4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 static unsigned int m_hash_mask __read_mostly
;
31 static unsigned int m_hash_shift __read_mostly
;
32 static unsigned int mp_hash_mask __read_mostly
;
33 static unsigned int mp_hash_shift __read_mostly
;
35 static __initdata
unsigned long mhash_entries
;
36 static int __init
set_mhash_entries(char *str
)
40 mhash_entries
= simple_strtoul(str
, &str
, 0);
43 __setup("mhash_entries=", set_mhash_entries
);
45 static __initdata
unsigned long mphash_entries
;
46 static int __init
set_mphash_entries(char *str
)
50 mphash_entries
= simple_strtoul(str
, &str
, 0);
53 __setup("mphash_entries=", set_mphash_entries
);
56 static DEFINE_IDA(mnt_id_ida
);
57 static DEFINE_IDA(mnt_group_ida
);
58 static DEFINE_SPINLOCK(mnt_id_lock
);
59 static int mnt_id_start
= 0;
60 static int mnt_group_start
= 1;
62 static struct hlist_head
*mount_hashtable __read_mostly
;
63 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
64 static struct kmem_cache
*mnt_cache __read_mostly
;
65 static DECLARE_RWSEM(namespace_sem
);
68 struct kobject
*fs_kobj
;
69 EXPORT_SYMBOL_GPL(fs_kobj
);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
81 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
83 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
84 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
85 tmp
= tmp
+ (tmp
>> m_hash_shift
);
86 return &mount_hashtable
[tmp
& m_hash_mask
];
89 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
91 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
92 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
93 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount
*mnt
)
105 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
106 spin_lock(&mnt_id_lock
);
107 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
109 mnt_id_start
= mnt
->mnt_id
+ 1;
110 spin_unlock(&mnt_id_lock
);
117 static void mnt_free_id(struct mount
*mnt
)
119 int id
= mnt
->mnt_id
;
120 spin_lock(&mnt_id_lock
);
121 ida_remove(&mnt_id_ida
, id
);
122 if (mnt_id_start
> id
)
124 spin_unlock(&mnt_id_lock
);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount
*mnt
)
136 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
139 res
= ida_get_new_above(&mnt_group_ida
,
143 mnt_group_start
= mnt
->mnt_group_id
+ 1;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount
*mnt
)
153 int id
= mnt
->mnt_group_id
;
154 ida_remove(&mnt_group_ida
, id
);
155 if (mnt_group_start
> id
)
156 mnt_group_start
= id
;
157 mnt
->mnt_group_id
= 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount
*mnt
, int n
)
166 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount
*mnt
)
180 unsigned int count
= 0;
183 for_each_possible_cpu(cpu
) {
184 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
189 return mnt
->mnt_count
;
193 static void drop_mountpoint(struct fs_pin
*p
)
195 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
196 dput(m
->mnt_ex_mountpoint
);
201 static struct mount
*alloc_vfsmnt(const char *name
)
203 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
207 err
= mnt_alloc_id(mnt
);
212 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
213 if (!mnt
->mnt_devname
)
218 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
220 goto out_free_devname
;
222 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
225 mnt
->mnt_writers
= 0;
228 INIT_HLIST_NODE(&mnt
->mnt_hash
);
229 INIT_LIST_HEAD(&mnt
->mnt_child
);
230 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
231 INIT_LIST_HEAD(&mnt
->mnt_list
);
232 INIT_LIST_HEAD(&mnt
->mnt_expire
);
233 INIT_LIST_HEAD(&mnt
->mnt_share
);
234 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
235 INIT_LIST_HEAD(&mnt
->mnt_slave
);
236 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
240 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
246 kfree_const(mnt
->mnt_devname
);
251 kmem_cache_free(mnt_cache
, mnt
);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount
*mnt
)
276 if (mnt
->mnt_flags
& MNT_READONLY
)
278 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
284 static inline void mnt_inc_writers(struct mount
*mnt
)
287 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
293 static inline void mnt_dec_writers(struct mount
*mnt
)
296 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
302 static unsigned int mnt_get_writers(struct mount
*mnt
)
305 unsigned int count
= 0;
308 for_each_possible_cpu(cpu
) {
309 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
314 return mnt
->mnt_writers
;
318 static int mnt_is_readonly(struct vfsmount
*mnt
)
320 if (mnt
->mnt_sb
->s_readonly_remount
)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt
);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount
*m
)
345 struct mount
*mnt
= real_mount(m
);
349 mnt_inc_writers(mnt
);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m
)) {
365 mnt_dec_writers(mnt
);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount
*m
)
386 sb_start_write(m
->mnt_sb
);
387 ret
= __mnt_want_write(m
);
389 sb_end_write(m
->mnt_sb
);
392 EXPORT_SYMBOL_GPL(mnt_want_write
);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount
*mnt
)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt
))
412 mnt_inc_writers(real_mount(mnt
));
416 EXPORT_SYMBOL_GPL(mnt_clone_write
);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file
*file
)
427 if (!(file
->f_mode
& FMODE_WRITER
))
428 return __mnt_want_write(file
->f_path
.mnt
);
430 return mnt_clone_write(file
->f_path
.mnt
);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file
*file
)
444 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
445 ret
= __mnt_want_write_file(file
);
447 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
450 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount
*mnt
)
463 mnt_dec_writers(real_mount(mnt
));
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount
*mnt
)
477 __mnt_drop_write(mnt
);
478 sb_end_write(mnt
->mnt_sb
);
480 EXPORT_SYMBOL_GPL(mnt_drop_write
);
482 void __mnt_drop_write_file(struct file
*file
)
484 __mnt_drop_write(file
->f_path
.mnt
);
487 void mnt_drop_write_file(struct file
*file
)
489 mnt_drop_write(file
->f_path
.mnt
);
491 EXPORT_SYMBOL(mnt_drop_write_file
);
493 static int mnt_make_readonly(struct mount
*mnt
)
498 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
521 if (mnt_get_writers(mnt
) > 0)
524 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
530 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
535 static void __mnt_unmake_readonly(struct mount
*mnt
)
538 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
542 int sb_prepare_remount_readonly(struct super_block
*sb
)
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb
->s_remove_count
))
552 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
553 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
554 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
556 if (mnt_get_writers(mnt
) > 0) {
562 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
566 sb
->s_readonly_remount
= 1;
569 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
570 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
571 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
578 static void free_vfsmnt(struct mount
*mnt
)
580 kfree_const(mnt
->mnt_devname
);
582 free_percpu(mnt
->mnt_pcp
);
584 kmem_cache_free(mnt_cache
, mnt
);
587 static void delayed_free_vfsmnt(struct rcu_head
*head
)
589 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
596 if (read_seqretry(&mount_lock
, seq
))
600 mnt
= real_mount(bastard
);
601 mnt_add_count(mnt
, 1);
602 if (likely(!read_seqretry(&mount_lock
, seq
)))
604 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
605 mnt_add_count(mnt
, -1);
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
618 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
620 struct hlist_head
*head
= m_hash(mnt
, dentry
);
623 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
624 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
633 struct mount
*__lookup_mnt_last(struct vfsmount
*mnt
, struct dentry
*dentry
)
635 struct mount
*p
, *res
= NULL
;
636 p
= __lookup_mnt(mnt
, dentry
);
639 if (!(p
->mnt
.mnt_flags
& MNT_UMOUNT
))
641 hlist_for_each_entry_continue(p
, mnt_hash
) {
642 if (&p
->mnt_parent
->mnt
!= mnt
|| p
->mnt_mountpoint
!= dentry
)
644 if (!(p
->mnt
.mnt_flags
& MNT_UMOUNT
))
652 * lookup_mnt - Return the first child mount mounted at path
654 * "First" means first mounted chronologically. If you create the
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
665 * lookup_mnt takes a reference to the found vfsmount.
667 struct vfsmount
*lookup_mnt(struct path
*path
)
669 struct mount
*child_mnt
;
675 seq
= read_seqbegin(&mount_lock
);
676 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
677 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
678 } while (!legitimize_mnt(m
, seq
));
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
698 bool __is_local_mountpoint(struct dentry
*dentry
)
700 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
702 bool is_covered
= false;
704 if (!d_mountpoint(dentry
))
707 down_read(&namespace_sem
);
708 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
709 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
713 up_read(&namespace_sem
);
718 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
720 struct hlist_head
*chain
= mp_hash(dentry
);
721 struct mountpoint
*mp
;
723 hlist_for_each_entry(mp
, chain
, m_hash
) {
724 if (mp
->m_dentry
== dentry
) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry
))
727 return ERR_PTR(-ENOENT
);
735 static struct mountpoint
*new_mountpoint(struct dentry
*dentry
)
737 struct hlist_head
*chain
= mp_hash(dentry
);
738 struct mountpoint
*mp
;
741 mp
= kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
743 return ERR_PTR(-ENOMEM
);
745 ret
= d_set_mounted(dentry
);
751 mp
->m_dentry
= dentry
;
753 hlist_add_head(&mp
->m_hash
, chain
);
754 INIT_HLIST_HEAD(&mp
->m_list
);
758 static void put_mountpoint(struct mountpoint
*mp
)
760 if (!--mp
->m_count
) {
761 struct dentry
*dentry
= mp
->m_dentry
;
762 BUG_ON(!hlist_empty(&mp
->m_list
));
763 spin_lock(&dentry
->d_lock
);
764 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
765 spin_unlock(&dentry
->d_lock
);
766 hlist_del(&mp
->m_hash
);
771 static inline int check_mnt(struct mount
*mnt
)
773 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
777 * vfsmount lock must be held for write
779 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
783 wake_up_interruptible(&ns
->poll
);
788 * vfsmount lock must be held for write
790 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
792 if (ns
&& ns
->event
!= event
) {
794 wake_up_interruptible(&ns
->poll
);
799 * vfsmount lock must be held for write
801 static void unhash_mnt(struct mount
*mnt
)
803 mnt
->mnt_parent
= mnt
;
804 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
805 list_del_init(&mnt
->mnt_child
);
806 hlist_del_init_rcu(&mnt
->mnt_hash
);
807 hlist_del_init(&mnt
->mnt_mp_list
);
808 put_mountpoint(mnt
->mnt_mp
);
813 * vfsmount lock must be held for write
815 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
817 old_path
->dentry
= mnt
->mnt_mountpoint
;
818 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
823 * vfsmount lock must be held for write
825 static void umount_mnt(struct mount
*mnt
)
827 /* old mountpoint will be dropped when we can do that */
828 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
833 * vfsmount lock must be held for write
835 void mnt_set_mountpoint(struct mount
*mnt
,
836 struct mountpoint
*mp
,
837 struct mount
*child_mnt
)
840 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
841 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
842 child_mnt
->mnt_parent
= mnt
;
843 child_mnt
->mnt_mp
= mp
;
844 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
848 * vfsmount lock must be held for write
850 static void attach_mnt(struct mount
*mnt
,
851 struct mount
*parent
,
852 struct mountpoint
*mp
)
854 mnt_set_mountpoint(parent
, mp
, mnt
);
855 hlist_add_head_rcu(&mnt
->mnt_hash
, m_hash(&parent
->mnt
, mp
->m_dentry
));
856 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
859 static void attach_shadowed(struct mount
*mnt
,
860 struct mount
*parent
,
861 struct mount
*shadows
)
864 hlist_add_behind_rcu(&mnt
->mnt_hash
, &shadows
->mnt_hash
);
865 list_add(&mnt
->mnt_child
, &shadows
->mnt_child
);
867 hlist_add_head_rcu(&mnt
->mnt_hash
,
868 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
869 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
874 * vfsmount lock must be held for write
876 static void commit_tree(struct mount
*mnt
, struct mount
*shadows
)
878 struct mount
*parent
= mnt
->mnt_parent
;
881 struct mnt_namespace
*n
= parent
->mnt_ns
;
883 BUG_ON(parent
== mnt
);
885 list_add_tail(&head
, &mnt
->mnt_list
);
886 list_for_each_entry(m
, &head
, mnt_list
)
889 list_splice(&head
, n
->list
.prev
);
891 attach_shadowed(mnt
, parent
, shadows
);
892 touch_mnt_namespace(n
);
895 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
897 struct list_head
*next
= p
->mnt_mounts
.next
;
898 if (next
== &p
->mnt_mounts
) {
902 next
= p
->mnt_child
.next
;
903 if (next
!= &p
->mnt_parent
->mnt_mounts
)
908 return list_entry(next
, struct mount
, mnt_child
);
911 static struct mount
*skip_mnt_tree(struct mount
*p
)
913 struct list_head
*prev
= p
->mnt_mounts
.prev
;
914 while (prev
!= &p
->mnt_mounts
) {
915 p
= list_entry(prev
, struct mount
, mnt_child
);
916 prev
= p
->mnt_mounts
.prev
;
922 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
928 return ERR_PTR(-ENODEV
);
930 mnt
= alloc_vfsmnt(name
);
932 return ERR_PTR(-ENOMEM
);
934 if (flags
& MS_KERNMOUNT
)
935 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
937 root
= mount_fs(type
, flags
, name
, data
);
941 return ERR_CAST(root
);
944 mnt
->mnt
.mnt_root
= root
;
945 mnt
->mnt
.mnt_sb
= root
->d_sb
;
946 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
947 mnt
->mnt_parent
= mnt
;
949 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
953 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
955 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
958 struct super_block
*sb
= old
->mnt
.mnt_sb
;
962 mnt
= alloc_vfsmnt(old
->mnt_devname
);
964 return ERR_PTR(-ENOMEM
);
966 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
967 mnt
->mnt_group_id
= 0; /* not a peer of original */
969 mnt
->mnt_group_id
= old
->mnt_group_id
;
971 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
972 err
= mnt_alloc_group_id(mnt
);
977 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
978 /* Don't allow unprivileged users to change mount flags */
979 if (flag
& CL_UNPRIVILEGED
) {
980 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
982 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
983 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
985 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
986 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
988 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
989 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
991 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
992 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
995 /* Don't allow unprivileged users to reveal what is under a mount */
996 if ((flag
& CL_UNPRIVILEGED
) &&
997 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
998 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1000 atomic_inc(&sb
->s_active
);
1001 mnt
->mnt
.mnt_sb
= sb
;
1002 mnt
->mnt
.mnt_root
= dget(root
);
1003 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1004 mnt
->mnt_parent
= mnt
;
1006 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1007 unlock_mount_hash();
1009 if ((flag
& CL_SLAVE
) ||
1010 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1011 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1012 mnt
->mnt_master
= old
;
1013 CLEAR_MNT_SHARED(mnt
);
1014 } else if (!(flag
& CL_PRIVATE
)) {
1015 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1016 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1017 if (IS_MNT_SLAVE(old
))
1018 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1019 mnt
->mnt_master
= old
->mnt_master
;
1021 if (flag
& CL_MAKE_SHARED
)
1022 set_mnt_shared(mnt
);
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag
& CL_EXPIRE
) {
1027 if (!list_empty(&old
->mnt_expire
))
1028 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1036 return ERR_PTR(err
);
1039 static void cleanup_mnt(struct mount
*mnt
)
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1051 WARN_ON(mnt_get_writers(mnt
));
1052 if (unlikely(mnt
->mnt_pins
.first
))
1054 fsnotify_vfsmount_delete(&mnt
->mnt
);
1055 dput(mnt
->mnt
.mnt_root
);
1056 deactivate_super(mnt
->mnt
.mnt_sb
);
1058 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1061 static void __cleanup_mnt(struct rcu_head
*head
)
1063 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1066 static LLIST_HEAD(delayed_mntput_list
);
1067 static void delayed_mntput(struct work_struct
*unused
)
1069 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1070 struct llist_node
*next
;
1072 for (; node
; node
= next
) {
1073 next
= llist_next(node
);
1074 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1077 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1079 static void mntput_no_expire(struct mount
*mnt
)
1082 mnt_add_count(mnt
, -1);
1083 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1088 if (mnt_get_count(mnt
)) {
1090 unlock_mount_hash();
1093 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1095 unlock_mount_hash();
1098 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1101 list_del(&mnt
->mnt_instance
);
1103 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1104 struct mount
*p
, *tmp
;
1105 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1109 unlock_mount_hash();
1111 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1112 struct task_struct
*task
= current
;
1113 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1114 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1115 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1118 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1119 schedule_delayed_work(&delayed_mntput_work
, 1);
1125 void mntput(struct vfsmount
*mnt
)
1128 struct mount
*m
= real_mount(mnt
);
1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130 if (unlikely(m
->mnt_expiry_mark
))
1131 m
->mnt_expiry_mark
= 0;
1132 mntput_no_expire(m
);
1135 EXPORT_SYMBOL(mntput
);
1137 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1140 mnt_add_count(real_mount(mnt
), 1);
1143 EXPORT_SYMBOL(mntget
);
1145 struct vfsmount
*mnt_clone_internal(struct path
*path
)
1148 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1151 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1155 static inline void mangle(struct seq_file
*m
, const char *s
)
1157 seq_escape(m
, s
, " \t\n\\");
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1164 * See also save_mount_options().
1166 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1168 const char *options
;
1171 options
= rcu_dereference(root
->d_sb
->s_options
);
1173 if (options
!= NULL
&& options
[0]) {
1181 EXPORT_SYMBOL(generic_show_options
);
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1196 void save_mount_options(struct super_block
*sb
, char *options
)
1198 BUG_ON(sb
->s_options
);
1199 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1201 EXPORT_SYMBOL(save_mount_options
);
1203 void replace_mount_options(struct super_block
*sb
, char *options
)
1205 char *old
= sb
->s_options
;
1206 rcu_assign_pointer(sb
->s_options
, options
);
1212 EXPORT_SYMBOL(replace_mount_options
);
1214 #ifdef CONFIG_PROC_FS
1215 /* iterator; we want it to have access to namespace_sem, thus here... */
1216 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1218 struct proc_mounts
*p
= proc_mounts(m
);
1220 down_read(&namespace_sem
);
1221 if (p
->cached_event
== p
->ns
->event
) {
1222 void *v
= p
->cached_mount
;
1223 if (*pos
== p
->cached_index
)
1225 if (*pos
== p
->cached_index
+ 1) {
1226 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1227 return p
->cached_mount
= v
;
1231 p
->cached_event
= p
->ns
->event
;
1232 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1233 p
->cached_index
= *pos
;
1234 return p
->cached_mount
;
1237 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1239 struct proc_mounts
*p
= proc_mounts(m
);
1241 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1242 p
->cached_index
= *pos
;
1243 return p
->cached_mount
;
1246 static void m_stop(struct seq_file
*m
, void *v
)
1248 up_read(&namespace_sem
);
1251 static int m_show(struct seq_file
*m
, void *v
)
1253 struct proc_mounts
*p
= proc_mounts(m
);
1254 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1255 return p
->show(m
, &r
->mnt
);
1258 const struct seq_operations mounts_op
= {
1264 #endif /* CONFIG_PROC_FS */
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1274 int may_umount_tree(struct vfsmount
*m
)
1276 struct mount
*mnt
= real_mount(m
);
1277 int actual_refs
= 0;
1278 int minimum_refs
= 0;
1282 /* write lock needed for mnt_get_count */
1284 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1285 actual_refs
+= mnt_get_count(p
);
1288 unlock_mount_hash();
1290 if (actual_refs
> minimum_refs
)
1296 EXPORT_SYMBOL(may_umount_tree
);
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1311 int may_umount(struct vfsmount
*mnt
)
1314 down_read(&namespace_sem
);
1316 if (propagate_mount_busy(real_mount(mnt
), 2))
1318 unlock_mount_hash();
1319 up_read(&namespace_sem
);
1323 EXPORT_SYMBOL(may_umount
);
1325 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1327 static void namespace_unlock(void)
1329 struct hlist_head head
;
1331 hlist_move_list(&unmounted
, &head
);
1333 up_write(&namespace_sem
);
1335 if (likely(hlist_empty(&head
)))
1340 group_pin_kill(&head
);
1343 static inline void namespace_lock(void)
1345 down_write(&namespace_sem
);
1348 enum umount_tree_flags
{
1350 UMOUNT_PROPAGATE
= 2,
1351 UMOUNT_CONNECTED
= 4,
1354 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1356 /* Leaving mounts connected is only valid for lazy umounts */
1357 if (how
& UMOUNT_SYNC
)
1360 /* A mount without a parent has nothing to be connected to */
1361 if (!mnt_has_parent(mnt
))
1364 /* Because the reference counting rules change when mounts are
1365 * unmounted and connected, umounted mounts may not be
1366 * connected to mounted mounts.
1368 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1371 /* Has it been requested that the mount remain connected? */
1372 if (how
& UMOUNT_CONNECTED
)
1375 /* Is the mount locked such that it needs to remain connected? */
1376 if (IS_MNT_LOCKED(mnt
))
1379 /* By default disconnect the mount */
1384 * mount_lock must be held
1385 * namespace_sem must be held for write
1387 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1389 LIST_HEAD(tmp_list
);
1392 if (how
& UMOUNT_PROPAGATE
)
1393 propagate_mount_unlock(mnt
);
1395 /* Gather the mounts to umount */
1396 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1397 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1398 list_move(&p
->mnt_list
, &tmp_list
);
1401 /* Hide the mounts from mnt_mounts */
1402 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1403 list_del_init(&p
->mnt_child
);
1406 /* Add propogated mounts to the tmp_list */
1407 if (how
& UMOUNT_PROPAGATE
)
1408 propagate_umount(&tmp_list
);
1410 while (!list_empty(&tmp_list
)) {
1412 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1413 list_del_init(&p
->mnt_expire
);
1414 list_del_init(&p
->mnt_list
);
1415 __touch_mnt_namespace(p
->mnt_ns
);
1417 if (how
& UMOUNT_SYNC
)
1418 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1420 disconnect
= disconnect_mount(p
, how
);
1422 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1423 disconnect
? &unmounted
: NULL
);
1424 if (mnt_has_parent(p
)) {
1425 mnt_add_count(p
->mnt_parent
, -1);
1427 /* Don't forget about p */
1428 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1433 change_mnt_propagation(p
, MS_PRIVATE
);
1437 static void shrink_submounts(struct mount
*mnt
);
1439 static int do_umount(struct mount
*mnt
, int flags
)
1441 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1444 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1449 * Allow userspace to request a mountpoint be expired rather than
1450 * unmounting unconditionally. Unmount only happens if:
1451 * (1) the mark is already set (the mark is cleared by mntput())
1452 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1454 if (flags
& MNT_EXPIRE
) {
1455 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1456 flags
& (MNT_FORCE
| MNT_DETACH
))
1460 * probably don't strictly need the lock here if we examined
1461 * all race cases, but it's a slowpath.
1464 if (mnt_get_count(mnt
) != 2) {
1465 unlock_mount_hash();
1468 unlock_mount_hash();
1470 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1475 * If we may have to abort operations to get out of this
1476 * mount, and they will themselves hold resources we must
1477 * allow the fs to do things. In the Unix tradition of
1478 * 'Gee thats tricky lets do it in userspace' the umount_begin
1479 * might fail to complete on the first run through as other tasks
1480 * must return, and the like. Thats for the mount program to worry
1481 * about for the moment.
1484 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1485 sb
->s_op
->umount_begin(sb
);
1489 * No sense to grab the lock for this test, but test itself looks
1490 * somewhat bogus. Suggestions for better replacement?
1491 * Ho-hum... In principle, we might treat that as umount + switch
1492 * to rootfs. GC would eventually take care of the old vfsmount.
1493 * Actually it makes sense, especially if rootfs would contain a
1494 * /reboot - static binary that would close all descriptors and
1495 * call reboot(9). Then init(8) could umount root and exec /reboot.
1497 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1499 * Special case for "unmounting" root ...
1500 * we just try to remount it readonly.
1502 if (!capable(CAP_SYS_ADMIN
))
1504 down_write(&sb
->s_umount
);
1505 if (!(sb
->s_flags
& MS_RDONLY
))
1506 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1507 up_write(&sb
->s_umount
);
1515 if (flags
& MNT_DETACH
) {
1516 if (!list_empty(&mnt
->mnt_list
))
1517 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1520 shrink_submounts(mnt
);
1522 if (!propagate_mount_busy(mnt
, 2)) {
1523 if (!list_empty(&mnt
->mnt_list
))
1524 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1528 unlock_mount_hash();
1534 * __detach_mounts - lazily unmount all mounts on the specified dentry
1536 * During unlink, rmdir, and d_drop it is possible to loose the path
1537 * to an existing mountpoint, and wind up leaking the mount.
1538 * detach_mounts allows lazily unmounting those mounts instead of
1541 * The caller may hold dentry->d_inode->i_mutex.
1543 void __detach_mounts(struct dentry
*dentry
)
1545 struct mountpoint
*mp
;
1549 mp
= lookup_mountpoint(dentry
);
1550 if (IS_ERR_OR_NULL(mp
))
1554 while (!hlist_empty(&mp
->m_list
)) {
1555 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1556 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1557 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1560 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1562 unlock_mount_hash();
1569 * Is the caller allowed to modify his namespace?
1571 static inline bool may_mount(void)
1573 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1577 * Now umount can handle mount points as well as block devices.
1578 * This is important for filesystems which use unnamed block devices.
1580 * We now support a flag for forced unmount like the other 'big iron'
1581 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1584 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1589 int lookup_flags
= 0;
1591 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1597 if (!(flags
& UMOUNT_NOFOLLOW
))
1598 lookup_flags
|= LOOKUP_FOLLOW
;
1600 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1603 mnt
= real_mount(path
.mnt
);
1605 if (path
.dentry
!= path
.mnt
->mnt_root
)
1607 if (!check_mnt(mnt
))
1609 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1612 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1615 retval
= do_umount(mnt
, flags
);
1617 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1619 mntput_no_expire(mnt
);
1624 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1627 * The 2.0 compatible umount. No flags.
1629 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1631 return sys_umount(name
, 0);
1636 static bool is_mnt_ns_file(struct dentry
*dentry
)
1638 /* Is this a proxy for a mount namespace? */
1639 return dentry
->d_op
== &ns_dentry_operations
&&
1640 dentry
->d_fsdata
== &mntns_operations
;
1643 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1645 return container_of(ns
, struct mnt_namespace
, ns
);
1648 static bool mnt_ns_loop(struct dentry
*dentry
)
1650 /* Could bind mounting the mount namespace inode cause a
1651 * mount namespace loop?
1653 struct mnt_namespace
*mnt_ns
;
1654 if (!is_mnt_ns_file(dentry
))
1657 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1658 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1661 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1664 struct mount
*res
, *p
, *q
, *r
, *parent
;
1666 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1667 return ERR_PTR(-EINVAL
);
1669 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1670 return ERR_PTR(-EINVAL
);
1672 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1676 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1679 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1681 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1684 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1685 struct mount
*t
= NULL
;
1686 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1687 IS_MNT_UNBINDABLE(s
)) {
1688 s
= skip_mnt_tree(s
);
1691 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1692 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1693 s
= skip_mnt_tree(s
);
1696 while (p
!= s
->mnt_parent
) {
1702 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1706 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1707 mnt_set_mountpoint(parent
, p
->mnt_mp
, q
);
1708 if (!list_empty(&parent
->mnt_mounts
)) {
1709 t
= list_last_entry(&parent
->mnt_mounts
,
1710 struct mount
, mnt_child
);
1711 if (t
->mnt_mp
!= p
->mnt_mp
)
1714 attach_shadowed(q
, parent
, t
);
1715 unlock_mount_hash();
1722 umount_tree(res
, UMOUNT_SYNC
);
1723 unlock_mount_hash();
1728 /* Caller should check returned pointer for errors */
1730 struct vfsmount
*collect_mounts(struct path
*path
)
1734 if (!check_mnt(real_mount(path
->mnt
)))
1735 tree
= ERR_PTR(-EINVAL
);
1737 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1738 CL_COPY_ALL
| CL_PRIVATE
);
1741 return ERR_CAST(tree
);
1745 void drop_collected_mounts(struct vfsmount
*mnt
)
1749 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1750 unlock_mount_hash();
1755 * clone_private_mount - create a private clone of a path
1757 * This creates a new vfsmount, which will be the clone of @path. The new will
1758 * not be attached anywhere in the namespace and will be private (i.e. changes
1759 * to the originating mount won't be propagated into this).
1761 * Release with mntput().
1763 struct vfsmount
*clone_private_mount(struct path
*path
)
1765 struct mount
*old_mnt
= real_mount(path
->mnt
);
1766 struct mount
*new_mnt
;
1768 if (IS_MNT_UNBINDABLE(old_mnt
))
1769 return ERR_PTR(-EINVAL
);
1771 down_read(&namespace_sem
);
1772 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1773 up_read(&namespace_sem
);
1774 if (IS_ERR(new_mnt
))
1775 return ERR_CAST(new_mnt
);
1777 return &new_mnt
->mnt
;
1779 EXPORT_SYMBOL_GPL(clone_private_mount
);
1781 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1782 struct vfsmount
*root
)
1785 int res
= f(root
, arg
);
1788 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1789 res
= f(&mnt
->mnt
, arg
);
1796 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1800 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1801 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1802 mnt_release_group_id(p
);
1806 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1810 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1811 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1812 int err
= mnt_alloc_group_id(p
);
1814 cleanup_group_ids(mnt
, p
);
1824 * @source_mnt : mount tree to be attached
1825 * @nd : place the mount tree @source_mnt is attached
1826 * @parent_nd : if non-null, detach the source_mnt from its parent and
1827 * store the parent mount and mountpoint dentry.
1828 * (done when source_mnt is moved)
1830 * NOTE: in the table below explains the semantics when a source mount
1831 * of a given type is attached to a destination mount of a given type.
1832 * ---------------------------------------------------------------------------
1833 * | BIND MOUNT OPERATION |
1834 * |**************************************************************************
1835 * | source-->| shared | private | slave | unbindable |
1839 * |**************************************************************************
1840 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1842 * |non-shared| shared (+) | private | slave (*) | invalid |
1843 * ***************************************************************************
1844 * A bind operation clones the source mount and mounts the clone on the
1845 * destination mount.
1847 * (++) the cloned mount is propagated to all the mounts in the propagation
1848 * tree of the destination mount and the cloned mount is added to
1849 * the peer group of the source mount.
1850 * (+) the cloned mount is created under the destination mount and is marked
1851 * as shared. The cloned mount is added to the peer group of the source
1853 * (+++) the mount is propagated to all the mounts in the propagation tree
1854 * of the destination mount and the cloned mount is made slave
1855 * of the same master as that of the source mount. The cloned mount
1856 * is marked as 'shared and slave'.
1857 * (*) the cloned mount is made a slave of the same master as that of the
1860 * ---------------------------------------------------------------------------
1861 * | MOVE MOUNT OPERATION |
1862 * |**************************************************************************
1863 * | source-->| shared | private | slave | unbindable |
1867 * |**************************************************************************
1868 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1870 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1871 * ***************************************************************************
1873 * (+) the mount is moved to the destination. And is then propagated to
1874 * all the mounts in the propagation tree of the destination mount.
1875 * (+*) the mount is moved to the destination.
1876 * (+++) the mount is moved to the destination and is then propagated to
1877 * all the mounts belonging to the destination mount's propagation tree.
1878 * the mount is marked as 'shared and slave'.
1879 * (*) the mount continues to be a slave at the new location.
1881 * if the source mount is a tree, the operations explained above is
1882 * applied to each mount in the tree.
1883 * Must be called without spinlocks held, since this function can sleep
1886 static int attach_recursive_mnt(struct mount
*source_mnt
,
1887 struct mount
*dest_mnt
,
1888 struct mountpoint
*dest_mp
,
1889 struct path
*parent_path
)
1891 HLIST_HEAD(tree_list
);
1892 struct mount
*child
, *p
;
1893 struct hlist_node
*n
;
1896 if (IS_MNT_SHARED(dest_mnt
)) {
1897 err
= invent_group_ids(source_mnt
, true);
1900 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1903 goto out_cleanup_ids
;
1904 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1910 detach_mnt(source_mnt
, parent_path
);
1911 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1912 touch_mnt_namespace(source_mnt
->mnt_ns
);
1914 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1915 commit_tree(source_mnt
, NULL
);
1918 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
1920 hlist_del_init(&child
->mnt_hash
);
1921 q
= __lookup_mnt_last(&child
->mnt_parent
->mnt
,
1922 child
->mnt_mountpoint
);
1923 commit_tree(child
, q
);
1925 unlock_mount_hash();
1930 while (!hlist_empty(&tree_list
)) {
1931 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
1932 umount_tree(child
, UMOUNT_SYNC
);
1934 unlock_mount_hash();
1935 cleanup_group_ids(source_mnt
, NULL
);
1940 static struct mountpoint
*lock_mount(struct path
*path
)
1942 struct vfsmount
*mnt
;
1943 struct dentry
*dentry
= path
->dentry
;
1945 mutex_lock(&dentry
->d_inode
->i_mutex
);
1946 if (unlikely(cant_mount(dentry
))) {
1947 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1948 return ERR_PTR(-ENOENT
);
1951 mnt
= lookup_mnt(path
);
1953 struct mountpoint
*mp
= lookup_mountpoint(dentry
);
1955 mp
= new_mountpoint(dentry
);
1958 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1964 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1967 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
1971 static void unlock_mount(struct mountpoint
*where
)
1973 struct dentry
*dentry
= where
->m_dentry
;
1974 put_mountpoint(where
);
1976 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1979 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
1981 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
1984 if (d_is_dir(mp
->m_dentry
) !=
1985 d_is_dir(mnt
->mnt
.mnt_root
))
1988 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
1992 * Sanity check the flags to change_mnt_propagation.
1995 static int flags_to_propagation_type(int flags
)
1997 int type
= flags
& ~(MS_REC
| MS_SILENT
);
1999 /* Fail if any non-propagation flags are set */
2000 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2002 /* Only one propagation flag should be set */
2003 if (!is_power_of_2(type
))
2009 * recursively change the type of the mountpoint.
2011 static int do_change_type(struct path
*path
, int flag
)
2014 struct mount
*mnt
= real_mount(path
->mnt
);
2015 int recurse
= flag
& MS_REC
;
2019 if (path
->dentry
!= path
->mnt
->mnt_root
)
2022 type
= flags_to_propagation_type(flag
);
2027 if (type
== MS_SHARED
) {
2028 err
= invent_group_ids(mnt
, recurse
);
2034 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2035 change_mnt_propagation(m
, type
);
2036 unlock_mount_hash();
2043 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2045 struct mount
*child
;
2046 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2047 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2050 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2057 * do loopback mount.
2059 static int do_loopback(struct path
*path
, const char *old_name
,
2062 struct path old_path
;
2063 struct mount
*mnt
= NULL
, *old
, *parent
;
2064 struct mountpoint
*mp
;
2066 if (!old_name
|| !*old_name
)
2068 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2073 if (mnt_ns_loop(old_path
.dentry
))
2076 mp
= lock_mount(path
);
2081 old
= real_mount(old_path
.mnt
);
2082 parent
= real_mount(path
->mnt
);
2085 if (IS_MNT_UNBINDABLE(old
))
2088 if (!check_mnt(parent
))
2091 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2094 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2098 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2100 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2107 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2109 err
= graft_tree(mnt
, parent
, mp
);
2112 umount_tree(mnt
, UMOUNT_SYNC
);
2113 unlock_mount_hash();
2118 path_put(&old_path
);
2122 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2125 int readonly_request
= 0;
2127 if (ms_flags
& MS_RDONLY
)
2128 readonly_request
= 1;
2129 if (readonly_request
== __mnt_is_readonly(mnt
))
2132 if (readonly_request
)
2133 error
= mnt_make_readonly(real_mount(mnt
));
2135 __mnt_unmake_readonly(real_mount(mnt
));
2140 * change filesystem flags. dir should be a physical root of filesystem.
2141 * If you've mounted a non-root directory somewhere and want to do remount
2142 * on it - tough luck.
2144 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2148 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2149 struct mount
*mnt
= real_mount(path
->mnt
);
2151 if (!check_mnt(mnt
))
2154 if (path
->dentry
!= path
->mnt
->mnt_root
)
2157 /* Don't allow changing of locked mnt flags.
2159 * No locks need to be held here while testing the various
2160 * MNT_LOCK flags because those flags can never be cleared
2161 * once they are set.
2163 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2164 !(mnt_flags
& MNT_READONLY
)) {
2167 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2168 !(mnt_flags
& MNT_NODEV
)) {
2169 /* Was the nodev implicitly added in mount? */
2170 if ((mnt
->mnt_ns
->user_ns
!= &init_user_ns
) &&
2171 !(sb
->s_type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2172 mnt_flags
|= MNT_NODEV
;
2177 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2178 !(mnt_flags
& MNT_NOSUID
)) {
2181 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2182 !(mnt_flags
& MNT_NOEXEC
)) {
2185 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2186 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2190 err
= security_sb_remount(sb
, data
);
2194 down_write(&sb
->s_umount
);
2195 if (flags
& MS_BIND
)
2196 err
= change_mount_flags(path
->mnt
, flags
);
2197 else if (!capable(CAP_SYS_ADMIN
))
2200 err
= do_remount_sb(sb
, flags
, data
, 0);
2203 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2204 mnt
->mnt
.mnt_flags
= mnt_flags
;
2205 touch_mnt_namespace(mnt
->mnt_ns
);
2206 unlock_mount_hash();
2208 up_write(&sb
->s_umount
);
2212 static inline int tree_contains_unbindable(struct mount
*mnt
)
2215 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2216 if (IS_MNT_UNBINDABLE(p
))
2222 static int do_move_mount(struct path
*path
, const char *old_name
)
2224 struct path old_path
, parent_path
;
2227 struct mountpoint
*mp
;
2229 if (!old_name
|| !*old_name
)
2231 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2235 mp
= lock_mount(path
);
2240 old
= real_mount(old_path
.mnt
);
2241 p
= real_mount(path
->mnt
);
2244 if (!check_mnt(p
) || !check_mnt(old
))
2247 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2251 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2254 if (!mnt_has_parent(old
))
2257 if (d_is_dir(path
->dentry
) !=
2258 d_is_dir(old_path
.dentry
))
2261 * Don't move a mount residing in a shared parent.
2263 if (IS_MNT_SHARED(old
->mnt_parent
))
2266 * Don't move a mount tree containing unbindable mounts to a destination
2267 * mount which is shared.
2269 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2272 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2276 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2280 /* if the mount is moved, it should no longer be expire
2282 list_del_init(&old
->mnt_expire
);
2287 path_put(&parent_path
);
2288 path_put(&old_path
);
2292 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2295 const char *subtype
= strchr(fstype
, '.');
2304 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2306 if (!mnt
->mnt_sb
->s_subtype
)
2312 return ERR_PTR(err
);
2316 * add a mount into a namespace's mount tree
2318 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2320 struct mountpoint
*mp
;
2321 struct mount
*parent
;
2324 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2326 mp
= lock_mount(path
);
2330 parent
= real_mount(path
->mnt
);
2332 if (unlikely(!check_mnt(parent
))) {
2333 /* that's acceptable only for automounts done in private ns */
2334 if (!(mnt_flags
& MNT_SHRINKABLE
))
2336 /* ... and for those we'd better have mountpoint still alive */
2337 if (!parent
->mnt_ns
)
2341 /* Refuse the same filesystem on the same mount point */
2343 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2344 path
->mnt
->mnt_root
== path
->dentry
)
2348 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2351 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2352 err
= graft_tree(newmnt
, parent
, mp
);
2359 static bool fs_fully_visible(struct file_system_type
*fs_type
, int *new_mnt_flags
);
2362 * create a new mount for userspace and request it to be added into the
2365 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2366 int mnt_flags
, const char *name
, void *data
)
2368 struct file_system_type
*type
;
2369 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2370 struct vfsmount
*mnt
;
2376 type
= get_fs_type(fstype
);
2380 if (user_ns
!= &init_user_ns
) {
2381 if (!(type
->fs_flags
& FS_USERNS_MOUNT
)) {
2382 put_filesystem(type
);
2385 /* Only in special cases allow devices from mounts
2386 * created outside the initial user namespace.
2388 if (!(type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2390 mnt_flags
|= MNT_NODEV
| MNT_LOCK_NODEV
;
2392 if (type
->fs_flags
& FS_USERNS_VISIBLE
) {
2393 if (!fs_fully_visible(type
, &mnt_flags
))
2398 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2399 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2400 !mnt
->mnt_sb
->s_subtype
)
2401 mnt
= fs_set_subtype(mnt
, fstype
);
2403 put_filesystem(type
);
2405 return PTR_ERR(mnt
);
2407 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2413 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2415 struct mount
*mnt
= real_mount(m
);
2417 /* The new mount record should have at least 2 refs to prevent it being
2418 * expired before we get a chance to add it
2420 BUG_ON(mnt_get_count(mnt
) < 2);
2422 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2423 m
->mnt_root
== path
->dentry
) {
2428 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2432 /* remove m from any expiration list it may be on */
2433 if (!list_empty(&mnt
->mnt_expire
)) {
2435 list_del_init(&mnt
->mnt_expire
);
2444 * mnt_set_expiry - Put a mount on an expiration list
2445 * @mnt: The mount to list.
2446 * @expiry_list: The list to add the mount to.
2448 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2452 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2456 EXPORT_SYMBOL(mnt_set_expiry
);
2459 * process a list of expirable mountpoints with the intent of discarding any
2460 * mountpoints that aren't in use and haven't been touched since last we came
2463 void mark_mounts_for_expiry(struct list_head
*mounts
)
2465 struct mount
*mnt
, *next
;
2466 LIST_HEAD(graveyard
);
2468 if (list_empty(mounts
))
2474 /* extract from the expiration list every vfsmount that matches the
2475 * following criteria:
2476 * - only referenced by its parent vfsmount
2477 * - still marked for expiry (marked on the last call here; marks are
2478 * cleared by mntput())
2480 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2481 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2482 propagate_mount_busy(mnt
, 1))
2484 list_move(&mnt
->mnt_expire
, &graveyard
);
2486 while (!list_empty(&graveyard
)) {
2487 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2488 touch_mnt_namespace(mnt
->mnt_ns
);
2489 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2491 unlock_mount_hash();
2495 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2498 * Ripoff of 'select_parent()'
2500 * search the list of submounts for a given mountpoint, and move any
2501 * shrinkable submounts to the 'graveyard' list.
2503 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2505 struct mount
*this_parent
= parent
;
2506 struct list_head
*next
;
2510 next
= this_parent
->mnt_mounts
.next
;
2512 while (next
!= &this_parent
->mnt_mounts
) {
2513 struct list_head
*tmp
= next
;
2514 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2517 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2520 * Descend a level if the d_mounts list is non-empty.
2522 if (!list_empty(&mnt
->mnt_mounts
)) {
2527 if (!propagate_mount_busy(mnt
, 1)) {
2528 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2533 * All done at this level ... ascend and resume the search
2535 if (this_parent
!= parent
) {
2536 next
= this_parent
->mnt_child
.next
;
2537 this_parent
= this_parent
->mnt_parent
;
2544 * process a list of expirable mountpoints with the intent of discarding any
2545 * submounts of a specific parent mountpoint
2547 * mount_lock must be held for write
2549 static void shrink_submounts(struct mount
*mnt
)
2551 LIST_HEAD(graveyard
);
2554 /* extract submounts of 'mountpoint' from the expiration list */
2555 while (select_submounts(mnt
, &graveyard
)) {
2556 while (!list_empty(&graveyard
)) {
2557 m
= list_first_entry(&graveyard
, struct mount
,
2559 touch_mnt_namespace(m
->mnt_ns
);
2560 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2566 * Some copy_from_user() implementations do not return the exact number of
2567 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2568 * Note that this function differs from copy_from_user() in that it will oops
2569 * on bad values of `to', rather than returning a short copy.
2571 static long exact_copy_from_user(void *to
, const void __user
* from
,
2575 const char __user
*f
= from
;
2578 if (!access_ok(VERIFY_READ
, from
, n
))
2582 if (__get_user(c
, f
)) {
2593 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2603 if (!(page
= __get_free_page(GFP_KERNEL
)))
2606 /* We only care that *some* data at the address the user
2607 * gave us is valid. Just in case, we'll zero
2608 * the remainder of the page.
2610 /* copy_from_user cannot cross TASK_SIZE ! */
2611 size
= TASK_SIZE
- (unsigned long)data
;
2612 if (size
> PAGE_SIZE
)
2615 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2621 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2626 char *copy_mount_string(const void __user
*data
)
2628 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2632 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2633 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2635 * data is a (void *) that can point to any structure up to
2636 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2637 * information (or be NULL).
2639 * Pre-0.97 versions of mount() didn't have a flags word.
2640 * When the flags word was introduced its top half was required
2641 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2642 * Therefore, if this magic number is present, it carries no information
2643 * and must be discarded.
2645 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2646 const char *type_page
, unsigned long flags
, void *data_page
)
2653 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2654 flags
&= ~MS_MGC_MSK
;
2656 /* Basic sanity checks */
2658 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2660 /* ... and get the mountpoint */
2661 retval
= user_path(dir_name
, &path
);
2665 retval
= security_sb_mount(dev_name
, &path
,
2666 type_page
, flags
, data_page
);
2667 if (!retval
&& !may_mount())
2672 /* Default to relatime unless overriden */
2673 if (!(flags
& MS_NOATIME
))
2674 mnt_flags
|= MNT_RELATIME
;
2676 /* Separate the per-mountpoint flags */
2677 if (flags
& MS_NOSUID
)
2678 mnt_flags
|= MNT_NOSUID
;
2679 if (flags
& MS_NODEV
)
2680 mnt_flags
|= MNT_NODEV
;
2681 if (flags
& MS_NOEXEC
)
2682 mnt_flags
|= MNT_NOEXEC
;
2683 if (flags
& MS_NOATIME
)
2684 mnt_flags
|= MNT_NOATIME
;
2685 if (flags
& MS_NODIRATIME
)
2686 mnt_flags
|= MNT_NODIRATIME
;
2687 if (flags
& MS_STRICTATIME
)
2688 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2689 if (flags
& MS_RDONLY
)
2690 mnt_flags
|= MNT_READONLY
;
2692 /* The default atime for remount is preservation */
2693 if ((flags
& MS_REMOUNT
) &&
2694 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2695 MS_STRICTATIME
)) == 0)) {
2696 mnt_flags
&= ~MNT_ATIME_MASK
;
2697 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2700 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2701 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2704 if (flags
& MS_REMOUNT
)
2705 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2707 else if (flags
& MS_BIND
)
2708 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2709 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2710 retval
= do_change_type(&path
, flags
);
2711 else if (flags
& MS_MOVE
)
2712 retval
= do_move_mount(&path
, dev_name
);
2714 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2715 dev_name
, data_page
);
2721 static void free_mnt_ns(struct mnt_namespace
*ns
)
2723 ns_free_inum(&ns
->ns
);
2724 put_user_ns(ns
->user_ns
);
2729 * Assign a sequence number so we can detect when we attempt to bind
2730 * mount a reference to an older mount namespace into the current
2731 * mount namespace, preventing reference counting loops. A 64bit
2732 * number incrementing at 10Ghz will take 12,427 years to wrap which
2733 * is effectively never, so we can ignore the possibility.
2735 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2737 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2739 struct mnt_namespace
*new_ns
;
2742 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2744 return ERR_PTR(-ENOMEM
);
2745 ret
= ns_alloc_inum(&new_ns
->ns
);
2748 return ERR_PTR(ret
);
2750 new_ns
->ns
.ops
= &mntns_operations
;
2751 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2752 atomic_set(&new_ns
->count
, 1);
2753 new_ns
->root
= NULL
;
2754 INIT_LIST_HEAD(&new_ns
->list
);
2755 init_waitqueue_head(&new_ns
->poll
);
2757 new_ns
->user_ns
= get_user_ns(user_ns
);
2761 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2762 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2764 struct mnt_namespace
*new_ns
;
2765 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2766 struct mount
*p
, *q
;
2773 if (likely(!(flags
& CLONE_NEWNS
))) {
2780 new_ns
= alloc_mnt_ns(user_ns
);
2785 /* First pass: copy the tree topology */
2786 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2787 if (user_ns
!= ns
->user_ns
)
2788 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2789 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2792 free_mnt_ns(new_ns
);
2793 return ERR_CAST(new);
2796 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2799 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2800 * as belonging to new namespace. We have already acquired a private
2801 * fs_struct, so tsk->fs->lock is not needed.
2808 if (&p
->mnt
== new_fs
->root
.mnt
) {
2809 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2812 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2813 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2817 p
= next_mnt(p
, old
);
2818 q
= next_mnt(q
, new);
2821 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2822 p
= next_mnt(p
, old
);
2835 * create_mnt_ns - creates a private namespace and adds a root filesystem
2836 * @mnt: pointer to the new root filesystem mountpoint
2838 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2840 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2841 if (!IS_ERR(new_ns
)) {
2842 struct mount
*mnt
= real_mount(m
);
2843 mnt
->mnt_ns
= new_ns
;
2845 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2852 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2854 struct mnt_namespace
*ns
;
2855 struct super_block
*s
;
2859 ns
= create_mnt_ns(mnt
);
2861 return ERR_CAST(ns
);
2863 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2864 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2869 return ERR_PTR(err
);
2871 /* trade a vfsmount reference for active sb one */
2872 s
= path
.mnt
->mnt_sb
;
2873 atomic_inc(&s
->s_active
);
2875 /* lock the sucker */
2876 down_write(&s
->s_umount
);
2877 /* ... and return the root of (sub)tree on it */
2880 EXPORT_SYMBOL(mount_subtree
);
2882 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2883 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2888 unsigned long data_page
;
2890 kernel_type
= copy_mount_string(type
);
2891 ret
= PTR_ERR(kernel_type
);
2892 if (IS_ERR(kernel_type
))
2895 kernel_dev
= copy_mount_string(dev_name
);
2896 ret
= PTR_ERR(kernel_dev
);
2897 if (IS_ERR(kernel_dev
))
2900 ret
= copy_mount_options(data
, &data_page
);
2904 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
,
2905 (void *) data_page
);
2907 free_page(data_page
);
2917 * Return true if path is reachable from root
2919 * namespace_sem or mount_lock is held
2921 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
2922 const struct path
*root
)
2924 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
2925 dentry
= mnt
->mnt_mountpoint
;
2926 mnt
= mnt
->mnt_parent
;
2928 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
2931 int path_is_under(struct path
*path1
, struct path
*path2
)
2934 read_seqlock_excl(&mount_lock
);
2935 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
2936 read_sequnlock_excl(&mount_lock
);
2939 EXPORT_SYMBOL(path_is_under
);
2942 * pivot_root Semantics:
2943 * Moves the root file system of the current process to the directory put_old,
2944 * makes new_root as the new root file system of the current process, and sets
2945 * root/cwd of all processes which had them on the current root to new_root.
2948 * The new_root and put_old must be directories, and must not be on the
2949 * same file system as the current process root. The put_old must be
2950 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2951 * pointed to by put_old must yield the same directory as new_root. No other
2952 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2954 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2955 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2956 * in this situation.
2959 * - we don't move root/cwd if they are not at the root (reason: if something
2960 * cared enough to change them, it's probably wrong to force them elsewhere)
2961 * - it's okay to pick a root that isn't the root of a file system, e.g.
2962 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2963 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2966 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2967 const char __user
*, put_old
)
2969 struct path
new, old
, parent_path
, root_parent
, root
;
2970 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
2971 struct mountpoint
*old_mp
, *root_mp
;
2977 error
= user_path_dir(new_root
, &new);
2981 error
= user_path_dir(put_old
, &old
);
2985 error
= security_sb_pivotroot(&old
, &new);
2989 get_fs_root(current
->fs
, &root
);
2990 old_mp
= lock_mount(&old
);
2991 error
= PTR_ERR(old_mp
);
2996 new_mnt
= real_mount(new.mnt
);
2997 root_mnt
= real_mount(root
.mnt
);
2998 old_mnt
= real_mount(old
.mnt
);
2999 if (IS_MNT_SHARED(old_mnt
) ||
3000 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3001 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3003 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3005 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3008 if (d_unlinked(new.dentry
))
3011 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3012 goto out4
; /* loop, on the same file system */
3014 if (root
.mnt
->mnt_root
!= root
.dentry
)
3015 goto out4
; /* not a mountpoint */
3016 if (!mnt_has_parent(root_mnt
))
3017 goto out4
; /* not attached */
3018 root_mp
= root_mnt
->mnt_mp
;
3019 if (new.mnt
->mnt_root
!= new.dentry
)
3020 goto out4
; /* not a mountpoint */
3021 if (!mnt_has_parent(new_mnt
))
3022 goto out4
; /* not attached */
3023 /* make sure we can reach put_old from new_root */
3024 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3026 /* make certain new is below the root */
3027 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3029 root_mp
->m_count
++; /* pin it so it won't go away */
3031 detach_mnt(new_mnt
, &parent_path
);
3032 detach_mnt(root_mnt
, &root_parent
);
3033 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3034 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3035 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3037 /* mount old root on put_old */
3038 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3039 /* mount new_root on / */
3040 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3041 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3042 /* A moved mount should not expire automatically */
3043 list_del_init(&new_mnt
->mnt_expire
);
3044 unlock_mount_hash();
3045 chroot_fs_refs(&root
, &new);
3046 put_mountpoint(root_mp
);
3049 unlock_mount(old_mp
);
3051 path_put(&root_parent
);
3052 path_put(&parent_path
);
3064 static void __init
init_mount_tree(void)
3066 struct vfsmount
*mnt
;
3067 struct mnt_namespace
*ns
;
3069 struct file_system_type
*type
;
3071 type
= get_fs_type("rootfs");
3073 panic("Can't find rootfs type");
3074 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3075 put_filesystem(type
);
3077 panic("Can't create rootfs");
3079 ns
= create_mnt_ns(mnt
);
3081 panic("Can't allocate initial namespace");
3083 init_task
.nsproxy
->mnt_ns
= ns
;
3087 root
.dentry
= mnt
->mnt_root
;
3088 mnt
->mnt_flags
|= MNT_LOCKED
;
3090 set_fs_pwd(current
->fs
, &root
);
3091 set_fs_root(current
->fs
, &root
);
3094 void __init
mnt_init(void)
3099 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3100 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3102 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3103 sizeof(struct hlist_head
),
3106 &m_hash_shift
, &m_hash_mask
, 0, 0);
3107 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3108 sizeof(struct hlist_head
),
3111 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3113 if (!mount_hashtable
|| !mountpoint_hashtable
)
3114 panic("Failed to allocate mount hash table\n");
3116 for (u
= 0; u
<= m_hash_mask
; u
++)
3117 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3118 for (u
= 0; u
<= mp_hash_mask
; u
++)
3119 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3125 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3127 fs_kobj
= kobject_create_and_add("fs", NULL
);
3129 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3134 void put_mnt_ns(struct mnt_namespace
*ns
)
3136 if (!atomic_dec_and_test(&ns
->count
))
3138 drop_collected_mounts(&ns
->root
->mnt
);
3142 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3144 struct vfsmount
*mnt
;
3145 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3148 * it is a longterm mount, don't release mnt until
3149 * we unmount before file sys is unregistered
3151 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3155 EXPORT_SYMBOL_GPL(kern_mount_data
);
3157 void kern_unmount(struct vfsmount
*mnt
)
3159 /* release long term mount so mount point can be released */
3160 if (!IS_ERR_OR_NULL(mnt
)) {
3161 real_mount(mnt
)->mnt_ns
= NULL
;
3162 synchronize_rcu(); /* yecchhh... */
3166 EXPORT_SYMBOL(kern_unmount
);
3168 bool our_mnt(struct vfsmount
*mnt
)
3170 return check_mnt(real_mount(mnt
));
3173 bool current_chrooted(void)
3175 /* Does the current process have a non-standard root */
3176 struct path ns_root
;
3177 struct path fs_root
;
3180 /* Find the namespace root */
3181 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3182 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3184 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3187 get_fs_root(current
->fs
, &fs_root
);
3189 chrooted
= !path_equal(&fs_root
, &ns_root
);
3197 static bool fs_fully_visible(struct file_system_type
*type
, int *new_mnt_flags
)
3199 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3200 int new_flags
= *new_mnt_flags
;
3202 bool visible
= false;
3207 down_read(&namespace_sem
);
3208 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3209 struct mount
*child
;
3210 if (mnt
->mnt
.mnt_sb
->s_type
!= type
)
3213 /* This mount is not fully visible if it's root directory
3214 * is not the root directory of the filesystem.
3216 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3219 /* Verify the mount flags are equal to or more permissive
3220 * than the proposed new mount.
3222 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
3223 !(new_flags
& MNT_READONLY
))
3225 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
3226 !(new_flags
& MNT_NODEV
))
3228 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
3229 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3232 /* This mount is not fully visible if there are any
3233 * locked child mounts that cover anything except for
3234 * empty directories.
3236 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3237 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3238 /* Only worry about locked mounts */
3239 if (!(mnt
->mnt
.mnt_flags
& MNT_LOCKED
))
3241 /* Is the directory permanetly empty? */
3242 if (!is_empty_dir_inode(inode
))
3245 /* Preserve the locked attributes */
3246 *new_mnt_flags
|= mnt
->mnt
.mnt_flags
& (MNT_LOCK_READONLY
| \
3254 up_read(&namespace_sem
);
3258 static struct ns_common
*mntns_get(struct task_struct
*task
)
3260 struct ns_common
*ns
= NULL
;
3261 struct nsproxy
*nsproxy
;
3264 nsproxy
= task
->nsproxy
;
3266 ns
= &nsproxy
->mnt_ns
->ns
;
3267 get_mnt_ns(to_mnt_ns(ns
));
3274 static void mntns_put(struct ns_common
*ns
)
3276 put_mnt_ns(to_mnt_ns(ns
));
3279 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3281 struct fs_struct
*fs
= current
->fs
;
3282 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3285 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3286 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3287 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3294 put_mnt_ns(nsproxy
->mnt_ns
);
3295 nsproxy
->mnt_ns
= mnt_ns
;
3298 root
.mnt
= &mnt_ns
->root
->mnt
;
3299 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3301 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3304 /* Update the pwd and root */
3305 set_fs_pwd(fs
, &root
);
3306 set_fs_root(fs
, &root
);
3312 const struct proc_ns_operations mntns_operations
= {
3314 .type
= CLONE_NEWNS
,
3317 .install
= mntns_install
,