2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
21 #include <linux/genhd.h>
22 #include <linux/highmem.h>
23 #include <linux/memcontrol.h>
25 #include <linux/mutex.h>
26 #include <linux/sched.h>
27 #include <linux/uio.h>
28 #include <linux/vmstat.h>
30 int dax_clear_blocks(struct inode
*inode
, sector_t block
, long size
)
32 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
33 sector_t sector
= block
<< (inode
->i_blkbits
- 9);
41 count
= bdev_direct_access(bdev
, sector
, &addr
, &pfn
, size
);
46 unsigned pgsz
= PAGE_SIZE
- offset_in_page(addr
);
50 memset(addr
, 0, pgsz
);
64 EXPORT_SYMBOL_GPL(dax_clear_blocks
);
66 static long dax_get_addr(struct buffer_head
*bh
, void **addr
, unsigned blkbits
)
69 sector_t sector
= bh
->b_blocknr
<< (blkbits
- 9);
70 return bdev_direct_access(bh
->b_bdev
, sector
, addr
, &pfn
, bh
->b_size
);
73 static void dax_new_buf(void *addr
, unsigned size
, unsigned first
, loff_t pos
,
76 loff_t final
= end
- pos
+ first
; /* The final byte of the buffer */
79 memset(addr
, 0, first
);
81 memset(addr
+ final
, 0, size
- final
);
84 static bool buffer_written(struct buffer_head
*bh
)
86 return buffer_mapped(bh
) && !buffer_unwritten(bh
);
90 * When ext4 encounters a hole, it returns without modifying the buffer_head
91 * which means that we can't trust b_size. To cope with this, we set b_state
92 * to 0 before calling get_block and, if any bit is set, we know we can trust
93 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
94 * and would save us time calling get_block repeatedly.
96 static bool buffer_size_valid(struct buffer_head
*bh
)
98 return bh
->b_state
!= 0;
101 static ssize_t
dax_io(struct inode
*inode
, struct iov_iter
*iter
,
102 loff_t start
, loff_t end
, get_block_t get_block
,
103 struct buffer_head
*bh
)
108 loff_t bh_max
= start
;
112 if (iov_iter_rw(iter
) != WRITE
)
113 end
= min(end
, i_size_read(inode
));
118 unsigned blkbits
= inode
->i_blkbits
;
119 sector_t block
= pos
>> blkbits
;
120 unsigned first
= pos
- (block
<< blkbits
);
124 bh
->b_size
= PAGE_ALIGN(end
- pos
);
126 retval
= get_block(inode
, block
, bh
,
127 iov_iter_rw(iter
) == WRITE
);
130 if (!buffer_size_valid(bh
))
131 bh
->b_size
= 1 << blkbits
;
132 bh_max
= pos
- first
+ bh
->b_size
;
134 unsigned done
= bh
->b_size
-
135 (bh_max
- (pos
- first
));
136 bh
->b_blocknr
+= done
>> blkbits
;
140 hole
= iov_iter_rw(iter
) != WRITE
&& !buffer_written(bh
);
143 size
= bh
->b_size
- first
;
145 retval
= dax_get_addr(bh
, &addr
, blkbits
);
148 if (buffer_unwritten(bh
) || buffer_new(bh
))
149 dax_new_buf(addr
, retval
, first
, pos
,
152 size
= retval
- first
;
154 max
= min(pos
+ size
, end
);
157 if (iov_iter_rw(iter
) == WRITE
)
158 len
= copy_from_iter(addr
, max
- pos
, iter
);
160 len
= copy_to_iter(addr
, max
- pos
, iter
);
162 len
= iov_iter_zero(max
- pos
, iter
);
171 return (pos
== start
) ? retval
: pos
- start
;
175 * dax_do_io - Perform I/O to a DAX file
176 * @iocb: The control block for this I/O
177 * @inode: The file which the I/O is directed at
178 * @iter: The addresses to do I/O from or to
179 * @pos: The file offset where the I/O starts
180 * @get_block: The filesystem method used to translate file offsets to blocks
181 * @end_io: A filesystem callback for I/O completion
184 * This function uses the same locking scheme as do_blockdev_direct_IO:
185 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
186 * caller for writes. For reads, we take and release the i_mutex ourselves.
187 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
188 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
191 ssize_t
dax_do_io(struct kiocb
*iocb
, struct inode
*inode
,
192 struct iov_iter
*iter
, loff_t pos
, get_block_t get_block
,
193 dio_iodone_t end_io
, int flags
)
195 struct buffer_head bh
;
196 ssize_t retval
= -EINVAL
;
197 loff_t end
= pos
+ iov_iter_count(iter
);
199 memset(&bh
, 0, sizeof(bh
));
201 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
) {
202 struct address_space
*mapping
= inode
->i_mapping
;
203 mutex_lock(&inode
->i_mutex
);
204 retval
= filemap_write_and_wait_range(mapping
, pos
, end
- 1);
206 mutex_unlock(&inode
->i_mutex
);
211 /* Protects against truncate */
212 inode_dio_begin(inode
);
214 retval
= dax_io(inode
, iter
, pos
, end
, get_block
, &bh
);
216 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
)
217 mutex_unlock(&inode
->i_mutex
);
219 if ((retval
> 0) && end_io
)
220 end_io(iocb
, pos
, retval
, bh
.b_private
);
222 inode_dio_end(inode
);
226 EXPORT_SYMBOL_GPL(dax_do_io
);
229 * The user has performed a load from a hole in the file. Allocating
230 * a new page in the file would cause excessive storage usage for
231 * workloads with sparse files. We allocate a page cache page instead.
232 * We'll kick it out of the page cache if it's ever written to,
233 * otherwise it will simply fall out of the page cache under memory
234 * pressure without ever having been dirtied.
236 static int dax_load_hole(struct address_space
*mapping
, struct page
*page
,
237 struct vm_fault
*vmf
)
240 struct inode
*inode
= mapping
->host
;
242 page
= find_or_create_page(mapping
, vmf
->pgoff
,
243 GFP_KERNEL
| __GFP_ZERO
);
246 /* Recheck i_size under page lock to avoid truncate race */
247 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
248 if (vmf
->pgoff
>= size
) {
250 page_cache_release(page
);
251 return VM_FAULT_SIGBUS
;
255 return VM_FAULT_LOCKED
;
258 static int copy_user_bh(struct page
*to
, struct buffer_head
*bh
,
259 unsigned blkbits
, unsigned long vaddr
)
262 if (dax_get_addr(bh
, &vfrom
, blkbits
) < 0)
264 vto
= kmap_atomic(to
);
265 copy_user_page(vto
, vfrom
, vaddr
, to
);
270 static int dax_insert_mapping(struct inode
*inode
, struct buffer_head
*bh
,
271 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
273 struct address_space
*mapping
= inode
->i_mapping
;
274 sector_t sector
= bh
->b_blocknr
<< (inode
->i_blkbits
- 9);
275 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
281 i_mmap_lock_read(mapping
);
284 * Check truncate didn't happen while we were allocating a block.
285 * If it did, this block may or may not be still allocated to the
286 * file. We can't tell the filesystem to free it because we can't
287 * take i_mutex here. In the worst case, the file still has blocks
288 * allocated past the end of the file.
290 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
291 if (unlikely(vmf
->pgoff
>= size
)) {
296 error
= bdev_direct_access(bh
->b_bdev
, sector
, &addr
, &pfn
, bh
->b_size
);
299 if (error
< PAGE_SIZE
) {
304 if (buffer_unwritten(bh
) || buffer_new(bh
))
307 error
= vm_insert_mixed(vma
, vaddr
, pfn
);
310 i_mmap_unlock_read(mapping
);
318 static int do_dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
319 get_block_t get_block
)
321 struct file
*file
= vma
->vm_file
;
322 struct address_space
*mapping
= file
->f_mapping
;
323 struct inode
*inode
= mapping
->host
;
325 struct buffer_head bh
;
326 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
327 unsigned blkbits
= inode
->i_blkbits
;
333 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
334 if (vmf
->pgoff
>= size
)
335 return VM_FAULT_SIGBUS
;
337 memset(&bh
, 0, sizeof(bh
));
338 block
= (sector_t
)vmf
->pgoff
<< (PAGE_SHIFT
- blkbits
);
339 bh
.b_size
= PAGE_SIZE
;
342 page
= find_get_page(mapping
, vmf
->pgoff
);
344 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
345 page_cache_release(page
);
346 return VM_FAULT_RETRY
;
348 if (unlikely(page
->mapping
!= mapping
)) {
350 page_cache_release(page
);
353 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
354 if (unlikely(vmf
->pgoff
>= size
)) {
356 * We have a struct page covering a hole in the file
357 * from a read fault and we've raced with a truncate
364 error
= get_block(inode
, block
, &bh
, 0);
365 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
366 error
= -EIO
; /* fs corruption? */
370 if (!buffer_mapped(&bh
) && !buffer_unwritten(&bh
) && !vmf
->cow_page
) {
371 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
372 error
= get_block(inode
, block
, &bh
, 1);
373 count_vm_event(PGMAJFAULT
);
374 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
375 major
= VM_FAULT_MAJOR
;
376 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
381 return dax_load_hole(mapping
, page
, vmf
);
386 struct page
*new_page
= vmf
->cow_page
;
387 if (buffer_written(&bh
))
388 error
= copy_user_bh(new_page
, &bh
, blkbits
, vaddr
);
390 clear_user_highpage(new_page
, vaddr
);
395 i_mmap_lock_read(mapping
);
396 /* Check we didn't race with truncate */
397 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >>
399 if (vmf
->pgoff
>= size
) {
400 i_mmap_unlock_read(mapping
);
405 return VM_FAULT_LOCKED
;
408 /* Check we didn't race with a read fault installing a new page */
410 page
= find_lock_page(mapping
, vmf
->pgoff
);
413 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
415 delete_from_page_cache(page
);
417 page_cache_release(page
);
420 error
= dax_insert_mapping(inode
, &bh
, vma
, vmf
);
423 if (error
== -ENOMEM
)
424 return VM_FAULT_OOM
| major
;
425 /* -EBUSY is fine, somebody else faulted on the same PTE */
426 if ((error
< 0) && (error
!= -EBUSY
))
427 return VM_FAULT_SIGBUS
| major
;
428 return VM_FAULT_NOPAGE
| major
;
433 page_cache_release(page
);
439 * dax_fault - handle a page fault on a DAX file
440 * @vma: The virtual memory area where the fault occurred
441 * @vmf: The description of the fault
442 * @get_block: The filesystem method used to translate file offsets to blocks
444 * When a page fault occurs, filesystems may call this helper in their
445 * fault handler for DAX files.
447 int dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
448 get_block_t get_block
)
451 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
453 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
454 sb_start_pagefault(sb
);
455 file_update_time(vma
->vm_file
);
457 result
= do_dax_fault(vma
, vmf
, get_block
);
458 if (vmf
->flags
& FAULT_FLAG_WRITE
)
459 sb_end_pagefault(sb
);
463 EXPORT_SYMBOL_GPL(dax_fault
);
466 * dax_pfn_mkwrite - handle first write to DAX page
467 * @vma: The virtual memory area where the fault occurred
468 * @vmf: The description of the fault
471 int dax_pfn_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
473 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
475 sb_start_pagefault(sb
);
476 file_update_time(vma
->vm_file
);
477 sb_end_pagefault(sb
);
478 return VM_FAULT_NOPAGE
;
480 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite
);
483 * dax_zero_page_range - zero a range within a page of a DAX file
484 * @inode: The file being truncated
485 * @from: The file offset that is being truncated to
486 * @length: The number of bytes to zero
487 * @get_block: The filesystem method used to translate file offsets to blocks
489 * This function can be called by a filesystem when it is zeroing part of a
490 * page in a DAX file. This is intended for hole-punch operations. If
491 * you are truncating a file, the helper function dax_truncate_page() may be
494 * We work in terms of PAGE_CACHE_SIZE here for commonality with
495 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
496 * took care of disposing of the unnecessary blocks. Even if the filesystem
497 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
498 * since the file might be mmapped.
500 int dax_zero_page_range(struct inode
*inode
, loff_t from
, unsigned length
,
501 get_block_t get_block
)
503 struct buffer_head bh
;
504 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
505 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
508 /* Block boundary? Nothing to do */
511 BUG_ON((offset
+ length
) > PAGE_CACHE_SIZE
);
513 memset(&bh
, 0, sizeof(bh
));
514 bh
.b_size
= PAGE_CACHE_SIZE
;
515 err
= get_block(inode
, index
, &bh
, 0);
518 if (buffer_written(&bh
)) {
520 err
= dax_get_addr(&bh
, &addr
, inode
->i_blkbits
);
523 memset(addr
+ offset
, 0, length
);
528 EXPORT_SYMBOL_GPL(dax_zero_page_range
);
531 * dax_truncate_page - handle a partial page being truncated in a DAX file
532 * @inode: The file being truncated
533 * @from: The file offset that is being truncated to
534 * @get_block: The filesystem method used to translate file offsets to blocks
536 * Similar to block_truncate_page(), this function can be called by a
537 * filesystem when it is truncating a DAX file to handle the partial page.
539 * We work in terms of PAGE_CACHE_SIZE here for commonality with
540 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
541 * took care of disposing of the unnecessary blocks. Even if the filesystem
542 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
543 * since the file might be mmapped.
545 int dax_truncate_page(struct inode
*inode
, loff_t from
, get_block_t get_block
)
547 unsigned length
= PAGE_CACHE_ALIGN(from
) - from
;
548 return dax_zero_page_range(inode
, from
, length
, get_block
);
550 EXPORT_SYMBOL_GPL(dax_truncate_page
);