,
860 struct perf_evlist *evlist __maybe_unused)
862 return do_write(ff, &ff->ph->env.clockid_res_ns,
863 sizeof(ff->ph->env.clockid_res_ns));
866 static int write_dir_format(struct feat_fd *ff,
867 struct perf_evlist *evlist __maybe_unused)
869 struct perf_session *session;
870 struct perf_data *data;
872 session = container_of(ff->ph, struct perf_session, header);
873 data = session->data;
875 if (WARN_ON(!perf_data__is_dir(data)))
876 return -1;
878 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
881 #ifdef HAVE_LIBBPF_SUPPORT
882 static int write_bpf_prog_info(struct feat_fd *ff,
883 struct perf_evlist *evlist __maybe_unused)
885 struct perf_env *env = &ff->ph->env;
886 struct rb_root *root;
887 struct rb_node *next;
888 int ret;
890 down_read(&env->bpf_progs.lock);
892 ret = do_write(ff, &env->bpf_progs.infos_cnt,
893 sizeof(env->bpf_progs.infos_cnt));
894 if (ret < 0)
895 goto out;
897 root = &env->bpf_progs.infos;
898 next = rb_first(root);
899 while (next) {
900 struct bpf_prog_info_node *node;
901 size_t len;
903 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
904 next = rb_next(&node->rb_node);
905 len = sizeof(struct bpf_prog_info_linear) +
906 node->info_linear->data_len;
908 /* before writing to file, translate address to offset */
909 bpf_program__bpil_addr_to_offs(node->info_linear);
910 ret = do_write(ff, node->info_linear, len);
912 * translate back to address even when do_write() fails,
913 * so that this function never changes the data.
915 bpf_program__bpil_offs_to_addr(node->info_linear);
916 if (ret < 0)
917 goto out;
919 out:
920 up_read(&env->bpf_progs.lock);
921 return ret;
923 #else // HAVE_LIBBPF_SUPPORT
924 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
925 struct perf_evlist *evlist __maybe_unused)
927 return 0;
929 #endif // HAVE_LIBBPF_SUPPORT
931 static int write_bpf_btf(struct feat_fd *ff,
932 struct perf_evlist *evlist __maybe_unused)
934 struct perf_env *env = &ff->ph->env;
935 struct rb_root *root;
936 struct rb_node *next;
937 int ret;
939 down_read(&env->bpf_progs.lock);
941 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
942 sizeof(env->bpf_progs.btfs_cnt));
944 if (ret < 0)
945 goto out;
947 root = &env->bpf_progs.btfs;
948 next = rb_first(root);
949 while (next) {
950 struct btf_node *node;
952 node = rb_entry(next, struct btf_node, rb_node);
953 next = rb_next(&node->rb_node);
954 ret = do_write(ff, &node->id,
955 sizeof(u32) * 2 + node->data_size);
956 if (ret < 0)
957 goto out;
959 out:
960 up_read(&env->bpf_progs.lock);
961 return ret;
964 static int cpu_cache_level__sort(const void *a, const void *b)
966 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
967 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
969 return cache_a->level - cache_b->level;
972 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
974 if (a->level != b->level)
975 return false;
977 if (a->line_size != b->line_size)
978 return false;
980 if (a->sets != b->sets)
981 return false;
983 if (a->ways != b->ways)
984 return false;
986 if (strcmp(a->type, b->type))
987 return false;
989 if (strcmp(a->size, b->size))
990 return false;
992 if (strcmp(a->map, b->map))
993 return false;
995 return true;
998 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1000 char path[PATH_MAX], file[PATH_MAX];
1001 struct stat st;
1002 size_t len;
1004 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1005 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1007 if (stat(file, &st))
1008 return 1;
1010 scnprintf(file, PATH_MAX, "%s/level", path);
1011 if (sysfs__read_int(file, (int *) &cache->level))
1012 return -1;
1014 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1015 if (sysfs__read_int(file, (int *) &cache->line_size))
1016 return -1;
1018 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1019 if (sysfs__read_int(file, (int *) &cache->sets))
1020 return -1;
1022 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1023 if (sysfs__read_int(file, (int *) &cache->ways))
1024 return -1;
1026 scnprintf(file, PATH_MAX, "%s/type", path);
1027 if (sysfs__read_str(file, &cache->type, &len))
1028 return -1;
1030 cache->type[len] = 0;
1031 cache->type = rtrim(cache->type);
1033 scnprintf(file, PATH_MAX, "%s/size", path);
1034 if (sysfs__read_str(file, &cache->size, &len)) {
1035 free(cache->type);
1036 return -1;
1039 cache->size[len] = 0;
1040 cache->size = rtrim(cache->size);
1042 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1043 if (sysfs__read_str(file, &cache->map, &len)) {
1044 free(cache->map);
1045 free(cache->type);
1046 return -1;
1049 cache->map[len] = 0;
1050 cache->map = rtrim(cache->map);
1051 return 0;
1054 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1056 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1059 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1061 u32 i, cnt = 0;
1062 long ncpus;
1063 u32 nr, cpu;
1064 u16 level;
1066 ncpus = sysconf(_SC_NPROCESSORS_CONF);
1067 if (ncpus < 0)
1068 return -1;
1070 nr = (u32)(ncpus & UINT_MAX);
1072 for (cpu = 0; cpu < nr; cpu++) {
1073 for (level = 0; level < 10; level++) {
1074 struct cpu_cache_level c;
1075 int err;
1077 err = cpu_cache_level__read(&c, cpu, level);
1078 if (err < 0)
1079 return err;
1081 if (err == 1)
1082 break;
1084 for (i = 0; i < cnt; i++) {
1085 if (cpu_cache_level__cmp(&c, &caches[i]))
1086 break;
1089 if (i == cnt)
1090 caches[cnt++] = c;
1091 else
1092 cpu_cache_level__free(&c);
1094 if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1095 goto out;
1098 out:
1099 *cntp = cnt;
1100 return 0;
1103 #define MAX_CACHES 2000
1105 static int write_cache(struct feat_fd *ff,
1106 struct perf_evlist *evlist __maybe_unused)
1108 struct cpu_cache_level caches[MAX_CACHES];
1109 u32 cnt = 0, i, version = 1;
1110 int ret;
1112 ret = build_caches(caches, MAX_CACHES, &cnt);
1113 if (ret)
1114 goto out;
1116 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1118 ret = do_write(ff, &version, sizeof(u32));
1119 if (ret < 0)
1120 goto out;
1122 ret = do_write(ff, &cnt, sizeof(u32));
1123 if (ret < 0)
1124 goto out;
1126 for (i = 0; i < cnt; i++) {
1127 struct cpu_cache_level *c = &caches[i];
1129 #define _W(v) \
1130 ret = do_write(ff, &c->v, sizeof(u32)); \
1131 if (ret < 0) \
1132 goto out;
1134 _W(level)
1135 _W(line_size)
1136 _W(sets)
1137 _W(ways)
1138 #undef _W
1140 #define _W(v) \
1141 ret = do_write_string(ff, (const char *) c->v); \
1142 if (ret < 0) \
1143 goto out;
1145 _W(type)
1146 _W(size)
1147 _W(map)
1148 #undef _W
1151 out:
1152 for (i = 0; i < cnt; i++)
1153 cpu_cache_level__free(&caches[i]);
1154 return ret;
1157 static int write_stat(struct feat_fd *ff __maybe_unused,
1158 struct perf_evlist *evlist __maybe_unused)
1160 return 0;
1163 static int write_sample_time(struct feat_fd *ff,
1164 struct perf_evlist *evlist)
1166 int ret;
1168 ret = do_write(ff, &evlist->first_sample_time,
1169 sizeof(evlist->first_sample_time));
1170 if (ret < 0)
1171 return ret;
1173 return do_write(ff, &evlist->last_sample_time,
1174 sizeof(evlist->last_sample_time));
1178 static int memory_node__read(struct memory_node *n, unsigned long idx)
1180 unsigned int phys, size = 0;
1181 char path[PATH_MAX];
1182 struct dirent *ent;
1183 DIR *dir;
1185 #define for_each_memory(mem, dir) \
1186 while ((ent = readdir(dir))) \
1187 if (strcmp(ent->d_name, ".") && \
1188 strcmp(ent->d_name, "..") && \
1189 sscanf(ent->d_name, "memory%u", &mem) == 1)
1191 scnprintf(path, PATH_MAX,
1192 "%s/devices/system/node/node%lu",
1193 sysfs__mountpoint(), idx);
1195 dir = opendir(path);
1196 if (!dir) {
1197 pr_warning("failed: cant' open memory sysfs data\n");
1198 return -1;
1201 for_each_memory(phys, dir) {
1202 size = max(phys, size);
1205 size++;
1207 n->set = bitmap_alloc(size);
1208 if (!n->set) {
1209 closedir(dir);
1210 return -ENOMEM;
1213 n->node = idx;
1214 n->size = size;
1216 rewinddir(dir);
1218 for_each_memory(phys, dir) {
1219 set_bit(phys, n->set);
1222 closedir(dir);
1223 return 0;
1226 static int memory_node__sort(const void *a, const void *b)
1228 const struct memory_node *na = a;
1229 const struct memory_node *nb = b;
1231 return na->node - nb->node;
1234 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1236 char path[PATH_MAX];
1237 struct dirent *ent;
1238 DIR *dir;
1239 u64 cnt = 0;
1240 int ret = 0;
1242 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1243 sysfs__mountpoint());
1245 dir = opendir(path);
1246 if (!dir) {
1247 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1248 __func__, path);
1249 return -1;
1252 while (!ret && (ent = readdir(dir))) {
1253 unsigned int idx;
1254 int r;
1256 if (!strcmp(ent->d_name, ".") ||
1257 !strcmp(ent->d_name, ".."))
1258 continue;
1260 r = sscanf(ent->d_name, "node%u", &idx);
1261 if (r != 1)
1262 continue;
1264 if (WARN_ONCE(cnt >= size,
1265 "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1266 return -1;
1268 ret = memory_node__read(&nodes[cnt++], idx);
1271 *cntp = cnt;
1272 closedir(dir);
1274 if (!ret)
1275 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1277 return ret;
1280 #define MAX_MEMORY_NODES 2000
1283 * The MEM_TOPOLOGY holds physical memory map for every
1284 * node in system. The format of data is as follows:
1286 * 0 - version | for future changes
1287 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1288 * 16 - count | number of nodes
1290 * For each node we store map of physical indexes for
1291 * each node:
1293 * 32 - node id | node index
1294 * 40 - size | size of bitmap
1295 * 48 - bitmap | bitmap of memory indexes that belongs to node
1297 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1298 struct perf_evlist *evlist __maybe_unused)
1300 static struct memory_node nodes[MAX_MEMORY_NODES];
1301 u64 bsize, version = 1, i, nr;
1302 int ret;
1304 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1305 (unsigned long long *) &bsize);
1306 if (ret)
1307 return ret;
1309 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1310 if (ret)
1311 return ret;
1313 ret = do_write(ff, &version, sizeof(version));
1314 if (ret < 0)
1315 goto out;
1317 ret = do_write(ff, &bsize, sizeof(bsize));
1318 if (ret < 0)
1319 goto out;
1321 ret = do_write(ff, &nr, sizeof(nr));
1322 if (ret < 0)
1323 goto out;
1325 for (i = 0; i < nr; i++) {
1326 struct memory_node *n = &nodes[i];
1328 #define _W(v) \
1329 ret = do_write(ff, &n->v, sizeof(n->v)); \
1330 if (ret < 0) \
1331 goto out;
1333 _W(node)
1334 _W(size)
1336 #undef _W
1338 ret = do_write_bitmap(ff, n->set, n->size);
1339 if (ret < 0)
1340 goto out;
1343 out:
1344 return ret;
1347 static void print_hostname(struct feat_fd *ff, FILE *fp)
1349 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1352 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1354 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1357 static void print_arch(struct feat_fd *ff, FILE *fp)
1359 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1362 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1364 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1367 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1369 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1370 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1373 static void print_version(struct feat_fd *ff, FILE *fp)
1375 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1378 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1380 int nr, i;
1382 nr = ff->ph->env.nr_cmdline;
1384 fprintf(fp, "# cmdline : ");
1386 for (i = 0; i < nr; i++) {
1387 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1388 if (!argv_i) {
1389 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1390 } else {
1391 char *mem = argv_i;
1392 do {
1393 char *quote = strchr(argv_i, '\'');
1394 if (!quote)
1395 break;
1396 *quote++ = '\0';
1397 fprintf(fp, "%s\\\'", argv_i);
1398 argv_i = quote;
1399 } while (1);
1400 fprintf(fp, "%s ", argv_i);
1401 free(mem);
1404 fputc('\n', fp);
1407 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1409 struct perf_header *ph = ff->ph;
1410 int cpu_nr = ph->env.nr_cpus_avail;
1411 int nr, i;
1412 char *str;
1414 nr = ph->env.nr_sibling_cores;
1415 str = ph->env.sibling_cores;
1417 for (i = 0; i < nr; i++) {
1418 fprintf(fp, "# sibling cores : %s\n", str);
1419 str += strlen(str) + 1;
1422 nr = ph->env.nr_sibling_threads;
1423 str = ph->env.sibling_threads;
1425 for (i = 0; i < nr; i++) {
1426 fprintf(fp, "# sibling threads : %s\n", str);
1427 str += strlen(str) + 1;
1430 if (ph->env.cpu != NULL) {
1431 for (i = 0; i < cpu_nr; i++)
1432 fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1433 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1434 } else
1435 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1438 static void print_clockid(struct feat_fd *ff, FILE *fp)
1440 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1441 ff->ph->env.clockid_res_ns * 1000);
1444 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1446 struct perf_session *session;
1447 struct perf_data *data;
1449 session = container_of(ff->ph, struct perf_session, header);
1450 data = session->data;
1452 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1455 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1457 struct perf_env *env = &ff->ph->env;
1458 struct rb_root *root;
1459 struct rb_node *next;
1461 down_read(&env->bpf_progs.lock);
1463 root = &env->bpf_progs.infos;
1464 next = rb_first(root);
1466 while (next) {
1467 struct bpf_prog_info_node *node;
1469 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1470 next = rb_next(&node->rb_node);
1472 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1473 env, fp);
1476 up_read(&env->bpf_progs.lock);
1479 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1481 struct perf_env *env = &ff->ph->env;
1482 struct rb_root *root;
1483 struct rb_node *next;
1485 down_read(&env->bpf_progs.lock);
1487 root = &env->bpf_progs.btfs;
1488 next = rb_first(root);
1490 while (next) {
1491 struct btf_node *node;
1493 node = rb_entry(next, struct btf_node, rb_node);
1494 next = rb_next(&node->rb_node);
1495 fprintf(fp, "# btf info of id %u\n", node->id);
1498 up_read(&env->bpf_progs.lock);
1501 static void free_event_desc(struct perf_evsel *events)
1503 struct perf_evsel *evsel;
1505 if (!events)
1506 return;
1508 for (evsel = events; evsel->attr.size; evsel++) {
1509 zfree(&evsel->name);
1510 zfree(&evsel->id);
1513 free(events);
1516 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1518 struct perf_evsel *evsel, *events = NULL;
1519 u64 *id;
1520 void *buf = NULL;
1521 u32 nre, sz, nr, i, j;
1522 size_t msz;
1524 /* number of events */
1525 if (do_read_u32(ff, &nre))
1526 goto error;
1528 if (do_read_u32(ff, &sz))
1529 goto error;
1531 /* buffer to hold on file attr struct */
1532 buf = malloc(sz);
1533 if (!buf)
1534 goto error;
1536 /* the last event terminates with evsel->attr.size == 0: */
1537 events = calloc(nre + 1, sizeof(*events));
1538 if (!events)
1539 goto error;
1541 msz = sizeof(evsel->attr);
1542 if (sz < msz)
1543 msz = sz;
1545 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1546 evsel->idx = i;
1549 * must read entire on-file attr struct to
1550 * sync up with layout.
1552 if (__do_read(ff, buf, sz))
1553 goto error;
1555 if (ff->ph->needs_swap)
1556 perf_event__attr_swap(buf);
1558 memcpy(&evsel->attr, buf, msz);
1560 if (do_read_u32(ff, &nr))
1561 goto error;
1563 if (ff->ph->needs_swap)
1564 evsel->needs_swap = true;
1566 evsel->name = do_read_string(ff);
1567 if (!evsel->name)
1568 goto error;
1570 if (!nr)
1571 continue;
1573 id = calloc(nr, sizeof(*id));
1574 if (!id)
1575 goto error;
1576 evsel->ids = nr;
1577 evsel->id = id;
1579 for (j = 0 ; j < nr; j++) {
1580 if (do_read_u64(ff, id))
1581 goto error;
1582 id++;
1585 out:
1586 free(buf);
1587 return events;
1588 error:
1589 free_event_desc(events);
1590 events = NULL;
1591 goto out;
1594 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1595 void *priv __maybe_unused)
1597 return fprintf(fp, ", %s = %s", name, val);
1600 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1602 struct perf_evsel *evsel, *events;
1603 u32 j;
1604 u64 *id;
1606 if (ff->events)
1607 events = ff->events;
1608 else
1609 events = read_event_desc(ff);
1611 if (!events) {
1612 fprintf(fp, "# event desc: not available or unable to read\n");
1613 return;
1616 for (evsel = events; evsel->attr.size; evsel++) {
1617 fprintf(fp, "# event : name = %s, ", evsel->name);
1619 if (evsel->ids) {
1620 fprintf(fp, ", id = {");
1621 for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1622 if (j)
1623 fputc(',', fp);
1624 fprintf(fp, " %"PRIu64, *id);
1626 fprintf(fp, " }");
1629 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1631 fputc('\n', fp);
1634 free_event_desc(events);
1635 ff->events = NULL;
1638 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1640 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1643 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1645 int i;
1646 struct numa_node *n;
1648 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1649 n = &ff->ph->env.numa_nodes[i];
1651 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1652 " free = %"PRIu64" kB\n",
1653 n->node, n->mem_total, n->mem_free);
1655 fprintf(fp, "# node%u cpu list : ", n->node);
1656 cpu_map__fprintf(n->map, fp);
1660 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1662 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1665 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1667 fprintf(fp, "# contains samples with branch stack\n");
1670 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1672 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1675 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1677 fprintf(fp, "# contains stat data\n");
1680 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1682 int i;
1684 fprintf(fp, "# CPU cache info:\n");
1685 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1686 fprintf(fp, "# ");
1687 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1691 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1693 const char *delimiter = "# pmu mappings: ";
1694 char *str, *tmp;
1695 u32 pmu_num;
1696 u32 type;
1698 pmu_num = ff->ph->env.nr_pmu_mappings;
1699 if (!pmu_num) {
1700 fprintf(fp, "# pmu mappings: not available\n");
1701 return;
1704 str = ff->ph->env.pmu_mappings;
1706 while (pmu_num) {
1707 type = strtoul(str, &tmp, 0);
1708 if (*tmp != ':')
1709 goto error;
1711 str = tmp + 1;
1712 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1714 delimiter = ", ";
1715 str += strlen(str) + 1;
1716 pmu_num--;
1719 fprintf(fp, "\n");
1721 if (!pmu_num)
1722 return;
1723 error:
1724 fprintf(fp, "# pmu mappings: unable to read\n");
1727 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1729 struct perf_session *session;
1730 struct perf_evsel *evsel;
1731 u32 nr = 0;
1733 session = container_of(ff->ph, struct perf_session, header);
1735 evlist__for_each_entry(session->evlist, evsel) {
1736 if (perf_evsel__is_group_leader(evsel) &&
1737 evsel->nr_members > 1) {
1738 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1739 perf_evsel__name(evsel));
1741 nr = evsel->nr_members - 1;
1742 } else if (nr) {
1743 fprintf(fp, ",%s", perf_evsel__name(evsel));
1745 if (--nr == 0)
1746 fprintf(fp, "}\n");
1751 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1753 struct perf_session *session;
1754 char time_buf[32];
1755 double d;
1757 session = container_of(ff->ph, struct perf_session, header);
1759 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1760 time_buf, sizeof(time_buf));
1761 fprintf(fp, "# time of first sample : %s\n", time_buf);
1763 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1764 time_buf, sizeof(time_buf));
1765 fprintf(fp, "# time of last sample : %s\n", time_buf);
1767 d = (double)(session->evlist->last_sample_time -
1768 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1770 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1773 static void memory_node__fprintf(struct memory_node *n,
1774 unsigned long long bsize, FILE *fp)
1776 char buf_map[100], buf_size[50];
1777 unsigned long long size;
1779 size = bsize * bitmap_weight(n->set, n->size);
1780 unit_number__scnprintf(buf_size, 50, size);
1782 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1783 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1786 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1788 struct memory_node *nodes;
1789 int i, nr;
1791 nodes = ff->ph->env.memory_nodes;
1792 nr = ff->ph->env.nr_memory_nodes;
1794 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1795 nr, ff->ph->env.memory_bsize);
1797 for (i = 0; i < nr; i++) {
1798 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1802 static int __event_process_build_id(struct build_id_event *bev,
1803 char *filename,
1804 struct perf_session *session)
1806 int err = -1;
1807 struct machine *machine;
1808 u16 cpumode;
1809 struct dso *dso;
1810 enum dso_kernel_type dso_type;
1812 machine = perf_session__findnew_machine(session, bev->pid);
1813 if (!machine)
1814 goto out;
1816 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1818 switch (cpumode) {
1819 case PERF_RECORD_MISC_KERNEL:
1820 dso_type = DSO_TYPE_KERNEL;
1821 break;
1822 case PERF_RECORD_MISC_GUEST_KERNEL:
1823 dso_type = DSO_TYPE_GUEST_KERNEL;
1824 break;
1825 case PERF_RECORD_MISC_USER:
1826 case PERF_RECORD_MISC_GUEST_USER:
1827 dso_type = DSO_TYPE_USER;
1828 break;
1829 default:
1830 goto out;
1833 dso = machine__findnew_dso(machine, filename);
1834 if (dso != NULL) {
1835 char sbuild_id[SBUILD_ID_SIZE];
1837 dso__set_build_id(dso, &bev->build_id);
1839 if (dso_type != DSO_TYPE_USER) {
1840 struct kmod_path m = { .name = NULL, };
1842 if (!kmod_path__parse_name(&m, filename) && m.kmod)
1843 dso__set_module_info(dso, &m, machine);
1844 else
1845 dso->kernel = dso_type;
1847 free(m.name);
1850 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1851 sbuild_id);
1852 pr_debug("build id event received for %s: %s\n",
1853 dso->long_name, sbuild_id);
1854 dso__put(dso);
1857 err = 0;
1858 out:
1859 return err;
1862 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1863 int input, u64 offset, u64 size)
1865 struct perf_session *session = container_of(header, struct perf_session, header);
1866 struct {
1867 struct perf_event_header header;
1868 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1869 char filename[0];
1870 } old_bev;
1871 struct build_id_event bev;
1872 char filename[PATH_MAX];
1873 u64 limit = offset + size;
1875 while (offset < limit) {
1876 ssize_t len;
1878 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1879 return -1;
1881 if (header->needs_swap)
1882 perf_event_header__bswap(&old_bev.header);
1884 len = old_bev.header.size - sizeof(old_bev);
1885 if (readn(input, filename, len) != len)
1886 return -1;
1888 bev.header = old_bev.header;
1891 * As the pid is the missing value, we need to fill
1892 * it properly. The header.misc value give us nice hint.
1894 bev.pid = HOST_KERNEL_ID;
1895 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1896 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1897 bev.pid = DEFAULT_GUEST_KERNEL_ID;
1899 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1900 __event_process_build_id(&bev, filename, session);
1902 offset += bev.header.size;
1905 return 0;
1908 static int perf_header__read_build_ids(struct perf_header *header,
1909 int input, u64 offset, u64 size)
1911 struct perf_session *session = container_of(header, struct perf_session, header);
1912 struct build_id_event bev;
1913 char filename[PATH_MAX];
1914 u64 limit = offset + size, orig_offset = offset;
1915 int err = -1;
1917 while (offset < limit) {
1918 ssize_t len;
1920 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1921 goto out;
1923 if (header->needs_swap)
1924 perf_event_header__bswap(&bev.header);
1926 len = bev.header.size - sizeof(bev);
1927 if (readn(input, filename, len) != len)
1928 goto out;
1930 * The a1645ce1 changeset:
1932 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1934 * Added a field to struct build_id_event that broke the file
1935 * format.
1937 * Since the kernel build-id is the first entry, process the
1938 * table using the old format if the well known
1939 * '[kernel.kallsyms]' string for the kernel build-id has the
1940 * first 4 characters chopped off (where the pid_t sits).
1942 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1943 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1944 return -1;
1945 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1948 __event_process_build_id(&bev, filename, session);
1950 offset += bev.header.size;
1952 err = 0;
1953 out:
1954 return err;
1957 /* Macro for features that simply need to read and store a string. */
1958 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1959 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1961 ff->ph->env.__feat_env = do_read_string(ff); \
1962 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1965 FEAT_PROCESS_STR_FUN(hostname, hostname);
1966 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1967 FEAT_PROCESS_STR_FUN(version, version);
1968 FEAT_PROCESS_STR_FUN(arch, arch);
1969 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1970 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1972 static int process_tracing_data(struct feat_fd *ff, void *data)
1974 ssize_t ret = trace_report(ff->fd, data, false);
1976 return ret < 0 ? -1 : 0;
1979 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1981 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1982 pr_debug("Failed to read buildids, continuing...\n");
1983 return 0;
1986 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1988 int ret;
1989 u32 nr_cpus_avail, nr_cpus_online;
1991 ret = do_read_u32(ff, &nr_cpus_avail);
1992 if (ret)
1993 return ret;
1995 ret = do_read_u32(ff, &nr_cpus_online);
1996 if (ret)
1997 return ret;
1998 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1999 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2000 return 0;
2003 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2005 u64 total_mem;
2006 int ret;
2008 ret = do_read_u64(ff, &total_mem);
2009 if (ret)
2010 return -1;
2011 ff->ph->env.total_mem = (unsigned long long)total_mem;
2012 return 0;
2015 static struct perf_evsel *
2016 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2018 struct perf_evsel *evsel;
2020 evlist__for_each_entry(evlist, evsel) {
2021 if (evsel->idx == idx)
2022 return evsel;
2025 return NULL;
2028 static void
2029 perf_evlist__set_event_name(struct perf_evlist *evlist,
2030 struct perf_evsel *event)
2032 struct perf_evsel *evsel;
2034 if (!event->name)
2035 return;
2037 evsel = perf_evlist__find_by_index(evlist, event->idx);
2038 if (!evsel)
2039 return;
2041 if (evsel->name)
2042 return;
2044 evsel->name = strdup(event->name);
2047 static int
2048 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2050 struct perf_session *session;
2051 struct perf_evsel *evsel, *events = read_event_desc(ff);
2053 if (!events)
2054 return 0;
2056 session = container_of(ff->ph, struct perf_session, header);
2058 if (session->data->is_pipe) {
2059 /* Save events for reading later by print_event_desc,
2060 * since they can't be read again in pipe mode. */
2061 ff->events = events;
2064 for (evsel = events; evsel->attr.size; evsel++)
2065 perf_evlist__set_event_name(session->evlist, evsel);
2067 if (!session->data->is_pipe)
2068 free_event_desc(events);
2070 return 0;
2073 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2075 char *str, *cmdline = NULL, **argv = NULL;
2076 u32 nr, i, len = 0;
2078 if (do_read_u32(ff, &nr))
2079 return -1;
2081 ff->ph->env.nr_cmdline = nr;
2083 cmdline = zalloc(ff->size + nr + 1);
2084 if (!cmdline)
2085 return -1;
2087 argv = zalloc(sizeof(char *) * (nr + 1));
2088 if (!argv)
2089 goto error;
2091 for (i = 0; i < nr; i++) {
2092 str = do_read_string(ff);
2093 if (!str)
2094 goto error;
2096 argv[i] = cmdline + len;
2097 memcpy(argv[i], str, strlen(str) + 1);
2098 len += strlen(str) + 1;
2099 free(str);
2101 ff->ph->env.cmdline = cmdline;
2102 ff->ph->env.cmdline_argv = (const char **) argv;
2103 return 0;
2105 error:
2106 free(argv);
2107 free(cmdline);
2108 return -1;
2111 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2113 u32 nr, i;
2114 char *str;
2115 struct strbuf sb;
2116 int cpu_nr = ff->ph->env.nr_cpus_avail;
2117 u64 size = 0;
2118 struct perf_header *ph = ff->ph;
2119 bool do_core_id_test = true;
2121 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2122 if (!ph->env.cpu)
2123 return -1;
2125 if (do_read_u32(ff, &nr))
2126 goto free_cpu;
2128 ph->env.nr_sibling_cores = nr;
2129 size += sizeof(u32);
2130 if (strbuf_init(&sb, 128) < 0)
2131 goto free_cpu;
2133 for (i = 0; i < nr; i++) {
2134 str = do_read_string(ff);
2135 if (!str)
2136 goto error;
2138 /* include a NULL character at the end */
2139 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2140 goto error;
2141 size += string_size(str);
2142 free(str);
2144 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2146 if (do_read_u32(ff, &nr))
2147 return -1;
2149 ph->env.nr_sibling_threads = nr;
2150 size += sizeof(u32);
2152 for (i = 0; i < nr; i++) {
2153 str = do_read_string(ff);
2154 if (!str)
2155 goto error;
2157 /* include a NULL character at the end */
2158 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2159 goto error;
2160 size += string_size(str);
2161 free(str);
2163 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2166 * The header may be from old perf,
2167 * which doesn't include core id and socket id information.
2169 if (ff->size <= size) {
2170 zfree(&ph->env.cpu);
2171 return 0;
2174 /* On s390 the socket_id number is not related to the numbers of cpus.
2175 * The socket_id number might be higher than the numbers of cpus.
2176 * This depends on the configuration.
2178 if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2179 do_core_id_test = false;
2181 for (i = 0; i < (u32)cpu_nr; i++) {
2182 if (do_read_u32(ff, &nr))
2183 goto free_cpu;
2185 ph->env.cpu[i].core_id = nr;
2187 if (do_read_u32(ff, &nr))
2188 goto free_cpu;
2190 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2191 pr_debug("socket_id number is too big."
2192 "You may need to upgrade the perf tool.\n");
2193 goto free_cpu;
2196 ph->env.cpu[i].socket_id = nr;
2199 return 0;
2201 error:
2202 strbuf_release(&sb);
2203 free_cpu:
2204 zfree(&ph->env.cpu);
2205 return -1;
2208 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2210 struct numa_node *nodes, *n;
2211 u32 nr, i;
2212 char *str;
2214 /* nr nodes */
2215 if (do_read_u32(ff, &nr))
2216 return -1;
2218 nodes = zalloc(sizeof(*nodes) * nr);
2219 if (!nodes)
2220 return -ENOMEM;
2222 for (i = 0; i < nr; i++) {
2223 n = &nodes[i];
2225 /* node number */
2226 if (do_read_u32(ff, &n->node))
2227 goto error;
2229 if (do_read_u64(ff, &n->mem_total))
2230 goto error;
2232 if (do_read_u64(ff, &n->mem_free))
2233 goto error;
2235 str = do_read_string(ff);
2236 if (!str)
2237 goto error;
2239 n->map = cpu_map__new(str);
2240 if (!n->map)
2241 goto error;
2243 free(str);
2245 ff->ph->env.nr_numa_nodes = nr;
2246 ff->ph->env.numa_nodes = nodes;
2247 return 0;
2249 error:
2250 free(nodes);
2251 return -1;
2254 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2256 char *name;
2257 u32 pmu_num;
2258 u32 type;
2259 struct strbuf sb;
2261 if (do_read_u32(ff, &pmu_num))
2262 return -1;
2264 if (!pmu_num) {
2265 pr_debug("pmu mappings not available\n");
2266 return 0;
2269 ff->ph->env.nr_pmu_mappings = pmu_num;
2270 if (strbuf_init(&sb, 128) < 0)
2271 return -1;
2273 while (pmu_num) {
2274 if (do_read_u32(ff, &type))
2275 goto error;
2277 name = do_read_string(ff);
2278 if (!name)
2279 goto error;
2281 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2282 goto error;
2283 /* include a NULL character at the end */
2284 if (strbuf_add(&sb, "", 1) < 0)
2285 goto error;
2287 if (!strcmp(name, "msr"))
2288 ff->ph->env.msr_pmu_type = type;
2290 free(name);
2291 pmu_num--;
2293 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2294 return 0;
2296 error:
2297 strbuf_release(&sb);
2298 return -1;
2301 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2303 size_t ret = -1;
2304 u32 i, nr, nr_groups;
2305 struct perf_session *session;
2306 struct perf_evsel *evsel, *leader = NULL;
2307 struct group_desc {
2308 char *name;
2309 u32 leader_idx;
2310 u32 nr_members;
2311 } *desc;
2313 if (do_read_u32(ff, &nr_groups))
2314 return -1;
2316 ff->ph->env.nr_groups = nr_groups;
2317 if (!nr_groups) {
2318 pr_debug("group desc not available\n");
2319 return 0;
2322 desc = calloc(nr_groups, sizeof(*desc));
2323 if (!desc)
2324 return -1;
2326 for (i = 0; i < nr_groups; i++) {
2327 desc[i].name = do_read_string(ff);
2328 if (!desc[i].name)
2329 goto out_free;
2331 if (do_read_u32(ff, &desc[i].leader_idx))
2332 goto out_free;
2334 if (do_read_u32(ff, &desc[i].nr_members))
2335 goto out_free;
2339 * Rebuild group relationship based on the group_desc
2341 session = container_of(ff->ph, struct perf_session, header);
2342 session->evlist->nr_groups = nr_groups;
2344 i = nr = 0;
2345 evlist__for_each_entry(session->evlist, evsel) {
2346 if (evsel->idx == (int) desc[i].leader_idx) {
2347 evsel->leader = evsel;
2348 /* {anon_group} is a dummy name */
2349 if (strcmp(desc[i].name, "{anon_group}")) {
2350 evsel->group_name = desc[i].name;
2351 desc[i].name = NULL;
2353 evsel->nr_members = desc[i].nr_members;
2355 if (i >= nr_groups || nr > 0) {
2356 pr_debug("invalid group desc\n");
2357 goto out_free;
2360 leader = evsel;
2361 nr = evsel->nr_members - 1;
2362 i++;
2363 } else if (nr) {
2364 /* This is a group member */
2365 evsel->leader = leader;
2367 nr--;
2371 if (i != nr_groups || nr != 0) {
2372 pr_debug("invalid group desc\n");
2373 goto out_free;
2376 ret = 0;
2377 out_free:
2378 for (i = 0; i < nr_groups; i++)
2379 zfree(&desc[i].name);
2380 free(desc);
2382 return ret;
2385 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2387 struct perf_session *session;
2388 int err;
2390 session = container_of(ff->ph, struct perf_session, header);
2392 err = auxtrace_index__process(ff->fd, ff->size, session,
2393 ff->ph->needs_swap);
2394 if (err < 0)
2395 pr_err("Failed to process auxtrace index\n");
2396 return err;
2399 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2401 struct cpu_cache_level *caches;
2402 u32 cnt, i, version;
2404 if (do_read_u32(ff, &version))
2405 return -1;
2407 if (version != 1)
2408 return -1;
2410 if (do_read_u32(ff, &cnt))
2411 return -1;
2413 caches = zalloc(sizeof(*caches) * cnt);
2414 if (!caches)
2415 return -1;
2417 for (i = 0; i < cnt; i++) {
2418 struct cpu_cache_level c;
2420 #define _R(v) \
2421 if (do_read_u32(ff, &c.v))\
2422 goto out_free_caches; \
2424 _R(level)
2425 _R(line_size)
2426 _R(sets)
2427 _R(ways)
2428 #undef _R
2430 #define _R(v) \
2431 c.v = do_read_string(ff); \
2432 if (!c.v) \
2433 goto out_free_caches;
2435 _R(type)
2436 _R(size)
2437 _R(map)
2438 #undef _R
2440 caches[i] = c;
2443 ff->ph->env.caches = caches;
2444 ff->ph->env.caches_cnt = cnt;
2445 return 0;
2446 out_free_caches:
2447 free(caches);
2448 return -1;
2451 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2453 struct perf_session *session;
2454 u64 first_sample_time, last_sample_time;
2455 int ret;
2457 session = container_of(ff->ph, struct perf_session, header);
2459 ret = do_read_u64(ff, &first_sample_time);
2460 if (ret)
2461 return -1;
2463 ret = do_read_u64(ff, &last_sample_time);
2464 if (ret)
2465 return -1;
2467 session->evlist->first_sample_time = first_sample_time;
2468 session->evlist->last_sample_time = last_sample_time;
2469 return 0;
2472 static int process_mem_topology(struct feat_fd *ff,
2473 void *data __maybe_unused)
2475 struct memory_node *nodes;
2476 u64 version, i, nr, bsize;
2477 int ret = -1;
2479 if (do_read_u64(ff, &version))
2480 return -1;
2482 if (version != 1)
2483 return -1;
2485 if (do_read_u64(ff, &bsize))
2486 return -1;
2488 if (do_read_u64(ff, &nr))
2489 return -1;
2491 nodes = zalloc(sizeof(*nodes) * nr);
2492 if (!nodes)
2493 return -1;
2495 for (i = 0; i < nr; i++) {
2496 struct memory_node n;
2498 #define _R(v) \
2499 if (do_read_u64(ff, &n.v)) \
2500 goto out; \
2502 _R(node)
2503 _R(size)
2505 #undef _R
2507 if (do_read_bitmap(ff, &n.set, &n.size))
2508 goto out;
2510 nodes[i] = n;
2513 ff->ph->env.memory_bsize = bsize;
2514 ff->ph->env.memory_nodes = nodes;
2515 ff->ph->env.nr_memory_nodes = nr;
2516 ret = 0;
2518 out:
2519 if (ret)
2520 free(nodes);
2521 return ret;
2524 static int process_clockid(struct feat_fd *ff,
2525 void *data __maybe_unused)
2527 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2528 return -1;
2530 return 0;
2533 static int process_dir_format(struct feat_fd *ff,
2534 void *_data __maybe_unused)
2536 struct perf_session *session;
2537 struct perf_data *data;
2539 session = container_of(ff->ph, struct perf_session, header);
2540 data = session->data;
2542 if (WARN_ON(!perf_data__is_dir(data)))
2543 return -1;
2545 return do_read_u64(ff, &data->dir.version);
2548 #ifdef HAVE_LIBBPF_SUPPORT
2549 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2551 struct bpf_prog_info_linear *info_linear;
2552 struct bpf_prog_info_node *info_node;
2553 struct perf_env *env = &ff->ph->env;
2554 u32 count, i;
2555 int err = -1;
2557 if (ff->ph->needs_swap) {
2558 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2559 return 0;
2562 if (do_read_u32(ff, &count))
2563 return -1;
2565 down_write(&env->bpf_progs.lock);
2567 for (i = 0; i < count; ++i) {
2568 u32 info_len, data_len;
2570 info_linear = NULL;
2571 info_node = NULL;
2572 if (do_read_u32(ff, &info_len))
2573 goto out;
2574 if (do_read_u32(ff, &data_len))
2575 goto out;
2577 if (info_len > sizeof(struct bpf_prog_info)) {
2578 pr_warning("detected invalid bpf_prog_info\n");
2579 goto out;
2582 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2583 data_len);
2584 if (!info_linear)
2585 goto out;
2586 info_linear->info_len = sizeof(struct bpf_prog_info);
2587 info_linear->data_len = data_len;
2588 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2589 goto out;
2590 if (__do_read(ff, &info_linear->info, info_len))
2591 goto out;
2592 if (info_len < sizeof(struct bpf_prog_info))
2593 memset(((void *)(&info_linear->info)) + info_len, 0,
2594 sizeof(struct bpf_prog_info) - info_len);
2596 if (__do_read(ff, info_linear->data, data_len))
2597 goto out;
2599 info_node = malloc(sizeof(struct bpf_prog_info_node));
2600 if (!info_node)
2601 goto out;
2603 /* after reading from file, translate offset to address */
2604 bpf_program__bpil_offs_to_addr(info_linear);
2605 info_node->info_linear = info_linear;
2606 perf_env__insert_bpf_prog_info(env, info_node);
2609 up_write(&env->bpf_progs.lock);
2610 return 0;
2611 out:
2612 free(info_linear);
2613 free(info_node);
2614 up_write(&env->bpf_progs.lock);
2615 return err;
2617 #else // HAVE_LIBBPF_SUPPORT
2618 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2620 return 0;
2622 #endif // HAVE_LIBBPF_SUPPORT
2624 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2626 struct perf_env *env = &ff->ph->env;
2627 struct btf_node *node = NULL;
2628 u32 count, i;
2629 int err = -1;
2631 if (ff->ph->needs_swap) {
2632 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2633 return 0;
2636 if (do_read_u32(ff, &count))
2637 return -1;
2639 down_write(&env->bpf_progs.lock);
2641 for (i = 0; i < count; ++i) {
2642 u32 id, data_size;
2644 if (do_read_u32(ff, &id))
2645 goto out;
2646 if (do_read_u32(ff, &data_size))
2647 goto out;
2649 node = malloc(sizeof(struct btf_node) + data_size);
2650 if (!node)
2651 goto out;
2653 node->id = id;
2654 node->data_size = data_size;
2656 if (__do_read(ff, node->data, data_size))
2657 goto out;
2659 perf_env__insert_btf(env, node);
2660 node = NULL;
2663 err = 0;
2664 out:
2665 up_write(&env->bpf_progs.lock);
2666 free(node);
2667 return err;
2670 struct feature_ops {
2671 int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2672 void (*print)(struct feat_fd *ff, FILE *fp);
2673 int (*process)(struct feat_fd *ff, void *data);
2674 const char *name;
2675 bool full_only;
2676 bool synthesize;
2679 #define FEAT_OPR(n, func, __full_only) \
2680 [HEADER_##n] = { \
2681 .name = __stringify(n), \
2682 .write = write_##func, \
2683 .print = print_##func, \
2684 .full_only = __full_only, \
2685 .process = process_##func, \
2686 .synthesize = true \
2689 #define FEAT_OPN(n, func, __full_only) \
2690 [HEADER_##n] = { \
2691 .name = __stringify(n), \
2692 .write = write_##func, \
2693 .print = print_##func, \
2694 .full_only = __full_only, \
2695 .process = process_##func \
2698 /* feature_ops not implemented: */
2699 #define print_tracing_data NULL
2700 #define print_build_id NULL
2702 #define process_branch_stack NULL
2703 #define process_stat NULL
2706 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2707 FEAT_OPN(TRACING_DATA, tracing_data, false),
2708 FEAT_OPN(BUILD_ID, build_id, false),
2709 FEAT_OPR(HOSTNAME, hostname, false),
2710 FEAT_OPR(OSRELEASE, osrelease, false),
2711 FEAT_OPR(VERSION, version, false),
2712 FEAT_OPR(ARCH, arch, false),
2713 FEAT_OPR(NRCPUS, nrcpus, false),
2714 FEAT_OPR(CPUDESC, cpudesc, false),
2715 FEAT_OPR(CPUID, cpuid, false),
2716 FEAT_OPR(TOTAL_MEM, total_mem, false),
2717 FEAT_OPR(EVENT_DESC, event_desc, false),
2718 FEAT_OPR(CMDLINE, cmdline, false),
2719 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2720 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2721 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2722 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2723 FEAT_OPR(GROUP_DESC, group_desc, false),
2724 FEAT_OPN(AUXTRACE, auxtrace, false),
2725 FEAT_OPN(STAT, stat, false),
2726 FEAT_OPN(CACHE, cache, true),
2727 FEAT_OPR(SAMPLE_TIME, sample_time, false),
2728 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
2729 FEAT_OPR(CLOCKID, clockid, false),
2730 FEAT_OPN(DIR_FORMAT, dir_format, false),
2731 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
2732 FEAT_OPR(BPF_BTF, bpf_btf, false),
2735 struct header_print_data {
2736 FILE *fp;
2737 bool full; /* extended list of headers */
2740 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2741 struct perf_header *ph,
2742 int feat, int fd, void *data)
2744 struct header_print_data *hd = data;
2745 struct feat_fd ff;
2747 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2748 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2749 "%d, continuing...\n", section->offset, feat);
2750 return 0;
2752 if (feat >= HEADER_LAST_FEATURE) {
2753 pr_warning("unknown feature %d\n", feat);
2754 return 0;
2756 if (!feat_ops[feat].print)
2757 return 0;
2759 ff = (struct feat_fd) {
2760 .fd = fd,
2761 .ph = ph,
2764 if (!feat_ops[feat].full_only || hd->full)
2765 feat_ops[feat].print(&ff, hd->fp);
2766 else
2767 fprintf(hd->fp, "# %s info available, use -I to display\n",
2768 feat_ops[feat].name);
2770 return 0;
2773 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2775 struct header_print_data hd;
2776 struct perf_header *header = &session->header;
2777 int fd = perf_data__fd(session->data);
2778 struct stat st;
2779 time_t stctime;
2780 int ret, bit;
2782 hd.fp = fp;
2783 hd.full = full;
2785 ret = fstat(fd, &st);
2786 if (ret == -1)
2787 return -1;
2789 stctime = st.st_ctime;
2790 fprintf(fp, "# captured on : %s", ctime(&stctime));
2792 fprintf(fp, "# header version : %u\n", header->version);
2793 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
2794 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
2795 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
2797 perf_header__process_sections(header, fd, &hd,
2798 perf_file_section__fprintf_info);
2800 if (session->data->is_pipe)
2801 return 0;
2803 fprintf(fp, "# missing features: ");
2804 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2805 if (bit)
2806 fprintf(fp, "%s ", feat_ops[bit].name);
2809 fprintf(fp, "\n");
2810 return 0;
2813 static int do_write_feat(struct feat_fd *ff, int type,
2814 struct perf_file_section **p,
2815 struct perf_evlist *evlist)
2817 int err;
2818 int ret = 0;
2820 if (perf_header__has_feat(ff->ph, type)) {
2821 if (!feat_ops[type].write)
2822 return -1;
2824 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2825 return -1;
2827 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2829 err = feat_ops[type].write(ff, evlist);
2830 if (err < 0) {
2831 pr_debug("failed to write feature %s\n", feat_ops[type].name);
2833 /* undo anything written */
2834 lseek(ff->fd, (*p)->offset, SEEK_SET);
2836 return -1;
2838 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2839 (*p)++;
2841 return ret;
2844 static int perf_header__adds_write(struct perf_header *header,
2845 struct perf_evlist *evlist, int fd)
2847 int nr_sections;
2848 struct feat_fd ff;
2849 struct perf_file_section *feat_sec, *p;
2850 int sec_size;
2851 u64 sec_start;
2852 int feat;
2853 int err;
2855 ff = (struct feat_fd){
2856 .fd = fd,
2857 .ph = header,
2860 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2861 if (!nr_sections)
2862 return 0;
2864 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2865 if (feat_sec == NULL)
2866 return -ENOMEM;
2868 sec_size = sizeof(*feat_sec) * nr_sections;
2870 sec_start = header->feat_offset;
2871 lseek(fd, sec_start + sec_size, SEEK_SET);
2873 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2874 if (do_write_feat(&ff, feat, &p, evlist))
2875 perf_header__clear_feat(header, feat);
2878 lseek(fd, sec_start, SEEK_SET);
2880 * may write more than needed due to dropped feature, but
2881 * this is okay, reader will skip the missing entries
2883 err = do_write(&ff, feat_sec, sec_size);
2884 if (err < 0)
2885 pr_debug("failed to write feature section\n");
2886 free(feat_sec);
2887 return err;
2890 int perf_header__write_pipe(int fd)
2892 struct perf_pipe_file_header f_header;
2893 struct feat_fd ff;
2894 int err;
2896 ff = (struct feat_fd){ .fd = fd };
2898 f_header = (struct perf_pipe_file_header){
2899 .magic = PERF_MAGIC,
2900 .size = sizeof(f_header),
2903 err = do_write(&ff, &f_header, sizeof(f_header));
2904 if (err < 0) {
2905 pr_debug("failed to write perf pipe header\n");
2906 return err;
2909 return 0;
2912 int perf_session__write_header(struct perf_session *session,
2913 struct perf_evlist *evlist,
2914 int fd, bool at_exit)
2916 struct perf_file_header f_header;
2917 struct perf_file_attr f_attr;
2918 struct perf_header *header = &session->header;
2919 struct perf_evsel *evsel;
2920 struct feat_fd ff;
2921 u64 attr_offset;
2922 int err;
2924 ff = (struct feat_fd){ .fd = fd};
2925 lseek(fd, sizeof(f_header), SEEK_SET);
2927 evlist__for_each_entry(session->evlist, evsel) {
2928 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2929 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2930 if (err < 0) {
2931 pr_debug("failed to write perf header\n");
2932 return err;
2936 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2938 evlist__for_each_entry(evlist, evsel) {
2939 f_attr = (struct perf_file_attr){
2940 .attr = evsel->attr,
2941 .ids = {
2942 .offset = evsel->id_offset,
2943 .size = evsel->ids * sizeof(u64),
2946 err = do_write(&ff, &f_attr, sizeof(f_attr));
2947 if (err < 0) {
2948 pr_debug("failed to write perf header attribute\n");
2949 return err;
2953 if (!header->data_offset)
2954 header->data_offset = lseek(fd, 0, SEEK_CUR);
2955 header->feat_offset = header->data_offset + header->data_size;
2957 if (at_exit) {
2958 err = perf_header__adds_write(header, evlist, fd);
2959 if (err < 0)
2960 return err;
2963 f_header = (struct perf_file_header){
2964 .magic = PERF_MAGIC,
2965 .size = sizeof(f_header),
2966 .attr_size = sizeof(f_attr),
2967 .attrs = {
2968 .offset = attr_offset,
2969 .size = evlist->nr_entries * sizeof(f_attr),
2971 .data = {
2972 .offset = header->data_offset,
2973 .size = header->data_size,
2975 /* event_types is ignored, store zeros */
2978 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2980 lseek(fd, 0, SEEK_SET);
2981 err = do_write(&ff, &f_header, sizeof(f_header));
2982 if (err < 0) {
2983 pr_debug("failed to write perf header\n");
2984 return err;
2986 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2988 return 0;
2991 static int perf_header__getbuffer64(struct perf_header *header,
2992 int fd, void *buf, size_t size)
2994 if (readn(fd, buf, size) <= 0)
2995 return -1;
2997 if (header->needs_swap)
2998 mem_bswap_64(buf, size);
3000 return 0;
3003 int perf_header__process_sections(struct perf_header *header, int fd,
3004 void *data,
3005 int (*process)(struct perf_file_section *section,
3006 struct perf_header *ph,
3007 int feat, int fd, void *data))
3009 struct perf_file_section *feat_sec, *sec;
3010 int nr_sections;
3011 int sec_size;
3012 int feat;
3013 int err;
3015 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3016 if (!nr_sections)
3017 return 0;
3019 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3020 if (!feat_sec)
3021 return -1;
3023 sec_size = sizeof(*feat_sec) * nr_sections;
3025 lseek(fd, header->feat_offset, SEEK_SET);
3027 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3028 if (err < 0)
3029 goto out_free;
3031 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3032 err = process(sec++, header, feat, fd, data);
3033 if (err < 0)
3034 goto out_free;
3036 err = 0;
3037 out_free:
3038 free(feat_sec);
3039 return err;
3042 static const int attr_file_abi_sizes[] = {
3043 [0] = PERF_ATTR_SIZE_VER0,
3044 [1] = PERF_ATTR_SIZE_VER1,
3045 [2] = PERF_ATTR_SIZE_VER2,
3046 [3] = PERF_ATTR_SIZE_VER3,
3047 [4] = PERF_ATTR_SIZE_VER4,
3052 * In the legacy file format, the magic number is not used to encode endianness.
3053 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3054 * on ABI revisions, we need to try all combinations for all endianness to
3055 * detect the endianness.
3057 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3059 uint64_t ref_size, attr_size;
3060 int i;
3062 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3063 ref_size = attr_file_abi_sizes[i]
3064 + sizeof(struct perf_file_section);
3065 if (hdr_sz != ref_size) {
3066 attr_size = bswap_64(hdr_sz);
3067 if (attr_size != ref_size)
3068 continue;
3070 ph->needs_swap = true;
3072 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3074 ph->needs_swap);
3075 return 0;
3077 /* could not determine endianness */
3078 return -1;
3081 #define PERF_PIPE_HDR_VER0 16
3083 static const size_t attr_pipe_abi_sizes[] = {
3084 [0] = PERF_PIPE_HDR_VER0,
3089 * In the legacy pipe format, there is an implicit assumption that endiannesss
3090 * between host recording the samples, and host parsing the samples is the
3091 * same. This is not always the case given that the pipe output may always be
3092 * redirected into a file and analyzed on a different machine with possibly a
3093 * different endianness and perf_event ABI revsions in the perf tool itself.
3095 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3097 u64 attr_size;
3098 int i;
3100 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3101 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3102 attr_size = bswap_64(hdr_sz);
3103 if (attr_size != hdr_sz)
3104 continue;
3106 ph->needs_swap = true;
3108 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3109 return 0;
3111 return -1;
3114 bool is_perf_magic(u64 magic)
3116 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3117 || magic == __perf_magic2
3118 || magic == __perf_magic2_sw)
3119 return true;
3121 return false;
3124 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3125 bool is_pipe, struct perf_header *ph)
3127 int ret;
3129 /* check for legacy format */
3130 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3131 if (ret == 0) {
3132 ph->version = PERF_HEADER_VERSION_1;
3133 pr_debug("legacy perf.data format\n");
3134 if (is_pipe)
3135 return try_all_pipe_abis(hdr_sz, ph);
3137 return try_all_file_abis(hdr_sz, ph);
3140 * the new magic number serves two purposes:
3141 * - unique number to identify actual perf.data files
3142 * - encode endianness of file
3144 ph->version = PERF_HEADER_VERSION_2;
3146 /* check magic number with one endianness */
3147 if (magic == __perf_magic2)
3148 return 0;
3150 /* check magic number with opposite endianness */
3151 if (magic != __perf_magic2_sw)
3152 return -1;
3154 ph->needs_swap = true;
3156 return 0;
3159 int perf_file_header__read(struct perf_file_header *header,
3160 struct perf_header *ph, int fd)
3162 ssize_t ret;
3164 lseek(fd, 0, SEEK_SET);
3166 ret = readn(fd, header, sizeof(*header));
3167 if (ret <= 0)
3168 return -1;
3170 if (check_magic_endian(header->magic,
3171 header->attr_size, false, ph) < 0) {
3172 pr_debug("magic/endian check failed\n");
3173 return -1;
3176 if (ph->needs_swap) {
3177 mem_bswap_64(header, offsetof(struct perf_file_header,
3178 adds_features));
3181 if (header->size != sizeof(*header)) {
3182 /* Support the previous format */
3183 if (header->size == offsetof(typeof(*header), adds_features))
3184 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3185 else
3186 return -1;
3187 } else if (ph->needs_swap) {
3189 * feature bitmap is declared as an array of unsigned longs --
3190 * not good since its size can differ between the host that
3191 * generated the data file and the host analyzing the file.
3193 * We need to handle endianness, but we don't know the size of
3194 * the unsigned long where the file was generated. Take a best
3195 * guess at determining it: try 64-bit swap first (ie., file
3196 * created on a 64-bit host), and check if the hostname feature
3197 * bit is set (this feature bit is forced on as of fbe96f2).
3198 * If the bit is not, undo the 64-bit swap and try a 32-bit
3199 * swap. If the hostname bit is still not set (e.g., older data
3200 * file), punt and fallback to the original behavior --
3201 * clearing all feature bits and setting buildid.
3203 mem_bswap_64(&header->adds_features,
3204 BITS_TO_U64(HEADER_FEAT_BITS));
3206 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3207 /* unswap as u64 */
3208 mem_bswap_64(&header->adds_features,
3209 BITS_TO_U64(HEADER_FEAT_BITS));
3211 /* unswap as u32 */
3212 mem_bswap_32(&header->adds_features,
3213 BITS_TO_U32(HEADER_FEAT_BITS));
3216 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3217 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3218 set_bit(HEADER_BUILD_ID, header->adds_features);
3222 memcpy(&ph->adds_features, &header->adds_features,
3223 sizeof(ph->adds_features));
3225 ph->data_offset = header->data.offset;
3226 ph->data_size = header->data.size;
3227 ph->feat_offset = header->data.offset + header->data.size;
3228 return 0;
3231 static int perf_file_section__process(struct perf_file_section *section,
3232 struct perf_header *ph,
3233 int feat, int fd, void *data)
3235 struct feat_fd fdd = {
3236 .fd = fd,
3237 .ph = ph,
3238 .size = section->size,
3239 .offset = section->offset,
3242 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3243 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3244 "%d, continuing...\n", section->offset, feat);
3245 return 0;
3248 if (feat >= HEADER_LAST_FEATURE) {
3249 pr_debug("unknown feature %d, continuing...\n", feat);
3250 return 0;
3253 if (!feat_ops[feat].process)
3254 return 0;
3256 return feat_ops[feat].process(&fdd, data);
3259 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3260 struct perf_header *ph, int fd,
3261 bool repipe)
3263 struct feat_fd ff = {
3264 .fd = STDOUT_FILENO,
3265 .ph = ph,
3267 ssize_t ret;
3269 ret = readn(fd, header, sizeof(*header));
3270 if (ret <= 0)
3271 return -1;
3273 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3274 pr_debug("endian/magic failed\n");
3275 return -1;
3278 if (ph->needs_swap)
3279 header->size = bswap_64(header->size);
3281 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3282 return -1;
3284 return 0;
3287 static int perf_header__read_pipe(struct perf_session *session)
3289 struct perf_header *header = &session->header;
3290 struct perf_pipe_file_header f_header;
3292 if (perf_file_header__read_pipe(&f_header, header,
3293 perf_data__fd(session->data),
3294 session->repipe) < 0) {
3295 pr_debug("incompatible file format\n");
3296 return -EINVAL;
3299 return 0;
3302 static int read_attr(int fd, struct perf_header *ph,
3303 struct perf_file_attr *f_attr)
3305 struct perf_event_attr *attr = &f_attr->attr;
3306 size_t sz, left;
3307 size_t our_sz = sizeof(f_attr->attr);
3308 ssize_t ret;
3310 memset(f_attr, 0, sizeof(*f_attr));
3312 /* read minimal guaranteed structure */
3313 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3314 if (ret <= 0) {
3315 pr_debug("cannot read %d bytes of header attr\n",
3316 PERF_ATTR_SIZE_VER0);
3317 return -1;
3320 /* on file perf_event_attr size */
3321 sz = attr->size;
3323 if (ph->needs_swap)
3324 sz = bswap_32(sz);
3326 if (sz == 0) {
3327 /* assume ABI0 */
3328 sz = PERF_ATTR_SIZE_VER0;
3329 } else if (sz > our_sz) {
3330 pr_debug("file uses a more recent and unsupported ABI"
3331 " (%zu bytes extra)\n", sz - our_sz);
3332 return -1;
3334 /* what we have not yet read and that we know about */
3335 left = sz - PERF_ATTR_SIZE_VER0;
3336 if (left) {
3337 void *ptr = attr;
3338 ptr += PERF_ATTR_SIZE_VER0;
3340 ret = readn(fd, ptr, left);
3342 /* read perf_file_section, ids are read in caller */
3343 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3345 return ret <= 0 ? -1 : 0;
3348 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3349 struct tep_handle *pevent)
3351 struct tep_event *event;
3352 char bf[128];
3354 /* already prepared */
3355 if (evsel->tp_format)
3356 return 0;
3358 if (pevent == NULL) {
3359 pr_debug("broken or missing trace data\n");
3360 return -1;
3363 event = tep_find_event(pevent, evsel->attr.config);
3364 if (event == NULL) {
3365 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3366 return -1;
3369 if (!evsel->name) {
3370 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3371 evsel->name = strdup(bf);
3372 if (evsel->name == NULL)
3373 return -1;
3376 evsel->tp_format = event;
3377 return 0;
3380 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3381 struct tep_handle *pevent)
3383 struct perf_evsel *pos;
3385 evlist__for_each_entry(evlist, pos) {
3386 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3387 perf_evsel__prepare_tracepoint_event(pos, pevent))
3388 return -1;
3391 return 0;
3394 int perf_session__read_header(struct perf_session *session)
3396 struct perf_data *data = session->data;
3397 struct perf_header *header = &session->header;
3398 struct perf_file_header f_header;
3399 struct perf_file_attr f_attr;
3400 u64 f_id;
3401 int nr_attrs, nr_ids, i, j;
3402 int fd = perf_data__fd(data);
3404 session->evlist = perf_evlist__new();
3405 if (session->evlist == NULL)
3406 return -ENOMEM;
3408 session->evlist->env = &header->env;
3409 session->machines.host.env = &header->env;
3410 if (perf_data__is_pipe(data))
3411 return perf_header__read_pipe(session);
3413 if (perf_file_header__read(&f_header, header, fd) < 0)
3414 return -EINVAL;
3417 * Sanity check that perf.data was written cleanly; data size is
3418 * initialized to 0 and updated only if the on_exit function is run.
3419 * If data size is still 0 then the file contains only partial
3420 * information. Just warn user and process it as much as it can.
3422 if (f_header.data.size == 0) {
3423 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3424 "Was the 'perf record' command properly terminated?\n",
3425 data->file.path);
3428 nr_attrs = f_header.attrs.size / f_header.attr_size;
3429 lseek(fd, f_header.attrs.offset, SEEK_SET);
3431 for (i = 0; i < nr_attrs; i++) {
3432 struct perf_evsel *evsel;
3433 off_t tmp;
3435 if (read_attr(fd, header, &f_attr) < 0)
3436 goto out_errno;
3438 if (header->needs_swap) {
3439 f_attr.ids.size = bswap_64(f_attr.ids.size);
3440 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3441 perf_event__attr_swap(&f_attr.attr);
3444 tmp = lseek(fd, 0, SEEK_CUR);
3445 evsel = perf_evsel__new(&f_attr.attr);
3447 if (evsel == NULL)
3448 goto out_delete_evlist;
3450 evsel->needs_swap = header->needs_swap;
3452 * Do it before so that if perf_evsel__alloc_id fails, this
3453 * entry gets purged too at perf_evlist__delete().
3455 perf_evlist__add(session->evlist, evsel);
3457 nr_ids = f_attr.ids.size / sizeof(u64);
3459 * We don't have the cpu and thread maps on the header, so
3460 * for allocating the perf_sample_id table we fake 1 cpu and
3461 * hattr->ids threads.
3463 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3464 goto out_delete_evlist;
3466 lseek(fd, f_attr.ids.offset, SEEK_SET);
3468 for (j = 0; j < nr_ids; j++) {
3469 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3470 goto out_errno;
3472 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3475 lseek(fd, tmp, SEEK_SET);
3478 perf_header__process_sections(header, fd, &session->tevent,
3479 perf_file_section__process);
3481 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3482 session->tevent.pevent))
3483 goto out_delete_evlist;
3485 return 0;
3486 out_errno:
3487 return -errno;
3489 out_delete_evlist:
3490 perf_evlist__delete(session->evlist);
3491 session->evlist = NULL;
3492 return -ENOMEM;
3495 int perf_event__synthesize_attr(struct perf_tool *tool,
3496 struct perf_event_attr *attr, u32 ids, u64 *id,
3497 perf_event__handler_t process)
3499 union perf_event *ev;
3500 size_t size;
3501 int err;
3503 size = sizeof(struct perf_event_attr);
3504 size = PERF_ALIGN(size, sizeof(u64));
3505 size += sizeof(struct perf_event_header);
3506 size += ids * sizeof(u64);
3508 ev = malloc(size);
3510 if (ev == NULL)
3511 return -ENOMEM;
3513 ev->attr.attr = *attr;
3514 memcpy(ev->attr.id, id, ids * sizeof(u64));
3516 ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3517 ev->attr.header.size = (u16)size;
3519 if (ev->attr.header.size == size)
3520 err = process(tool, ev, NULL, NULL);
3521 else
3522 err = -E2BIG;
3524 free(ev);
3526 return err;
3529 int perf_event__synthesize_features(struct perf_tool *tool,
3530 struct perf_session *session,
3531 struct perf_evlist *evlist,
3532 perf_event__handler_t process)
3534 struct perf_header *header = &session->header;
3535 struct feat_fd ff;
3536 struct feature_event *fe;
3537 size_t sz, sz_hdr;
3538 int feat, ret;
3540 sz_hdr = sizeof(fe->header);
3541 sz = sizeof(union perf_event);
3542 /* get a nice alignment */
3543 sz = PERF_ALIGN(sz, page_size);
3545 memset(&ff, 0, sizeof(ff));
3547 ff.buf = malloc(sz);
3548 if (!ff.buf)
3549 return -ENOMEM;
3551 ff.size = sz - sz_hdr;
3553 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3554 if (!feat_ops[feat].synthesize) {
3555 pr_debug("No record header feature for header :%d\n", feat);
3556 continue;
3559 ff.offset = sizeof(*fe);
3561 ret = feat_ops[feat].write(&ff, evlist);
3562 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3563 pr_debug("Error writing feature\n");
3564 continue;
3566 /* ff.buf may have changed due to realloc in do_write() */
3567 fe = ff.buf;
3568 memset(fe, 0, sizeof(*fe));
3570 fe->feat_id = feat;
3571 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3572 fe->header.size = ff.offset;
3574 ret = process(tool, ff.buf, NULL, NULL);
3575 if (ret) {
3576 free(ff.buf);
3577 return ret;
3581 /* Send HEADER_LAST_FEATURE mark. */
3582 fe = ff.buf;
3583 fe->feat_id = HEADER_LAST_FEATURE;
3584 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3585 fe->header.size = sizeof(*fe);
3587 ret = process(tool, ff.buf, NULL, NULL);
3589 free(ff.buf);
3590 return ret;
3593 int perf_event__process_feature(struct perf_session *session,
3594 union perf_event *event)
3596 struct perf_tool *tool = session->tool;
3597 struct feat_fd ff = { .fd = 0 };
3598 struct feature_event *fe = (struct feature_event *)event;
3599 int type = fe->header.type;
3600 u64 feat = fe->feat_id;
3602 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3603 pr_warning("invalid record type %d in pipe-mode\n", type);
3604 return 0;
3606 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3607 pr_warning("invalid record type %d in pipe-mode\n", type);
3608 return -1;
3611 if (!feat_ops[feat].process)
3612 return 0;
3614 ff.buf = (void *)fe->data;
3615 ff.size = event->header.size - sizeof(event->header);
3616 ff.ph = &session->header;
3618 if (feat_ops[feat].process(&ff, NULL))
3619 return -1;
3621 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3622 return 0;
3624 if (!feat_ops[feat].full_only ||
3625 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3626 feat_ops[feat].print(&ff, stdout);
3627 } else {
3628 fprintf(stdout, "# %s info available, use -I to display\n",
3629 feat_ops[feat].name);
3632 return 0;
3635 static struct event_update_event *
3636 event_update_event__new(size_t size, u64 type, u64 id)
3638 struct event_update_event *ev;
3640 size += sizeof(*ev);
3641 size = PERF_ALIGN(size, sizeof(u64));
3643 ev = zalloc(size);
3644 if (ev) {
3645 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3646 ev->header.size = (u16)size;
3647 ev->type = type;
3648 ev->id = id;
3650 return ev;
3654 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3655 struct perf_evsel *evsel,
3656 perf_event__handler_t process)
3658 struct event_update_event *ev;
3659 size_t size = strlen(evsel->unit);
3660 int err;
3662 ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3663 if (ev == NULL)
3664 return -ENOMEM;
3666 strlcpy(ev->data, evsel->unit, size + 1);
3667 err = process(tool, (union perf_event *)ev, NULL, NULL);
3668 free(ev);
3669 return err;
3673 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3674 struct perf_evsel *evsel,
3675 perf_event__handler_t process)
3677 struct event_update_event *ev;
3678 struct event_update_event_scale *ev_data;
3679 int err;
3681 ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3682 if (ev == NULL)
3683 return -ENOMEM;
3685 ev_data = (struct event_update_event_scale *) ev->data;
3686 ev_data->scale = evsel->scale;
3687 err = process(tool, (union perf_event*) ev, NULL, NULL);
3688 free(ev);
3689 return err;
3693 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3694 struct perf_evsel *evsel,
3695 perf_event__handler_t process)
3697 struct event_update_event *ev;
3698 size_t len = strlen(evsel->name);
3699 int err;
3701 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3702 if (ev == NULL)
3703 return -ENOMEM;
3705 strlcpy(ev->data, evsel->name, len + 1);
3706 err = process(tool, (union perf_event*) ev, NULL, NULL);
3707 free(ev);
3708 return err;
3712 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3713 struct perf_evsel *evsel,
3714 perf_event__handler_t process)
3716 size_t size = sizeof(struct event_update_event);
3717 struct event_update_event *ev;
3718 int max, err;
3719 u16 type;
3721 if (!evsel->own_cpus)
3722 return 0;
3724 ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3725 if (!ev)
3726 return -ENOMEM;
3728 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3729 ev->header.size = (u16)size;
3730 ev->type = PERF_EVENT_UPDATE__CPUS;
3731 ev->id = evsel->id[0];
3733 cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3734 evsel->own_cpus,
3735 type, max);
3737 err = process(tool, (union perf_event*) ev, NULL, NULL);
3738 free(ev);
3739 return err;
3742 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3744 struct event_update_event *ev = &event->event_update;
3745 struct event_update_event_scale *ev_scale;
3746 struct event_update_event_cpus *ev_cpus;
3747 struct cpu_map *map;
3748 size_t ret;
3750 ret = fprintf(fp, "\n... id: %" PRIu64 "\n", ev->id);
3752 switch (ev->type) {
3753 case PERF_EVENT_UPDATE__SCALE:
3754 ev_scale = (struct event_update_event_scale *) ev->data;
3755 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3756 break;
3757 case PERF_EVENT_UPDATE__UNIT:
3758 ret += fprintf(fp, "... unit: %s\n", ev->data);
3759 break;
3760 case PERF_EVENT_UPDATE__NAME:
3761 ret += fprintf(fp, "... name: %s\n", ev->data);
3762 break;
3763 case PERF_EVENT_UPDATE__CPUS:
3764 ev_cpus = (struct event_update_event_cpus *) ev->data;
3765 ret += fprintf(fp, "... ");
3767 map = cpu_map__new_data(&ev_cpus->cpus);
3768 if (map)
3769 ret += cpu_map__fprintf(map, fp);
3770 else
3771 ret += fprintf(fp, "failed to get cpus\n");
3772 break;
3773 default:
3774 ret += fprintf(fp, "... unknown type\n");
3775 break;
3778 return ret;
3781 int perf_event__synthesize_attrs(struct perf_tool *tool,
3782 struct perf_evlist *evlist,
3783 perf_event__handler_t process)
3785 struct perf_evsel *evsel;
3786 int err = 0;
3788 evlist__for_each_entry(evlist, evsel) {
3789 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3790 evsel->id, process);
3791 if (err) {
3792 pr_debug("failed to create perf header attribute\n");
3793 return err;
3797 return err;
3800 static bool has_unit(struct perf_evsel *counter)
3802 return counter->unit && *counter->unit;
3805 static bool has_scale(struct perf_evsel *counter)
3807 return counter->scale != 1;
3810 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3811 struct perf_evlist *evsel_list,
3812 perf_event__handler_t process,
3813 bool is_pipe)
3815 struct perf_evsel *counter;
3816 int err;
3819 * Synthesize other events stuff not carried within
3820 * attr event - unit, scale, name
3822 evlist__for_each_entry(evsel_list, counter) {
3823 if (!counter->supported)
3824 continue;
3827 * Synthesize unit and scale only if it's defined.
3829 if (has_unit(counter)) {
3830 err = perf_event__synthesize_event_update_unit(tool, counter, process);
3831 if (err < 0) {
3832 pr_err("Couldn't synthesize evsel unit.\n");
3833 return err;
3837 if (has_scale(counter)) {
3838 err = perf_event__synthesize_event_update_scale(tool, counter, process);
3839 if (err < 0) {
3840 pr_err("Couldn't synthesize evsel counter.\n");
3841 return err;
3845 if (counter->own_cpus) {
3846 err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3847 if (err < 0) {
3848 pr_err("Couldn't synthesize evsel cpus.\n");
3849 return err;
3854 * Name is needed only for pipe output,
3855 * perf.data carries event names.
3857 if (is_pipe) {
3858 err = perf_event__synthesize_event_update_name(tool, counter, process);
3859 if (err < 0) {
3860 pr_err("Couldn't synthesize evsel name.\n");
3861 return err;
3865 return 0;
3868 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3869 union perf_event *event,
3870 struct perf_evlist **pevlist)
3872 u32 i, ids, n_ids;
3873 struct perf_evsel *evsel;
3874 struct perf_evlist *evlist = *pevlist;
3876 if (evlist == NULL) {
3877 *pevlist = evlist = perf_evlist__new();
3878 if (evlist == NULL)
3879 return -ENOMEM;
3882 evsel = perf_evsel__new(&event->attr.attr);
3883 if (evsel == NULL)
3884 return -ENOMEM;
3886 perf_evlist__add(evlist, evsel);
3888 ids = event->header.size;
3889 ids -= (void *)&event->attr.id - (void *)event;
3890 n_ids = ids / sizeof(u64);
3892 * We don't have the cpu and thread maps on the header, so
3893 * for allocating the perf_sample_id table we fake 1 cpu and
3894 * hattr->ids threads.
3896 if (perf_evsel__alloc_id(evsel, 1, n_ids))
3897 return -ENOMEM;
3899 for (i = 0; i < n_ids; i++) {
3900 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3903 return 0;
3906 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3907 union perf_event *event,
3908 struct perf_evlist **pevlist)
3910 struct event_update_event *ev = &event->event_update;
3911 struct event_update_event_scale *ev_scale;
3912 struct event_update_event_cpus *ev_cpus;
3913 struct perf_evlist *evlist;
3914 struct perf_evsel *evsel;
3915 struct cpu_map *map;
3917 if (!pevlist || *pevlist == NULL)
3918 return -EINVAL;
3920 evlist = *pevlist;
3922 evsel = perf_evlist__id2evsel(evlist, ev->id);
3923 if (evsel == NULL)
3924 return -EINVAL;
3926 switch (ev->type) {
3927 case PERF_EVENT_UPDATE__UNIT:
3928 evsel->unit = strdup(ev->data);
3929 break;
3930 case PERF_EVENT_UPDATE__NAME:
3931 evsel->name = strdup(ev->data);
3932 break;
3933 case PERF_EVENT_UPDATE__SCALE:
3934 ev_scale = (struct event_update_event_scale *) ev->data;
3935 evsel->scale = ev_scale->scale;
3936 break;
3937 case PERF_EVENT_UPDATE__CPUS:
3938 ev_cpus = (struct event_update_event_cpus *) ev->data;
3940 map = cpu_map__new_data(&ev_cpus->cpus);
3941 if (map)
3942 evsel->own_cpus = map;
3943 else
3944 pr_err("failed to get event_update cpus\n");
3945 default:
3946 break;
3949 return 0;
3952 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3953 struct perf_evlist *evlist,
3954 perf_event__handler_t process)
3956 union perf_event ev;
3957 struct tracing_data *tdata;
3958 ssize_t size = 0, aligned_size = 0, padding;
3959 struct feat_fd ff;
3960 int err __maybe_unused = 0;
3963 * We are going to store the size of the data followed
3964 * by the data contents. Since the fd descriptor is a pipe,
3965 * we cannot seek back to store the size of the data once
3966 * we know it. Instead we:
3968 * - write the tracing data to the temp file
3969 * - get/write the data size to pipe
3970 * - write the tracing data from the temp file
3971 * to the pipe
3973 tdata = tracing_data_get(&evlist->entries, fd, true);
3974 if (!tdata)
3975 return -1;
3977 memset(&ev, 0, sizeof(ev));
3979 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3980 size = tdata->size;
3981 aligned_size = PERF_ALIGN(size, sizeof(u64));
3982 padding = aligned_size - size;
3983 ev.tracing_data.header.size = sizeof(ev.tracing_data);
3984 ev.tracing_data.size = aligned_size;
3986 process(tool, &ev, NULL, NULL);
3989 * The put function will copy all the tracing data
3990 * stored in temp file to the pipe.
3992 tracing_data_put(tdata);
3994 ff = (struct feat_fd){ .fd = fd };
3995 if (write_padded(&ff, NULL, 0, padding))
3996 return -1;
3998 return aligned_size;
4001 int perf_event__process_tracing_data(struct perf_session *session,
4002 union perf_event *event)
4004 ssize_t size_read, padding, size = event->tracing_data.size;
4005 int fd = perf_data__fd(session->data);
4006 off_t offset = lseek(fd, 0, SEEK_CUR);
4007 char buf[BUFSIZ];
4009 /* setup for reading amidst mmap */
4010 lseek(fd, offset + sizeof(struct tracing_data_event),
4011 SEEK_SET);
4013 size_read = trace_report(fd, &session->tevent,
4014 session->repipe);
4015 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4017 if (readn(fd, buf, padding) < 0) {
4018 pr_err("%s: reading input file", __func__);
4019 return -1;
4021 if (session->repipe) {
4022 int retw = write(STDOUT_FILENO, buf, padding);
4023 if (retw <= 0 || retw != padding) {
4024 pr_err("%s: repiping tracing data padding", __func__);
4025 return -1;
4029 if (size_read + padding != size) {
4030 pr_err("%s: tracing data size mismatch", __func__);
4031 return -1;
4034 perf_evlist__prepare_tracepoint_events(session->evlist,
4035 session->tevent.pevent);
4037 return size_read + padding;
4040 int perf_event__synthesize_build_id(struct perf_tool *tool,
4041 struct dso *pos, u16 misc,
4042 perf_event__handler_t process,
4043 struct machine *machine)
4045 union perf_event ev;
4046 size_t len;
4047 int err = 0;
4049 if (!pos->hit)
4050 return err;
4052 memset(&ev, 0, sizeof(ev));
4054 len = pos->long_name_len + 1;
4055 len = PERF_ALIGN(len, NAME_ALIGN);
4056 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4057 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4058 ev.build_id.header.misc = misc;
4059 ev.build_id.pid = machine->pid;
4060 ev.build_id.header.size = sizeof(ev.build_id) + len;
4061 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4063 err = process(tool, &ev, NULL, machine);
4065 return err;
4068 int perf_event__process_build_id(struct perf_session *session,
4069 union perf_event *event)
4071 __event_process_build_id(&event->build_id,
4072 event->build_id.filename,
4073 session);
4074 return 0;