net: Clone skb before setting peeked flag
[linux/fpc-iii.git] / mm / nommu.c
blobe544508e2a4bc3e3dfa6190abdd3faf0616c95f2
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
45 #if 0
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 EXPORT_SYMBOL(max_mapnr);
66 unsigned long highest_memmap_pfn;
67 struct percpu_counter vm_committed_as;
68 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
69 int sysctl_overcommit_ratio = 50; /* default is 50% */
70 unsigned long sysctl_overcommit_kbytes __read_mostly;
71 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
72 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
73 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
74 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
75 int heap_stack_gap = 0;
77 atomic_long_t mmap_pages_allocated;
80 * The global memory commitment made in the system can be a metric
81 * that can be used to drive ballooning decisions when Linux is hosted
82 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
83 * balancing memory across competing virtual machines that are hosted.
84 * Several metrics drive this policy engine including the guest reported
85 * memory commitment.
87 unsigned long vm_memory_committed(void)
89 return percpu_counter_read_positive(&vm_committed_as);
92 EXPORT_SYMBOL_GPL(vm_memory_committed);
94 EXPORT_SYMBOL(mem_map);
96 /* list of mapped, potentially shareable regions */
97 static struct kmem_cache *vm_region_jar;
98 struct rb_root nommu_region_tree = RB_ROOT;
99 DECLARE_RWSEM(nommu_region_sem);
101 const struct vm_operations_struct generic_file_vm_ops = {
105 * Return the total memory allocated for this pointer, not
106 * just what the caller asked for.
108 * Doesn't have to be accurate, i.e. may have races.
110 unsigned int kobjsize(const void *objp)
112 struct page *page;
115 * If the object we have should not have ksize performed on it,
116 * return size of 0
118 if (!objp || !virt_addr_valid(objp))
119 return 0;
121 page = virt_to_head_page(objp);
124 * If the allocator sets PageSlab, we know the pointer came from
125 * kmalloc().
127 if (PageSlab(page))
128 return ksize(objp);
131 * If it's not a compound page, see if we have a matching VMA
132 * region. This test is intentionally done in reverse order,
133 * so if there's no VMA, we still fall through and hand back
134 * PAGE_SIZE for 0-order pages.
136 if (!PageCompound(page)) {
137 struct vm_area_struct *vma;
139 vma = find_vma(current->mm, (unsigned long)objp);
140 if (vma)
141 return vma->vm_end - vma->vm_start;
145 * The ksize() function is only guaranteed to work for pointers
146 * returned by kmalloc(). So handle arbitrary pointers here.
148 return PAGE_SIZE << compound_order(page);
151 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
152 unsigned long start, unsigned long nr_pages,
153 unsigned int foll_flags, struct page **pages,
154 struct vm_area_struct **vmas, int *nonblocking)
156 struct vm_area_struct *vma;
157 unsigned long vm_flags;
158 int i;
160 /* calculate required read or write permissions.
161 * If FOLL_FORCE is set, we only require the "MAY" flags.
163 vm_flags = (foll_flags & FOLL_WRITE) ?
164 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
165 vm_flags &= (foll_flags & FOLL_FORCE) ?
166 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
168 for (i = 0; i < nr_pages; i++) {
169 vma = find_vma(mm, start);
170 if (!vma)
171 goto finish_or_fault;
173 /* protect what we can, including chardevs */
174 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
175 !(vm_flags & vma->vm_flags))
176 goto finish_or_fault;
178 if (pages) {
179 pages[i] = virt_to_page(start);
180 if (pages[i])
181 page_cache_get(pages[i]);
183 if (vmas)
184 vmas[i] = vma;
185 start = (start + PAGE_SIZE) & PAGE_MASK;
188 return i;
190 finish_or_fault:
191 return i ? : -EFAULT;
195 * get a list of pages in an address range belonging to the specified process
196 * and indicate the VMA that covers each page
197 * - this is potentially dodgy as we may end incrementing the page count of a
198 * slab page or a secondary page from a compound page
199 * - don't permit access to VMAs that don't support it, such as I/O mappings
201 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
202 unsigned long start, unsigned long nr_pages,
203 int write, int force, struct page **pages,
204 struct vm_area_struct **vmas)
206 int flags = 0;
208 if (write)
209 flags |= FOLL_WRITE;
210 if (force)
211 flags |= FOLL_FORCE;
213 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
214 NULL);
216 EXPORT_SYMBOL(get_user_pages);
218 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
219 unsigned long start, unsigned long nr_pages,
220 int write, int force, struct page **pages,
221 int *locked)
223 return get_user_pages(tsk, mm, start, nr_pages, write, force,
224 pages, NULL);
226 EXPORT_SYMBOL(get_user_pages_locked);
228 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
229 unsigned long start, unsigned long nr_pages,
230 int write, int force, struct page **pages,
231 unsigned int gup_flags)
233 long ret;
234 down_read(&mm->mmap_sem);
235 ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
236 pages, NULL);
237 up_read(&mm->mmap_sem);
238 return ret;
240 EXPORT_SYMBOL(__get_user_pages_unlocked);
242 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
243 unsigned long start, unsigned long nr_pages,
244 int write, int force, struct page **pages)
246 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
247 force, pages, 0);
249 EXPORT_SYMBOL(get_user_pages_unlocked);
252 * follow_pfn - look up PFN at a user virtual address
253 * @vma: memory mapping
254 * @address: user virtual address
255 * @pfn: location to store found PFN
257 * Only IO mappings and raw PFN mappings are allowed.
259 * Returns zero and the pfn at @pfn on success, -ve otherwise.
261 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
262 unsigned long *pfn)
264 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
265 return -EINVAL;
267 *pfn = address >> PAGE_SHIFT;
268 return 0;
270 EXPORT_SYMBOL(follow_pfn);
272 LIST_HEAD(vmap_area_list);
274 void vfree(const void *addr)
276 kfree(addr);
278 EXPORT_SYMBOL(vfree);
280 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
283 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
284 * returns only a logical address.
286 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
288 EXPORT_SYMBOL(__vmalloc);
290 void *vmalloc_user(unsigned long size)
292 void *ret;
294 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
295 PAGE_KERNEL);
296 if (ret) {
297 struct vm_area_struct *vma;
299 down_write(&current->mm->mmap_sem);
300 vma = find_vma(current->mm, (unsigned long)ret);
301 if (vma)
302 vma->vm_flags |= VM_USERMAP;
303 up_write(&current->mm->mmap_sem);
306 return ret;
308 EXPORT_SYMBOL(vmalloc_user);
310 struct page *vmalloc_to_page(const void *addr)
312 return virt_to_page(addr);
314 EXPORT_SYMBOL(vmalloc_to_page);
316 unsigned long vmalloc_to_pfn(const void *addr)
318 return page_to_pfn(virt_to_page(addr));
320 EXPORT_SYMBOL(vmalloc_to_pfn);
322 long vread(char *buf, char *addr, unsigned long count)
324 /* Don't allow overflow */
325 if ((unsigned long) buf + count < count)
326 count = -(unsigned long) buf;
328 memcpy(buf, addr, count);
329 return count;
332 long vwrite(char *buf, char *addr, unsigned long count)
334 /* Don't allow overflow */
335 if ((unsigned long) addr + count < count)
336 count = -(unsigned long) addr;
338 memcpy(addr, buf, count);
339 return count;
343 * vmalloc - allocate virtually continguos memory
345 * @size: allocation size
347 * Allocate enough pages to cover @size from the page level
348 * allocator and map them into continguos kernel virtual space.
350 * For tight control over page level allocator and protection flags
351 * use __vmalloc() instead.
353 void *vmalloc(unsigned long size)
355 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
357 EXPORT_SYMBOL(vmalloc);
360 * vzalloc - allocate virtually continguos memory with zero fill
362 * @size: allocation size
364 * Allocate enough pages to cover @size from the page level
365 * allocator and map them into continguos kernel virtual space.
366 * The memory allocated is set to zero.
368 * For tight control over page level allocator and protection flags
369 * use __vmalloc() instead.
371 void *vzalloc(unsigned long size)
373 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
374 PAGE_KERNEL);
376 EXPORT_SYMBOL(vzalloc);
379 * vmalloc_node - allocate memory on a specific node
380 * @size: allocation size
381 * @node: numa node
383 * Allocate enough pages to cover @size from the page level
384 * allocator and map them into contiguous kernel virtual space.
386 * For tight control over page level allocator and protection flags
387 * use __vmalloc() instead.
389 void *vmalloc_node(unsigned long size, int node)
391 return vmalloc(size);
393 EXPORT_SYMBOL(vmalloc_node);
396 * vzalloc_node - allocate memory on a specific node with zero fill
397 * @size: allocation size
398 * @node: numa node
400 * Allocate enough pages to cover @size from the page level
401 * allocator and map them into contiguous kernel virtual space.
402 * The memory allocated is set to zero.
404 * For tight control over page level allocator and protection flags
405 * use __vmalloc() instead.
407 void *vzalloc_node(unsigned long size, int node)
409 return vzalloc(size);
411 EXPORT_SYMBOL(vzalloc_node);
413 #ifndef PAGE_KERNEL_EXEC
414 # define PAGE_KERNEL_EXEC PAGE_KERNEL
415 #endif
418 * vmalloc_exec - allocate virtually contiguous, executable memory
419 * @size: allocation size
421 * Kernel-internal function to allocate enough pages to cover @size
422 * the page level allocator and map them into contiguous and
423 * executable kernel virtual space.
425 * For tight control over page level allocator and protection flags
426 * use __vmalloc() instead.
429 void *vmalloc_exec(unsigned long size)
431 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
435 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
436 * @size: allocation size
438 * Allocate enough 32bit PA addressable pages to cover @size from the
439 * page level allocator and map them into continguos kernel virtual space.
441 void *vmalloc_32(unsigned long size)
443 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
445 EXPORT_SYMBOL(vmalloc_32);
448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
449 * @size: allocation size
451 * The resulting memory area is 32bit addressable and zeroed so it can be
452 * mapped to userspace without leaking data.
454 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
455 * remap_vmalloc_range() are permissible.
457 void *vmalloc_32_user(unsigned long size)
460 * We'll have to sort out the ZONE_DMA bits for 64-bit,
461 * but for now this can simply use vmalloc_user() directly.
463 return vmalloc_user(size);
465 EXPORT_SYMBOL(vmalloc_32_user);
467 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
469 BUG();
470 return NULL;
472 EXPORT_SYMBOL(vmap);
474 void vunmap(const void *addr)
476 BUG();
478 EXPORT_SYMBOL(vunmap);
480 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
482 BUG();
483 return NULL;
485 EXPORT_SYMBOL(vm_map_ram);
487 void vm_unmap_ram(const void *mem, unsigned int count)
489 BUG();
491 EXPORT_SYMBOL(vm_unmap_ram);
493 void vm_unmap_aliases(void)
496 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
499 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
500 * have one.
502 void __weak vmalloc_sync_all(void)
507 * alloc_vm_area - allocate a range of kernel address space
508 * @size: size of the area
510 * Returns: NULL on failure, vm_struct on success
512 * This function reserves a range of kernel address space, and
513 * allocates pagetables to map that range. No actual mappings
514 * are created. If the kernel address space is not shared
515 * between processes, it syncs the pagetable across all
516 * processes.
518 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
520 BUG();
521 return NULL;
523 EXPORT_SYMBOL_GPL(alloc_vm_area);
525 void free_vm_area(struct vm_struct *area)
527 BUG();
529 EXPORT_SYMBOL_GPL(free_vm_area);
531 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
532 struct page *page)
534 return -EINVAL;
536 EXPORT_SYMBOL(vm_insert_page);
539 * sys_brk() for the most part doesn't need the global kernel
540 * lock, except when an application is doing something nasty
541 * like trying to un-brk an area that has already been mapped
542 * to a regular file. in this case, the unmapping will need
543 * to invoke file system routines that need the global lock.
545 SYSCALL_DEFINE1(brk, unsigned long, brk)
547 struct mm_struct *mm = current->mm;
549 if (brk < mm->start_brk || brk > mm->context.end_brk)
550 return mm->brk;
552 if (mm->brk == brk)
553 return mm->brk;
556 * Always allow shrinking brk
558 if (brk <= mm->brk) {
559 mm->brk = brk;
560 return brk;
564 * Ok, looks good - let it rip.
566 flush_icache_range(mm->brk, brk);
567 return mm->brk = brk;
571 * initialise the VMA and region record slabs
573 void __init mmap_init(void)
575 int ret;
577 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
578 VM_BUG_ON(ret);
579 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
583 * validate the region tree
584 * - the caller must hold the region lock
586 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
587 static noinline void validate_nommu_regions(void)
589 struct vm_region *region, *last;
590 struct rb_node *p, *lastp;
592 lastp = rb_first(&nommu_region_tree);
593 if (!lastp)
594 return;
596 last = rb_entry(lastp, struct vm_region, vm_rb);
597 BUG_ON(unlikely(last->vm_end <= last->vm_start));
598 BUG_ON(unlikely(last->vm_top < last->vm_end));
600 while ((p = rb_next(lastp))) {
601 region = rb_entry(p, struct vm_region, vm_rb);
602 last = rb_entry(lastp, struct vm_region, vm_rb);
604 BUG_ON(unlikely(region->vm_end <= region->vm_start));
605 BUG_ON(unlikely(region->vm_top < region->vm_end));
606 BUG_ON(unlikely(region->vm_start < last->vm_top));
608 lastp = p;
611 #else
612 static void validate_nommu_regions(void)
615 #endif
618 * add a region into the global tree
620 static void add_nommu_region(struct vm_region *region)
622 struct vm_region *pregion;
623 struct rb_node **p, *parent;
625 validate_nommu_regions();
627 parent = NULL;
628 p = &nommu_region_tree.rb_node;
629 while (*p) {
630 parent = *p;
631 pregion = rb_entry(parent, struct vm_region, vm_rb);
632 if (region->vm_start < pregion->vm_start)
633 p = &(*p)->rb_left;
634 else if (region->vm_start > pregion->vm_start)
635 p = &(*p)->rb_right;
636 else if (pregion == region)
637 return;
638 else
639 BUG();
642 rb_link_node(&region->vm_rb, parent, p);
643 rb_insert_color(&region->vm_rb, &nommu_region_tree);
645 validate_nommu_regions();
649 * delete a region from the global tree
651 static void delete_nommu_region(struct vm_region *region)
653 BUG_ON(!nommu_region_tree.rb_node);
655 validate_nommu_regions();
656 rb_erase(&region->vm_rb, &nommu_region_tree);
657 validate_nommu_regions();
661 * free a contiguous series of pages
663 static void free_page_series(unsigned long from, unsigned long to)
665 for (; from < to; from += PAGE_SIZE) {
666 struct page *page = virt_to_page(from);
668 kdebug("- free %lx", from);
669 atomic_long_dec(&mmap_pages_allocated);
670 if (page_count(page) != 1)
671 kdebug("free page %p: refcount not one: %d",
672 page, page_count(page));
673 put_page(page);
678 * release a reference to a region
679 * - the caller must hold the region semaphore for writing, which this releases
680 * - the region may not have been added to the tree yet, in which case vm_top
681 * will equal vm_start
683 static void __put_nommu_region(struct vm_region *region)
684 __releases(nommu_region_sem)
686 kenter("%p{%d}", region, region->vm_usage);
688 BUG_ON(!nommu_region_tree.rb_node);
690 if (--region->vm_usage == 0) {
691 if (region->vm_top > region->vm_start)
692 delete_nommu_region(region);
693 up_write(&nommu_region_sem);
695 if (region->vm_file)
696 fput(region->vm_file);
698 /* IO memory and memory shared directly out of the pagecache
699 * from ramfs/tmpfs mustn't be released here */
700 if (region->vm_flags & VM_MAPPED_COPY) {
701 kdebug("free series");
702 free_page_series(region->vm_start, region->vm_top);
704 kmem_cache_free(vm_region_jar, region);
705 } else {
706 up_write(&nommu_region_sem);
711 * release a reference to a region
713 static void put_nommu_region(struct vm_region *region)
715 down_write(&nommu_region_sem);
716 __put_nommu_region(region);
720 * update protection on a vma
722 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
724 #ifdef CONFIG_MPU
725 struct mm_struct *mm = vma->vm_mm;
726 long start = vma->vm_start & PAGE_MASK;
727 while (start < vma->vm_end) {
728 protect_page(mm, start, flags);
729 start += PAGE_SIZE;
731 update_protections(mm);
732 #endif
736 * add a VMA into a process's mm_struct in the appropriate place in the list
737 * and tree and add to the address space's page tree also if not an anonymous
738 * page
739 * - should be called with mm->mmap_sem held writelocked
741 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
743 struct vm_area_struct *pvma, *prev;
744 struct address_space *mapping;
745 struct rb_node **p, *parent, *rb_prev;
747 kenter(",%p", vma);
749 BUG_ON(!vma->vm_region);
751 mm->map_count++;
752 vma->vm_mm = mm;
754 protect_vma(vma, vma->vm_flags);
756 /* add the VMA to the mapping */
757 if (vma->vm_file) {
758 mapping = vma->vm_file->f_mapping;
760 i_mmap_lock_write(mapping);
761 flush_dcache_mmap_lock(mapping);
762 vma_interval_tree_insert(vma, &mapping->i_mmap);
763 flush_dcache_mmap_unlock(mapping);
764 i_mmap_unlock_write(mapping);
767 /* add the VMA to the tree */
768 parent = rb_prev = NULL;
769 p = &mm->mm_rb.rb_node;
770 while (*p) {
771 parent = *p;
772 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
774 /* sort by: start addr, end addr, VMA struct addr in that order
775 * (the latter is necessary as we may get identical VMAs) */
776 if (vma->vm_start < pvma->vm_start)
777 p = &(*p)->rb_left;
778 else if (vma->vm_start > pvma->vm_start) {
779 rb_prev = parent;
780 p = &(*p)->rb_right;
781 } else if (vma->vm_end < pvma->vm_end)
782 p = &(*p)->rb_left;
783 else if (vma->vm_end > pvma->vm_end) {
784 rb_prev = parent;
785 p = &(*p)->rb_right;
786 } else if (vma < pvma)
787 p = &(*p)->rb_left;
788 else if (vma > pvma) {
789 rb_prev = parent;
790 p = &(*p)->rb_right;
791 } else
792 BUG();
795 rb_link_node(&vma->vm_rb, parent, p);
796 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
798 /* add VMA to the VMA list also */
799 prev = NULL;
800 if (rb_prev)
801 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
803 __vma_link_list(mm, vma, prev, parent);
807 * delete a VMA from its owning mm_struct and address space
809 static void delete_vma_from_mm(struct vm_area_struct *vma)
811 int i;
812 struct address_space *mapping;
813 struct mm_struct *mm = vma->vm_mm;
814 struct task_struct *curr = current;
816 kenter("%p", vma);
818 protect_vma(vma, 0);
820 mm->map_count--;
821 for (i = 0; i < VMACACHE_SIZE; i++) {
822 /* if the vma is cached, invalidate the entire cache */
823 if (curr->vmacache[i] == vma) {
824 vmacache_invalidate(mm);
825 break;
829 /* remove the VMA from the mapping */
830 if (vma->vm_file) {
831 mapping = vma->vm_file->f_mapping;
833 i_mmap_lock_write(mapping);
834 flush_dcache_mmap_lock(mapping);
835 vma_interval_tree_remove(vma, &mapping->i_mmap);
836 flush_dcache_mmap_unlock(mapping);
837 i_mmap_unlock_write(mapping);
840 /* remove from the MM's tree and list */
841 rb_erase(&vma->vm_rb, &mm->mm_rb);
843 if (vma->vm_prev)
844 vma->vm_prev->vm_next = vma->vm_next;
845 else
846 mm->mmap = vma->vm_next;
848 if (vma->vm_next)
849 vma->vm_next->vm_prev = vma->vm_prev;
853 * destroy a VMA record
855 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
857 kenter("%p", vma);
858 if (vma->vm_ops && vma->vm_ops->close)
859 vma->vm_ops->close(vma);
860 if (vma->vm_file)
861 fput(vma->vm_file);
862 put_nommu_region(vma->vm_region);
863 kmem_cache_free(vm_area_cachep, vma);
867 * look up the first VMA in which addr resides, NULL if none
868 * - should be called with mm->mmap_sem at least held readlocked
870 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
872 struct vm_area_struct *vma;
874 /* check the cache first */
875 vma = vmacache_find(mm, addr);
876 if (likely(vma))
877 return vma;
879 /* trawl the list (there may be multiple mappings in which addr
880 * resides) */
881 for (vma = mm->mmap; vma; vma = vma->vm_next) {
882 if (vma->vm_start > addr)
883 return NULL;
884 if (vma->vm_end > addr) {
885 vmacache_update(addr, vma);
886 return vma;
890 return NULL;
892 EXPORT_SYMBOL(find_vma);
895 * find a VMA
896 * - we don't extend stack VMAs under NOMMU conditions
898 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
900 return find_vma(mm, addr);
904 * expand a stack to a given address
905 * - not supported under NOMMU conditions
907 int expand_stack(struct vm_area_struct *vma, unsigned long address)
909 return -ENOMEM;
913 * look up the first VMA exactly that exactly matches addr
914 * - should be called with mm->mmap_sem at least held readlocked
916 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
917 unsigned long addr,
918 unsigned long len)
920 struct vm_area_struct *vma;
921 unsigned long end = addr + len;
923 /* check the cache first */
924 vma = vmacache_find_exact(mm, addr, end);
925 if (vma)
926 return vma;
928 /* trawl the list (there may be multiple mappings in which addr
929 * resides) */
930 for (vma = mm->mmap; vma; vma = vma->vm_next) {
931 if (vma->vm_start < addr)
932 continue;
933 if (vma->vm_start > addr)
934 return NULL;
935 if (vma->vm_end == end) {
936 vmacache_update(addr, vma);
937 return vma;
941 return NULL;
945 * determine whether a mapping should be permitted and, if so, what sort of
946 * mapping we're capable of supporting
948 static int validate_mmap_request(struct file *file,
949 unsigned long addr,
950 unsigned long len,
951 unsigned long prot,
952 unsigned long flags,
953 unsigned long pgoff,
954 unsigned long *_capabilities)
956 unsigned long capabilities, rlen;
957 int ret;
959 /* do the simple checks first */
960 if (flags & MAP_FIXED) {
961 printk(KERN_DEBUG
962 "%d: Can't do fixed-address/overlay mmap of RAM\n",
963 current->pid);
964 return -EINVAL;
967 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
968 (flags & MAP_TYPE) != MAP_SHARED)
969 return -EINVAL;
971 if (!len)
972 return -EINVAL;
974 /* Careful about overflows.. */
975 rlen = PAGE_ALIGN(len);
976 if (!rlen || rlen > TASK_SIZE)
977 return -ENOMEM;
979 /* offset overflow? */
980 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
981 return -EOVERFLOW;
983 if (file) {
984 /* files must support mmap */
985 if (!file->f_op->mmap)
986 return -ENODEV;
988 /* work out if what we've got could possibly be shared
989 * - we support chardevs that provide their own "memory"
990 * - we support files/blockdevs that are memory backed
992 if (file->f_op->mmap_capabilities) {
993 capabilities = file->f_op->mmap_capabilities(file);
994 } else {
995 /* no explicit capabilities set, so assume some
996 * defaults */
997 switch (file_inode(file)->i_mode & S_IFMT) {
998 case S_IFREG:
999 case S_IFBLK:
1000 capabilities = NOMMU_MAP_COPY;
1001 break;
1003 case S_IFCHR:
1004 capabilities =
1005 NOMMU_MAP_DIRECT |
1006 NOMMU_MAP_READ |
1007 NOMMU_MAP_WRITE;
1008 break;
1010 default:
1011 return -EINVAL;
1015 /* eliminate any capabilities that we can't support on this
1016 * device */
1017 if (!file->f_op->get_unmapped_area)
1018 capabilities &= ~NOMMU_MAP_DIRECT;
1019 if (!(file->f_mode & FMODE_CAN_READ))
1020 capabilities &= ~NOMMU_MAP_COPY;
1022 /* The file shall have been opened with read permission. */
1023 if (!(file->f_mode & FMODE_READ))
1024 return -EACCES;
1026 if (flags & MAP_SHARED) {
1027 /* do checks for writing, appending and locking */
1028 if ((prot & PROT_WRITE) &&
1029 !(file->f_mode & FMODE_WRITE))
1030 return -EACCES;
1032 if (IS_APPEND(file_inode(file)) &&
1033 (file->f_mode & FMODE_WRITE))
1034 return -EACCES;
1036 if (locks_verify_locked(file))
1037 return -EAGAIN;
1039 if (!(capabilities & NOMMU_MAP_DIRECT))
1040 return -ENODEV;
1042 /* we mustn't privatise shared mappings */
1043 capabilities &= ~NOMMU_MAP_COPY;
1044 } else {
1045 /* we're going to read the file into private memory we
1046 * allocate */
1047 if (!(capabilities & NOMMU_MAP_COPY))
1048 return -ENODEV;
1050 /* we don't permit a private writable mapping to be
1051 * shared with the backing device */
1052 if (prot & PROT_WRITE)
1053 capabilities &= ~NOMMU_MAP_DIRECT;
1056 if (capabilities & NOMMU_MAP_DIRECT) {
1057 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
1058 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1059 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
1061 capabilities &= ~NOMMU_MAP_DIRECT;
1062 if (flags & MAP_SHARED) {
1063 printk(KERN_WARNING
1064 "MAP_SHARED not completely supported on !MMU\n");
1065 return -EINVAL;
1070 /* handle executable mappings and implied executable
1071 * mappings */
1072 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1073 if (prot & PROT_EXEC)
1074 return -EPERM;
1075 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1076 /* handle implication of PROT_EXEC by PROT_READ */
1077 if (current->personality & READ_IMPLIES_EXEC) {
1078 if (capabilities & NOMMU_MAP_EXEC)
1079 prot |= PROT_EXEC;
1081 } else if ((prot & PROT_READ) &&
1082 (prot & PROT_EXEC) &&
1083 !(capabilities & NOMMU_MAP_EXEC)
1085 /* backing file is not executable, try to copy */
1086 capabilities &= ~NOMMU_MAP_DIRECT;
1088 } else {
1089 /* anonymous mappings are always memory backed and can be
1090 * privately mapped
1092 capabilities = NOMMU_MAP_COPY;
1094 /* handle PROT_EXEC implication by PROT_READ */
1095 if ((prot & PROT_READ) &&
1096 (current->personality & READ_IMPLIES_EXEC))
1097 prot |= PROT_EXEC;
1100 /* allow the security API to have its say */
1101 ret = security_mmap_addr(addr);
1102 if (ret < 0)
1103 return ret;
1105 /* looks okay */
1106 *_capabilities = capabilities;
1107 return 0;
1111 * we've determined that we can make the mapping, now translate what we
1112 * now know into VMA flags
1114 static unsigned long determine_vm_flags(struct file *file,
1115 unsigned long prot,
1116 unsigned long flags,
1117 unsigned long capabilities)
1119 unsigned long vm_flags;
1121 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1122 /* vm_flags |= mm->def_flags; */
1124 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1125 /* attempt to share read-only copies of mapped file chunks */
1126 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1127 if (file && !(prot & PROT_WRITE))
1128 vm_flags |= VM_MAYSHARE;
1129 } else {
1130 /* overlay a shareable mapping on the backing device or inode
1131 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1132 * romfs/cramfs */
1133 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1134 if (flags & MAP_SHARED)
1135 vm_flags |= VM_SHARED;
1138 /* refuse to let anyone share private mappings with this process if
1139 * it's being traced - otherwise breakpoints set in it may interfere
1140 * with another untraced process
1142 if ((flags & MAP_PRIVATE) && current->ptrace)
1143 vm_flags &= ~VM_MAYSHARE;
1145 return vm_flags;
1149 * set up a shared mapping on a file (the driver or filesystem provides and
1150 * pins the storage)
1152 static int do_mmap_shared_file(struct vm_area_struct *vma)
1154 int ret;
1156 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1157 if (ret == 0) {
1158 vma->vm_region->vm_top = vma->vm_region->vm_end;
1159 return 0;
1161 if (ret != -ENOSYS)
1162 return ret;
1164 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1165 * opposed to tried but failed) so we can only give a suitable error as
1166 * it's not possible to make a private copy if MAP_SHARED was given */
1167 return -ENODEV;
1171 * set up a private mapping or an anonymous shared mapping
1173 static int do_mmap_private(struct vm_area_struct *vma,
1174 struct vm_region *region,
1175 unsigned long len,
1176 unsigned long capabilities)
1178 unsigned long total, point;
1179 void *base;
1180 int ret, order;
1182 /* invoke the file's mapping function so that it can keep track of
1183 * shared mappings on devices or memory
1184 * - VM_MAYSHARE will be set if it may attempt to share
1186 if (capabilities & NOMMU_MAP_DIRECT) {
1187 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1188 if (ret == 0) {
1189 /* shouldn't return success if we're not sharing */
1190 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1191 vma->vm_region->vm_top = vma->vm_region->vm_end;
1192 return 0;
1194 if (ret != -ENOSYS)
1195 return ret;
1197 /* getting an ENOSYS error indicates that direct mmap isn't
1198 * possible (as opposed to tried but failed) so we'll try to
1199 * make a private copy of the data and map that instead */
1203 /* allocate some memory to hold the mapping
1204 * - note that this may not return a page-aligned address if the object
1205 * we're allocating is smaller than a page
1207 order = get_order(len);
1208 kdebug("alloc order %d for %lx", order, len);
1210 total = 1 << order;
1211 point = len >> PAGE_SHIFT;
1213 /* we don't want to allocate a power-of-2 sized page set */
1214 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1215 total = point;
1216 kdebug("try to alloc exact %lu pages", total);
1219 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1220 if (!base)
1221 goto enomem;
1223 atomic_long_add(total, &mmap_pages_allocated);
1225 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1226 region->vm_start = (unsigned long) base;
1227 region->vm_end = region->vm_start + len;
1228 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1230 vma->vm_start = region->vm_start;
1231 vma->vm_end = region->vm_start + len;
1233 if (vma->vm_file) {
1234 /* read the contents of a file into the copy */
1235 mm_segment_t old_fs;
1236 loff_t fpos;
1238 fpos = vma->vm_pgoff;
1239 fpos <<= PAGE_SHIFT;
1241 old_fs = get_fs();
1242 set_fs(KERNEL_DS);
1243 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1244 set_fs(old_fs);
1246 if (ret < 0)
1247 goto error_free;
1249 /* clear the last little bit */
1250 if (ret < len)
1251 memset(base + ret, 0, len - ret);
1255 return 0;
1257 error_free:
1258 free_page_series(region->vm_start, region->vm_top);
1259 region->vm_start = vma->vm_start = 0;
1260 region->vm_end = vma->vm_end = 0;
1261 region->vm_top = 0;
1262 return ret;
1264 enomem:
1265 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1266 len, current->pid, current->comm);
1267 show_free_areas(0);
1268 return -ENOMEM;
1272 * handle mapping creation for uClinux
1274 unsigned long do_mmap_pgoff(struct file *file,
1275 unsigned long addr,
1276 unsigned long len,
1277 unsigned long prot,
1278 unsigned long flags,
1279 unsigned long pgoff,
1280 unsigned long *populate)
1282 struct vm_area_struct *vma;
1283 struct vm_region *region;
1284 struct rb_node *rb;
1285 unsigned long capabilities, vm_flags, result;
1286 int ret;
1288 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1290 *populate = 0;
1292 /* decide whether we should attempt the mapping, and if so what sort of
1293 * mapping */
1294 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1295 &capabilities);
1296 if (ret < 0) {
1297 kleave(" = %d [val]", ret);
1298 return ret;
1301 /* we ignore the address hint */
1302 addr = 0;
1303 len = PAGE_ALIGN(len);
1305 /* we've determined that we can make the mapping, now translate what we
1306 * now know into VMA flags */
1307 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1309 /* we're going to need to record the mapping */
1310 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1311 if (!region)
1312 goto error_getting_region;
1314 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1315 if (!vma)
1316 goto error_getting_vma;
1318 region->vm_usage = 1;
1319 region->vm_flags = vm_flags;
1320 region->vm_pgoff = pgoff;
1322 INIT_LIST_HEAD(&vma->anon_vma_chain);
1323 vma->vm_flags = vm_flags;
1324 vma->vm_pgoff = pgoff;
1326 if (file) {
1327 region->vm_file = get_file(file);
1328 vma->vm_file = get_file(file);
1331 down_write(&nommu_region_sem);
1333 /* if we want to share, we need to check for regions created by other
1334 * mmap() calls that overlap with our proposed mapping
1335 * - we can only share with a superset match on most regular files
1336 * - shared mappings on character devices and memory backed files are
1337 * permitted to overlap inexactly as far as we are concerned for in
1338 * these cases, sharing is handled in the driver or filesystem rather
1339 * than here
1341 if (vm_flags & VM_MAYSHARE) {
1342 struct vm_region *pregion;
1343 unsigned long pglen, rpglen, pgend, rpgend, start;
1345 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1346 pgend = pgoff + pglen;
1348 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1349 pregion = rb_entry(rb, struct vm_region, vm_rb);
1351 if (!(pregion->vm_flags & VM_MAYSHARE))
1352 continue;
1354 /* search for overlapping mappings on the same file */
1355 if (file_inode(pregion->vm_file) !=
1356 file_inode(file))
1357 continue;
1359 if (pregion->vm_pgoff >= pgend)
1360 continue;
1362 rpglen = pregion->vm_end - pregion->vm_start;
1363 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364 rpgend = pregion->vm_pgoff + rpglen;
1365 if (pgoff >= rpgend)
1366 continue;
1368 /* handle inexactly overlapping matches between
1369 * mappings */
1370 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1371 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1372 /* new mapping is not a subset of the region */
1373 if (!(capabilities & NOMMU_MAP_DIRECT))
1374 goto sharing_violation;
1375 continue;
1378 /* we've found a region we can share */
1379 pregion->vm_usage++;
1380 vma->vm_region = pregion;
1381 start = pregion->vm_start;
1382 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1383 vma->vm_start = start;
1384 vma->vm_end = start + len;
1386 if (pregion->vm_flags & VM_MAPPED_COPY) {
1387 kdebug("share copy");
1388 vma->vm_flags |= VM_MAPPED_COPY;
1389 } else {
1390 kdebug("share mmap");
1391 ret = do_mmap_shared_file(vma);
1392 if (ret < 0) {
1393 vma->vm_region = NULL;
1394 vma->vm_start = 0;
1395 vma->vm_end = 0;
1396 pregion->vm_usage--;
1397 pregion = NULL;
1398 goto error_just_free;
1401 fput(region->vm_file);
1402 kmem_cache_free(vm_region_jar, region);
1403 region = pregion;
1404 result = start;
1405 goto share;
1408 /* obtain the address at which to make a shared mapping
1409 * - this is the hook for quasi-memory character devices to
1410 * tell us the location of a shared mapping
1412 if (capabilities & NOMMU_MAP_DIRECT) {
1413 addr = file->f_op->get_unmapped_area(file, addr, len,
1414 pgoff, flags);
1415 if (IS_ERR_VALUE(addr)) {
1416 ret = addr;
1417 if (ret != -ENOSYS)
1418 goto error_just_free;
1420 /* the driver refused to tell us where to site
1421 * the mapping so we'll have to attempt to copy
1422 * it */
1423 ret = -ENODEV;
1424 if (!(capabilities & NOMMU_MAP_COPY))
1425 goto error_just_free;
1427 capabilities &= ~NOMMU_MAP_DIRECT;
1428 } else {
1429 vma->vm_start = region->vm_start = addr;
1430 vma->vm_end = region->vm_end = addr + len;
1435 vma->vm_region = region;
1437 /* set up the mapping
1438 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1440 if (file && vma->vm_flags & VM_SHARED)
1441 ret = do_mmap_shared_file(vma);
1442 else
1443 ret = do_mmap_private(vma, region, len, capabilities);
1444 if (ret < 0)
1445 goto error_just_free;
1446 add_nommu_region(region);
1448 /* clear anonymous mappings that don't ask for uninitialized data */
1449 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1450 memset((void *)region->vm_start, 0,
1451 region->vm_end - region->vm_start);
1453 /* okay... we have a mapping; now we have to register it */
1454 result = vma->vm_start;
1456 current->mm->total_vm += len >> PAGE_SHIFT;
1458 share:
1459 add_vma_to_mm(current->mm, vma);
1461 /* we flush the region from the icache only when the first executable
1462 * mapping of it is made */
1463 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1464 flush_icache_range(region->vm_start, region->vm_end);
1465 region->vm_icache_flushed = true;
1468 up_write(&nommu_region_sem);
1470 kleave(" = %lx", result);
1471 return result;
1473 error_just_free:
1474 up_write(&nommu_region_sem);
1475 error:
1476 if (region->vm_file)
1477 fput(region->vm_file);
1478 kmem_cache_free(vm_region_jar, region);
1479 if (vma->vm_file)
1480 fput(vma->vm_file);
1481 kmem_cache_free(vm_area_cachep, vma);
1482 kleave(" = %d", ret);
1483 return ret;
1485 sharing_violation:
1486 up_write(&nommu_region_sem);
1487 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1488 ret = -EINVAL;
1489 goto error;
1491 error_getting_vma:
1492 kmem_cache_free(vm_region_jar, region);
1493 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1494 " from process %d failed\n",
1495 len, current->pid);
1496 show_free_areas(0);
1497 return -ENOMEM;
1499 error_getting_region:
1500 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1501 " from process %d failed\n",
1502 len, current->pid);
1503 show_free_areas(0);
1504 return -ENOMEM;
1507 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1508 unsigned long, prot, unsigned long, flags,
1509 unsigned long, fd, unsigned long, pgoff)
1511 struct file *file = NULL;
1512 unsigned long retval = -EBADF;
1514 audit_mmap_fd(fd, flags);
1515 if (!(flags & MAP_ANONYMOUS)) {
1516 file = fget(fd);
1517 if (!file)
1518 goto out;
1521 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1523 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1525 if (file)
1526 fput(file);
1527 out:
1528 return retval;
1531 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1532 struct mmap_arg_struct {
1533 unsigned long addr;
1534 unsigned long len;
1535 unsigned long prot;
1536 unsigned long flags;
1537 unsigned long fd;
1538 unsigned long offset;
1541 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1543 struct mmap_arg_struct a;
1545 if (copy_from_user(&a, arg, sizeof(a)))
1546 return -EFAULT;
1547 if (a.offset & ~PAGE_MASK)
1548 return -EINVAL;
1550 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1551 a.offset >> PAGE_SHIFT);
1553 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1556 * split a vma into two pieces at address 'addr', a new vma is allocated either
1557 * for the first part or the tail.
1559 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1560 unsigned long addr, int new_below)
1562 struct vm_area_struct *new;
1563 struct vm_region *region;
1564 unsigned long npages;
1566 kenter("");
1568 /* we're only permitted to split anonymous regions (these should have
1569 * only a single usage on the region) */
1570 if (vma->vm_file)
1571 return -ENOMEM;
1573 if (mm->map_count >= sysctl_max_map_count)
1574 return -ENOMEM;
1576 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1577 if (!region)
1578 return -ENOMEM;
1580 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1581 if (!new) {
1582 kmem_cache_free(vm_region_jar, region);
1583 return -ENOMEM;
1586 /* most fields are the same, copy all, and then fixup */
1587 *new = *vma;
1588 *region = *vma->vm_region;
1589 new->vm_region = region;
1591 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1593 if (new_below) {
1594 region->vm_top = region->vm_end = new->vm_end = addr;
1595 } else {
1596 region->vm_start = new->vm_start = addr;
1597 region->vm_pgoff = new->vm_pgoff += npages;
1600 if (new->vm_ops && new->vm_ops->open)
1601 new->vm_ops->open(new);
1603 delete_vma_from_mm(vma);
1604 down_write(&nommu_region_sem);
1605 delete_nommu_region(vma->vm_region);
1606 if (new_below) {
1607 vma->vm_region->vm_start = vma->vm_start = addr;
1608 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1609 } else {
1610 vma->vm_region->vm_end = vma->vm_end = addr;
1611 vma->vm_region->vm_top = addr;
1613 add_nommu_region(vma->vm_region);
1614 add_nommu_region(new->vm_region);
1615 up_write(&nommu_region_sem);
1616 add_vma_to_mm(mm, vma);
1617 add_vma_to_mm(mm, new);
1618 return 0;
1622 * shrink a VMA by removing the specified chunk from either the beginning or
1623 * the end
1625 static int shrink_vma(struct mm_struct *mm,
1626 struct vm_area_struct *vma,
1627 unsigned long from, unsigned long to)
1629 struct vm_region *region;
1631 kenter("");
1633 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1634 * and list */
1635 delete_vma_from_mm(vma);
1636 if (from > vma->vm_start)
1637 vma->vm_end = from;
1638 else
1639 vma->vm_start = to;
1640 add_vma_to_mm(mm, vma);
1642 /* cut the backing region down to size */
1643 region = vma->vm_region;
1644 BUG_ON(region->vm_usage != 1);
1646 down_write(&nommu_region_sem);
1647 delete_nommu_region(region);
1648 if (from > region->vm_start) {
1649 to = region->vm_top;
1650 region->vm_top = region->vm_end = from;
1651 } else {
1652 region->vm_start = to;
1654 add_nommu_region(region);
1655 up_write(&nommu_region_sem);
1657 free_page_series(from, to);
1658 return 0;
1662 * release a mapping
1663 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1664 * VMA, though it need not cover the whole VMA
1666 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1668 struct vm_area_struct *vma;
1669 unsigned long end;
1670 int ret;
1672 kenter(",%lx,%zx", start, len);
1674 len = PAGE_ALIGN(len);
1675 if (len == 0)
1676 return -EINVAL;
1678 end = start + len;
1680 /* find the first potentially overlapping VMA */
1681 vma = find_vma(mm, start);
1682 if (!vma) {
1683 static int limit;
1684 if (limit < 5) {
1685 printk(KERN_WARNING
1686 "munmap of memory not mmapped by process %d"
1687 " (%s): 0x%lx-0x%lx\n",
1688 current->pid, current->comm,
1689 start, start + len - 1);
1690 limit++;
1692 return -EINVAL;
1695 /* we're allowed to split an anonymous VMA but not a file-backed one */
1696 if (vma->vm_file) {
1697 do {
1698 if (start > vma->vm_start) {
1699 kleave(" = -EINVAL [miss]");
1700 return -EINVAL;
1702 if (end == vma->vm_end)
1703 goto erase_whole_vma;
1704 vma = vma->vm_next;
1705 } while (vma);
1706 kleave(" = -EINVAL [split file]");
1707 return -EINVAL;
1708 } else {
1709 /* the chunk must be a subset of the VMA found */
1710 if (start == vma->vm_start && end == vma->vm_end)
1711 goto erase_whole_vma;
1712 if (start < vma->vm_start || end > vma->vm_end) {
1713 kleave(" = -EINVAL [superset]");
1714 return -EINVAL;
1716 if (start & ~PAGE_MASK) {
1717 kleave(" = -EINVAL [unaligned start]");
1718 return -EINVAL;
1720 if (end != vma->vm_end && end & ~PAGE_MASK) {
1721 kleave(" = -EINVAL [unaligned split]");
1722 return -EINVAL;
1724 if (start != vma->vm_start && end != vma->vm_end) {
1725 ret = split_vma(mm, vma, start, 1);
1726 if (ret < 0) {
1727 kleave(" = %d [split]", ret);
1728 return ret;
1731 return shrink_vma(mm, vma, start, end);
1734 erase_whole_vma:
1735 delete_vma_from_mm(vma);
1736 delete_vma(mm, vma);
1737 kleave(" = 0");
1738 return 0;
1740 EXPORT_SYMBOL(do_munmap);
1742 int vm_munmap(unsigned long addr, size_t len)
1744 struct mm_struct *mm = current->mm;
1745 int ret;
1747 down_write(&mm->mmap_sem);
1748 ret = do_munmap(mm, addr, len);
1749 up_write(&mm->mmap_sem);
1750 return ret;
1752 EXPORT_SYMBOL(vm_munmap);
1754 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1756 return vm_munmap(addr, len);
1760 * release all the mappings made in a process's VM space
1762 void exit_mmap(struct mm_struct *mm)
1764 struct vm_area_struct *vma;
1766 if (!mm)
1767 return;
1769 kenter("");
1771 mm->total_vm = 0;
1773 while ((vma = mm->mmap)) {
1774 mm->mmap = vma->vm_next;
1775 delete_vma_from_mm(vma);
1776 delete_vma(mm, vma);
1777 cond_resched();
1780 kleave("");
1783 unsigned long vm_brk(unsigned long addr, unsigned long len)
1785 return -ENOMEM;
1789 * expand (or shrink) an existing mapping, potentially moving it at the same
1790 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1792 * under NOMMU conditions, we only permit changing a mapping's size, and only
1793 * as long as it stays within the region allocated by do_mmap_private() and the
1794 * block is not shareable
1796 * MREMAP_FIXED is not supported under NOMMU conditions
1798 static unsigned long do_mremap(unsigned long addr,
1799 unsigned long old_len, unsigned long new_len,
1800 unsigned long flags, unsigned long new_addr)
1802 struct vm_area_struct *vma;
1804 /* insanity checks first */
1805 old_len = PAGE_ALIGN(old_len);
1806 new_len = PAGE_ALIGN(new_len);
1807 if (old_len == 0 || new_len == 0)
1808 return (unsigned long) -EINVAL;
1810 if (addr & ~PAGE_MASK)
1811 return -EINVAL;
1813 if (flags & MREMAP_FIXED && new_addr != addr)
1814 return (unsigned long) -EINVAL;
1816 vma = find_vma_exact(current->mm, addr, old_len);
1817 if (!vma)
1818 return (unsigned long) -EINVAL;
1820 if (vma->vm_end != vma->vm_start + old_len)
1821 return (unsigned long) -EFAULT;
1823 if (vma->vm_flags & VM_MAYSHARE)
1824 return (unsigned long) -EPERM;
1826 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1827 return (unsigned long) -ENOMEM;
1829 /* all checks complete - do it */
1830 vma->vm_end = vma->vm_start + new_len;
1831 return vma->vm_start;
1834 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1835 unsigned long, new_len, unsigned long, flags,
1836 unsigned long, new_addr)
1838 unsigned long ret;
1840 down_write(&current->mm->mmap_sem);
1841 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1842 up_write(&current->mm->mmap_sem);
1843 return ret;
1846 struct page *follow_page_mask(struct vm_area_struct *vma,
1847 unsigned long address, unsigned int flags,
1848 unsigned int *page_mask)
1850 *page_mask = 0;
1851 return NULL;
1854 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1855 unsigned long pfn, unsigned long size, pgprot_t prot)
1857 if (addr != (pfn << PAGE_SHIFT))
1858 return -EINVAL;
1860 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1861 return 0;
1863 EXPORT_SYMBOL(remap_pfn_range);
1865 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1867 unsigned long pfn = start >> PAGE_SHIFT;
1868 unsigned long vm_len = vma->vm_end - vma->vm_start;
1870 pfn += vma->vm_pgoff;
1871 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1873 EXPORT_SYMBOL(vm_iomap_memory);
1875 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1876 unsigned long pgoff)
1878 unsigned int size = vma->vm_end - vma->vm_start;
1880 if (!(vma->vm_flags & VM_USERMAP))
1881 return -EINVAL;
1883 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1884 vma->vm_end = vma->vm_start + size;
1886 return 0;
1888 EXPORT_SYMBOL(remap_vmalloc_range);
1890 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1891 unsigned long len, unsigned long pgoff, unsigned long flags)
1893 return -ENOMEM;
1896 void unmap_mapping_range(struct address_space *mapping,
1897 loff_t const holebegin, loff_t const holelen,
1898 int even_cows)
1901 EXPORT_SYMBOL(unmap_mapping_range);
1904 * Check that a process has enough memory to allocate a new virtual
1905 * mapping. 0 means there is enough memory for the allocation to
1906 * succeed and -ENOMEM implies there is not.
1908 * We currently support three overcommit policies, which are set via the
1909 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1911 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1912 * Additional code 2002 Jul 20 by Robert Love.
1914 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1916 * Note this is a helper function intended to be used by LSMs which
1917 * wish to use this logic.
1919 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1921 long free, allowed, reserve;
1923 vm_acct_memory(pages);
1926 * Sometimes we want to use more memory than we have
1928 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1929 return 0;
1931 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1932 free = global_page_state(NR_FREE_PAGES);
1933 free += global_page_state(NR_FILE_PAGES);
1936 * shmem pages shouldn't be counted as free in this
1937 * case, they can't be purged, only swapped out, and
1938 * that won't affect the overall amount of available
1939 * memory in the system.
1941 free -= global_page_state(NR_SHMEM);
1943 free += get_nr_swap_pages();
1946 * Any slabs which are created with the
1947 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1948 * which are reclaimable, under pressure. The dentry
1949 * cache and most inode caches should fall into this
1951 free += global_page_state(NR_SLAB_RECLAIMABLE);
1954 * Leave reserved pages. The pages are not for anonymous pages.
1956 if (free <= totalreserve_pages)
1957 goto error;
1958 else
1959 free -= totalreserve_pages;
1962 * Reserve some for root
1964 if (!cap_sys_admin)
1965 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1967 if (free > pages)
1968 return 0;
1970 goto error;
1973 allowed = vm_commit_limit();
1975 * Reserve some 3% for root
1977 if (!cap_sys_admin)
1978 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1981 * Don't let a single process grow so big a user can't recover
1983 if (mm) {
1984 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1985 allowed -= min_t(long, mm->total_vm / 32, reserve);
1988 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1989 return 0;
1991 error:
1992 vm_unacct_memory(pages);
1994 return -ENOMEM;
1997 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1999 BUG();
2000 return 0;
2002 EXPORT_SYMBOL(filemap_fault);
2004 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2006 BUG();
2008 EXPORT_SYMBOL(filemap_map_pages);
2010 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2011 unsigned long addr, void *buf, int len, int write)
2013 struct vm_area_struct *vma;
2015 down_read(&mm->mmap_sem);
2017 /* the access must start within one of the target process's mappings */
2018 vma = find_vma(mm, addr);
2019 if (vma) {
2020 /* don't overrun this mapping */
2021 if (addr + len >= vma->vm_end)
2022 len = vma->vm_end - addr;
2024 /* only read or write mappings where it is permitted */
2025 if (write && vma->vm_flags & VM_MAYWRITE)
2026 copy_to_user_page(vma, NULL, addr,
2027 (void *) addr, buf, len);
2028 else if (!write && vma->vm_flags & VM_MAYREAD)
2029 copy_from_user_page(vma, NULL, addr,
2030 buf, (void *) addr, len);
2031 else
2032 len = 0;
2033 } else {
2034 len = 0;
2037 up_read(&mm->mmap_sem);
2039 return len;
2043 * @access_remote_vm - access another process' address space
2044 * @mm: the mm_struct of the target address space
2045 * @addr: start address to access
2046 * @buf: source or destination buffer
2047 * @len: number of bytes to transfer
2048 * @write: whether the access is a write
2050 * The caller must hold a reference on @mm.
2052 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2053 void *buf, int len, int write)
2055 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2059 * Access another process' address space.
2060 * - source/target buffer must be kernel space
2062 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2064 struct mm_struct *mm;
2066 if (addr + len < addr)
2067 return 0;
2069 mm = get_task_mm(tsk);
2070 if (!mm)
2071 return 0;
2073 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2075 mmput(mm);
2076 return len;
2080 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2081 * @inode: The inode to check
2082 * @size: The current filesize of the inode
2083 * @newsize: The proposed filesize of the inode
2085 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2086 * make sure that that any outstanding VMAs aren't broken and then shrink the
2087 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2088 * automatically grant mappings that are too large.
2090 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2091 size_t newsize)
2093 struct vm_area_struct *vma;
2094 struct vm_region *region;
2095 pgoff_t low, high;
2096 size_t r_size, r_top;
2098 low = newsize >> PAGE_SHIFT;
2099 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2101 down_write(&nommu_region_sem);
2102 i_mmap_lock_read(inode->i_mapping);
2104 /* search for VMAs that fall within the dead zone */
2105 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2106 /* found one - only interested if it's shared out of the page
2107 * cache */
2108 if (vma->vm_flags & VM_SHARED) {
2109 i_mmap_unlock_read(inode->i_mapping);
2110 up_write(&nommu_region_sem);
2111 return -ETXTBSY; /* not quite true, but near enough */
2115 /* reduce any regions that overlap the dead zone - if in existence,
2116 * these will be pointed to by VMAs that don't overlap the dead zone
2118 * we don't check for any regions that start beyond the EOF as there
2119 * shouldn't be any
2121 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2122 if (!(vma->vm_flags & VM_SHARED))
2123 continue;
2125 region = vma->vm_region;
2126 r_size = region->vm_top - region->vm_start;
2127 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2129 if (r_top > newsize) {
2130 region->vm_top -= r_top - newsize;
2131 if (region->vm_end > region->vm_top)
2132 region->vm_end = region->vm_top;
2136 i_mmap_unlock_read(inode->i_mapping);
2137 up_write(&nommu_region_sem);
2138 return 0;
2142 * Initialise sysctl_user_reserve_kbytes.
2144 * This is intended to prevent a user from starting a single memory hogging
2145 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2146 * mode.
2148 * The default value is min(3% of free memory, 128MB)
2149 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2151 static int __meminit init_user_reserve(void)
2153 unsigned long free_kbytes;
2155 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2157 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2158 return 0;
2160 module_init(init_user_reserve)
2163 * Initialise sysctl_admin_reserve_kbytes.
2165 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2166 * to log in and kill a memory hogging process.
2168 * Systems with more than 256MB will reserve 8MB, enough to recover
2169 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2170 * only reserve 3% of free pages by default.
2172 static int __meminit init_admin_reserve(void)
2174 unsigned long free_kbytes;
2176 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2178 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2179 return 0;
2181 module_init(init_admin_reserve)