6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
48 #include <asm/mmu_context.h>
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
60 static void unmap_region(struct mm_struct
*mm
,
61 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
62 unsigned long start
, unsigned long end
);
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
79 pgprot_t protection_map
[16] = {
80 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
81 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
84 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
86 return __pgprot(pgprot_val(protection_map
[vm_flags
&
87 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
90 EXPORT_SYMBOL(vm_get_page_prot
);
92 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly
;
95 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
99 * Make sure vm_committed_as in one cacheline and not cacheline shared with
100 * other variables. It can be updated by several CPUs frequently.
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
105 * The global memory commitment made in the system can be a metric
106 * that can be used to drive ballooning decisions when Linux is hosted
107 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108 * balancing memory across competing virtual machines that are hosted.
109 * Several metrics drive this policy engine including the guest reported
112 unsigned long vm_memory_committed(void)
114 return percpu_counter_read_positive(&vm_committed_as
);
116 EXPORT_SYMBOL_GPL(vm_memory_committed
);
119 * Check that a process has enough memory to allocate a new virtual
120 * mapping. 0 means there is enough memory for the allocation to
121 * succeed and -ENOMEM implies there is not.
123 * We currently support three overcommit policies, which are set via the
124 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
126 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127 * Additional code 2002 Jul 20 by Robert Love.
129 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
131 * Note this is a helper function intended to be used by LSMs which
132 * wish to use this logic.
134 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
136 unsigned long free
, allowed
, reserve
;
138 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
139 -(s64
)vm_committed_as_batch
* num_online_cpus(),
140 "memory commitment underflow");
142 vm_acct_memory(pages
);
145 * Sometimes we want to use more memory than we have
147 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
150 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
151 free
= global_page_state(NR_FREE_PAGES
);
152 free
+= global_page_state(NR_FILE_PAGES
);
155 * shmem pages shouldn't be counted as free in this
156 * case, they can't be purged, only swapped out, and
157 * that won't affect the overall amount of available
158 * memory in the system.
160 free
-= global_page_state(NR_SHMEM
);
162 free
+= get_nr_swap_pages();
165 * Any slabs which are created with the
166 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167 * which are reclaimable, under pressure. The dentry
168 * cache and most inode caches should fall into this
170 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
173 * Leave reserved pages. The pages are not for anonymous pages.
175 if (free
<= totalreserve_pages
)
178 free
-= totalreserve_pages
;
181 * Reserve some for root
184 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
192 allowed
= vm_commit_limit();
194 * Reserve some for root
197 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
200 * Don't let a single process grow so big a user can't recover
203 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
204 allowed
-= min(mm
->total_vm
/ 32, reserve
);
207 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
210 vm_unacct_memory(pages
);
216 * Requires inode->i_mapping->i_mmap_mutex
218 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
219 struct file
*file
, struct address_space
*mapping
)
221 if (vma
->vm_flags
& VM_DENYWRITE
)
222 atomic_inc(&file_inode(file
)->i_writecount
);
223 if (vma
->vm_flags
& VM_SHARED
)
224 mapping_unmap_writable(mapping
);
226 flush_dcache_mmap_lock(mapping
);
227 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
228 list_del_init(&vma
->shared
.nonlinear
);
230 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
231 flush_dcache_mmap_unlock(mapping
);
235 * Unlink a file-based vm structure from its interval tree, to hide
236 * vma from rmap and vmtruncate before freeing its page tables.
238 void unlink_file_vma(struct vm_area_struct
*vma
)
240 struct file
*file
= vma
->vm_file
;
243 struct address_space
*mapping
= file
->f_mapping
;
244 mutex_lock(&mapping
->i_mmap_mutex
);
245 __remove_shared_vm_struct(vma
, file
, mapping
);
246 mutex_unlock(&mapping
->i_mmap_mutex
);
251 * Close a vm structure and free it, returning the next.
253 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
255 struct vm_area_struct
*next
= vma
->vm_next
;
258 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
259 vma
->vm_ops
->close(vma
);
262 mpol_put(vma_policy(vma
));
263 kmem_cache_free(vm_area_cachep
, vma
);
267 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
269 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
271 unsigned long rlim
, retval
;
272 unsigned long newbrk
, oldbrk
;
273 struct mm_struct
*mm
= current
->mm
;
274 unsigned long min_brk
;
277 down_write(&mm
->mmap_sem
);
279 #ifdef CONFIG_COMPAT_BRK
281 * CONFIG_COMPAT_BRK can still be overridden by setting
282 * randomize_va_space to 2, which will still cause mm->start_brk
283 * to be arbitrarily shifted
285 if (current
->brk_randomized
)
286 min_brk
= mm
->start_brk
;
288 min_brk
= mm
->end_data
;
290 min_brk
= mm
->start_brk
;
296 * Check against rlimit here. If this check is done later after the test
297 * of oldbrk with newbrk then it can escape the test and let the data
298 * segment grow beyond its set limit the in case where the limit is
299 * not page aligned -Ram Gupta
301 rlim
= rlimit(RLIMIT_DATA
);
302 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
303 (mm
->end_data
- mm
->start_data
) > rlim
)
306 newbrk
= PAGE_ALIGN(brk
);
307 oldbrk
= PAGE_ALIGN(mm
->brk
);
308 if (oldbrk
== newbrk
)
311 /* Always allow shrinking brk. */
312 if (brk
<= mm
->brk
) {
313 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
318 /* Check against existing mmap mappings. */
319 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
322 /* Ok, looks good - let it rip. */
323 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
328 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
329 up_write(&mm
->mmap_sem
);
331 mm_populate(oldbrk
, newbrk
- oldbrk
);
336 up_write(&mm
->mmap_sem
);
340 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
342 unsigned long max
, subtree_gap
;
345 max
-= vma
->vm_prev
->vm_end
;
346 if (vma
->vm_rb
.rb_left
) {
347 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
348 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
349 if (subtree_gap
> max
)
352 if (vma
->vm_rb
.rb_right
) {
353 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
354 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
355 if (subtree_gap
> max
)
361 #ifdef CONFIG_DEBUG_VM_RB
362 static int browse_rb(struct rb_root
*root
)
364 int i
= 0, j
, bug
= 0;
365 struct rb_node
*nd
, *pn
= NULL
;
366 unsigned long prev
= 0, pend
= 0;
368 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
369 struct vm_area_struct
*vma
;
370 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
371 if (vma
->vm_start
< prev
) {
372 pr_emerg("vm_start %lx prev %lx\n", vma
->vm_start
, prev
);
375 if (vma
->vm_start
< pend
) {
376 pr_emerg("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
379 if (vma
->vm_start
> vma
->vm_end
) {
380 pr_emerg("vm_end %lx < vm_start %lx\n",
381 vma
->vm_end
, vma
->vm_start
);
384 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
385 pr_emerg("free gap %lx, correct %lx\n",
387 vma_compute_subtree_gap(vma
));
392 prev
= vma
->vm_start
;
396 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
399 pr_emerg("backwards %d, forwards %d\n", j
, i
);
405 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
409 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
410 struct vm_area_struct
*vma
;
411 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
412 BUG_ON(vma
!= ignore
&&
413 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
));
417 static void validate_mm(struct mm_struct
*mm
)
421 unsigned long highest_address
= 0;
422 struct vm_area_struct
*vma
= mm
->mmap
;
424 struct anon_vma_chain
*avc
;
425 vma_lock_anon_vma(vma
);
426 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
427 anon_vma_interval_tree_verify(avc
);
428 vma_unlock_anon_vma(vma
);
429 highest_address
= vma
->vm_end
;
433 if (i
!= mm
->map_count
) {
434 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
437 if (highest_address
!= mm
->highest_vm_end
) {
438 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
439 mm
->highest_vm_end
, highest_address
);
442 i
= browse_rb(&mm
->mm_rb
);
443 if (i
!= mm
->map_count
) {
444 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
450 #define validate_mm_rb(root, ignore) do { } while (0)
451 #define validate_mm(mm) do { } while (0)
454 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
455 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
458 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
459 * vma->vm_prev->vm_end values changed, without modifying the vma's position
462 static void vma_gap_update(struct vm_area_struct
*vma
)
465 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
466 * function that does exacltly what we want.
468 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
471 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
472 struct rb_root
*root
)
474 /* All rb_subtree_gap values must be consistent prior to insertion */
475 validate_mm_rb(root
, NULL
);
477 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
480 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
483 * All rb_subtree_gap values must be consistent prior to erase,
484 * with the possible exception of the vma being erased.
486 validate_mm_rb(root
, vma
);
489 * Note rb_erase_augmented is a fairly large inline function,
490 * so make sure we instantiate it only once with our desired
491 * augmented rbtree callbacks.
493 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
497 * vma has some anon_vma assigned, and is already inserted on that
498 * anon_vma's interval trees.
500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501 * vma must be removed from the anon_vma's interval trees using
502 * anon_vma_interval_tree_pre_update_vma().
504 * After the update, the vma will be reinserted using
505 * anon_vma_interval_tree_post_update_vma().
507 * The entire update must be protected by exclusive mmap_sem and by
508 * the root anon_vma's mutex.
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
513 struct anon_vma_chain
*avc
;
515 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
516 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
522 struct anon_vma_chain
*avc
;
524 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
525 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
528 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
529 unsigned long end
, struct vm_area_struct
**pprev
,
530 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
532 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
534 __rb_link
= &mm
->mm_rb
.rb_node
;
535 rb_prev
= __rb_parent
= NULL
;
538 struct vm_area_struct
*vma_tmp
;
540 __rb_parent
= *__rb_link
;
541 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
543 if (vma_tmp
->vm_end
> addr
) {
544 /* Fail if an existing vma overlaps the area */
545 if (vma_tmp
->vm_start
< end
)
547 __rb_link
= &__rb_parent
->rb_left
;
549 rb_prev
= __rb_parent
;
550 __rb_link
= &__rb_parent
->rb_right
;
556 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
557 *rb_link
= __rb_link
;
558 *rb_parent
= __rb_parent
;
562 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
563 unsigned long addr
, unsigned long end
)
565 unsigned long nr_pages
= 0;
566 struct vm_area_struct
*vma
;
568 /* Find first overlaping mapping */
569 vma
= find_vma_intersection(mm
, addr
, end
);
573 nr_pages
= (min(end
, vma
->vm_end
) -
574 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
576 /* Iterate over the rest of the overlaps */
577 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
578 unsigned long overlap_len
;
580 if (vma
->vm_start
> end
)
583 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
584 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
590 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
591 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
593 /* Update tracking information for the gap following the new vma. */
595 vma_gap_update(vma
->vm_next
);
597 mm
->highest_vm_end
= vma
->vm_end
;
600 * vma->vm_prev wasn't known when we followed the rbtree to find the
601 * correct insertion point for that vma. As a result, we could not
602 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603 * So, we first insert the vma with a zero rb_subtree_gap value
604 * (to be consistent with what we did on the way down), and then
605 * immediately update the gap to the correct value. Finally we
606 * rebalance the rbtree after all augmented values have been set.
608 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
609 vma
->rb_subtree_gap
= 0;
611 vma_rb_insert(vma
, &mm
->mm_rb
);
614 static void __vma_link_file(struct vm_area_struct
*vma
)
620 struct address_space
*mapping
= file
->f_mapping
;
622 if (vma
->vm_flags
& VM_DENYWRITE
)
623 atomic_dec(&file_inode(file
)->i_writecount
);
624 if (vma
->vm_flags
& VM_SHARED
)
625 atomic_inc(&mapping
->i_mmap_writable
);
627 flush_dcache_mmap_lock(mapping
);
628 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
629 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
631 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
632 flush_dcache_mmap_unlock(mapping
);
637 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
638 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
639 struct rb_node
*rb_parent
)
641 __vma_link_list(mm
, vma
, prev
, rb_parent
);
642 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
645 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
646 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
647 struct rb_node
*rb_parent
)
649 struct address_space
*mapping
= NULL
;
652 mapping
= vma
->vm_file
->f_mapping
;
653 mutex_lock(&mapping
->i_mmap_mutex
);
656 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
657 __vma_link_file(vma
);
660 mutex_unlock(&mapping
->i_mmap_mutex
);
667 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
668 * mm's list and rbtree. It has already been inserted into the interval tree.
670 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
672 struct vm_area_struct
*prev
;
673 struct rb_node
**rb_link
, *rb_parent
;
675 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
676 &prev
, &rb_link
, &rb_parent
))
678 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
683 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
684 struct vm_area_struct
*prev
)
686 struct vm_area_struct
*next
;
688 vma_rb_erase(vma
, &mm
->mm_rb
);
689 prev
->vm_next
= next
= vma
->vm_next
;
691 next
->vm_prev
= prev
;
694 vmacache_invalidate(mm
);
698 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
699 * is already present in an i_mmap tree without adjusting the tree.
700 * The following helper function should be used when such adjustments
701 * are necessary. The "insert" vma (if any) is to be inserted
702 * before we drop the necessary locks.
704 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
705 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
707 struct mm_struct
*mm
= vma
->vm_mm
;
708 struct vm_area_struct
*next
= vma
->vm_next
;
709 struct vm_area_struct
*importer
= NULL
;
710 struct address_space
*mapping
= NULL
;
711 struct rb_root
*root
= NULL
;
712 struct anon_vma
*anon_vma
= NULL
;
713 struct file
*file
= vma
->vm_file
;
714 bool start_changed
= false, end_changed
= false;
715 long adjust_next
= 0;
718 if (next
&& !insert
) {
719 struct vm_area_struct
*exporter
= NULL
;
721 if (end
>= next
->vm_end
) {
723 * vma expands, overlapping all the next, and
724 * perhaps the one after too (mprotect case 6).
726 again
: remove_next
= 1 + (end
> next
->vm_end
);
730 } else if (end
> next
->vm_start
) {
732 * vma expands, overlapping part of the next:
733 * mprotect case 5 shifting the boundary up.
735 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
738 } else if (end
< vma
->vm_end
) {
740 * vma shrinks, and !insert tells it's not
741 * split_vma inserting another: so it must be
742 * mprotect case 4 shifting the boundary down.
744 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
750 * Easily overlooked: when mprotect shifts the boundary,
751 * make sure the expanding vma has anon_vma set if the
752 * shrinking vma had, to cover any anon pages imported.
754 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
755 if (anon_vma_clone(importer
, exporter
))
757 importer
->anon_vma
= exporter
->anon_vma
;
762 mapping
= file
->f_mapping
;
763 if (!(vma
->vm_flags
& VM_NONLINEAR
)) {
764 root
= &mapping
->i_mmap
;
765 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
768 uprobe_munmap(next
, next
->vm_start
,
772 mutex_lock(&mapping
->i_mmap_mutex
);
775 * Put into interval tree now, so instantiated pages
776 * are visible to arm/parisc __flush_dcache_page
777 * throughout; but we cannot insert into address
778 * space until vma start or end is updated.
780 __vma_link_file(insert
);
784 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
786 anon_vma
= vma
->anon_vma
;
787 if (!anon_vma
&& adjust_next
)
788 anon_vma
= next
->anon_vma
;
790 VM_BUG_ON(adjust_next
&& next
->anon_vma
&&
791 anon_vma
!= next
->anon_vma
);
792 anon_vma_lock_write(anon_vma
);
793 anon_vma_interval_tree_pre_update_vma(vma
);
795 anon_vma_interval_tree_pre_update_vma(next
);
799 flush_dcache_mmap_lock(mapping
);
800 vma_interval_tree_remove(vma
, root
);
802 vma_interval_tree_remove(next
, root
);
805 if (start
!= vma
->vm_start
) {
806 vma
->vm_start
= start
;
807 start_changed
= true;
809 if (end
!= vma
->vm_end
) {
813 vma
->vm_pgoff
= pgoff
;
815 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
816 next
->vm_pgoff
+= adjust_next
;
821 vma_interval_tree_insert(next
, root
);
822 vma_interval_tree_insert(vma
, root
);
823 flush_dcache_mmap_unlock(mapping
);
828 * vma_merge has merged next into vma, and needs
829 * us to remove next before dropping the locks.
831 __vma_unlink(mm
, next
, vma
);
833 __remove_shared_vm_struct(next
, file
, mapping
);
836 * split_vma has split insert from vma, and needs
837 * us to insert it before dropping the locks
838 * (it may either follow vma or precede it).
840 __insert_vm_struct(mm
, insert
);
846 mm
->highest_vm_end
= end
;
847 else if (!adjust_next
)
848 vma_gap_update(next
);
853 anon_vma_interval_tree_post_update_vma(vma
);
855 anon_vma_interval_tree_post_update_vma(next
);
856 anon_vma_unlock_write(anon_vma
);
859 mutex_unlock(&mapping
->i_mmap_mutex
);
870 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
874 anon_vma_merge(vma
, next
);
876 mpol_put(vma_policy(next
));
877 kmem_cache_free(vm_area_cachep
, next
);
879 * In mprotect's case 6 (see comments on vma_merge),
880 * we must remove another next too. It would clutter
881 * up the code too much to do both in one go.
884 if (remove_next
== 2)
887 vma_gap_update(next
);
889 mm
->highest_vm_end
= end
;
900 * If the vma has a ->close operation then the driver probably needs to release
901 * per-vma resources, so we don't attempt to merge those.
903 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
904 struct file
*file
, unsigned long vm_flags
)
907 * VM_SOFTDIRTY should not prevent from VMA merging, if we
908 * match the flags but dirty bit -- the caller should mark
909 * merged VMA as dirty. If dirty bit won't be excluded from
910 * comparison, we increase pressue on the memory system forcing
911 * the kernel to generate new VMAs when old one could be
914 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
916 if (vma
->vm_file
!= file
)
918 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
923 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
924 struct anon_vma
*anon_vma2
,
925 struct vm_area_struct
*vma
)
928 * The list_is_singular() test is to avoid merging VMA cloned from
929 * parents. This can improve scalability caused by anon_vma lock.
931 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
932 list_is_singular(&vma
->anon_vma_chain
)))
934 return anon_vma1
== anon_vma2
;
938 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
939 * in front of (at a lower virtual address and file offset than) the vma.
941 * We cannot merge two vmas if they have differently assigned (non-NULL)
942 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
944 * We don't check here for the merged mmap wrapping around the end of pagecache
945 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
946 * wrap, nor mmaps which cover the final page at index -1UL.
949 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
950 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
952 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
953 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
954 if (vma
->vm_pgoff
== vm_pgoff
)
961 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
962 * beyond (at a higher virtual address and file offset than) the vma.
964 * We cannot merge two vmas if they have differently assigned (non-NULL)
965 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
968 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
969 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
971 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
972 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
974 vm_pglen
= vma_pages(vma
);
975 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
982 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
983 * whether that can be merged with its predecessor or its successor.
984 * Or both (it neatly fills a hole).
986 * In most cases - when called for mmap, brk or mremap - [addr,end) is
987 * certain not to be mapped by the time vma_merge is called; but when
988 * called for mprotect, it is certain to be already mapped (either at
989 * an offset within prev, or at the start of next), and the flags of
990 * this area are about to be changed to vm_flags - and the no-change
991 * case has already been eliminated.
993 * The following mprotect cases have to be considered, where AAAA is
994 * the area passed down from mprotect_fixup, never extending beyond one
995 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
997 * AAAA AAAA AAAA AAAA
998 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
999 * cannot merge might become might become might become
1000 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1001 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1002 * mremap move: PPPPNNNNNNNN 8
1004 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1005 * might become case 1 below case 2 below case 3 below
1007 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1008 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1010 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1011 struct vm_area_struct
*prev
, unsigned long addr
,
1012 unsigned long end
, unsigned long vm_flags
,
1013 struct anon_vma
*anon_vma
, struct file
*file
,
1014 pgoff_t pgoff
, struct mempolicy
*policy
)
1016 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1017 struct vm_area_struct
*area
, *next
;
1021 * We later require that vma->vm_flags == vm_flags,
1022 * so this tests vma->vm_flags & VM_SPECIAL, too.
1024 if (vm_flags
& VM_SPECIAL
)
1028 next
= prev
->vm_next
;
1032 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
1033 next
= next
->vm_next
;
1036 * Can it merge with the predecessor?
1038 if (prev
&& prev
->vm_end
== addr
&&
1039 mpol_equal(vma_policy(prev
), policy
) &&
1040 can_vma_merge_after(prev
, vm_flags
,
1041 anon_vma
, file
, pgoff
)) {
1043 * OK, it can. Can we now merge in the successor as well?
1045 if (next
&& end
== next
->vm_start
&&
1046 mpol_equal(policy
, vma_policy(next
)) &&
1047 can_vma_merge_before(next
, vm_flags
,
1048 anon_vma
, file
, pgoff
+pglen
) &&
1049 is_mergeable_anon_vma(prev
->anon_vma
,
1050 next
->anon_vma
, NULL
)) {
1052 err
= vma_adjust(prev
, prev
->vm_start
,
1053 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1054 } else /* cases 2, 5, 7 */
1055 err
= vma_adjust(prev
, prev
->vm_start
,
1056 end
, prev
->vm_pgoff
, NULL
);
1059 khugepaged_enter_vma_merge(prev
);
1064 * Can this new request be merged in front of next?
1066 if (next
&& end
== next
->vm_start
&&
1067 mpol_equal(policy
, vma_policy(next
)) &&
1068 can_vma_merge_before(next
, vm_flags
,
1069 anon_vma
, file
, pgoff
+pglen
)) {
1070 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1071 err
= vma_adjust(prev
, prev
->vm_start
,
1072 addr
, prev
->vm_pgoff
, NULL
);
1073 else /* cases 3, 8 */
1074 err
= vma_adjust(area
, addr
, next
->vm_end
,
1075 next
->vm_pgoff
- pglen
, NULL
);
1078 khugepaged_enter_vma_merge(area
);
1086 * Rough compatbility check to quickly see if it's even worth looking
1087 * at sharing an anon_vma.
1089 * They need to have the same vm_file, and the flags can only differ
1090 * in things that mprotect may change.
1092 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1093 * we can merge the two vma's. For example, we refuse to merge a vma if
1094 * there is a vm_ops->close() function, because that indicates that the
1095 * driver is doing some kind of reference counting. But that doesn't
1096 * really matter for the anon_vma sharing case.
1098 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1100 return a
->vm_end
== b
->vm_start
&&
1101 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1102 a
->vm_file
== b
->vm_file
&&
1103 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1104 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1108 * Do some basic sanity checking to see if we can re-use the anon_vma
1109 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1110 * the same as 'old', the other will be the new one that is trying
1111 * to share the anon_vma.
1113 * NOTE! This runs with mm_sem held for reading, so it is possible that
1114 * the anon_vma of 'old' is concurrently in the process of being set up
1115 * by another page fault trying to merge _that_. But that's ok: if it
1116 * is being set up, that automatically means that it will be a singleton
1117 * acceptable for merging, so we can do all of this optimistically. But
1118 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1120 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1121 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1122 * is to return an anon_vma that is "complex" due to having gone through
1125 * We also make sure that the two vma's are compatible (adjacent,
1126 * and with the same memory policies). That's all stable, even with just
1127 * a read lock on the mm_sem.
1129 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1131 if (anon_vma_compatible(a
, b
)) {
1132 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
1134 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1141 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1142 * neighbouring vmas for a suitable anon_vma, before it goes off
1143 * to allocate a new anon_vma. It checks because a repetitive
1144 * sequence of mprotects and faults may otherwise lead to distinct
1145 * anon_vmas being allocated, preventing vma merge in subsequent
1148 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1150 struct anon_vma
*anon_vma
;
1151 struct vm_area_struct
*near
;
1153 near
= vma
->vm_next
;
1157 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1161 near
= vma
->vm_prev
;
1165 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1170 * There's no absolute need to look only at touching neighbours:
1171 * we could search further afield for "compatible" anon_vmas.
1172 * But it would probably just be a waste of time searching,
1173 * or lead to too many vmas hanging off the same anon_vma.
1174 * We're trying to allow mprotect remerging later on,
1175 * not trying to minimize memory used for anon_vmas.
1180 #ifdef CONFIG_PROC_FS
1181 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
1182 struct file
*file
, long pages
)
1184 const unsigned long stack_flags
1185 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
1187 mm
->total_vm
+= pages
;
1190 mm
->shared_vm
+= pages
;
1191 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
1192 mm
->exec_vm
+= pages
;
1193 } else if (flags
& stack_flags
)
1194 mm
->stack_vm
+= pages
;
1196 #endif /* CONFIG_PROC_FS */
1199 * If a hint addr is less than mmap_min_addr change hint to be as
1200 * low as possible but still greater than mmap_min_addr
1202 static inline unsigned long round_hint_to_min(unsigned long hint
)
1205 if (((void *)hint
!= NULL
) &&
1206 (hint
< mmap_min_addr
))
1207 return PAGE_ALIGN(mmap_min_addr
);
1211 static inline int mlock_future_check(struct mm_struct
*mm
,
1212 unsigned long flags
,
1215 unsigned long locked
, lock_limit
;
1217 /* mlock MCL_FUTURE? */
1218 if (flags
& VM_LOCKED
) {
1219 locked
= len
>> PAGE_SHIFT
;
1220 locked
+= mm
->locked_vm
;
1221 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1222 lock_limit
>>= PAGE_SHIFT
;
1223 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1230 * The caller must hold down_write(¤t->mm->mmap_sem).
1233 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
1234 unsigned long len
, unsigned long prot
,
1235 unsigned long flags
, unsigned long pgoff
,
1236 unsigned long *populate
)
1238 struct mm_struct
* mm
= current
->mm
;
1239 vm_flags_t vm_flags
;
1244 * Does the application expect PROT_READ to imply PROT_EXEC?
1246 * (the exception is when the underlying filesystem is noexec
1247 * mounted, in which case we dont add PROT_EXEC.)
1249 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1250 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
1256 if (!(flags
& MAP_FIXED
))
1257 addr
= round_hint_to_min(addr
);
1259 /* Careful about overflows.. */
1260 len
= PAGE_ALIGN(len
);
1264 /* offset overflow? */
1265 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1268 /* Too many mappings? */
1269 if (mm
->map_count
> sysctl_max_map_count
)
1272 /* Obtain the address to map to. we verify (or select) it and ensure
1273 * that it represents a valid section of the address space.
1275 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1276 if (addr
& ~PAGE_MASK
)
1279 /* Do simple checking here so the lower-level routines won't have
1280 * to. we assume access permissions have been handled by the open
1281 * of the memory object, so we don't do any here.
1283 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1284 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1286 if (flags
& MAP_LOCKED
)
1287 if (!can_do_mlock())
1290 if (mlock_future_check(mm
, vm_flags
, len
))
1294 struct inode
*inode
= file_inode(file
);
1296 switch (flags
& MAP_TYPE
) {
1298 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1302 * Make sure we don't allow writing to an append-only
1305 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1309 * Make sure there are no mandatory locks on the file.
1311 if (locks_verify_locked(file
))
1314 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1315 if (!(file
->f_mode
& FMODE_WRITE
))
1316 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1320 if (!(file
->f_mode
& FMODE_READ
))
1322 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1323 if (vm_flags
& VM_EXEC
)
1325 vm_flags
&= ~VM_MAYEXEC
;
1328 if (!file
->f_op
->mmap
)
1330 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1338 switch (flags
& MAP_TYPE
) {
1340 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1346 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1350 * Set pgoff according to addr for anon_vma.
1352 pgoff
= addr
>> PAGE_SHIFT
;
1360 * Set 'VM_NORESERVE' if we should not account for the
1361 * memory use of this mapping.
1363 if (flags
& MAP_NORESERVE
) {
1364 /* We honor MAP_NORESERVE if allowed to overcommit */
1365 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1366 vm_flags
|= VM_NORESERVE
;
1368 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1369 if (file
&& is_file_hugepages(file
))
1370 vm_flags
|= VM_NORESERVE
;
1373 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1374 if (!IS_ERR_VALUE(addr
) &&
1375 ((vm_flags
& VM_LOCKED
) ||
1376 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1381 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1382 unsigned long, prot
, unsigned long, flags
,
1383 unsigned long, fd
, unsigned long, pgoff
)
1385 struct file
*file
= NULL
;
1386 unsigned long retval
= -EBADF
;
1388 if (!(flags
& MAP_ANONYMOUS
)) {
1389 audit_mmap_fd(fd
, flags
);
1393 if (is_file_hugepages(file
))
1394 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1396 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1398 } else if (flags
& MAP_HUGETLB
) {
1399 struct user_struct
*user
= NULL
;
1402 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1406 len
= ALIGN(len
, huge_page_size(hs
));
1408 * VM_NORESERVE is used because the reservations will be
1409 * taken when vm_ops->mmap() is called
1410 * A dummy user value is used because we are not locking
1411 * memory so no accounting is necessary
1413 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1415 &user
, HUGETLB_ANONHUGE_INODE
,
1416 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1418 return PTR_ERR(file
);
1421 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1423 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1431 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1432 struct mmap_arg_struct
{
1436 unsigned long flags
;
1438 unsigned long offset
;
1441 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1443 struct mmap_arg_struct a
;
1445 if (copy_from_user(&a
, arg
, sizeof(a
)))
1447 if (a
.offset
& ~PAGE_MASK
)
1450 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1451 a
.offset
>> PAGE_SHIFT
);
1453 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1456 * Some shared mappigns will want the pages marked read-only
1457 * to track write events. If so, we'll downgrade vm_page_prot
1458 * to the private version (using protection_map[] without the
1461 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1463 vm_flags_t vm_flags
= vma
->vm_flags
;
1465 /* If it was private or non-writable, the write bit is already clear */
1466 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1469 /* The backer wishes to know when pages are first written to? */
1470 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1473 /* The open routine did something to the protections already? */
1474 if (pgprot_val(vma
->vm_page_prot
) !=
1475 pgprot_val(vm_get_page_prot(vm_flags
)))
1478 /* Specialty mapping? */
1479 if (vm_flags
& VM_PFNMAP
)
1482 /* Can the mapping track the dirty pages? */
1483 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1484 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1488 * We account for memory if it's a private writeable mapping,
1489 * not hugepages and VM_NORESERVE wasn't set.
1491 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1494 * hugetlb has its own accounting separate from the core VM
1495 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1497 if (file
&& is_file_hugepages(file
))
1500 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1503 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1504 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1506 struct mm_struct
*mm
= current
->mm
;
1507 struct vm_area_struct
*vma
, *prev
;
1509 struct rb_node
**rb_link
, *rb_parent
;
1510 unsigned long charged
= 0;
1512 /* Check against address space limit. */
1513 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
)) {
1514 unsigned long nr_pages
;
1517 * MAP_FIXED may remove pages of mappings that intersects with
1518 * requested mapping. Account for the pages it would unmap.
1520 if (!(vm_flags
& MAP_FIXED
))
1523 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1525 if (!may_expand_vm(mm
, (len
>> PAGE_SHIFT
) - nr_pages
))
1529 /* Clear old maps */
1532 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
1533 if (do_munmap(mm
, addr
, len
))
1539 * Private writable mapping: check memory availability
1541 if (accountable_mapping(file
, vm_flags
)) {
1542 charged
= len
>> PAGE_SHIFT
;
1543 if (security_vm_enough_memory_mm(mm
, charged
))
1545 vm_flags
|= VM_ACCOUNT
;
1549 * Can we just expand an old mapping?
1551 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1556 * Determine the object being mapped and call the appropriate
1557 * specific mapper. the address has already been validated, but
1558 * not unmapped, but the maps are removed from the list.
1560 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1567 vma
->vm_start
= addr
;
1568 vma
->vm_end
= addr
+ len
;
1569 vma
->vm_flags
= vm_flags
;
1570 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1571 vma
->vm_pgoff
= pgoff
;
1572 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1575 if (vm_flags
& VM_DENYWRITE
) {
1576 error
= deny_write_access(file
);
1580 if (vm_flags
& VM_SHARED
) {
1581 error
= mapping_map_writable(file
->f_mapping
);
1583 goto allow_write_and_free_vma
;
1586 /* ->mmap() can change vma->vm_file, but must guarantee that
1587 * vma_link() below can deny write-access if VM_DENYWRITE is set
1588 * and map writably if VM_SHARED is set. This usually means the
1589 * new file must not have been exposed to user-space, yet.
1591 vma
->vm_file
= get_file(file
);
1592 error
= file
->f_op
->mmap(file
, vma
);
1594 goto unmap_and_free_vma
;
1596 /* Can addr have changed??
1598 * Answer: Yes, several device drivers can do it in their
1599 * f_op->mmap method. -DaveM
1600 * Bug: If addr is changed, prev, rb_link, rb_parent should
1601 * be updated for vma_link()
1603 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1605 addr
= vma
->vm_start
;
1606 vm_flags
= vma
->vm_flags
;
1607 } else if (vm_flags
& VM_SHARED
) {
1608 error
= shmem_zero_setup(vma
);
1613 if (vma_wants_writenotify(vma
)) {
1614 pgprot_t pprot
= vma
->vm_page_prot
;
1616 /* Can vma->vm_page_prot have changed??
1618 * Answer: Yes, drivers may have changed it in their
1619 * f_op->mmap method.
1621 * Ensures that vmas marked as uncached stay that way.
1623 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1624 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1625 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1628 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1629 /* Once vma denies write, undo our temporary denial count */
1631 if (vm_flags
& VM_SHARED
)
1632 mapping_unmap_writable(file
->f_mapping
);
1633 if (vm_flags
& VM_DENYWRITE
)
1634 allow_write_access(file
);
1636 file
= vma
->vm_file
;
1638 perf_event_mmap(vma
);
1640 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1641 if (vm_flags
& VM_LOCKED
) {
1642 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1643 vma
== get_gate_vma(current
->mm
)))
1644 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1646 vma
->vm_flags
&= ~VM_LOCKED
;
1653 * New (or expanded) vma always get soft dirty status.
1654 * Otherwise user-space soft-dirty page tracker won't
1655 * be able to distinguish situation when vma area unmapped,
1656 * then new mapped in-place (which must be aimed as
1657 * a completely new data area).
1659 vma
->vm_flags
|= VM_SOFTDIRTY
;
1664 vma
->vm_file
= NULL
;
1667 /* Undo any partial mapping done by a device driver. */
1668 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1670 if (vm_flags
& VM_SHARED
)
1671 mapping_unmap_writable(file
->f_mapping
);
1672 allow_write_and_free_vma
:
1673 if (vm_flags
& VM_DENYWRITE
)
1674 allow_write_access(file
);
1676 kmem_cache_free(vm_area_cachep
, vma
);
1679 vm_unacct_memory(charged
);
1683 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1686 * We implement the search by looking for an rbtree node that
1687 * immediately follows a suitable gap. That is,
1688 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1689 * - gap_end = vma->vm_start >= info->low_limit + length;
1690 * - gap_end - gap_start >= length
1693 struct mm_struct
*mm
= current
->mm
;
1694 struct vm_area_struct
*vma
;
1695 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1697 /* Adjust search length to account for worst case alignment overhead */
1698 length
= info
->length
+ info
->align_mask
;
1699 if (length
< info
->length
)
1702 /* Adjust search limits by the desired length */
1703 if (info
->high_limit
< length
)
1705 high_limit
= info
->high_limit
- length
;
1707 if (info
->low_limit
> high_limit
)
1709 low_limit
= info
->low_limit
+ length
;
1711 /* Check if rbtree root looks promising */
1712 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1714 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1715 if (vma
->rb_subtree_gap
< length
)
1719 /* Visit left subtree if it looks promising */
1720 gap_end
= vma
->vm_start
;
1721 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1722 struct vm_area_struct
*left
=
1723 rb_entry(vma
->vm_rb
.rb_left
,
1724 struct vm_area_struct
, vm_rb
);
1725 if (left
->rb_subtree_gap
>= length
) {
1731 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1733 /* Check if current node has a suitable gap */
1734 if (gap_start
> high_limit
)
1736 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1739 /* Visit right subtree if it looks promising */
1740 if (vma
->vm_rb
.rb_right
) {
1741 struct vm_area_struct
*right
=
1742 rb_entry(vma
->vm_rb
.rb_right
,
1743 struct vm_area_struct
, vm_rb
);
1744 if (right
->rb_subtree_gap
>= length
) {
1750 /* Go back up the rbtree to find next candidate node */
1752 struct rb_node
*prev
= &vma
->vm_rb
;
1753 if (!rb_parent(prev
))
1755 vma
= rb_entry(rb_parent(prev
),
1756 struct vm_area_struct
, vm_rb
);
1757 if (prev
== vma
->vm_rb
.rb_left
) {
1758 gap_start
= vma
->vm_prev
->vm_end
;
1759 gap_end
= vma
->vm_start
;
1766 /* Check highest gap, which does not precede any rbtree node */
1767 gap_start
= mm
->highest_vm_end
;
1768 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1769 if (gap_start
> high_limit
)
1773 /* We found a suitable gap. Clip it with the original low_limit. */
1774 if (gap_start
< info
->low_limit
)
1775 gap_start
= info
->low_limit
;
1777 /* Adjust gap address to the desired alignment */
1778 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1780 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1781 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1785 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1787 struct mm_struct
*mm
= current
->mm
;
1788 struct vm_area_struct
*vma
;
1789 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1791 /* Adjust search length to account for worst case alignment overhead */
1792 length
= info
->length
+ info
->align_mask
;
1793 if (length
< info
->length
)
1797 * Adjust search limits by the desired length.
1798 * See implementation comment at top of unmapped_area().
1800 gap_end
= info
->high_limit
;
1801 if (gap_end
< length
)
1803 high_limit
= gap_end
- length
;
1805 if (info
->low_limit
> high_limit
)
1807 low_limit
= info
->low_limit
+ length
;
1809 /* Check highest gap, which does not precede any rbtree node */
1810 gap_start
= mm
->highest_vm_end
;
1811 if (gap_start
<= high_limit
)
1814 /* Check if rbtree root looks promising */
1815 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1817 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1818 if (vma
->rb_subtree_gap
< length
)
1822 /* Visit right subtree if it looks promising */
1823 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1824 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1825 struct vm_area_struct
*right
=
1826 rb_entry(vma
->vm_rb
.rb_right
,
1827 struct vm_area_struct
, vm_rb
);
1828 if (right
->rb_subtree_gap
>= length
) {
1835 /* Check if current node has a suitable gap */
1836 gap_end
= vma
->vm_start
;
1837 if (gap_end
< low_limit
)
1839 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1842 /* Visit left subtree if it looks promising */
1843 if (vma
->vm_rb
.rb_left
) {
1844 struct vm_area_struct
*left
=
1845 rb_entry(vma
->vm_rb
.rb_left
,
1846 struct vm_area_struct
, vm_rb
);
1847 if (left
->rb_subtree_gap
>= length
) {
1853 /* Go back up the rbtree to find next candidate node */
1855 struct rb_node
*prev
= &vma
->vm_rb
;
1856 if (!rb_parent(prev
))
1858 vma
= rb_entry(rb_parent(prev
),
1859 struct vm_area_struct
, vm_rb
);
1860 if (prev
== vma
->vm_rb
.rb_right
) {
1861 gap_start
= vma
->vm_prev
?
1862 vma
->vm_prev
->vm_end
: 0;
1869 /* We found a suitable gap. Clip it with the original high_limit. */
1870 if (gap_end
> info
->high_limit
)
1871 gap_end
= info
->high_limit
;
1874 /* Compute highest gap address at the desired alignment */
1875 gap_end
-= info
->length
;
1876 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1878 VM_BUG_ON(gap_end
< info
->low_limit
);
1879 VM_BUG_ON(gap_end
< gap_start
);
1883 /* Get an address range which is currently unmapped.
1884 * For shmat() with addr=0.
1886 * Ugly calling convention alert:
1887 * Return value with the low bits set means error value,
1889 * if (ret & ~PAGE_MASK)
1892 * This function "knows" that -ENOMEM has the bits set.
1894 #ifndef HAVE_ARCH_UNMAPPED_AREA
1896 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1897 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1899 struct mm_struct
*mm
= current
->mm
;
1900 struct vm_area_struct
*vma
;
1901 struct vm_unmapped_area_info info
;
1903 if (len
> TASK_SIZE
- mmap_min_addr
)
1906 if (flags
& MAP_FIXED
)
1910 addr
= PAGE_ALIGN(addr
);
1911 vma
= find_vma(mm
, addr
);
1912 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1913 (!vma
|| addr
+ len
<= vma
->vm_start
))
1919 info
.low_limit
= mm
->mmap_base
;
1920 info
.high_limit
= TASK_SIZE
;
1921 info
.align_mask
= 0;
1922 return vm_unmapped_area(&info
);
1927 * This mmap-allocator allocates new areas top-down from below the
1928 * stack's low limit (the base):
1930 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1932 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1933 const unsigned long len
, const unsigned long pgoff
,
1934 const unsigned long flags
)
1936 struct vm_area_struct
*vma
;
1937 struct mm_struct
*mm
= current
->mm
;
1938 unsigned long addr
= addr0
;
1939 struct vm_unmapped_area_info info
;
1941 /* requested length too big for entire address space */
1942 if (len
> TASK_SIZE
- mmap_min_addr
)
1945 if (flags
& MAP_FIXED
)
1948 /* requesting a specific address */
1950 addr
= PAGE_ALIGN(addr
);
1951 vma
= find_vma(mm
, addr
);
1952 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1953 (!vma
|| addr
+ len
<= vma
->vm_start
))
1957 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1959 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1960 info
.high_limit
= mm
->mmap_base
;
1961 info
.align_mask
= 0;
1962 addr
= vm_unmapped_area(&info
);
1965 * A failed mmap() very likely causes application failure,
1966 * so fall back to the bottom-up function here. This scenario
1967 * can happen with large stack limits and large mmap()
1970 if (addr
& ~PAGE_MASK
) {
1971 VM_BUG_ON(addr
!= -ENOMEM
);
1973 info
.low_limit
= TASK_UNMAPPED_BASE
;
1974 info
.high_limit
= TASK_SIZE
;
1975 addr
= vm_unmapped_area(&info
);
1983 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1984 unsigned long pgoff
, unsigned long flags
)
1986 unsigned long (*get_area
)(struct file
*, unsigned long,
1987 unsigned long, unsigned long, unsigned long);
1989 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1993 /* Careful about overflows.. */
1994 if (len
> TASK_SIZE
)
1997 get_area
= current
->mm
->get_unmapped_area
;
1998 if (file
&& file
->f_op
->get_unmapped_area
)
1999 get_area
= file
->f_op
->get_unmapped_area
;
2000 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2001 if (IS_ERR_VALUE(addr
))
2004 if (addr
> TASK_SIZE
- len
)
2006 if (addr
& ~PAGE_MASK
)
2009 addr
= arch_rebalance_pgtables(addr
, len
);
2010 error
= security_mmap_addr(addr
);
2011 return error
? error
: addr
;
2014 EXPORT_SYMBOL(get_unmapped_area
);
2016 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2017 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2019 struct rb_node
*rb_node
;
2020 struct vm_area_struct
*vma
;
2022 /* Check the cache first. */
2023 vma
= vmacache_find(mm
, addr
);
2027 rb_node
= mm
->mm_rb
.rb_node
;
2031 struct vm_area_struct
*tmp
;
2033 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2035 if (tmp
->vm_end
> addr
) {
2037 if (tmp
->vm_start
<= addr
)
2039 rb_node
= rb_node
->rb_left
;
2041 rb_node
= rb_node
->rb_right
;
2045 vmacache_update(addr
, vma
);
2049 EXPORT_SYMBOL(find_vma
);
2052 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2054 struct vm_area_struct
*
2055 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2056 struct vm_area_struct
**pprev
)
2058 struct vm_area_struct
*vma
;
2060 vma
= find_vma(mm
, addr
);
2062 *pprev
= vma
->vm_prev
;
2064 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2067 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2068 rb_node
= rb_node
->rb_right
;
2075 * Verify that the stack growth is acceptable and
2076 * update accounting. This is shared with both the
2077 * grow-up and grow-down cases.
2079 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2081 struct mm_struct
*mm
= vma
->vm_mm
;
2082 struct rlimit
*rlim
= current
->signal
->rlim
;
2083 unsigned long new_start
;
2085 /* address space limit tests */
2086 if (!may_expand_vm(mm
, grow
))
2089 /* Stack limit test */
2090 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2093 /* mlock limit tests */
2094 if (vma
->vm_flags
& VM_LOCKED
) {
2095 unsigned long locked
;
2096 unsigned long limit
;
2097 locked
= mm
->locked_vm
+ grow
;
2098 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2099 limit
>>= PAGE_SHIFT
;
2100 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2104 /* Check to ensure the stack will not grow into a hugetlb-only region */
2105 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2107 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2111 * Overcommit.. This must be the final test, as it will
2112 * update security statistics.
2114 if (security_vm_enough_memory_mm(mm
, grow
))
2117 /* Ok, everything looks good - let it rip */
2118 if (vma
->vm_flags
& VM_LOCKED
)
2119 mm
->locked_vm
+= grow
;
2120 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
2124 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2126 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2127 * vma is the last one with address > vma->vm_end. Have to extend vma.
2129 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2133 if (!(vma
->vm_flags
& VM_GROWSUP
))
2137 * We must make sure the anon_vma is allocated
2138 * so that the anon_vma locking is not a noop.
2140 if (unlikely(anon_vma_prepare(vma
)))
2142 vma_lock_anon_vma(vma
);
2145 * vma->vm_start/vm_end cannot change under us because the caller
2146 * is required to hold the mmap_sem in read mode. We need the
2147 * anon_vma lock to serialize against concurrent expand_stacks.
2148 * Also guard against wrapping around to address 0.
2150 if (address
< PAGE_ALIGN(address
+4))
2151 address
= PAGE_ALIGN(address
+4);
2153 vma_unlock_anon_vma(vma
);
2158 /* Somebody else might have raced and expanded it already */
2159 if (address
> vma
->vm_end
) {
2160 unsigned long size
, grow
;
2162 size
= address
- vma
->vm_start
;
2163 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2166 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2167 error
= acct_stack_growth(vma
, size
, grow
);
2170 * vma_gap_update() doesn't support concurrent
2171 * updates, but we only hold a shared mmap_sem
2172 * lock here, so we need to protect against
2173 * concurrent vma expansions.
2174 * vma_lock_anon_vma() doesn't help here, as
2175 * we don't guarantee that all growable vmas
2176 * in a mm share the same root anon vma.
2177 * So, we reuse mm->page_table_lock to guard
2178 * against concurrent vma expansions.
2180 spin_lock(&vma
->vm_mm
->page_table_lock
);
2181 anon_vma_interval_tree_pre_update_vma(vma
);
2182 vma
->vm_end
= address
;
2183 anon_vma_interval_tree_post_update_vma(vma
);
2185 vma_gap_update(vma
->vm_next
);
2187 vma
->vm_mm
->highest_vm_end
= address
;
2188 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2190 perf_event_mmap(vma
);
2194 vma_unlock_anon_vma(vma
);
2195 khugepaged_enter_vma_merge(vma
);
2196 validate_mm(vma
->vm_mm
);
2199 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2202 * vma is the first one with address < vma->vm_start. Have to extend vma.
2204 int expand_downwards(struct vm_area_struct
*vma
,
2205 unsigned long address
)
2210 * We must make sure the anon_vma is allocated
2211 * so that the anon_vma locking is not a noop.
2213 if (unlikely(anon_vma_prepare(vma
)))
2216 address
&= PAGE_MASK
;
2217 error
= security_mmap_addr(address
);
2221 vma_lock_anon_vma(vma
);
2224 * vma->vm_start/vm_end cannot change under us because the caller
2225 * is required to hold the mmap_sem in read mode. We need the
2226 * anon_vma lock to serialize against concurrent expand_stacks.
2229 /* Somebody else might have raced and expanded it already */
2230 if (address
< vma
->vm_start
) {
2231 unsigned long size
, grow
;
2233 size
= vma
->vm_end
- address
;
2234 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2237 if (grow
<= vma
->vm_pgoff
) {
2238 error
= acct_stack_growth(vma
, size
, grow
);
2241 * vma_gap_update() doesn't support concurrent
2242 * updates, but we only hold a shared mmap_sem
2243 * lock here, so we need to protect against
2244 * concurrent vma expansions.
2245 * vma_lock_anon_vma() doesn't help here, as
2246 * we don't guarantee that all growable vmas
2247 * in a mm share the same root anon vma.
2248 * So, we reuse mm->page_table_lock to guard
2249 * against concurrent vma expansions.
2251 spin_lock(&vma
->vm_mm
->page_table_lock
);
2252 anon_vma_interval_tree_pre_update_vma(vma
);
2253 vma
->vm_start
= address
;
2254 vma
->vm_pgoff
-= grow
;
2255 anon_vma_interval_tree_post_update_vma(vma
);
2256 vma_gap_update(vma
);
2257 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2259 perf_event_mmap(vma
);
2263 vma_unlock_anon_vma(vma
);
2264 khugepaged_enter_vma_merge(vma
);
2265 validate_mm(vma
->vm_mm
);
2270 * Note how expand_stack() refuses to expand the stack all the way to
2271 * abut the next virtual mapping, *unless* that mapping itself is also
2272 * a stack mapping. We want to leave room for a guard page, after all
2273 * (the guard page itself is not added here, that is done by the
2274 * actual page faulting logic)
2276 * This matches the behavior of the guard page logic (see mm/memory.c:
2277 * check_stack_guard_page()), which only allows the guard page to be
2278 * removed under these circumstances.
2280 #ifdef CONFIG_STACK_GROWSUP
2281 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2283 struct vm_area_struct
*next
;
2285 address
&= PAGE_MASK
;
2286 next
= vma
->vm_next
;
2287 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2288 if (!(next
->vm_flags
& VM_GROWSUP
))
2291 return expand_upwards(vma
, address
);
2294 struct vm_area_struct
*
2295 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2297 struct vm_area_struct
*vma
, *prev
;
2300 vma
= find_vma_prev(mm
, addr
, &prev
);
2301 if (vma
&& (vma
->vm_start
<= addr
))
2303 if (!prev
|| expand_stack(prev
, addr
))
2305 if (prev
->vm_flags
& VM_LOCKED
)
2306 __mlock_vma_pages_range(prev
, addr
, prev
->vm_end
, NULL
);
2310 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2312 struct vm_area_struct
*prev
;
2314 address
&= PAGE_MASK
;
2315 prev
= vma
->vm_prev
;
2316 if (prev
&& prev
->vm_end
== address
) {
2317 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2320 return expand_downwards(vma
, address
);
2323 struct vm_area_struct
*
2324 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
2326 struct vm_area_struct
* vma
;
2327 unsigned long start
;
2330 vma
= find_vma(mm
,addr
);
2333 if (vma
->vm_start
<= addr
)
2335 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2337 start
= vma
->vm_start
;
2338 if (expand_stack(vma
, addr
))
2340 if (vma
->vm_flags
& VM_LOCKED
)
2341 __mlock_vma_pages_range(vma
, addr
, start
, NULL
);
2347 * Ok - we have the memory areas we should free on the vma list,
2348 * so release them, and do the vma updates.
2350 * Called with the mm semaphore held.
2352 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2354 unsigned long nr_accounted
= 0;
2356 /* Update high watermark before we lower total_vm */
2357 update_hiwater_vm(mm
);
2359 long nrpages
= vma_pages(vma
);
2361 if (vma
->vm_flags
& VM_ACCOUNT
)
2362 nr_accounted
+= nrpages
;
2363 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
2364 vma
= remove_vma(vma
);
2366 vm_unacct_memory(nr_accounted
);
2371 * Get rid of page table information in the indicated region.
2373 * Called with the mm semaphore held.
2375 static void unmap_region(struct mm_struct
*mm
,
2376 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2377 unsigned long start
, unsigned long end
)
2379 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2380 struct mmu_gather tlb
;
2383 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2384 update_hiwater_rss(mm
);
2385 unmap_vmas(&tlb
, vma
, start
, end
);
2386 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2387 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2388 tlb_finish_mmu(&tlb
, start
, end
);
2392 * Create a list of vma's touched by the unmap, removing them from the mm's
2393 * vma list as we go..
2396 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2397 struct vm_area_struct
*prev
, unsigned long end
)
2399 struct vm_area_struct
**insertion_point
;
2400 struct vm_area_struct
*tail_vma
= NULL
;
2402 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2403 vma
->vm_prev
= NULL
;
2405 vma_rb_erase(vma
, &mm
->mm_rb
);
2409 } while (vma
&& vma
->vm_start
< end
);
2410 *insertion_point
= vma
;
2412 vma
->vm_prev
= prev
;
2413 vma_gap_update(vma
);
2415 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2416 tail_vma
->vm_next
= NULL
;
2418 /* Kill the cache */
2419 vmacache_invalidate(mm
);
2423 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2424 * munmap path where it doesn't make sense to fail.
2426 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
2427 unsigned long addr
, int new_below
)
2429 struct vm_area_struct
*new;
2432 if (is_vm_hugetlb_page(vma
) && (addr
&
2433 ~(huge_page_mask(hstate_vma(vma
)))))
2436 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2440 /* most fields are the same, copy all, and then fixup */
2443 INIT_LIST_HEAD(&new->anon_vma_chain
);
2448 new->vm_start
= addr
;
2449 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2452 err
= vma_dup_policy(vma
, new);
2456 if (anon_vma_clone(new, vma
))
2460 get_file(new->vm_file
);
2462 if (new->vm_ops
&& new->vm_ops
->open
)
2463 new->vm_ops
->open(new);
2466 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2467 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2469 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2475 /* Clean everything up if vma_adjust failed. */
2476 if (new->vm_ops
&& new->vm_ops
->close
)
2477 new->vm_ops
->close(new);
2480 unlink_anon_vmas(new);
2482 mpol_put(vma_policy(new));
2484 kmem_cache_free(vm_area_cachep
, new);
2490 * Split a vma into two pieces at address 'addr', a new vma is allocated
2491 * either for the first part or the tail.
2493 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2494 unsigned long addr
, int new_below
)
2496 if (mm
->map_count
>= sysctl_max_map_count
)
2499 return __split_vma(mm
, vma
, addr
, new_below
);
2502 /* Munmap is split into 2 main parts -- this part which finds
2503 * what needs doing, and the areas themselves, which do the
2504 * work. This now handles partial unmappings.
2505 * Jeremy Fitzhardinge <jeremy@goop.org>
2507 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2510 struct vm_area_struct
*vma
, *prev
, *last
;
2512 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2515 if ((len
= PAGE_ALIGN(len
)) == 0)
2518 /* Find the first overlapping VMA */
2519 vma
= find_vma(mm
, start
);
2522 prev
= vma
->vm_prev
;
2523 /* we have start < vma->vm_end */
2525 /* if it doesn't overlap, we have nothing.. */
2527 if (vma
->vm_start
>= end
)
2531 * If we need to split any vma, do it now to save pain later.
2533 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2534 * unmapped vm_area_struct will remain in use: so lower split_vma
2535 * places tmp vma above, and higher split_vma places tmp vma below.
2537 if (start
> vma
->vm_start
) {
2541 * Make sure that map_count on return from munmap() will
2542 * not exceed its limit; but let map_count go just above
2543 * its limit temporarily, to help free resources as expected.
2545 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2548 error
= __split_vma(mm
, vma
, start
, 0);
2554 /* Does it split the last one? */
2555 last
= find_vma(mm
, end
);
2556 if (last
&& end
> last
->vm_start
) {
2557 int error
= __split_vma(mm
, last
, end
, 1);
2561 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2564 * unlock any mlock()ed ranges before detaching vmas
2566 if (mm
->locked_vm
) {
2567 struct vm_area_struct
*tmp
= vma
;
2568 while (tmp
&& tmp
->vm_start
< end
) {
2569 if (tmp
->vm_flags
& VM_LOCKED
) {
2570 mm
->locked_vm
-= vma_pages(tmp
);
2571 munlock_vma_pages_all(tmp
);
2578 * Remove the vma's, and unmap the actual pages
2580 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2581 unmap_region(mm
, vma
, prev
, start
, end
);
2583 /* Fix up all other VM information */
2584 remove_vma_list(mm
, vma
);
2589 int vm_munmap(unsigned long start
, size_t len
)
2592 struct mm_struct
*mm
= current
->mm
;
2594 down_write(&mm
->mmap_sem
);
2595 ret
= do_munmap(mm
, start
, len
);
2596 up_write(&mm
->mmap_sem
);
2599 EXPORT_SYMBOL(vm_munmap
);
2601 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2603 profile_munmap(addr
);
2604 return vm_munmap(addr
, len
);
2607 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2609 #ifdef CONFIG_DEBUG_VM
2610 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2612 up_read(&mm
->mmap_sem
);
2618 * this is really a simplified "do_mmap". it only handles
2619 * anonymous maps. eventually we may be able to do some
2620 * brk-specific accounting here.
2622 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2624 struct mm_struct
* mm
= current
->mm
;
2625 struct vm_area_struct
* vma
, * prev
;
2626 unsigned long flags
;
2627 struct rb_node
** rb_link
, * rb_parent
;
2628 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2631 len
= PAGE_ALIGN(len
);
2635 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2637 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2638 if (error
& ~PAGE_MASK
)
2641 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2646 * mm->mmap_sem is required to protect against another thread
2647 * changing the mappings in case we sleep.
2649 verify_mm_writelocked(mm
);
2652 * Clear old maps. this also does some error checking for us
2655 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
2656 if (do_munmap(mm
, addr
, len
))
2661 /* Check against address space limits *after* clearing old maps... */
2662 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2665 if (mm
->map_count
> sysctl_max_map_count
)
2668 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2671 /* Can we just expand an old private anonymous mapping? */
2672 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2673 NULL
, NULL
, pgoff
, NULL
);
2678 * create a vma struct for an anonymous mapping
2680 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2682 vm_unacct_memory(len
>> PAGE_SHIFT
);
2686 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2688 vma
->vm_start
= addr
;
2689 vma
->vm_end
= addr
+ len
;
2690 vma
->vm_pgoff
= pgoff
;
2691 vma
->vm_flags
= flags
;
2692 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2693 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2695 perf_event_mmap(vma
);
2696 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2697 if (flags
& VM_LOCKED
)
2698 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2699 vma
->vm_flags
|= VM_SOFTDIRTY
;
2703 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2705 struct mm_struct
*mm
= current
->mm
;
2709 down_write(&mm
->mmap_sem
);
2710 ret
= do_brk(addr
, len
);
2711 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2712 up_write(&mm
->mmap_sem
);
2714 mm_populate(addr
, len
);
2717 EXPORT_SYMBOL(vm_brk
);
2719 /* Release all mmaps. */
2720 void exit_mmap(struct mm_struct
*mm
)
2722 struct mmu_gather tlb
;
2723 struct vm_area_struct
*vma
;
2724 unsigned long nr_accounted
= 0;
2726 /* mm's last user has gone, and its about to be pulled down */
2727 mmu_notifier_release(mm
);
2729 if (mm
->locked_vm
) {
2732 if (vma
->vm_flags
& VM_LOCKED
)
2733 munlock_vma_pages_all(vma
);
2741 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2746 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2747 /* update_hiwater_rss(mm) here? but nobody should be looking */
2748 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2749 unmap_vmas(&tlb
, vma
, 0, -1);
2751 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2752 tlb_finish_mmu(&tlb
, 0, -1);
2755 * Walk the list again, actually closing and freeing it,
2756 * with preemption enabled, without holding any MM locks.
2759 if (vma
->vm_flags
& VM_ACCOUNT
)
2760 nr_accounted
+= vma_pages(vma
);
2761 vma
= remove_vma(vma
);
2763 vm_unacct_memory(nr_accounted
);
2765 WARN_ON(atomic_long_read(&mm
->nr_ptes
) >
2766 (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2769 /* Insert vm structure into process list sorted by address
2770 * and into the inode's i_mmap tree. If vm_file is non-NULL
2771 * then i_mmap_mutex is taken here.
2773 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2775 struct vm_area_struct
*prev
;
2776 struct rb_node
**rb_link
, *rb_parent
;
2779 * The vm_pgoff of a purely anonymous vma should be irrelevant
2780 * until its first write fault, when page's anon_vma and index
2781 * are set. But now set the vm_pgoff it will almost certainly
2782 * end up with (unless mremap moves it elsewhere before that
2783 * first wfault), so /proc/pid/maps tells a consistent story.
2785 * By setting it to reflect the virtual start address of the
2786 * vma, merges and splits can happen in a seamless way, just
2787 * using the existing file pgoff checks and manipulations.
2788 * Similarly in do_mmap_pgoff and in do_brk.
2790 if (!vma
->vm_file
) {
2791 BUG_ON(vma
->anon_vma
);
2792 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2794 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2795 &prev
, &rb_link
, &rb_parent
))
2797 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2798 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2801 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2806 * Copy the vma structure to a new location in the same mm,
2807 * prior to moving page table entries, to effect an mremap move.
2809 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2810 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2811 bool *need_rmap_locks
)
2813 struct vm_area_struct
*vma
= *vmap
;
2814 unsigned long vma_start
= vma
->vm_start
;
2815 struct mm_struct
*mm
= vma
->vm_mm
;
2816 struct vm_area_struct
*new_vma
, *prev
;
2817 struct rb_node
**rb_link
, *rb_parent
;
2818 bool faulted_in_anon_vma
= true;
2821 * If anonymous vma has not yet been faulted, update new pgoff
2822 * to match new location, to increase its chance of merging.
2824 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2825 pgoff
= addr
>> PAGE_SHIFT
;
2826 faulted_in_anon_vma
= false;
2829 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2830 return NULL
; /* should never get here */
2831 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2832 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2835 * Source vma may have been merged into new_vma
2837 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2838 vma_start
< new_vma
->vm_end
)) {
2840 * The only way we can get a vma_merge with
2841 * self during an mremap is if the vma hasn't
2842 * been faulted in yet and we were allowed to
2843 * reset the dst vma->vm_pgoff to the
2844 * destination address of the mremap to allow
2845 * the merge to happen. mremap must change the
2846 * vm_pgoff linearity between src and dst vmas
2847 * (in turn preventing a vma_merge) to be
2848 * safe. It is only safe to keep the vm_pgoff
2849 * linear if there are no pages mapped yet.
2851 VM_BUG_ON(faulted_in_anon_vma
);
2852 *vmap
= vma
= new_vma
;
2854 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2856 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2859 new_vma
->vm_start
= addr
;
2860 new_vma
->vm_end
= addr
+ len
;
2861 new_vma
->vm_pgoff
= pgoff
;
2862 if (vma_dup_policy(vma
, new_vma
))
2864 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2865 if (anon_vma_clone(new_vma
, vma
))
2866 goto out_free_mempol
;
2867 if (new_vma
->vm_file
)
2868 get_file(new_vma
->vm_file
);
2869 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2870 new_vma
->vm_ops
->open(new_vma
);
2871 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2872 *need_rmap_locks
= false;
2878 mpol_put(vma_policy(new_vma
));
2880 kmem_cache_free(vm_area_cachep
, new_vma
);
2885 * Return true if the calling process may expand its vm space by the passed
2888 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2890 unsigned long cur
= mm
->total_vm
; /* pages */
2893 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2895 if (cur
+ npages
> lim
)
2900 static int special_mapping_fault(struct vm_area_struct
*vma
,
2901 struct vm_fault
*vmf
);
2904 * Having a close hook prevents vma merging regardless of flags.
2906 static void special_mapping_close(struct vm_area_struct
*vma
)
2910 static const char *special_mapping_name(struct vm_area_struct
*vma
)
2912 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
2915 static const struct vm_operations_struct special_mapping_vmops
= {
2916 .close
= special_mapping_close
,
2917 .fault
= special_mapping_fault
,
2918 .name
= special_mapping_name
,
2921 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
2922 .close
= special_mapping_close
,
2923 .fault
= special_mapping_fault
,
2926 static int special_mapping_fault(struct vm_area_struct
*vma
,
2927 struct vm_fault
*vmf
)
2930 struct page
**pages
;
2933 * special mappings have no vm_file, and in that case, the mm
2934 * uses vm_pgoff internally. So we have to subtract it from here.
2935 * We are allowed to do this because we are the mm; do not copy
2936 * this code into drivers!
2938 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2940 if (vma
->vm_ops
== &legacy_special_mapping_vmops
)
2941 pages
= vma
->vm_private_data
;
2943 pages
= ((struct vm_special_mapping
*)vma
->vm_private_data
)->
2946 for (; pgoff
&& *pages
; ++pages
)
2950 struct page
*page
= *pages
;
2956 return VM_FAULT_SIGBUS
;
2959 static struct vm_area_struct
*__install_special_mapping(
2960 struct mm_struct
*mm
,
2961 unsigned long addr
, unsigned long len
,
2962 unsigned long vm_flags
, const struct vm_operations_struct
*ops
,
2966 struct vm_area_struct
*vma
;
2968 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2969 if (unlikely(vma
== NULL
))
2970 return ERR_PTR(-ENOMEM
);
2972 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2974 vma
->vm_start
= addr
;
2975 vma
->vm_end
= addr
+ len
;
2977 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
2978 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2981 vma
->vm_private_data
= priv
;
2983 ret
= insert_vm_struct(mm
, vma
);
2987 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2989 perf_event_mmap(vma
);
2994 kmem_cache_free(vm_area_cachep
, vma
);
2995 return ERR_PTR(ret
);
2999 * Called with mm->mmap_sem held for writing.
3000 * Insert a new vma covering the given region, with the given flags.
3001 * Its pages are supplied by the given array of struct page *.
3002 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3003 * The region past the last page supplied will always produce SIGBUS.
3004 * The array pointer and the pages it points to are assumed to stay alive
3005 * for as long as this mapping might exist.
3007 struct vm_area_struct
*_install_special_mapping(
3008 struct mm_struct
*mm
,
3009 unsigned long addr
, unsigned long len
,
3010 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3012 return __install_special_mapping(mm
, addr
, len
, vm_flags
,
3013 &special_mapping_vmops
, (void *)spec
);
3016 int install_special_mapping(struct mm_struct
*mm
,
3017 unsigned long addr
, unsigned long len
,
3018 unsigned long vm_flags
, struct page
**pages
)
3020 struct vm_area_struct
*vma
= __install_special_mapping(
3021 mm
, addr
, len
, vm_flags
, &legacy_special_mapping_vmops
,
3024 return PTR_ERR_OR_ZERO(vma
);
3027 static DEFINE_MUTEX(mm_all_locks_mutex
);
3029 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3031 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3033 * The LSB of head.next can't change from under us
3034 * because we hold the mm_all_locks_mutex.
3036 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3038 * We can safely modify head.next after taking the
3039 * anon_vma->root->rwsem. If some other vma in this mm shares
3040 * the same anon_vma we won't take it again.
3042 * No need of atomic instructions here, head.next
3043 * can't change from under us thanks to the
3044 * anon_vma->root->rwsem.
3046 if (__test_and_set_bit(0, (unsigned long *)
3047 &anon_vma
->root
->rb_root
.rb_node
))
3052 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3054 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3056 * AS_MM_ALL_LOCKS can't change from under us because
3057 * we hold the mm_all_locks_mutex.
3059 * Operations on ->flags have to be atomic because
3060 * even if AS_MM_ALL_LOCKS is stable thanks to the
3061 * mm_all_locks_mutex, there may be other cpus
3062 * changing other bitflags in parallel to us.
3064 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3066 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
3071 * This operation locks against the VM for all pte/vma/mm related
3072 * operations that could ever happen on a certain mm. This includes
3073 * vmtruncate, try_to_unmap, and all page faults.
3075 * The caller must take the mmap_sem in write mode before calling
3076 * mm_take_all_locks(). The caller isn't allowed to release the
3077 * mmap_sem until mm_drop_all_locks() returns.
3079 * mmap_sem in write mode is required in order to block all operations
3080 * that could modify pagetables and free pages without need of
3081 * altering the vma layout (for example populate_range() with
3082 * nonlinear vmas). It's also needed in write mode to avoid new
3083 * anon_vmas to be associated with existing vmas.
3085 * A single task can't take more than one mm_take_all_locks() in a row
3086 * or it would deadlock.
3088 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3089 * mapping->flags avoid to take the same lock twice, if more than one
3090 * vma in this mm is backed by the same anon_vma or address_space.
3092 * We can take all the locks in random order because the VM code
3093 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3094 * takes more than one of them in a row. Secondly we're protected
3095 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3097 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3098 * that may have to take thousand of locks.
3100 * mm_take_all_locks() can fail if it's interrupted by signals.
3102 int mm_take_all_locks(struct mm_struct
*mm
)
3104 struct vm_area_struct
*vma
;
3105 struct anon_vma_chain
*avc
;
3107 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3109 mutex_lock(&mm_all_locks_mutex
);
3111 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3112 if (signal_pending(current
))
3114 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3115 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3118 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3119 if (signal_pending(current
))
3122 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3123 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3129 mm_drop_all_locks(mm
);
3133 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3135 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3137 * The LSB of head.next can't change to 0 from under
3138 * us because we hold the mm_all_locks_mutex.
3140 * We must however clear the bitflag before unlocking
3141 * the vma so the users using the anon_vma->rb_root will
3142 * never see our bitflag.
3144 * No need of atomic instructions here, head.next
3145 * can't change from under us until we release the
3146 * anon_vma->root->rwsem.
3148 if (!__test_and_clear_bit(0, (unsigned long *)
3149 &anon_vma
->root
->rb_root
.rb_node
))
3151 anon_vma_unlock_write(anon_vma
);
3155 static void vm_unlock_mapping(struct address_space
*mapping
)
3157 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3159 * AS_MM_ALL_LOCKS can't change to 0 from under us
3160 * because we hold the mm_all_locks_mutex.
3162 mutex_unlock(&mapping
->i_mmap_mutex
);
3163 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3170 * The mmap_sem cannot be released by the caller until
3171 * mm_drop_all_locks() returns.
3173 void mm_drop_all_locks(struct mm_struct
*mm
)
3175 struct vm_area_struct
*vma
;
3176 struct anon_vma_chain
*avc
;
3178 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3179 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3181 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3183 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3184 vm_unlock_anon_vma(avc
->anon_vma
);
3185 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3186 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3189 mutex_unlock(&mm_all_locks_mutex
);
3193 * initialise the VMA slab
3195 void __init
mmap_init(void)
3199 ret
= percpu_counter_init(&vm_committed_as
, 0);
3204 * Initialise sysctl_user_reserve_kbytes.
3206 * This is intended to prevent a user from starting a single memory hogging
3207 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3210 * The default value is min(3% of free memory, 128MB)
3211 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3213 static int init_user_reserve(void)
3215 unsigned long free_kbytes
;
3217 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3219 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3222 subsys_initcall(init_user_reserve
);
3225 * Initialise sysctl_admin_reserve_kbytes.
3227 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3228 * to log in and kill a memory hogging process.
3230 * Systems with more than 256MB will reserve 8MB, enough to recover
3231 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3232 * only reserve 3% of free pages by default.
3234 static int init_admin_reserve(void)
3236 unsigned long free_kbytes
;
3238 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3240 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3243 subsys_initcall(init_admin_reserve
);
3246 * Reinititalise user and admin reserves if memory is added or removed.
3248 * The default user reserve max is 128MB, and the default max for the
3249 * admin reserve is 8MB. These are usually, but not always, enough to
3250 * enable recovery from a memory hogging process using login/sshd, a shell,
3251 * and tools like top. It may make sense to increase or even disable the
3252 * reserve depending on the existence of swap or variations in the recovery
3253 * tools. So, the admin may have changed them.
3255 * If memory is added and the reserves have been eliminated or increased above
3256 * the default max, then we'll trust the admin.
3258 * If memory is removed and there isn't enough free memory, then we
3259 * need to reset the reserves.
3261 * Otherwise keep the reserve set by the admin.
3263 static int reserve_mem_notifier(struct notifier_block
*nb
,
3264 unsigned long action
, void *data
)
3266 unsigned long tmp
, free_kbytes
;
3270 /* Default max is 128MB. Leave alone if modified by operator. */
3271 tmp
= sysctl_user_reserve_kbytes
;
3272 if (0 < tmp
&& tmp
< (1UL << 17))
3273 init_user_reserve();
3275 /* Default max is 8MB. Leave alone if modified by operator. */
3276 tmp
= sysctl_admin_reserve_kbytes
;
3277 if (0 < tmp
&& tmp
< (1UL << 13))
3278 init_admin_reserve();
3282 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3284 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3285 init_user_reserve();
3286 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3287 sysctl_user_reserve_kbytes
);
3290 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3291 init_admin_reserve();
3292 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3293 sysctl_admin_reserve_kbytes
);
3302 static struct notifier_block reserve_mem_nb
= {
3303 .notifier_call
= reserve_mem_notifier
,
3306 static int __meminit
init_reserve_notifier(void)
3308 if (register_hotmemory_notifier(&reserve_mem_nb
))
3309 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3313 subsys_initcall(init_reserve_notifier
);