bna: remove oper_state_cbfn from struct bna_rxf
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
blob0239fbff7bf7282930aa6f345c62ab5c8b502456
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
34 /**
35 * DOC: Global GTT views
37 * Background and previous state
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
51 * 12
52 * 34
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
58 * 1212
59 * 3434
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
64 * Implementation and usage
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
79 * Code wanting to add or use a new GGTT view needs to:
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
95 const struct i915_ggtt_view i915_ggtt_view_normal;
96 const struct i915_ggtt_view i915_ggtt_view_rotated = {
97 .type = I915_GGTT_VIEW_ROTATED
100 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
101 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
105 bool has_aliasing_ppgtt;
106 bool has_full_ppgtt;
108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
111 if (intel_vgpu_active(dev))
112 has_full_ppgtt = false; /* emulation is too hard */
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
118 if (INTEL_INFO(dev)->gen < 9 &&
119 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 return 0;
122 if (enable_ppgtt == 1)
123 return 1;
125 if (enable_ppgtt == 2 && has_full_ppgtt)
126 return 2;
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 return 0;
134 #endif
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 dev->pdev->revision < 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 return 0;
143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 return 2;
145 else
146 return has_aliasing_ppgtt ? 1 : 0;
149 static void ppgtt_bind_vma(struct i915_vma *vma,
150 enum i915_cache_level cache_level,
151 u32 flags);
152 static void ppgtt_unbind_vma(struct i915_vma *vma);
154 static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr,
155 enum i915_cache_level level,
156 bool valid)
158 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
159 pte |= addr;
161 switch (level) {
162 case I915_CACHE_NONE:
163 pte |= PPAT_UNCACHED_INDEX;
164 break;
165 case I915_CACHE_WT:
166 pte |= PPAT_DISPLAY_ELLC_INDEX;
167 break;
168 default:
169 pte |= PPAT_CACHED_INDEX;
170 break;
173 return pte;
176 static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev,
177 dma_addr_t addr,
178 enum i915_cache_level level)
180 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
181 pde |= addr;
182 if (level != I915_CACHE_NONE)
183 pde |= PPAT_CACHED_PDE_INDEX;
184 else
185 pde |= PPAT_UNCACHED_INDEX;
186 return pde;
189 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
190 enum i915_cache_level level,
191 bool valid, u32 unused)
193 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
194 pte |= GEN6_PTE_ADDR_ENCODE(addr);
196 switch (level) {
197 case I915_CACHE_L3_LLC:
198 case I915_CACHE_LLC:
199 pte |= GEN6_PTE_CACHE_LLC;
200 break;
201 case I915_CACHE_NONE:
202 pte |= GEN6_PTE_UNCACHED;
203 break;
204 default:
205 MISSING_CASE(level);
208 return pte;
211 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
212 enum i915_cache_level level,
213 bool valid, u32 unused)
215 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
216 pte |= GEN6_PTE_ADDR_ENCODE(addr);
218 switch (level) {
219 case I915_CACHE_L3_LLC:
220 pte |= GEN7_PTE_CACHE_L3_LLC;
221 break;
222 case I915_CACHE_LLC:
223 pte |= GEN6_PTE_CACHE_LLC;
224 break;
225 case I915_CACHE_NONE:
226 pte |= GEN6_PTE_UNCACHED;
227 break;
228 default:
229 MISSING_CASE(level);
232 return pte;
235 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
236 enum i915_cache_level level,
237 bool valid, u32 flags)
239 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240 pte |= GEN6_PTE_ADDR_ENCODE(addr);
242 if (!(flags & PTE_READ_ONLY))
243 pte |= BYT_PTE_WRITEABLE;
245 if (level != I915_CACHE_NONE)
246 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
248 return pte;
251 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
252 enum i915_cache_level level,
253 bool valid, u32 unused)
255 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
256 pte |= HSW_PTE_ADDR_ENCODE(addr);
258 if (level != I915_CACHE_NONE)
259 pte |= HSW_WB_LLC_AGE3;
261 return pte;
264 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
265 enum i915_cache_level level,
266 bool valid, u32 unused)
268 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
269 pte |= HSW_PTE_ADDR_ENCODE(addr);
271 switch (level) {
272 case I915_CACHE_NONE:
273 break;
274 case I915_CACHE_WT:
275 pte |= HSW_WT_ELLC_LLC_AGE3;
276 break;
277 default:
278 pte |= HSW_WB_ELLC_LLC_AGE3;
279 break;
282 return pte;
285 #define i915_dma_unmap_single(px, dev) \
286 __i915_dma_unmap_single((px)->daddr, dev)
288 static inline void __i915_dma_unmap_single(dma_addr_t daddr,
289 struct drm_device *dev)
291 struct device *device = &dev->pdev->dev;
293 dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
297 * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
298 * @px: Page table/dir/etc to get a DMA map for
299 * @dev: drm device
301 * Page table allocations are unified across all gens. They always require a
302 * single 4k allocation, as well as a DMA mapping. If we keep the structs
303 * symmetric here, the simple macro covers us for every page table type.
305 * Return: 0 if success.
307 #define i915_dma_map_single(px, dev) \
308 i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
310 static inline int i915_dma_map_page_single(struct page *page,
311 struct drm_device *dev,
312 dma_addr_t *daddr)
314 struct device *device = &dev->pdev->dev;
316 *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317 if (dma_mapping_error(device, *daddr))
318 return -ENOMEM;
320 return 0;
323 static void unmap_and_free_pt(struct i915_page_table_entry *pt,
324 struct drm_device *dev)
326 if (WARN_ON(!pt->page))
327 return;
329 i915_dma_unmap_single(pt, dev);
330 __free_page(pt->page);
331 kfree(pt->used_ptes);
332 kfree(pt);
335 static struct i915_page_table_entry *alloc_pt_single(struct drm_device *dev)
337 struct i915_page_table_entry *pt;
338 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
339 GEN8_PTES : GEN6_PTES;
340 int ret = -ENOMEM;
342 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
343 if (!pt)
344 return ERR_PTR(-ENOMEM);
346 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
347 GFP_KERNEL);
349 if (!pt->used_ptes)
350 goto fail_bitmap;
352 pt->page = alloc_page(GFP_KERNEL);
353 if (!pt->page)
354 goto fail_page;
356 ret = i915_dma_map_single(pt, dev);
357 if (ret)
358 goto fail_dma;
360 return pt;
362 fail_dma:
363 __free_page(pt->page);
364 fail_page:
365 kfree(pt->used_ptes);
366 fail_bitmap:
367 kfree(pt);
369 return ERR_PTR(ret);
373 * alloc_pt_range() - Allocate a multiple page tables
374 * @pd: The page directory which will have at least @count entries
375 * available to point to the allocated page tables.
376 * @pde: First page directory entry for which we are allocating.
377 * @count: Number of pages to allocate.
378 * @dev: DRM device.
380 * Allocates multiple page table pages and sets the appropriate entries in the
381 * page table structure within the page directory. Function cleans up after
382 * itself on any failures.
384 * Return: 0 if allocation succeeded.
386 static int alloc_pt_range(struct i915_page_directory_entry *pd, uint16_t pde, size_t count,
387 struct drm_device *dev)
389 int i, ret;
391 /* 512 is the max page tables per page_directory on any platform. */
392 if (WARN_ON(pde + count > I915_PDES))
393 return -EINVAL;
395 for (i = pde; i < pde + count; i++) {
396 struct i915_page_table_entry *pt = alloc_pt_single(dev);
398 if (IS_ERR(pt)) {
399 ret = PTR_ERR(pt);
400 goto err_out;
402 WARN(pd->page_table[i],
403 "Leaking page directory entry %d (%p)\n",
404 i, pd->page_table[i]);
405 pd->page_table[i] = pt;
408 return 0;
410 err_out:
411 while (i-- > pde)
412 unmap_and_free_pt(pd->page_table[i], dev);
413 return ret;
416 static void unmap_and_free_pd(struct i915_page_directory_entry *pd)
418 if (pd->page) {
419 __free_page(pd->page);
420 kfree(pd);
424 static struct i915_page_directory_entry *alloc_pd_single(void)
426 struct i915_page_directory_entry *pd;
428 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
429 if (!pd)
430 return ERR_PTR(-ENOMEM);
432 pd->page = alloc_page(GFP_KERNEL | __GFP_ZERO);
433 if (!pd->page) {
434 kfree(pd);
435 return ERR_PTR(-ENOMEM);
438 return pd;
441 /* Broadwell Page Directory Pointer Descriptors */
442 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
443 uint64_t val)
445 int ret;
447 BUG_ON(entry >= 4);
449 ret = intel_ring_begin(ring, 6);
450 if (ret)
451 return ret;
453 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
454 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
455 intel_ring_emit(ring, (u32)(val >> 32));
456 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
457 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
458 intel_ring_emit(ring, (u32)(val));
459 intel_ring_advance(ring);
461 return 0;
464 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
465 struct intel_engine_cs *ring)
467 int i, ret;
469 /* bit of a hack to find the actual last used pd */
470 int used_pd = ppgtt->num_pd_entries / I915_PDES;
472 for (i = used_pd - 1; i >= 0; i--) {
473 dma_addr_t addr = ppgtt->pdp.page_directory[i]->daddr;
474 ret = gen8_write_pdp(ring, i, addr);
475 if (ret)
476 return ret;
479 return 0;
482 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
483 uint64_t start,
484 uint64_t length,
485 bool use_scratch)
487 struct i915_hw_ppgtt *ppgtt =
488 container_of(vm, struct i915_hw_ppgtt, base);
489 gen8_pte_t *pt_vaddr, scratch_pte;
490 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
491 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
492 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
493 unsigned num_entries = length >> PAGE_SHIFT;
494 unsigned last_pte, i;
496 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
497 I915_CACHE_LLC, use_scratch);
499 while (num_entries) {
500 struct i915_page_directory_entry *pd;
501 struct i915_page_table_entry *pt;
502 struct page *page_table;
504 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
505 continue;
507 pd = ppgtt->pdp.page_directory[pdpe];
509 if (WARN_ON(!pd->page_table[pde]))
510 continue;
512 pt = pd->page_table[pde];
514 if (WARN_ON(!pt->page))
515 continue;
517 page_table = pt->page;
519 last_pte = pte + num_entries;
520 if (last_pte > GEN8_PTES)
521 last_pte = GEN8_PTES;
523 pt_vaddr = kmap_atomic(page_table);
525 for (i = pte; i < last_pte; i++) {
526 pt_vaddr[i] = scratch_pte;
527 num_entries--;
530 if (!HAS_LLC(ppgtt->base.dev))
531 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
532 kunmap_atomic(pt_vaddr);
534 pte = 0;
535 if (++pde == I915_PDES) {
536 pdpe++;
537 pde = 0;
542 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
543 struct sg_table *pages,
544 uint64_t start,
545 enum i915_cache_level cache_level, u32 unused)
547 struct i915_hw_ppgtt *ppgtt =
548 container_of(vm, struct i915_hw_ppgtt, base);
549 gen8_pte_t *pt_vaddr;
550 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
551 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
552 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
553 struct sg_page_iter sg_iter;
555 pt_vaddr = NULL;
557 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
558 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
559 break;
561 if (pt_vaddr == NULL) {
562 struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[pdpe];
563 struct i915_page_table_entry *pt = pd->page_table[pde];
564 struct page *page_table = pt->page;
566 pt_vaddr = kmap_atomic(page_table);
569 pt_vaddr[pte] =
570 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
571 cache_level, true);
572 if (++pte == GEN8_PTES) {
573 if (!HAS_LLC(ppgtt->base.dev))
574 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
575 kunmap_atomic(pt_vaddr);
576 pt_vaddr = NULL;
577 if (++pde == I915_PDES) {
578 pdpe++;
579 pde = 0;
581 pte = 0;
584 if (pt_vaddr) {
585 if (!HAS_LLC(ppgtt->base.dev))
586 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
587 kunmap_atomic(pt_vaddr);
591 static void gen8_free_page_tables(struct i915_page_directory_entry *pd, struct drm_device *dev)
593 int i;
595 if (!pd->page)
596 return;
598 for (i = 0; i < I915_PDES; i++) {
599 if (WARN_ON(!pd->page_table[i]))
600 continue;
602 unmap_and_free_pt(pd->page_table[i], dev);
603 pd->page_table[i] = NULL;
607 static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
609 int i;
611 for (i = 0; i < ppgtt->num_pd_pages; i++) {
612 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
613 continue;
615 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
616 unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
620 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
622 struct pci_dev *hwdev = ppgtt->base.dev->pdev;
623 int i, j;
625 for (i = 0; i < ppgtt->num_pd_pages; i++) {
626 /* TODO: In the future we'll support sparse mappings, so this
627 * will have to change. */
628 if (!ppgtt->pdp.page_directory[i]->daddr)
629 continue;
631 pci_unmap_page(hwdev, ppgtt->pdp.page_directory[i]->daddr, PAGE_SIZE,
632 PCI_DMA_BIDIRECTIONAL);
634 for (j = 0; j < I915_PDES; j++) {
635 struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
636 struct i915_page_table_entry *pt;
637 dma_addr_t addr;
639 if (WARN_ON(!pd->page_table[j]))
640 continue;
642 pt = pd->page_table[j];
643 addr = pt->daddr;
645 if (addr)
646 pci_unmap_page(hwdev, addr, PAGE_SIZE,
647 PCI_DMA_BIDIRECTIONAL);
652 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
654 struct i915_hw_ppgtt *ppgtt =
655 container_of(vm, struct i915_hw_ppgtt, base);
657 gen8_ppgtt_unmap_pages(ppgtt);
658 gen8_ppgtt_free(ppgtt);
661 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
663 int i, ret;
665 for (i = 0; i < ppgtt->num_pd_pages; i++) {
666 ret = alloc_pt_range(ppgtt->pdp.page_directory[i],
667 0, I915_PDES, ppgtt->base.dev);
668 if (ret)
669 goto unwind_out;
672 return 0;
674 unwind_out:
675 while (i--)
676 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
678 return -ENOMEM;
681 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
682 const int max_pdp)
684 int i;
686 for (i = 0; i < max_pdp; i++) {
687 ppgtt->pdp.page_directory[i] = alloc_pd_single();
688 if (IS_ERR(ppgtt->pdp.page_directory[i]))
689 goto unwind_out;
692 ppgtt->num_pd_pages = max_pdp;
693 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPES);
695 return 0;
697 unwind_out:
698 while (i--)
699 unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
701 return -ENOMEM;
704 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
705 const int max_pdp)
707 int ret;
709 ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
710 if (ret)
711 return ret;
713 ret = gen8_ppgtt_allocate_page_tables(ppgtt);
714 if (ret)
715 goto err_out;
717 ppgtt->num_pd_entries = max_pdp * I915_PDES;
719 return 0;
721 err_out:
722 gen8_ppgtt_free(ppgtt);
723 return ret;
726 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
727 const int pd)
729 dma_addr_t pd_addr;
730 int ret;
732 pd_addr = pci_map_page(ppgtt->base.dev->pdev,
733 ppgtt->pdp.page_directory[pd]->page, 0,
734 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
736 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
737 if (ret)
738 return ret;
740 ppgtt->pdp.page_directory[pd]->daddr = pd_addr;
742 return 0;
745 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
746 const int pd,
747 const int pt)
749 dma_addr_t pt_addr;
750 struct i915_page_directory_entry *pdir = ppgtt->pdp.page_directory[pd];
751 struct i915_page_table_entry *ptab = pdir->page_table[pt];
752 struct page *p = ptab->page;
753 int ret;
755 pt_addr = pci_map_page(ppgtt->base.dev->pdev,
756 p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
757 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
758 if (ret)
759 return ret;
761 ptab->daddr = pt_addr;
763 return 0;
767 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
768 * with a net effect resembling a 2-level page table in normal x86 terms. Each
769 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
770 * space.
772 * FIXME: split allocation into smaller pieces. For now we only ever do this
773 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
774 * TODO: Do something with the size parameter
776 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
778 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
779 const int min_pt_pages = I915_PDES * max_pdp;
780 int i, j, ret;
782 if (size % (1<<30))
783 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
785 /* 1. Do all our allocations for page directories and page tables.
786 * We allocate more than was asked so that we can point the unused parts
787 * to valid entries that point to scratch page. Dynamic page tables
788 * will fix this eventually.
790 ret = gen8_ppgtt_alloc(ppgtt, GEN8_LEGACY_PDPES);
791 if (ret)
792 return ret;
795 * 2. Create DMA mappings for the page directories and page tables.
797 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
798 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
799 if (ret)
800 goto bail;
802 for (j = 0; j < I915_PDES; j++) {
803 ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
804 if (ret)
805 goto bail;
810 * 3. Map all the page directory entires to point to the page tables
811 * we've allocated.
813 * For now, the PPGTT helper functions all require that the PDEs are
814 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
815 * will never need to touch the PDEs again.
817 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
818 struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
819 gen8_pde_t *pd_vaddr;
820 pd_vaddr = kmap_atomic(ppgtt->pdp.page_directory[i]->page);
821 for (j = 0; j < I915_PDES; j++) {
822 struct i915_page_table_entry *pt = pd->page_table[j];
823 dma_addr_t addr = pt->daddr;
824 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
825 I915_CACHE_LLC);
827 if (!HAS_LLC(ppgtt->base.dev))
828 drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
829 kunmap_atomic(pd_vaddr);
832 ppgtt->switch_mm = gen8_mm_switch;
833 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
834 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
835 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
836 ppgtt->base.start = 0;
838 /* This is the area that we advertise as usable for the caller */
839 ppgtt->base.total = max_pdp * I915_PDES * GEN8_PTES * PAGE_SIZE;
841 /* Set all ptes to a valid scratch page. Also above requested space */
842 ppgtt->base.clear_range(&ppgtt->base, 0,
843 ppgtt->num_pd_pages * GEN8_PTES * PAGE_SIZE,
844 true);
846 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
847 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
848 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
849 ppgtt->num_pd_entries,
850 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
851 return 0;
853 bail:
854 gen8_ppgtt_unmap_pages(ppgtt);
855 gen8_ppgtt_free(ppgtt);
856 return ret;
859 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
861 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
862 struct i915_address_space *vm = &ppgtt->base;
863 gen6_pte_t __iomem *pd_addr;
864 gen6_pte_t scratch_pte;
865 uint32_t pd_entry;
866 int pte, pde;
868 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
870 pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
871 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
873 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
874 ppgtt->pd.pd_offset,
875 ppgtt->pd.pd_offset + ppgtt->num_pd_entries);
876 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
877 u32 expected;
878 gen6_pte_t *pt_vaddr;
879 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
880 pd_entry = readl(pd_addr + pde);
881 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
883 if (pd_entry != expected)
884 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
885 pde,
886 pd_entry,
887 expected);
888 seq_printf(m, "\tPDE: %x\n", pd_entry);
890 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
891 for (pte = 0; pte < GEN6_PTES; pte+=4) {
892 unsigned long va =
893 (pde * PAGE_SIZE * GEN6_PTES) +
894 (pte * PAGE_SIZE);
895 int i;
896 bool found = false;
897 for (i = 0; i < 4; i++)
898 if (pt_vaddr[pte + i] != scratch_pte)
899 found = true;
900 if (!found)
901 continue;
903 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
904 for (i = 0; i < 4; i++) {
905 if (pt_vaddr[pte + i] != scratch_pte)
906 seq_printf(m, " %08x", pt_vaddr[pte + i]);
907 else
908 seq_puts(m, " SCRATCH ");
910 seq_puts(m, "\n");
912 kunmap_atomic(pt_vaddr);
916 /* Write pde (index) from the page directory @pd to the page table @pt */
917 static void gen6_write_pde(struct i915_page_directory_entry *pd,
918 const int pde, struct i915_page_table_entry *pt)
920 /* Caller needs to make sure the write completes if necessary */
921 struct i915_hw_ppgtt *ppgtt =
922 container_of(pd, struct i915_hw_ppgtt, pd);
923 u32 pd_entry;
925 pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
926 pd_entry |= GEN6_PDE_VALID;
928 writel(pd_entry, ppgtt->pd_addr + pde);
931 /* Write all the page tables found in the ppgtt structure to incrementing page
932 * directories. */
933 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
934 struct i915_page_directory_entry *pd,
935 uint32_t start, uint32_t length)
937 struct i915_page_table_entry *pt;
938 uint32_t pde, temp;
940 gen6_for_each_pde(pt, pd, start, length, temp, pde)
941 gen6_write_pde(pd, pde, pt);
943 /* Make sure write is complete before other code can use this page
944 * table. Also require for WC mapped PTEs */
945 readl(dev_priv->gtt.gsm);
948 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
950 BUG_ON(ppgtt->pd.pd_offset & 0x3f);
952 return (ppgtt->pd.pd_offset / 64) << 16;
955 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
956 struct intel_engine_cs *ring)
958 int ret;
960 /* NB: TLBs must be flushed and invalidated before a switch */
961 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
962 if (ret)
963 return ret;
965 ret = intel_ring_begin(ring, 6);
966 if (ret)
967 return ret;
969 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
970 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
971 intel_ring_emit(ring, PP_DIR_DCLV_2G);
972 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
973 intel_ring_emit(ring, get_pd_offset(ppgtt));
974 intel_ring_emit(ring, MI_NOOP);
975 intel_ring_advance(ring);
977 return 0;
980 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
981 struct intel_engine_cs *ring)
983 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
985 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
986 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
987 return 0;
990 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
991 struct intel_engine_cs *ring)
993 int ret;
995 /* NB: TLBs must be flushed and invalidated before a switch */
996 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
997 if (ret)
998 return ret;
1000 ret = intel_ring_begin(ring, 6);
1001 if (ret)
1002 return ret;
1004 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1005 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1006 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1007 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1008 intel_ring_emit(ring, get_pd_offset(ppgtt));
1009 intel_ring_emit(ring, MI_NOOP);
1010 intel_ring_advance(ring);
1012 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1013 if (ring->id != RCS) {
1014 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1015 if (ret)
1016 return ret;
1019 return 0;
1022 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1023 struct intel_engine_cs *ring)
1025 struct drm_device *dev = ppgtt->base.dev;
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1029 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1030 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1032 POSTING_READ(RING_PP_DIR_DCLV(ring));
1034 return 0;
1037 static void gen8_ppgtt_enable(struct drm_device *dev)
1039 struct drm_i915_private *dev_priv = dev->dev_private;
1040 struct intel_engine_cs *ring;
1041 int j;
1043 for_each_ring(ring, dev_priv, j) {
1044 I915_WRITE(RING_MODE_GEN7(ring),
1045 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1049 static void gen7_ppgtt_enable(struct drm_device *dev)
1051 struct drm_i915_private *dev_priv = dev->dev_private;
1052 struct intel_engine_cs *ring;
1053 uint32_t ecochk, ecobits;
1054 int i;
1056 ecobits = I915_READ(GAC_ECO_BITS);
1057 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1059 ecochk = I915_READ(GAM_ECOCHK);
1060 if (IS_HASWELL(dev)) {
1061 ecochk |= ECOCHK_PPGTT_WB_HSW;
1062 } else {
1063 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1064 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1066 I915_WRITE(GAM_ECOCHK, ecochk);
1068 for_each_ring(ring, dev_priv, i) {
1069 /* GFX_MODE is per-ring on gen7+ */
1070 I915_WRITE(RING_MODE_GEN7(ring),
1071 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1075 static void gen6_ppgtt_enable(struct drm_device *dev)
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078 uint32_t ecochk, gab_ctl, ecobits;
1080 ecobits = I915_READ(GAC_ECO_BITS);
1081 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1082 ECOBITS_PPGTT_CACHE64B);
1084 gab_ctl = I915_READ(GAB_CTL);
1085 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1087 ecochk = I915_READ(GAM_ECOCHK);
1088 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1090 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1093 /* PPGTT support for Sandybdrige/Gen6 and later */
1094 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1095 uint64_t start,
1096 uint64_t length,
1097 bool use_scratch)
1099 struct i915_hw_ppgtt *ppgtt =
1100 container_of(vm, struct i915_hw_ppgtt, base);
1101 gen6_pte_t *pt_vaddr, scratch_pte;
1102 unsigned first_entry = start >> PAGE_SHIFT;
1103 unsigned num_entries = length >> PAGE_SHIFT;
1104 unsigned act_pt = first_entry / GEN6_PTES;
1105 unsigned first_pte = first_entry % GEN6_PTES;
1106 unsigned last_pte, i;
1108 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1110 while (num_entries) {
1111 last_pte = first_pte + num_entries;
1112 if (last_pte > GEN6_PTES)
1113 last_pte = GEN6_PTES;
1115 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1117 for (i = first_pte; i < last_pte; i++)
1118 pt_vaddr[i] = scratch_pte;
1120 kunmap_atomic(pt_vaddr);
1122 num_entries -= last_pte - first_pte;
1123 first_pte = 0;
1124 act_pt++;
1128 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1129 struct sg_table *pages,
1130 uint64_t start,
1131 enum i915_cache_level cache_level, u32 flags)
1133 struct i915_hw_ppgtt *ppgtt =
1134 container_of(vm, struct i915_hw_ppgtt, base);
1135 gen6_pte_t *pt_vaddr;
1136 unsigned first_entry = start >> PAGE_SHIFT;
1137 unsigned act_pt = first_entry / GEN6_PTES;
1138 unsigned act_pte = first_entry % GEN6_PTES;
1139 struct sg_page_iter sg_iter;
1141 pt_vaddr = NULL;
1142 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1143 if (pt_vaddr == NULL)
1144 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1146 pt_vaddr[act_pte] =
1147 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1148 cache_level, true, flags);
1150 if (++act_pte == GEN6_PTES) {
1151 kunmap_atomic(pt_vaddr);
1152 pt_vaddr = NULL;
1153 act_pt++;
1154 act_pte = 0;
1157 if (pt_vaddr)
1158 kunmap_atomic(pt_vaddr);
1161 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1162 * are switching between contexts with the same LRCA, we also must do a force
1163 * restore.
1165 static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1167 /* If current vm != vm, */
1168 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1171 static void gen6_initialize_pt(struct i915_address_space *vm,
1172 struct i915_page_table_entry *pt)
1174 gen6_pte_t *pt_vaddr, scratch_pte;
1175 int i;
1177 WARN_ON(vm->scratch.addr == 0);
1179 scratch_pte = vm->pte_encode(vm->scratch.addr,
1180 I915_CACHE_LLC, true, 0);
1182 pt_vaddr = kmap_atomic(pt->page);
1184 for (i = 0; i < GEN6_PTES; i++)
1185 pt_vaddr[i] = scratch_pte;
1187 kunmap_atomic(pt_vaddr);
1190 static int gen6_alloc_va_range(struct i915_address_space *vm,
1191 uint64_t start, uint64_t length)
1193 DECLARE_BITMAP(new_page_tables, I915_PDES);
1194 struct drm_device *dev = vm->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 struct i915_hw_ppgtt *ppgtt =
1197 container_of(vm, struct i915_hw_ppgtt, base);
1198 struct i915_page_table_entry *pt;
1199 const uint32_t start_save = start, length_save = length;
1200 uint32_t pde, temp;
1201 int ret;
1203 WARN_ON(upper_32_bits(start));
1205 bitmap_zero(new_page_tables, I915_PDES);
1207 /* The allocation is done in two stages so that we can bail out with
1208 * minimal amount of pain. The first stage finds new page tables that
1209 * need allocation. The second stage marks use ptes within the page
1210 * tables.
1212 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1213 if (pt != ppgtt->scratch_pt) {
1214 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1215 continue;
1218 /* We've already allocated a page table */
1219 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1221 pt = alloc_pt_single(dev);
1222 if (IS_ERR(pt)) {
1223 ret = PTR_ERR(pt);
1224 goto unwind_out;
1227 gen6_initialize_pt(vm, pt);
1229 ppgtt->pd.page_table[pde] = pt;
1230 set_bit(pde, new_page_tables);
1231 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1234 start = start_save;
1235 length = length_save;
1237 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1238 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1240 bitmap_zero(tmp_bitmap, GEN6_PTES);
1241 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1242 gen6_pte_count(start, length));
1244 if (test_and_clear_bit(pde, new_page_tables))
1245 gen6_write_pde(&ppgtt->pd, pde, pt);
1247 trace_i915_page_table_entry_map(vm, pde, pt,
1248 gen6_pte_index(start),
1249 gen6_pte_count(start, length),
1250 GEN6_PTES);
1251 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1252 GEN6_PTES);
1255 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1257 /* Make sure write is complete before other code can use this page
1258 * table. Also require for WC mapped PTEs */
1259 readl(dev_priv->gtt.gsm);
1261 mark_tlbs_dirty(ppgtt);
1262 return 0;
1264 unwind_out:
1265 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1266 struct i915_page_table_entry *pt = ppgtt->pd.page_table[pde];
1268 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1269 unmap_and_free_pt(pt, vm->dev);
1272 mark_tlbs_dirty(ppgtt);
1273 return ret;
1276 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1278 int i;
1280 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1281 struct i915_page_table_entry *pt = ppgtt->pd.page_table[i];
1283 if (pt != ppgtt->scratch_pt)
1284 unmap_and_free_pt(ppgtt->pd.page_table[i], ppgtt->base.dev);
1287 unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1288 unmap_and_free_pd(&ppgtt->pd);
1291 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1293 struct i915_hw_ppgtt *ppgtt =
1294 container_of(vm, struct i915_hw_ppgtt, base);
1296 drm_mm_remove_node(&ppgtt->node);
1298 gen6_ppgtt_free(ppgtt);
1301 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1303 struct drm_device *dev = ppgtt->base.dev;
1304 struct drm_i915_private *dev_priv = dev->dev_private;
1305 bool retried = false;
1306 int ret;
1308 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1309 * allocator works in address space sizes, so it's multiplied by page
1310 * size. We allocate at the top of the GTT to avoid fragmentation.
1312 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1313 ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1314 if (IS_ERR(ppgtt->scratch_pt))
1315 return PTR_ERR(ppgtt->scratch_pt);
1317 gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1319 alloc:
1320 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1321 &ppgtt->node, GEN6_PD_SIZE,
1322 GEN6_PD_ALIGN, 0,
1323 0, dev_priv->gtt.base.total,
1324 DRM_MM_TOPDOWN);
1325 if (ret == -ENOSPC && !retried) {
1326 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1327 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1328 I915_CACHE_NONE,
1329 0, dev_priv->gtt.base.total,
1331 if (ret)
1332 goto err_out;
1334 retried = true;
1335 goto alloc;
1338 if (ret)
1339 goto err_out;
1342 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1343 DRM_DEBUG("Forced to use aperture for PDEs\n");
1345 ppgtt->num_pd_entries = I915_PDES;
1346 return 0;
1348 err_out:
1349 unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1350 return ret;
1353 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1355 return gen6_ppgtt_allocate_page_directories(ppgtt);
1358 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1359 uint64_t start, uint64_t length)
1361 struct i915_page_table_entry *unused;
1362 uint32_t pde, temp;
1364 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1365 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1368 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1370 struct drm_device *dev = ppgtt->base.dev;
1371 struct drm_i915_private *dev_priv = dev->dev_private;
1372 int ret;
1374 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1375 if (IS_GEN6(dev)) {
1376 ppgtt->switch_mm = gen6_mm_switch;
1377 } else if (IS_HASWELL(dev)) {
1378 ppgtt->switch_mm = hsw_mm_switch;
1379 } else if (IS_GEN7(dev)) {
1380 ppgtt->switch_mm = gen7_mm_switch;
1381 } else
1382 BUG();
1384 if (intel_vgpu_active(dev))
1385 ppgtt->switch_mm = vgpu_mm_switch;
1387 ret = gen6_ppgtt_alloc(ppgtt);
1388 if (ret)
1389 return ret;
1391 if (aliasing) {
1392 /* preallocate all pts */
1393 ret = alloc_pt_range(&ppgtt->pd, 0, ppgtt->num_pd_entries,
1394 ppgtt->base.dev);
1396 if (ret) {
1397 gen6_ppgtt_cleanup(&ppgtt->base);
1398 return ret;
1402 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1403 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1404 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1405 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1406 ppgtt->base.start = 0;
1407 ppgtt->base.total = ppgtt->num_pd_entries * GEN6_PTES * PAGE_SIZE;
1408 ppgtt->debug_dump = gen6_dump_ppgtt;
1410 ppgtt->pd.pd_offset =
1411 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1413 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1414 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1416 if (aliasing)
1417 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1418 else
1419 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1421 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1423 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1424 ppgtt->node.size >> 20,
1425 ppgtt->node.start / PAGE_SIZE);
1427 DRM_DEBUG("Adding PPGTT at offset %x\n",
1428 ppgtt->pd.pd_offset << 10);
1430 return 0;
1433 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1434 bool aliasing)
1436 struct drm_i915_private *dev_priv = dev->dev_private;
1438 ppgtt->base.dev = dev;
1439 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1441 if (INTEL_INFO(dev)->gen < 8)
1442 return gen6_ppgtt_init(ppgtt, aliasing);
1443 else
1444 return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1446 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1448 struct drm_i915_private *dev_priv = dev->dev_private;
1449 int ret = 0;
1451 ret = __hw_ppgtt_init(dev, ppgtt, false);
1452 if (ret == 0) {
1453 kref_init(&ppgtt->ref);
1454 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1455 ppgtt->base.total);
1456 i915_init_vm(dev_priv, &ppgtt->base);
1459 return ret;
1462 int i915_ppgtt_init_hw(struct drm_device *dev)
1464 struct drm_i915_private *dev_priv = dev->dev_private;
1465 struct intel_engine_cs *ring;
1466 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1467 int i, ret = 0;
1469 /* In the case of execlists, PPGTT is enabled by the context descriptor
1470 * and the PDPs are contained within the context itself. We don't
1471 * need to do anything here. */
1472 if (i915.enable_execlists)
1473 return 0;
1475 if (!USES_PPGTT(dev))
1476 return 0;
1478 if (IS_GEN6(dev))
1479 gen6_ppgtt_enable(dev);
1480 else if (IS_GEN7(dev))
1481 gen7_ppgtt_enable(dev);
1482 else if (INTEL_INFO(dev)->gen >= 8)
1483 gen8_ppgtt_enable(dev);
1484 else
1485 MISSING_CASE(INTEL_INFO(dev)->gen);
1487 if (ppgtt) {
1488 for_each_ring(ring, dev_priv, i) {
1489 ret = ppgtt->switch_mm(ppgtt, ring);
1490 if (ret != 0)
1491 return ret;
1495 return ret;
1497 struct i915_hw_ppgtt *
1498 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1500 struct i915_hw_ppgtt *ppgtt;
1501 int ret;
1503 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1504 if (!ppgtt)
1505 return ERR_PTR(-ENOMEM);
1507 ret = i915_ppgtt_init(dev, ppgtt);
1508 if (ret) {
1509 kfree(ppgtt);
1510 return ERR_PTR(ret);
1513 ppgtt->file_priv = fpriv;
1515 trace_i915_ppgtt_create(&ppgtt->base);
1517 return ppgtt;
1520 void i915_ppgtt_release(struct kref *kref)
1522 struct i915_hw_ppgtt *ppgtt =
1523 container_of(kref, struct i915_hw_ppgtt, ref);
1525 trace_i915_ppgtt_release(&ppgtt->base);
1527 /* vmas should already be unbound */
1528 WARN_ON(!list_empty(&ppgtt->base.active_list));
1529 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1531 list_del(&ppgtt->base.global_link);
1532 drm_mm_takedown(&ppgtt->base.mm);
1534 ppgtt->base.cleanup(&ppgtt->base);
1535 kfree(ppgtt);
1538 static void
1539 ppgtt_bind_vma(struct i915_vma *vma,
1540 enum i915_cache_level cache_level,
1541 u32 flags)
1543 /* Currently applicable only to VLV */
1544 if (vma->obj->gt_ro)
1545 flags |= PTE_READ_ONLY;
1547 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1548 cache_level, flags);
1551 static void ppgtt_unbind_vma(struct i915_vma *vma)
1553 vma->vm->clear_range(vma->vm,
1554 vma->node.start,
1555 vma->obj->base.size,
1556 true);
1559 extern int intel_iommu_gfx_mapped;
1560 /* Certain Gen5 chipsets require require idling the GPU before
1561 * unmapping anything from the GTT when VT-d is enabled.
1563 static inline bool needs_idle_maps(struct drm_device *dev)
1565 #ifdef CONFIG_INTEL_IOMMU
1566 /* Query intel_iommu to see if we need the workaround. Presumably that
1567 * was loaded first.
1569 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1570 return true;
1571 #endif
1572 return false;
1575 static bool do_idling(struct drm_i915_private *dev_priv)
1577 bool ret = dev_priv->mm.interruptible;
1579 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1580 dev_priv->mm.interruptible = false;
1581 if (i915_gpu_idle(dev_priv->dev)) {
1582 DRM_ERROR("Couldn't idle GPU\n");
1583 /* Wait a bit, in hopes it avoids the hang */
1584 udelay(10);
1588 return ret;
1591 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1593 if (unlikely(dev_priv->gtt.do_idle_maps))
1594 dev_priv->mm.interruptible = interruptible;
1597 void i915_check_and_clear_faults(struct drm_device *dev)
1599 struct drm_i915_private *dev_priv = dev->dev_private;
1600 struct intel_engine_cs *ring;
1601 int i;
1603 if (INTEL_INFO(dev)->gen < 6)
1604 return;
1606 for_each_ring(ring, dev_priv, i) {
1607 u32 fault_reg;
1608 fault_reg = I915_READ(RING_FAULT_REG(ring));
1609 if (fault_reg & RING_FAULT_VALID) {
1610 DRM_DEBUG_DRIVER("Unexpected fault\n"
1611 "\tAddr: 0x%08lx\n"
1612 "\tAddress space: %s\n"
1613 "\tSource ID: %d\n"
1614 "\tType: %d\n",
1615 fault_reg & PAGE_MASK,
1616 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1617 RING_FAULT_SRCID(fault_reg),
1618 RING_FAULT_FAULT_TYPE(fault_reg));
1619 I915_WRITE(RING_FAULT_REG(ring),
1620 fault_reg & ~RING_FAULT_VALID);
1623 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1626 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1628 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1629 intel_gtt_chipset_flush();
1630 } else {
1631 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1632 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1636 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1640 /* Don't bother messing with faults pre GEN6 as we have little
1641 * documentation supporting that it's a good idea.
1643 if (INTEL_INFO(dev)->gen < 6)
1644 return;
1646 i915_check_and_clear_faults(dev);
1648 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1649 dev_priv->gtt.base.start,
1650 dev_priv->gtt.base.total,
1651 true);
1653 i915_ggtt_flush(dev_priv);
1656 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1658 struct drm_i915_private *dev_priv = dev->dev_private;
1659 struct drm_i915_gem_object *obj;
1660 struct i915_address_space *vm;
1662 i915_check_and_clear_faults(dev);
1664 /* First fill our portion of the GTT with scratch pages */
1665 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1666 dev_priv->gtt.base.start,
1667 dev_priv->gtt.base.total,
1668 true);
1670 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1671 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1672 &dev_priv->gtt.base);
1673 if (!vma)
1674 continue;
1676 i915_gem_clflush_object(obj, obj->pin_display);
1677 /* The bind_vma code tries to be smart about tracking mappings.
1678 * Unfortunately above, we've just wiped out the mappings
1679 * without telling our object about it. So we need to fake it.
1681 * Bind is not expected to fail since this is only called on
1682 * resume and assumption is all requirements exist already.
1684 vma->bound &= ~GLOBAL_BIND;
1685 WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1689 if (INTEL_INFO(dev)->gen >= 8) {
1690 if (IS_CHERRYVIEW(dev))
1691 chv_setup_private_ppat(dev_priv);
1692 else
1693 bdw_setup_private_ppat(dev_priv);
1695 return;
1698 if (USES_PPGTT(dev)) {
1699 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1700 /* TODO: Perhaps it shouldn't be gen6 specific */
1702 struct i915_hw_ppgtt *ppgtt =
1703 container_of(vm, struct i915_hw_ppgtt,
1704 base);
1706 if (i915_is_ggtt(vm))
1707 ppgtt = dev_priv->mm.aliasing_ppgtt;
1709 gen6_write_page_range(dev_priv, &ppgtt->pd,
1710 0, ppgtt->base.total);
1714 i915_ggtt_flush(dev_priv);
1717 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1719 if (obj->has_dma_mapping)
1720 return 0;
1722 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1723 obj->pages->sgl, obj->pages->nents,
1724 PCI_DMA_BIDIRECTIONAL))
1725 return -ENOSPC;
1727 return 0;
1730 static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1732 #ifdef writeq
1733 writeq(pte, addr);
1734 #else
1735 iowrite32((u32)pte, addr);
1736 iowrite32(pte >> 32, addr + 4);
1737 #endif
1740 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1741 struct sg_table *st,
1742 uint64_t start,
1743 enum i915_cache_level level, u32 unused)
1745 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1746 unsigned first_entry = start >> PAGE_SHIFT;
1747 gen8_pte_t __iomem *gtt_entries =
1748 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1749 int i = 0;
1750 struct sg_page_iter sg_iter;
1751 dma_addr_t addr = 0; /* shut up gcc */
1753 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1754 addr = sg_dma_address(sg_iter.sg) +
1755 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1756 gen8_set_pte(&gtt_entries[i],
1757 gen8_pte_encode(addr, level, true));
1758 i++;
1762 * XXX: This serves as a posting read to make sure that the PTE has
1763 * actually been updated. There is some concern that even though
1764 * registers and PTEs are within the same BAR that they are potentially
1765 * of NUMA access patterns. Therefore, even with the way we assume
1766 * hardware should work, we must keep this posting read for paranoia.
1768 if (i != 0)
1769 WARN_ON(readq(&gtt_entries[i-1])
1770 != gen8_pte_encode(addr, level, true));
1772 /* This next bit makes the above posting read even more important. We
1773 * want to flush the TLBs only after we're certain all the PTE updates
1774 * have finished.
1776 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1777 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1781 * Binds an object into the global gtt with the specified cache level. The object
1782 * will be accessible to the GPU via commands whose operands reference offsets
1783 * within the global GTT as well as accessible by the GPU through the GMADR
1784 * mapped BAR (dev_priv->mm.gtt->gtt).
1786 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1787 struct sg_table *st,
1788 uint64_t start,
1789 enum i915_cache_level level, u32 flags)
1791 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1792 unsigned first_entry = start >> PAGE_SHIFT;
1793 gen6_pte_t __iomem *gtt_entries =
1794 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1795 int i = 0;
1796 struct sg_page_iter sg_iter;
1797 dma_addr_t addr = 0;
1799 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1800 addr = sg_page_iter_dma_address(&sg_iter);
1801 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1802 i++;
1805 /* XXX: This serves as a posting read to make sure that the PTE has
1806 * actually been updated. There is some concern that even though
1807 * registers and PTEs are within the same BAR that they are potentially
1808 * of NUMA access patterns. Therefore, even with the way we assume
1809 * hardware should work, we must keep this posting read for paranoia.
1811 if (i != 0) {
1812 unsigned long gtt = readl(&gtt_entries[i-1]);
1813 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1816 /* This next bit makes the above posting read even more important. We
1817 * want to flush the TLBs only after we're certain all the PTE updates
1818 * have finished.
1820 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1821 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1824 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1825 uint64_t start,
1826 uint64_t length,
1827 bool use_scratch)
1829 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1830 unsigned first_entry = start >> PAGE_SHIFT;
1831 unsigned num_entries = length >> PAGE_SHIFT;
1832 gen8_pte_t scratch_pte, __iomem *gtt_base =
1833 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1834 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1835 int i;
1837 if (WARN(num_entries > max_entries,
1838 "First entry = %d; Num entries = %d (max=%d)\n",
1839 first_entry, num_entries, max_entries))
1840 num_entries = max_entries;
1842 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1843 I915_CACHE_LLC,
1844 use_scratch);
1845 for (i = 0; i < num_entries; i++)
1846 gen8_set_pte(&gtt_base[i], scratch_pte);
1847 readl(gtt_base);
1850 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1851 uint64_t start,
1852 uint64_t length,
1853 bool use_scratch)
1855 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1856 unsigned first_entry = start >> PAGE_SHIFT;
1857 unsigned num_entries = length >> PAGE_SHIFT;
1858 gen6_pte_t scratch_pte, __iomem *gtt_base =
1859 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1860 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1861 int i;
1863 if (WARN(num_entries > max_entries,
1864 "First entry = %d; Num entries = %d (max=%d)\n",
1865 first_entry, num_entries, max_entries))
1866 num_entries = max_entries;
1868 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1870 for (i = 0; i < num_entries; i++)
1871 iowrite32(scratch_pte, &gtt_base[i]);
1872 readl(gtt_base);
1876 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1877 enum i915_cache_level cache_level,
1878 u32 unused)
1880 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1881 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1882 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1884 BUG_ON(!i915_is_ggtt(vma->vm));
1885 intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags);
1886 vma->bound = GLOBAL_BIND;
1889 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1890 uint64_t start,
1891 uint64_t length,
1892 bool unused)
1894 unsigned first_entry = start >> PAGE_SHIFT;
1895 unsigned num_entries = length >> PAGE_SHIFT;
1896 intel_gtt_clear_range(first_entry, num_entries);
1899 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1901 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1902 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1904 BUG_ON(!i915_is_ggtt(vma->vm));
1905 vma->bound = 0;
1906 intel_gtt_clear_range(first, size);
1909 static void ggtt_bind_vma(struct i915_vma *vma,
1910 enum i915_cache_level cache_level,
1911 u32 flags)
1913 struct drm_device *dev = vma->vm->dev;
1914 struct drm_i915_private *dev_priv = dev->dev_private;
1915 struct drm_i915_gem_object *obj = vma->obj;
1916 struct sg_table *pages = obj->pages;
1918 /* Currently applicable only to VLV */
1919 if (obj->gt_ro)
1920 flags |= PTE_READ_ONLY;
1922 if (i915_is_ggtt(vma->vm))
1923 pages = vma->ggtt_view.pages;
1925 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1926 * or we have a global mapping already but the cacheability flags have
1927 * changed, set the global PTEs.
1929 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1930 * instead if none of the above hold true.
1932 * NB: A global mapping should only be needed for special regions like
1933 * "gtt mappable", SNB errata, or if specified via special execbuf
1934 * flags. At all other times, the GPU will use the aliasing PPGTT.
1936 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1937 if (!(vma->bound & GLOBAL_BIND) ||
1938 (cache_level != obj->cache_level)) {
1939 vma->vm->insert_entries(vma->vm, pages,
1940 vma->node.start,
1941 cache_level, flags);
1942 vma->bound |= GLOBAL_BIND;
1946 if (dev_priv->mm.aliasing_ppgtt &&
1947 (!(vma->bound & LOCAL_BIND) ||
1948 (cache_level != obj->cache_level))) {
1949 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1950 appgtt->base.insert_entries(&appgtt->base, pages,
1951 vma->node.start,
1952 cache_level, flags);
1953 vma->bound |= LOCAL_BIND;
1957 static void ggtt_unbind_vma(struct i915_vma *vma)
1959 struct drm_device *dev = vma->vm->dev;
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 struct drm_i915_gem_object *obj = vma->obj;
1963 if (vma->bound & GLOBAL_BIND) {
1964 vma->vm->clear_range(vma->vm,
1965 vma->node.start,
1966 obj->base.size,
1967 true);
1968 vma->bound &= ~GLOBAL_BIND;
1971 if (vma->bound & LOCAL_BIND) {
1972 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1973 appgtt->base.clear_range(&appgtt->base,
1974 vma->node.start,
1975 obj->base.size,
1976 true);
1977 vma->bound &= ~LOCAL_BIND;
1981 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1983 struct drm_device *dev = obj->base.dev;
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985 bool interruptible;
1987 interruptible = do_idling(dev_priv);
1989 if (!obj->has_dma_mapping)
1990 dma_unmap_sg(&dev->pdev->dev,
1991 obj->pages->sgl, obj->pages->nents,
1992 PCI_DMA_BIDIRECTIONAL);
1994 undo_idling(dev_priv, interruptible);
1997 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1998 unsigned long color,
1999 u64 *start,
2000 u64 *end)
2002 if (node->color != color)
2003 *start += 4096;
2005 if (!list_empty(&node->node_list)) {
2006 node = list_entry(node->node_list.next,
2007 struct drm_mm_node,
2008 node_list);
2009 if (node->allocated && node->color != color)
2010 *end -= 4096;
2014 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2015 unsigned long start,
2016 unsigned long mappable_end,
2017 unsigned long end)
2019 /* Let GEM Manage all of the aperture.
2021 * However, leave one page at the end still bound to the scratch page.
2022 * There are a number of places where the hardware apparently prefetches
2023 * past the end of the object, and we've seen multiple hangs with the
2024 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2025 * aperture. One page should be enough to keep any prefetching inside
2026 * of the aperture.
2028 struct drm_i915_private *dev_priv = dev->dev_private;
2029 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2030 struct drm_mm_node *entry;
2031 struct drm_i915_gem_object *obj;
2032 unsigned long hole_start, hole_end;
2033 int ret;
2035 BUG_ON(mappable_end > end);
2037 /* Subtract the guard page ... */
2038 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2040 dev_priv->gtt.base.start = start;
2041 dev_priv->gtt.base.total = end - start;
2043 if (intel_vgpu_active(dev)) {
2044 ret = intel_vgt_balloon(dev);
2045 if (ret)
2046 return ret;
2049 if (!HAS_LLC(dev))
2050 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2052 /* Mark any preallocated objects as occupied */
2053 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2054 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2056 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2057 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2059 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2060 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2061 if (ret) {
2062 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2063 return ret;
2065 vma->bound |= GLOBAL_BIND;
2068 /* Clear any non-preallocated blocks */
2069 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2070 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2071 hole_start, hole_end);
2072 ggtt_vm->clear_range(ggtt_vm, hole_start,
2073 hole_end - hole_start, true);
2076 /* And finally clear the reserved guard page */
2077 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2079 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2080 struct i915_hw_ppgtt *ppgtt;
2082 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2083 if (!ppgtt)
2084 return -ENOMEM;
2086 ret = __hw_ppgtt_init(dev, ppgtt, true);
2087 if (ret) {
2088 kfree(ppgtt);
2089 return ret;
2092 dev_priv->mm.aliasing_ppgtt = ppgtt;
2095 return 0;
2098 void i915_gem_init_global_gtt(struct drm_device *dev)
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 unsigned long gtt_size, mappable_size;
2103 gtt_size = dev_priv->gtt.base.total;
2104 mappable_size = dev_priv->gtt.mappable_end;
2106 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2109 void i915_global_gtt_cleanup(struct drm_device *dev)
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112 struct i915_address_space *vm = &dev_priv->gtt.base;
2114 if (dev_priv->mm.aliasing_ppgtt) {
2115 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2117 ppgtt->base.cleanup(&ppgtt->base);
2120 if (drm_mm_initialized(&vm->mm)) {
2121 if (intel_vgpu_active(dev))
2122 intel_vgt_deballoon();
2124 drm_mm_takedown(&vm->mm);
2125 list_del(&vm->global_link);
2128 vm->cleanup(vm);
2131 static int setup_scratch_page(struct drm_device *dev)
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct page *page;
2135 dma_addr_t dma_addr;
2137 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2138 if (page == NULL)
2139 return -ENOMEM;
2140 set_pages_uc(page, 1);
2142 #ifdef CONFIG_INTEL_IOMMU
2143 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2144 PCI_DMA_BIDIRECTIONAL);
2145 if (pci_dma_mapping_error(dev->pdev, dma_addr))
2146 return -EINVAL;
2147 #else
2148 dma_addr = page_to_phys(page);
2149 #endif
2150 dev_priv->gtt.base.scratch.page = page;
2151 dev_priv->gtt.base.scratch.addr = dma_addr;
2153 return 0;
2156 static void teardown_scratch_page(struct drm_device *dev)
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159 struct page *page = dev_priv->gtt.base.scratch.page;
2161 set_pages_wb(page, 1);
2162 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2163 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2164 __free_page(page);
2167 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2169 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2170 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2171 return snb_gmch_ctl << 20;
2174 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2176 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2177 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2178 if (bdw_gmch_ctl)
2179 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2181 #ifdef CONFIG_X86_32
2182 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2183 if (bdw_gmch_ctl > 4)
2184 bdw_gmch_ctl = 4;
2185 #endif
2187 return bdw_gmch_ctl << 20;
2190 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2192 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2193 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2195 if (gmch_ctrl)
2196 return 1 << (20 + gmch_ctrl);
2198 return 0;
2201 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2203 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2204 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2205 return snb_gmch_ctl << 25; /* 32 MB units */
2208 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2210 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2211 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2212 return bdw_gmch_ctl << 25; /* 32 MB units */
2215 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2217 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2218 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2221 * 0x0 to 0x10: 32MB increments starting at 0MB
2222 * 0x11 to 0x16: 4MB increments starting at 8MB
2223 * 0x17 to 0x1d: 4MB increments start at 36MB
2225 if (gmch_ctrl < 0x11)
2226 return gmch_ctrl << 25;
2227 else if (gmch_ctrl < 0x17)
2228 return (gmch_ctrl - 0x11 + 2) << 22;
2229 else
2230 return (gmch_ctrl - 0x17 + 9) << 22;
2233 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2235 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2236 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2238 if (gen9_gmch_ctl < 0xf0)
2239 return gen9_gmch_ctl << 25; /* 32 MB units */
2240 else
2241 /* 4MB increments starting at 0xf0 for 4MB */
2242 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2245 static int ggtt_probe_common(struct drm_device *dev,
2246 size_t gtt_size)
2248 struct drm_i915_private *dev_priv = dev->dev_private;
2249 phys_addr_t gtt_phys_addr;
2250 int ret;
2252 /* For Modern GENs the PTEs and register space are split in the BAR */
2253 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2254 (pci_resource_len(dev->pdev, 0) / 2);
2256 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2257 if (!dev_priv->gtt.gsm) {
2258 DRM_ERROR("Failed to map the gtt page table\n");
2259 return -ENOMEM;
2262 ret = setup_scratch_page(dev);
2263 if (ret) {
2264 DRM_ERROR("Scratch setup failed\n");
2265 /* iounmap will also get called at remove, but meh */
2266 iounmap(dev_priv->gtt.gsm);
2269 return ret;
2272 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2273 * bits. When using advanced contexts each context stores its own PAT, but
2274 * writing this data shouldn't be harmful even in those cases. */
2275 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2277 uint64_t pat;
2279 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2280 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2281 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2282 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2283 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2284 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2285 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2286 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2288 if (!USES_PPGTT(dev_priv->dev))
2289 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2290 * so RTL will always use the value corresponding to
2291 * pat_sel = 000".
2292 * So let's disable cache for GGTT to avoid screen corruptions.
2293 * MOCS still can be used though.
2294 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2295 * before this patch, i.e. the same uncached + snooping access
2296 * like on gen6/7 seems to be in effect.
2297 * - So this just fixes blitter/render access. Again it looks
2298 * like it's not just uncached access, but uncached + snooping.
2299 * So we can still hold onto all our assumptions wrt cpu
2300 * clflushing on LLC machines.
2302 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2304 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2305 * write would work. */
2306 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2307 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2310 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2312 uint64_t pat;
2315 * Map WB on BDW to snooped on CHV.
2317 * Only the snoop bit has meaning for CHV, the rest is
2318 * ignored.
2320 * The hardware will never snoop for certain types of accesses:
2321 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2322 * - PPGTT page tables
2323 * - some other special cycles
2325 * As with BDW, we also need to consider the following for GT accesses:
2326 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2327 * so RTL will always use the value corresponding to
2328 * pat_sel = 000".
2329 * Which means we must set the snoop bit in PAT entry 0
2330 * in order to keep the global status page working.
2332 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2333 GEN8_PPAT(1, 0) |
2334 GEN8_PPAT(2, 0) |
2335 GEN8_PPAT(3, 0) |
2336 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2337 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2338 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2339 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2341 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2342 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2345 static int gen8_gmch_probe(struct drm_device *dev,
2346 size_t *gtt_total,
2347 size_t *stolen,
2348 phys_addr_t *mappable_base,
2349 unsigned long *mappable_end)
2351 struct drm_i915_private *dev_priv = dev->dev_private;
2352 unsigned int gtt_size;
2353 u16 snb_gmch_ctl;
2354 int ret;
2356 /* TODO: We're not aware of mappable constraints on gen8 yet */
2357 *mappable_base = pci_resource_start(dev->pdev, 2);
2358 *mappable_end = pci_resource_len(dev->pdev, 2);
2360 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2361 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2363 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2365 if (INTEL_INFO(dev)->gen >= 9) {
2366 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2367 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2368 } else if (IS_CHERRYVIEW(dev)) {
2369 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2370 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2371 } else {
2372 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2373 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2376 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2378 if (IS_CHERRYVIEW(dev))
2379 chv_setup_private_ppat(dev_priv);
2380 else
2381 bdw_setup_private_ppat(dev_priv);
2383 ret = ggtt_probe_common(dev, gtt_size);
2385 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2386 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2388 return ret;
2391 static int gen6_gmch_probe(struct drm_device *dev,
2392 size_t *gtt_total,
2393 size_t *stolen,
2394 phys_addr_t *mappable_base,
2395 unsigned long *mappable_end)
2397 struct drm_i915_private *dev_priv = dev->dev_private;
2398 unsigned int gtt_size;
2399 u16 snb_gmch_ctl;
2400 int ret;
2402 *mappable_base = pci_resource_start(dev->pdev, 2);
2403 *mappable_end = pci_resource_len(dev->pdev, 2);
2405 /* 64/512MB is the current min/max we actually know of, but this is just
2406 * a coarse sanity check.
2408 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2409 DRM_ERROR("Unknown GMADR size (%lx)\n",
2410 dev_priv->gtt.mappable_end);
2411 return -ENXIO;
2414 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2415 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2416 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2418 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2420 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2421 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2423 ret = ggtt_probe_common(dev, gtt_size);
2425 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2426 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2428 return ret;
2431 static void gen6_gmch_remove(struct i915_address_space *vm)
2434 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2436 iounmap(gtt->gsm);
2437 teardown_scratch_page(vm->dev);
2440 static int i915_gmch_probe(struct drm_device *dev,
2441 size_t *gtt_total,
2442 size_t *stolen,
2443 phys_addr_t *mappable_base,
2444 unsigned long *mappable_end)
2446 struct drm_i915_private *dev_priv = dev->dev_private;
2447 int ret;
2449 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2450 if (!ret) {
2451 DRM_ERROR("failed to set up gmch\n");
2452 return -EIO;
2455 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2457 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2458 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2460 if (unlikely(dev_priv->gtt.do_idle_maps))
2461 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2463 return 0;
2466 static void i915_gmch_remove(struct i915_address_space *vm)
2468 intel_gmch_remove();
2471 int i915_gem_gtt_init(struct drm_device *dev)
2473 struct drm_i915_private *dev_priv = dev->dev_private;
2474 struct i915_gtt *gtt = &dev_priv->gtt;
2475 int ret;
2477 if (INTEL_INFO(dev)->gen <= 5) {
2478 gtt->gtt_probe = i915_gmch_probe;
2479 gtt->base.cleanup = i915_gmch_remove;
2480 } else if (INTEL_INFO(dev)->gen < 8) {
2481 gtt->gtt_probe = gen6_gmch_probe;
2482 gtt->base.cleanup = gen6_gmch_remove;
2483 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2484 gtt->base.pte_encode = iris_pte_encode;
2485 else if (IS_HASWELL(dev))
2486 gtt->base.pte_encode = hsw_pte_encode;
2487 else if (IS_VALLEYVIEW(dev))
2488 gtt->base.pte_encode = byt_pte_encode;
2489 else if (INTEL_INFO(dev)->gen >= 7)
2490 gtt->base.pte_encode = ivb_pte_encode;
2491 else
2492 gtt->base.pte_encode = snb_pte_encode;
2493 } else {
2494 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2495 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2498 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2499 &gtt->mappable_base, &gtt->mappable_end);
2500 if (ret)
2501 return ret;
2503 gtt->base.dev = dev;
2505 /* GMADR is the PCI mmio aperture into the global GTT. */
2506 DRM_INFO("Memory usable by graphics device = %zdM\n",
2507 gtt->base.total >> 20);
2508 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2509 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2510 #ifdef CONFIG_INTEL_IOMMU
2511 if (intel_iommu_gfx_mapped)
2512 DRM_INFO("VT-d active for gfx access\n");
2513 #endif
2515 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2516 * user's requested state against the hardware/driver capabilities. We
2517 * do this now so that we can print out any log messages once rather
2518 * than every time we check intel_enable_ppgtt().
2520 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2521 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2523 return 0;
2526 static struct i915_vma *
2527 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2528 struct i915_address_space *vm,
2529 const struct i915_ggtt_view *ggtt_view)
2531 struct i915_vma *vma;
2533 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2534 return ERR_PTR(-EINVAL);
2535 vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2536 if (vma == NULL)
2537 return ERR_PTR(-ENOMEM);
2539 INIT_LIST_HEAD(&vma->vma_link);
2540 INIT_LIST_HEAD(&vma->mm_list);
2541 INIT_LIST_HEAD(&vma->exec_list);
2542 vma->vm = vm;
2543 vma->obj = obj;
2545 if (INTEL_INFO(vm->dev)->gen >= 6) {
2546 if (i915_is_ggtt(vm)) {
2547 vma->ggtt_view = *ggtt_view;
2549 vma->unbind_vma = ggtt_unbind_vma;
2550 vma->bind_vma = ggtt_bind_vma;
2551 } else {
2552 vma->unbind_vma = ppgtt_unbind_vma;
2553 vma->bind_vma = ppgtt_bind_vma;
2555 } else {
2556 BUG_ON(!i915_is_ggtt(vm));
2557 vma->ggtt_view = *ggtt_view;
2558 vma->unbind_vma = i915_ggtt_unbind_vma;
2559 vma->bind_vma = i915_ggtt_bind_vma;
2562 list_add_tail(&vma->vma_link, &obj->vma_list);
2563 if (!i915_is_ggtt(vm))
2564 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2566 return vma;
2569 struct i915_vma *
2570 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2571 struct i915_address_space *vm)
2573 struct i915_vma *vma;
2575 vma = i915_gem_obj_to_vma(obj, vm);
2576 if (!vma)
2577 vma = __i915_gem_vma_create(obj, vm,
2578 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2580 return vma;
2583 struct i915_vma *
2584 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2585 const struct i915_ggtt_view *view)
2587 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2588 struct i915_vma *vma;
2590 if (WARN_ON(!view))
2591 return ERR_PTR(-EINVAL);
2593 vma = i915_gem_obj_to_ggtt_view(obj, view);
2595 if (IS_ERR(vma))
2596 return vma;
2598 if (!vma)
2599 vma = __i915_gem_vma_create(obj, ggtt, view);
2601 return vma;
2605 static void
2606 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2607 struct sg_table *st)
2609 unsigned int column, row;
2610 unsigned int src_idx;
2611 struct scatterlist *sg = st->sgl;
2613 st->nents = 0;
2615 for (column = 0; column < width; column++) {
2616 src_idx = width * (height - 1) + column;
2617 for (row = 0; row < height; row++) {
2618 st->nents++;
2619 /* We don't need the pages, but need to initialize
2620 * the entries so the sg list can be happily traversed.
2621 * The only thing we need are DMA addresses.
2623 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2624 sg_dma_address(sg) = in[src_idx];
2625 sg_dma_len(sg) = PAGE_SIZE;
2626 sg = sg_next(sg);
2627 src_idx -= width;
2632 static struct sg_table *
2633 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2634 struct drm_i915_gem_object *obj)
2636 struct drm_device *dev = obj->base.dev;
2637 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2638 unsigned long size, pages, rot_pages;
2639 struct sg_page_iter sg_iter;
2640 unsigned long i;
2641 dma_addr_t *page_addr_list;
2642 struct sg_table *st;
2643 unsigned int tile_pitch, tile_height;
2644 unsigned int width_pages, height_pages;
2645 int ret = -ENOMEM;
2647 pages = obj->base.size / PAGE_SIZE;
2649 /* Calculate tiling geometry. */
2650 tile_height = intel_tile_height(dev, rot_info->pixel_format,
2651 rot_info->fb_modifier);
2652 tile_pitch = PAGE_SIZE / tile_height;
2653 width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2654 height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2655 rot_pages = width_pages * height_pages;
2656 size = rot_pages * PAGE_SIZE;
2658 /* Allocate a temporary list of source pages for random access. */
2659 page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2660 if (!page_addr_list)
2661 return ERR_PTR(ret);
2663 /* Allocate target SG list. */
2664 st = kmalloc(sizeof(*st), GFP_KERNEL);
2665 if (!st)
2666 goto err_st_alloc;
2668 ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2669 if (ret)
2670 goto err_sg_alloc;
2672 /* Populate source page list from the object. */
2673 i = 0;
2674 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2675 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2676 i++;
2679 /* Rotate the pages. */
2680 rotate_pages(page_addr_list, width_pages, height_pages, st);
2682 DRM_DEBUG_KMS(
2683 "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2684 size, rot_info->pitch, rot_info->height,
2685 rot_info->pixel_format, width_pages, height_pages,
2686 rot_pages);
2688 drm_free_large(page_addr_list);
2690 return st;
2692 err_sg_alloc:
2693 kfree(st);
2694 err_st_alloc:
2695 drm_free_large(page_addr_list);
2697 DRM_DEBUG_KMS(
2698 "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2699 size, ret, rot_info->pitch, rot_info->height,
2700 rot_info->pixel_format, width_pages, height_pages,
2701 rot_pages);
2702 return ERR_PTR(ret);
2705 static inline int
2706 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2708 int ret = 0;
2710 if (vma->ggtt_view.pages)
2711 return 0;
2713 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2714 vma->ggtt_view.pages = vma->obj->pages;
2715 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2716 vma->ggtt_view.pages =
2717 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2718 else
2719 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2720 vma->ggtt_view.type);
2722 if (!vma->ggtt_view.pages) {
2723 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2724 vma->ggtt_view.type);
2725 ret = -EINVAL;
2726 } else if (IS_ERR(vma->ggtt_view.pages)) {
2727 ret = PTR_ERR(vma->ggtt_view.pages);
2728 vma->ggtt_view.pages = NULL;
2729 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2730 vma->ggtt_view.type, ret);
2733 return ret;
2737 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2738 * @vma: VMA to map
2739 * @cache_level: mapping cache level
2740 * @flags: flags like global or local mapping
2742 * DMA addresses are taken from the scatter-gather table of this object (or of
2743 * this VMA in case of non-default GGTT views) and PTE entries set up.
2744 * Note that DMA addresses are also the only part of the SG table we care about.
2746 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2747 u32 flags)
2749 if (i915_is_ggtt(vma->vm)) {
2750 int ret = i915_get_ggtt_vma_pages(vma);
2752 if (ret)
2753 return ret;
2756 vma->bind_vma(vma, cache_level, flags);
2758 return 0;