2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE 0x2FC
43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57 #define PRCM_AVS_VOLTAGE 0
58 #define PRCM_AVS_VOLTAGE_MASK 0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP 6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE 7
62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64 #define PRCM_BOOT_STATUS 0xFFF
65 #define PRCM_ROMCODE_A2P 0xFFE
66 #define PRCM_ROMCODE_P2A 0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS 0
98 #define MB0H_CONFIG_WAKEUPS_EXE 1
99 #define MB0H_READ_WAKEUP_ACK 3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF 0x1
135 #define PLL_SOC0_ON 0x2
136 #define PLL_SOC1_OFF 0x4
137 #define PLL_SOC1_ON 0x8
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145 /* Mailbox 2 headers */
147 #define MB2H_AUTO_PWR 0x1
150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
165 /* Mailbox 3 headers */
167 #define MB3H_SIDETONE 0x1
168 #define MB3H_SYSCLK 0xE
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT 0x0
181 #define MB4H_MEM_ST 0x1
182 #define MB4H_HOTDOG 0x12
183 #define MB4H_HOTMON 0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN 0x17
187 #define MB4H_A9WDOG_DIS 0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW BIT(0)
201 #define HOTMON_CONFIG_HIGH BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS 0
208 #define A9WDOG_ID_MASK 0xf
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN BIT(3)
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
265 struct prcmu_fw_version version
;
268 static struct irq_domain
*db8500_irq_domain
;
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
306 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
318 IRQ_ENTRY(HOTMON_LOW
),
319 IRQ_ENTRY(HOTMON_HIGH
),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
342 WAKEUP_ENTRY(ABB_FIFO
),
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
356 spinlock_t dbb_irqs_lock
;
357 struct work_struct mask_work
;
358 struct mutex ac_wake_lock
;
359 struct completion ac_wake_work
;
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
376 struct completion work
;
382 u8 ape_voltage_status
;
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
397 struct completion work
;
398 spinlock_t auto_pm_lock
;
399 bool auto_pm_enabled
;
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
413 struct mutex sysclk_lock
;
414 struct completion sysclk_work
;
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
424 struct completion work
;
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
435 struct completion work
;
442 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
445 static DEFINE_SPINLOCK(prcmu_lock
);
446 static DEFINE_SPINLOCK(clkout_lock
);
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem
void *tcdm_base
;
450 static __iomem
void *prcmu_base
;
465 static DEFINE_SPINLOCK(clk_mgt_lock
);
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
470 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
471 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
472 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
474 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
475 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
476 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
477 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
478 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
479 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
480 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
481 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
482 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
483 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
484 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
485 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
486 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
487 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
488 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
489 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
490 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
491 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
492 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
493 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
494 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
495 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
496 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
497 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
498 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
507 static struct dsiclk dsiclk
[2] = {
509 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
510 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
511 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
514 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
515 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
516 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
526 static struct dsiescclk dsiescclk
[3] = {
528 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
529 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
530 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
533 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
534 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
535 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
538 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
539 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
540 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
546 * Used by MCDE to setup all necessary PRCMU registers
548 #define PRCMU_RESET_DSIPLL 0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
551 #define PRCMU_CLK_PLL_DIV_SHIFT 0
552 #define PRCMU_CLK_PLL_SW_SHIFT 5
553 #define PRCMU_CLK_38 (1 << 9)
554 #define PRCMU_CLK_38_SRC (1 << 10)
555 #define PRCMU_CLK_38_DIV (1 << 11)
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
568 #define PRCMU_ENABLE_PLLDSI 0x00000001
569 #define PRCMU_DISABLE_PLLDSI 0x00000000
570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575 #define PRCMU_DSI_RESET_SW 0x00000007
577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
579 int db8500_prcmu_enable_dsipll(void)
583 /* Clear DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_CLR
);
585 /* Unclamp DSIPLL in/out */
586 writel(PRCMU_UNCLAMP_DSIPLL
, PRCM_MMIP_LS_CLAMP_CLR
);
588 /* Set DSI PLL FREQ */
589 writel(PRCMU_PLLDSI_FREQ_SETTING
, PRCM_PLLDSI_FREQ
);
590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING
, PRCM_DSI_PLLOUT_SEL
);
591 /* Enable Escape clocks */
592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
595 writel(PRCMU_ENABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
597 writel(PRCMU_DSI_RESET_SW
, PRCM_DSI_SW_RESET
);
598 for (i
= 0; i
< 10; i
++) {
599 if ((readl(PRCM_PLLDSI_LOCKP
) & PRCMU_PLLDSI_LOCKP_LOCKED
)
600 == PRCMU_PLLDSI_LOCKP_LOCKED
)
604 /* Set DSIPLL_RESETN */
605 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_SET
);
609 int db8500_prcmu_disable_dsipll(void)
611 /* Disable dsi pll */
612 writel(PRCMU_DISABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
613 /* Disable escapeclock */
614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
618 int db8500_prcmu_set_display_clocks(void)
622 spin_lock_irqsave(&clk_mgt_lock
, flags
);
624 /* Grab the HW semaphore. */
625 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
628 writel(PRCMU_DSI_CLOCK_SETTING
, prcmu_base
+ PRCM_HDMICLK_MGT
);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING
, prcmu_base
+ PRCM_TVCLK_MGT
);
630 writel(PRCMU_DPI_CLOCK_SETTING
, prcmu_base
+ PRCM_LCDCLK_MGT
);
632 /* Release the HW semaphore. */
635 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
640 u32
db8500_prcmu_read(unsigned int reg
)
642 return readl(prcmu_base
+ reg
);
645 void db8500_prcmu_write(unsigned int reg
, u32 value
)
649 spin_lock_irqsave(&prcmu_lock
, flags
);
650 writel(value
, (prcmu_base
+ reg
));
651 spin_unlock_irqrestore(&prcmu_lock
, flags
);
654 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
659 spin_lock_irqsave(&prcmu_lock
, flags
);
660 val
= readl(prcmu_base
+ reg
);
661 val
= ((val
& ~mask
) | (value
& mask
));
662 writel(val
, (prcmu_base
+ reg
));
663 spin_unlock_irqrestore(&prcmu_lock
, flags
);
666 struct prcmu_fw_version
*prcmu_get_fw_version(void)
668 return fw_info
.valid
? &fw_info
.version
: NULL
;
671 bool prcmu_has_arm_maxopp(void)
673 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
674 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
679 * @val: Value to be set, i.e. transition requested
680 * Returns: 0 on success, -EINVAL on invalid argument
682 * This function is used to run the following power state sequences -
683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
685 int prcmu_set_rc_a2p(enum romcode_write val
)
687 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
689 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
694 * prcmu_get_rc_p2a - This function is used to get power state sequences
695 * Returns: the power transition that has last happened
697 * This function can return the following transitions-
698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
700 enum romcode_read
prcmu_get_rc_p2a(void)
702 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
706 * prcmu_get_current_mode - Return the current XP70 power mode
707 * Returns: Returns the current AP(ARM) power mode: init,
708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
710 enum ap_pwrst
prcmu_get_xp70_current_state(void)
712 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
717 * @clkout: The CLKOUT number (0 or 1).
718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
719 * @div: The divider to be applied.
721 * Configures one of the programmable clock outputs (CLKOUTs).
722 * @div should be in the range [1,63] to request a configuration, or 0 to
723 * inform that the configuration is no longer requested.
725 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
727 static int requests
[2];
737 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
739 if (!div
&& !requests
[clkout
])
744 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
745 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
746 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
747 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
750 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
751 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
752 PRCM_CLKOCR_CLK1TYPE
);
753 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
754 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
759 spin_lock_irqsave(&clkout_lock
, flags
);
761 val
= readl(PRCM_CLKOCR
);
762 if (val
& div_mask
) {
764 if ((val
& mask
) != bits
) {
766 goto unlock_and_return
;
769 if ((val
& mask
& ~div_mask
) != bits
) {
771 goto unlock_and_return
;
775 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
776 requests
[clkout
] += (div
? 1 : -1);
779 spin_unlock_irqrestore(&clkout_lock
, flags
);
784 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
788 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
790 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
792 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
795 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
796 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
797 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
798 writeb((keep_ulp_clk
? 1 : 0),
799 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
800 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
801 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
803 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
808 u8
db8500_prcmu_get_power_state_result(void)
810 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
813 /* This function should only be called while mb0_transfer.lock is held. */
814 static void config_wakeups(void)
816 const u8 header
[2] = {
817 MB0H_CONFIG_WAKEUPS_EXE
,
818 MB0H_CONFIG_WAKEUPS_SLEEP
820 static u32 last_dbb_events
;
821 static u32 last_abb_events
;
826 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
827 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
829 abb_events
= mb0_transfer
.req
.abb_events
;
831 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
834 for (i
= 0; i
< 2; i
++) {
835 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
837 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
838 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
839 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
840 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
842 last_dbb_events
= dbb_events
;
843 last_abb_events
= abb_events
;
846 void db8500_prcmu_enable_wakeups(u32 wakeups
)
852 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
854 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
855 if (wakeups
& BIT(i
))
856 bits
|= prcmu_wakeup_bit
[i
];
859 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
861 mb0_transfer
.req
.dbb_wakeups
= bits
;
864 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
867 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
871 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
873 mb0_transfer
.req
.abb_events
= abb_events
;
876 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
879 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
881 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
882 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
884 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
888 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
889 * @opp: The new ARM operating point to which transition is to be made
890 * Returns: 0 on success, non-zero on failure
892 * This function sets the the operating point of the ARM.
894 int db8500_prcmu_set_arm_opp(u8 opp
)
898 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
903 mutex_lock(&mb1_transfer
.lock
);
905 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
908 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
909 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
910 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
912 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
913 wait_for_completion(&mb1_transfer
.work
);
915 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
916 (mb1_transfer
.ack
.arm_opp
!= opp
))
919 mutex_unlock(&mb1_transfer
.lock
);
925 * db8500_prcmu_get_arm_opp - get the current ARM OPP
927 * Returns: the current ARM OPP
929 int db8500_prcmu_get_arm_opp(void)
931 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
935 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
937 * Returns: the current DDR OPP
939 int db8500_prcmu_get_ddr_opp(void)
941 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
945 * db8500_set_ddr_opp - set the appropriate DDR OPP
946 * @opp: The new DDR operating point to which transition is to be made
947 * Returns: 0 on success, non-zero on failure
949 * This function sets the operating point of the DDR.
951 static bool enable_set_ddr_opp
;
952 int db8500_prcmu_set_ddr_opp(u8 opp
)
954 if (opp
< DDR_100_OPP
|| opp
> DDR_25_OPP
)
956 /* Changing the DDR OPP can hang the hardware pre-v21 */
957 if (enable_set_ddr_opp
)
958 writeb(opp
, PRCM_DDR_SUBSYS_APE_MINBW
);
963 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
964 static void request_even_slower_clocks(bool enable
)
973 spin_lock_irqsave(&clk_mgt_lock
, flags
);
975 /* Grab the HW semaphore. */
976 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
979 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
983 val
= readl(prcmu_base
+ clock_reg
[i
]);
984 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
986 if ((div
<= 1) || (div
> 15)) {
987 pr_err("prcmu: Bad clock divider %d in %s\n",
989 goto unlock_and_return
;
994 goto unlock_and_return
;
997 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
998 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
999 writel(val
, prcmu_base
+ clock_reg
[i
]);
1003 /* Release the HW semaphore. */
1004 writel(0, PRCM_SEM
);
1006 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1010 * db8500_set_ape_opp - set the appropriate APE OPP
1011 * @opp: The new APE operating point to which transition is to be made
1012 * Returns: 0 on success, non-zero on failure
1014 * This function sets the operating point of the APE.
1016 int db8500_prcmu_set_ape_opp(u8 opp
)
1020 if (opp
== mb1_transfer
.ape_opp
)
1023 mutex_lock(&mb1_transfer
.lock
);
1025 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
1026 request_even_slower_clocks(false);
1028 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
1031 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1034 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1035 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1036 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
1037 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1039 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1040 wait_for_completion(&mb1_transfer
.work
);
1042 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1043 (mb1_transfer
.ack
.ape_opp
!= opp
))
1047 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
1048 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
1049 request_even_slower_clocks(true);
1051 mb1_transfer
.ape_opp
= opp
;
1053 mutex_unlock(&mb1_transfer
.lock
);
1059 * db8500_prcmu_get_ape_opp - get the current APE OPP
1061 * Returns: the current APE OPP
1063 int db8500_prcmu_get_ape_opp(void)
1065 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
1069 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1070 * @enable: true to request the higher voltage, false to drop a request.
1072 * Calls to this function to enable and disable requests must be balanced.
1074 int db8500_prcmu_request_ape_opp_100_voltage(bool enable
)
1078 static unsigned int requests
;
1080 mutex_lock(&mb1_transfer
.lock
);
1083 if (0 != requests
++)
1084 goto unlock_and_return
;
1085 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
1087 if (requests
== 0) {
1089 goto unlock_and_return
;
1090 } else if (1 != requests
--) {
1091 goto unlock_and_return
;
1093 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
1096 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1099 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1101 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1102 wait_for_completion(&mb1_transfer
.work
);
1104 if ((mb1_transfer
.ack
.header
!= header
) ||
1105 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1109 mutex_unlock(&mb1_transfer
.lock
);
1115 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1117 * This function releases the power state requirements of a USB wakeup.
1119 int prcmu_release_usb_wakeup_state(void)
1123 mutex_lock(&mb1_transfer
.lock
);
1125 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1128 writeb(MB1H_RELEASE_USB_WAKEUP
,
1129 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1131 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1132 wait_for_completion(&mb1_transfer
.work
);
1134 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1135 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1138 mutex_unlock(&mb1_transfer
.lock
);
1143 static int request_pll(u8 clock
, bool enable
)
1147 if (clock
== PRCMU_PLLSOC0
)
1148 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1149 else if (clock
== PRCMU_PLLSOC1
)
1150 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1154 mutex_lock(&mb1_transfer
.lock
);
1156 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1159 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1160 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1162 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1163 wait_for_completion(&mb1_transfer
.work
);
1165 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1168 mutex_unlock(&mb1_transfer
.lock
);
1174 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1175 * @epod_id: The EPOD to set
1176 * @epod_state: The new EPOD state
1178 * This function sets the state of a EPOD (power domain). It may not be called
1179 * from interrupt context.
1181 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1184 bool ram_retention
= false;
1187 /* check argument */
1188 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1190 /* set flag if retention is possible */
1192 case EPOD_ID_SVAMMDSP
:
1193 case EPOD_ID_SIAMMDSP
:
1194 case EPOD_ID_ESRAM12
:
1195 case EPOD_ID_ESRAM34
:
1196 ram_retention
= true;
1200 /* check argument */
1201 BUG_ON(epod_state
> EPOD_STATE_ON
);
1202 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1205 mutex_lock(&mb2_transfer
.lock
);
1207 /* wait for mailbox */
1208 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1211 /* fill in mailbox */
1212 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1213 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1214 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1216 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1218 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1221 * The current firmware version does not handle errors correctly,
1222 * and we cannot recover if there is an error.
1223 * This is expected to change when the firmware is updated.
1225 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1226 msecs_to_jiffies(20000))) {
1227 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1230 goto unlock_and_return
;
1233 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1237 mutex_unlock(&mb2_transfer
.lock
);
1242 * prcmu_configure_auto_pm - Configure autonomous power management.
1243 * @sleep: Configuration for ApSleep.
1244 * @idle: Configuration for ApIdle.
1246 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1247 struct prcmu_auto_pm_config
*idle
)
1251 unsigned long flags
;
1253 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1255 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1256 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1257 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1258 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1259 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1260 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1262 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1263 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1264 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1265 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1266 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1267 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1269 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1272 * The autonomous power management configuration is done through
1273 * fields in mailbox 2, but these fields are only used as shared
1274 * variables - i.e. there is no need to send a message.
1276 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1277 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1279 mb2_transfer
.auto_pm_enabled
=
1280 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1281 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1282 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1283 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1285 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1287 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1289 bool prcmu_is_auto_pm_enabled(void)
1291 return mb2_transfer
.auto_pm_enabled
;
1294 static int request_sysclk(bool enable
)
1297 unsigned long flags
;
1301 mutex_lock(&mb3_transfer
.sysclk_lock
);
1303 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1305 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1308 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1310 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1311 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1313 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1316 * The firmware only sends an ACK if we want to enable the
1317 * SysClk, and it succeeds.
1319 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1320 msecs_to_jiffies(20000))) {
1321 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1326 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1331 static int request_timclk(bool enable
)
1333 u32 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1336 val
|= PRCM_TCR_STOP_TIMERS
;
1337 writel(val
, PRCM_TCR
);
1342 static int request_clock(u8 clock
, bool enable
)
1345 unsigned long flags
;
1347 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1349 /* Grab the HW semaphore. */
1350 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1353 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1355 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1357 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1358 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1360 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1362 /* Release the HW semaphore. */
1363 writel(0, PRCM_SEM
);
1365 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1370 static int request_sga_clock(u8 clock
, bool enable
)
1376 val
= readl(PRCM_CGATING_BYPASS
);
1377 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1380 ret
= request_clock(clock
, enable
);
1382 if (!ret
&& !enable
) {
1383 val
= readl(PRCM_CGATING_BYPASS
);
1384 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1390 static inline bool plldsi_locked(void)
1392 return (readl(PRCM_PLLDSI_LOCKP
) &
1393 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1394 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1395 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1396 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1399 static int request_plldsi(bool enable
)
1404 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1405 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1406 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1408 val
= readl(PRCM_PLLDSI_ENABLE
);
1410 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1412 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1413 writel(val
, PRCM_PLLDSI_ENABLE
);
1417 bool locked
= plldsi_locked();
1419 for (i
= 10; !locked
&& (i
> 0); --i
) {
1421 locked
= plldsi_locked();
1424 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1425 PRCM_APE_RESETN_SET
);
1427 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1428 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1429 PRCM_MMIP_LS_CLAMP_SET
);
1430 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1431 writel(val
, PRCM_PLLDSI_ENABLE
);
1435 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1440 static int request_dsiclk(u8 n
, bool enable
)
1444 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1445 val
&= ~dsiclk
[n
].divsel_mask
;
1446 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1447 dsiclk
[n
].divsel_shift
);
1448 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1452 static int request_dsiescclk(u8 n
, bool enable
)
1456 val
= readl(PRCM_DSITVCLK_DIV
);
1457 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1458 writel(val
, PRCM_DSITVCLK_DIV
);
1463 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1464 * @clock: The clock for which the request is made.
1465 * @enable: Whether the clock should be enabled (true) or disabled (false).
1467 * This function should only be used by the clock implementation.
1468 * Do not use it from any other place!
1470 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1472 if (clock
== PRCMU_SGACLK
)
1473 return request_sga_clock(clock
, enable
);
1474 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1475 return request_clock(clock
, enable
);
1476 else if (clock
== PRCMU_TIMCLK
)
1477 return request_timclk(enable
);
1478 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1479 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1480 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1481 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1482 else if (clock
== PRCMU_PLLDSI
)
1483 return request_plldsi(enable
);
1484 else if (clock
== PRCMU_SYSCLK
)
1485 return request_sysclk(enable
);
1486 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1487 return request_pll(clock
, enable
);
1492 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1503 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1505 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1509 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1513 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1516 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1517 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1518 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1519 (reg
== PRCM_PLLARM_FREQ
) ||
1520 (reg
== PRCM_PLLDDR_FREQ
))))
1523 (void)do_div(rate
, div
);
1525 return (unsigned long)rate
;
1528 #define ROOT_CLOCK_RATE 38400000
1530 static unsigned long clock_rate(u8 clock
)
1534 unsigned long rate
= ROOT_CLOCK_RATE
;
1536 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1538 if (val
& PRCM_CLK_MGT_CLK38
) {
1539 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1544 val
|= clk_mgt
[clock
].pllsw
;
1545 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1547 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1548 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1549 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1550 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1551 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1552 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1556 if ((clock
== PRCMU_SGACLK
) &&
1557 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1558 u64 r
= (rate
* 10);
1560 (void)do_div(r
, 25);
1561 return (unsigned long)r
;
1563 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1570 static unsigned long armss_rate(void)
1575 r
= readl(PRCM_ARM_CHGCLKREQ
);
1577 if (r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ
) {
1578 /* External ARMCLKFIX clock */
1580 rate
= pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_FIX
);
1582 /* Check PRCM_ARM_CHGCLKREQ divider */
1583 if (!(r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL
))
1586 /* Check PRCM_ARMCLKFIX_MGT divider */
1587 r
= readl(PRCM_ARMCLKFIX_MGT
);
1588 r
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1591 } else {/* ARM PLL */
1592 rate
= pll_rate(PRCM_PLLARM_FREQ
, ROOT_CLOCK_RATE
, PLL_DIV
);
1598 static unsigned long dsiclk_rate(u8 n
)
1603 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1604 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1606 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1607 divsel
= dsiclk
[n
].divsel
;
1609 dsiclk
[n
].divsel
= divsel
;
1612 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1614 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1616 case PRCM_DSI_PLLOUT_SEL_PHI
:
1617 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1624 static unsigned long dsiescclk_rate(u8 n
)
1628 div
= readl(PRCM_DSITVCLK_DIV
);
1629 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1630 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1633 unsigned long prcmu_clock_rate(u8 clock
)
1635 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1636 return clock_rate(clock
);
1637 else if (clock
== PRCMU_TIMCLK
)
1638 return ROOT_CLOCK_RATE
/ 16;
1639 else if (clock
== PRCMU_SYSCLK
)
1640 return ROOT_CLOCK_RATE
;
1641 else if (clock
== PRCMU_PLLSOC0
)
1642 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1643 else if (clock
== PRCMU_PLLSOC1
)
1644 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1645 else if (clock
== PRCMU_ARMSS
)
1646 return armss_rate();
1647 else if (clock
== PRCMU_PLLDDR
)
1648 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1649 else if (clock
== PRCMU_PLLDSI
)
1650 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1652 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1653 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1654 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1655 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1660 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1662 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1663 return ROOT_CLOCK_RATE
;
1664 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1665 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1666 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1667 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1668 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1669 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1670 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1675 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1679 div
= (src_rate
/ rate
);
1682 if (rate
< (src_rate
/ div
))
1687 static long round_clock_rate(u8 clock
, unsigned long rate
)
1691 unsigned long src_rate
;
1694 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1695 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1696 clk_mgt
[clock
].branch
);
1697 div
= clock_divider(src_rate
, rate
);
1698 if (val
& PRCM_CLK_MGT_CLK38
) {
1699 if (clk_mgt
[clock
].clk38div
) {
1705 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1706 u64 r
= (src_rate
* 10);
1708 (void)do_div(r
, 25);
1710 return (unsigned long)r
;
1712 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1714 return rounded_rate
;
1717 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1718 static struct cpufreq_frequency_table db8500_cpufreq_table
[] = {
1719 { .frequency
= 200000, .driver_data
= ARM_EXTCLK
,},
1720 { .frequency
= 400000, .driver_data
= ARM_50_OPP
,},
1721 { .frequency
= 800000, .driver_data
= ARM_100_OPP
,},
1722 { .frequency
= CPUFREQ_TABLE_END
,}, /* To be used for MAX_OPP. */
1723 { .frequency
= CPUFREQ_TABLE_END
,},
1726 static long round_armss_rate(unsigned long rate
)
1728 struct cpufreq_frequency_table
*pos
;
1731 /* cpufreq table frequencies is in KHz. */
1734 /* Find the corresponding arm opp from the cpufreq table. */
1735 cpufreq_for_each_entry(pos
, db8500_cpufreq_table
) {
1736 freq
= pos
->frequency
;
1741 /* Return the last valid value, even if a match was not found. */
1745 #define MIN_PLL_VCO_RATE 600000000ULL
1746 #define MAX_PLL_VCO_RATE 1680640000ULL
1748 static long round_plldsi_rate(unsigned long rate
)
1750 long rounded_rate
= 0;
1751 unsigned long src_rate
;
1755 src_rate
= clock_rate(PRCMU_HDMICLK
);
1758 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1762 (void)do_div(d
, src_rate
);
1768 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1769 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1773 if (rounded_rate
== 0)
1774 rounded_rate
= (long)d
;
1777 if ((rate
- d
) < rem
) {
1779 rounded_rate
= (long)d
;
1782 return rounded_rate
;
1785 static long round_dsiclk_rate(unsigned long rate
)
1788 unsigned long src_rate
;
1791 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1793 div
= clock_divider(src_rate
, rate
);
1794 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1796 return rounded_rate
;
1799 static long round_dsiescclk_rate(unsigned long rate
)
1802 unsigned long src_rate
;
1805 src_rate
= clock_rate(PRCMU_TVCLK
);
1806 div
= clock_divider(src_rate
, rate
);
1807 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1809 return rounded_rate
;
1812 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1814 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1815 return round_clock_rate(clock
, rate
);
1816 else if (clock
== PRCMU_ARMSS
)
1817 return round_armss_rate(rate
);
1818 else if (clock
== PRCMU_PLLDSI
)
1819 return round_plldsi_rate(rate
);
1820 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1821 return round_dsiclk_rate(rate
);
1822 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1823 return round_dsiescclk_rate(rate
);
1825 return (long)prcmu_clock_rate(clock
);
1828 static void set_clock_rate(u8 clock
, unsigned long rate
)
1832 unsigned long src_rate
;
1833 unsigned long flags
;
1835 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1837 /* Grab the HW semaphore. */
1838 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1841 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1842 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1843 clk_mgt
[clock
].branch
);
1844 div
= clock_divider(src_rate
, rate
);
1845 if (val
& PRCM_CLK_MGT_CLK38
) {
1846 if (clk_mgt
[clock
].clk38div
) {
1848 val
|= PRCM_CLK_MGT_CLK38DIV
;
1850 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1852 } else if (clock
== PRCMU_SGACLK
) {
1853 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1854 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1856 u64 r
= (src_rate
* 10);
1858 (void)do_div(r
, 25);
1860 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1864 val
|= min(div
, (u32
)31);
1866 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1867 val
|= min(div
, (u32
)31);
1869 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1871 /* Release the HW semaphore. */
1872 writel(0, PRCM_SEM
);
1874 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1877 static int set_armss_rate(unsigned long rate
)
1879 struct cpufreq_frequency_table
*pos
;
1881 /* cpufreq table frequencies is in KHz. */
1884 /* Find the corresponding arm opp from the cpufreq table. */
1885 cpufreq_for_each_entry(pos
, db8500_cpufreq_table
)
1886 if (pos
->frequency
== rate
)
1889 if (pos
->frequency
!= rate
)
1892 /* Set the new arm opp. */
1893 return db8500_prcmu_set_arm_opp(pos
->driver_data
);
1896 static int set_plldsi_rate(unsigned long rate
)
1898 unsigned long src_rate
;
1903 src_rate
= clock_rate(PRCMU_HDMICLK
);
1906 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1911 (void)do_div(d
, src_rate
);
1916 hwrate
= (d
* src_rate
);
1917 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1918 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1920 (void)do_div(hwrate
, r
);
1921 if (rate
< hwrate
) {
1923 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1924 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1927 if ((rate
- hwrate
) < rem
) {
1928 rem
= (rate
- hwrate
);
1929 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1930 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1936 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1937 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1942 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
1947 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
1948 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
1950 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
1951 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
1952 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
1954 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1955 val
&= ~dsiclk
[n
].divsel_mask
;
1956 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
1957 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1960 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
1965 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
1966 val
= readl(PRCM_DSITVCLK_DIV
);
1967 val
&= ~dsiescclk
[n
].div_mask
;
1968 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
1969 writel(val
, PRCM_DSITVCLK_DIV
);
1972 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
1974 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1975 set_clock_rate(clock
, rate
);
1976 else if (clock
== PRCMU_ARMSS
)
1977 return set_armss_rate(rate
);
1978 else if (clock
== PRCMU_PLLDSI
)
1979 return set_plldsi_rate(rate
);
1980 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1981 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
1982 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1983 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
1987 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
1989 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
1990 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
1993 mutex_lock(&mb4_transfer
.lock
);
1995 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1998 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1999 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
2000 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
2001 writeb(DDR_PWR_STATE_ON
,
2002 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
2003 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
2005 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2006 wait_for_completion(&mb4_transfer
.work
);
2008 mutex_unlock(&mb4_transfer
.lock
);
2013 int db8500_prcmu_config_hotdog(u8 threshold
)
2015 mutex_lock(&mb4_transfer
.lock
);
2017 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2020 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
2021 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2023 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2024 wait_for_completion(&mb4_transfer
.work
);
2026 mutex_unlock(&mb4_transfer
.lock
);
2031 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
2033 mutex_lock(&mb4_transfer
.lock
);
2035 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2038 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
2039 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
2040 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
2041 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
2042 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2044 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2045 wait_for_completion(&mb4_transfer
.work
);
2047 mutex_unlock(&mb4_transfer
.lock
);
2052 static int config_hot_period(u16 val
)
2054 mutex_lock(&mb4_transfer
.lock
);
2056 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2059 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
2060 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2062 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2063 wait_for_completion(&mb4_transfer
.work
);
2065 mutex_unlock(&mb4_transfer
.lock
);
2070 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2072 if (cycles32k
== 0xFFFF)
2075 return config_hot_period(cycles32k
);
2078 int db8500_prcmu_stop_temp_sense(void)
2080 return config_hot_period(0xFFFF);
2083 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2086 mutex_lock(&mb4_transfer
.lock
);
2088 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2091 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2092 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2093 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2094 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2096 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2098 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2099 wait_for_completion(&mb4_transfer
.work
);
2101 mutex_unlock(&mb4_transfer
.lock
);
2107 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2109 BUG_ON(num
== 0 || num
> 0xf);
2110 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2111 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2112 A9WDOG_AUTO_OFF_DIS
);
2114 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog
);
2116 int db8500_prcmu_enable_a9wdog(u8 id
)
2118 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2120 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog
);
2122 int db8500_prcmu_disable_a9wdog(u8 id
)
2124 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2126 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog
);
2128 int db8500_prcmu_kick_a9wdog(u8 id
)
2130 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2132 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog
);
2135 * timeout is 28 bit, in ms.
2137 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2139 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2140 (id
& A9WDOG_ID_MASK
) |
2142 * Put the lowest 28 bits of timeout at
2143 * offset 4. Four first bits are used for id.
2145 (u8
)((timeout
<< 4) & 0xf0),
2146 (u8
)((timeout
>> 4) & 0xff),
2147 (u8
)((timeout
>> 12) & 0xff),
2148 (u8
)((timeout
>> 20) & 0xff));
2150 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog
);
2153 * prcmu_abb_read() - Read register value(s) from the ABB.
2154 * @slave: The I2C slave address.
2155 * @reg: The (start) register address.
2156 * @value: The read out value(s).
2157 * @size: The number of registers to read.
2159 * Reads register value(s) from the ABB.
2160 * @size has to be 1 for the current firmware version.
2162 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2169 mutex_lock(&mb5_transfer
.lock
);
2171 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2174 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2175 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2176 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2177 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2178 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2180 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2182 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2183 msecs_to_jiffies(20000))) {
2184 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2188 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2192 *value
= mb5_transfer
.ack
.value
;
2194 mutex_unlock(&mb5_transfer
.lock
);
2200 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2201 * @slave: The I2C slave address.
2202 * @reg: The (start) register address.
2203 * @value: The value(s) to write.
2204 * @mask: The mask(s) to use.
2205 * @size: The number of registers to write.
2207 * Writes masked register value(s) to the ABB.
2208 * For each @value, only the bits set to 1 in the corresponding @mask
2209 * will be written. The other bits are not changed.
2210 * @size has to be 1 for the current firmware version.
2212 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2219 mutex_lock(&mb5_transfer
.lock
);
2221 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2224 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2225 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2226 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2227 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2228 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2230 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2232 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2233 msecs_to_jiffies(20000))) {
2234 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2238 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2241 mutex_unlock(&mb5_transfer
.lock
);
2247 * prcmu_abb_write() - Write register value(s) to the ABB.
2248 * @slave: The I2C slave address.
2249 * @reg: The (start) register address.
2250 * @value: The value(s) to write.
2251 * @size: The number of registers to write.
2253 * Writes register value(s) to the ABB.
2254 * @size has to be 1 for the current firmware version.
2256 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2260 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2264 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2266 int prcmu_ac_wake_req(void)
2271 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2273 val
= readl(PRCM_HOSTACCESS_REQ
);
2274 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2275 goto unlock_and_return
;
2277 atomic_set(&ac_wake_req_state
, 1);
2280 * Force Modem Wake-up before hostaccess_req ping-pong.
2281 * It prevents Modem to enter in Sleep while acking the hostaccess
2282 * request. The 31us delay has been calculated by HWI.
2284 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2285 writel(val
, PRCM_HOSTACCESS_REQ
);
2289 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2290 writel(val
, PRCM_HOSTACCESS_REQ
);
2292 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2293 msecs_to_jiffies(5000))) {
2294 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2300 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2305 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2307 void prcmu_ac_sleep_req(void)
2311 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2313 val
= readl(PRCM_HOSTACCESS_REQ
);
2314 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2315 goto unlock_and_return
;
2317 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2318 PRCM_HOSTACCESS_REQ
);
2320 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2321 msecs_to_jiffies(5000))) {
2322 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2326 atomic_set(&ac_wake_req_state
, 0);
2329 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2332 bool db8500_prcmu_is_ac_wake_requested(void)
2334 return (atomic_read(&ac_wake_req_state
) != 0);
2338 * db8500_prcmu_system_reset - System reset
2340 * Saves the reset reason code and then sets the APE_SOFTRST register which
2341 * fires interrupt to fw
2343 void db8500_prcmu_system_reset(u16 reset_code
)
2345 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2346 writel(1, PRCM_APE_SOFTRST
);
2350 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2352 * Retrieves the reset reason code stored by prcmu_system_reset() before
2355 u16
db8500_prcmu_get_reset_code(void)
2357 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2361 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2363 void db8500_prcmu_modem_reset(void)
2365 mutex_lock(&mb1_transfer
.lock
);
2367 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2370 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2371 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2372 wait_for_completion(&mb1_transfer
.work
);
2375 * No need to check return from PRCMU as modem should go in reset state
2376 * This state is already managed by upper layer
2379 mutex_unlock(&mb1_transfer
.lock
);
2382 static void ack_dbb_wakeup(void)
2384 unsigned long flags
;
2386 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2388 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2391 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2392 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2394 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2397 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2399 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2403 static bool read_mailbox_0(void)
2410 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2412 case MB0H_WAKEUP_EXE
:
2413 case MB0H_WAKEUP_SLEEP
:
2414 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2415 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2417 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2419 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2420 complete(&mb0_transfer
.ac_wake_work
);
2421 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2422 complete(&mb3_transfer
.sysclk_work
);
2424 ev
&= mb0_transfer
.req
.dbb_irqs
;
2426 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2427 if (ev
& prcmu_irq_bit
[n
])
2428 generic_handle_irq(irq_find_mapping(db8500_irq_domain
, n
));
2433 print_unknown_header_warning(0, header
);
2437 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2441 static bool read_mailbox_1(void)
2443 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2444 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2445 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2446 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2447 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2448 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2449 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2450 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2451 complete(&mb1_transfer
.work
);
2455 static bool read_mailbox_2(void)
2457 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2458 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2459 complete(&mb2_transfer
.work
);
2463 static bool read_mailbox_3(void)
2465 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2469 static bool read_mailbox_4(void)
2472 bool do_complete
= true;
2474 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2479 case MB4H_HOT_PERIOD
:
2480 case MB4H_A9WDOG_CONF
:
2481 case MB4H_A9WDOG_EN
:
2482 case MB4H_A9WDOG_DIS
:
2483 case MB4H_A9WDOG_LOAD
:
2484 case MB4H_A9WDOG_KICK
:
2487 print_unknown_header_warning(4, header
);
2488 do_complete
= false;
2492 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2495 complete(&mb4_transfer
.work
);
2500 static bool read_mailbox_5(void)
2502 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2503 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2504 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2505 complete(&mb5_transfer
.work
);
2509 static bool read_mailbox_6(void)
2511 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2515 static bool read_mailbox_7(void)
2517 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2521 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2532 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2538 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2539 if (unlikely(!bits
))
2543 for (n
= 0; bits
; n
++) {
2544 if (bits
& MBOX_BIT(n
)) {
2545 bits
-= MBOX_BIT(n
);
2546 if (read_mailbox
[n
]())
2547 r
= IRQ_WAKE_THREAD
;
2553 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2559 static void prcmu_mask_work(struct work_struct
*work
)
2561 unsigned long flags
;
2563 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2567 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2570 static void prcmu_irq_mask(struct irq_data
*d
)
2572 unsigned long flags
;
2574 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2576 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->hwirq
];
2578 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2580 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2581 schedule_work(&mb0_transfer
.mask_work
);
2584 static void prcmu_irq_unmask(struct irq_data
*d
)
2586 unsigned long flags
;
2588 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2590 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->hwirq
];
2592 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2594 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2595 schedule_work(&mb0_transfer
.mask_work
);
2598 static void noop(struct irq_data
*d
)
2602 static struct irq_chip prcmu_irq_chip
= {
2604 .irq_disable
= prcmu_irq_mask
,
2606 .irq_mask
= prcmu_irq_mask
,
2607 .irq_unmask
= prcmu_irq_unmask
,
2610 static __init
char *fw_project_name(u32 project
)
2613 case PRCMU_FW_PROJECT_U8500
:
2615 case PRCMU_FW_PROJECT_U8400
:
2617 case PRCMU_FW_PROJECT_U9500
:
2619 case PRCMU_FW_PROJECT_U8500_MBB
:
2621 case PRCMU_FW_PROJECT_U8500_C1
:
2623 case PRCMU_FW_PROJECT_U8500_C2
:
2625 case PRCMU_FW_PROJECT_U8500_C3
:
2627 case PRCMU_FW_PROJECT_U8500_C4
:
2629 case PRCMU_FW_PROJECT_U9500_MBL
:
2631 case PRCMU_FW_PROJECT_U8500_MBL
:
2633 case PRCMU_FW_PROJECT_U8500_MBL2
:
2634 return "U8500 MBL2";
2635 case PRCMU_FW_PROJECT_U8520
:
2637 case PRCMU_FW_PROJECT_U8420
:
2639 case PRCMU_FW_PROJECT_U9540
:
2641 case PRCMU_FW_PROJECT_A9420
:
2643 case PRCMU_FW_PROJECT_L8540
:
2645 case PRCMU_FW_PROJECT_L8580
:
2652 static int db8500_irq_map(struct irq_domain
*d
, unsigned int virq
,
2653 irq_hw_number_t hwirq
)
2655 irq_set_chip_and_handler(virq
, &prcmu_irq_chip
,
2657 set_irq_flags(virq
, IRQF_VALID
);
2662 static struct irq_domain_ops db8500_irq_ops
= {
2663 .map
= db8500_irq_map
,
2664 .xlate
= irq_domain_xlate_twocell
,
2667 static int db8500_irq_init(struct device_node
*np
)
2671 db8500_irq_domain
= irq_domain_add_simple(
2672 np
, NUM_PRCMU_WAKEUPS
, 0,
2673 &db8500_irq_ops
, NULL
);
2675 if (!db8500_irq_domain
) {
2676 pr_err("Failed to create irqdomain\n");
2680 /* All wakeups will be used, so create mappings for all */
2681 for (i
= 0; i
< NUM_PRCMU_WAKEUPS
; i
++)
2682 irq_create_mapping(db8500_irq_domain
, i
);
2687 static void dbx500_fw_version_init(struct platform_device
*pdev
,
2690 struct resource
*res
;
2691 void __iomem
*tcpm_base
;
2694 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
2698 "Error: no prcmu tcpm memory region provided\n");
2701 tcpm_base
= ioremap(res
->start
, resource_size(res
));
2703 dev_err(&pdev
->dev
, "no prcmu tcpm mem region provided\n");
2707 version
= readl(tcpm_base
+ version_offset
);
2708 fw_info
.version
.project
= (version
& 0xFF);
2709 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2710 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2711 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2712 strncpy(fw_info
.version
.project_name
,
2713 fw_project_name(fw_info
.version
.project
),
2714 PRCMU_FW_PROJECT_NAME_LEN
);
2715 fw_info
.valid
= true;
2716 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2717 fw_info
.version
.project_name
,
2718 fw_info
.version
.project
,
2719 fw_info
.version
.api_version
,
2720 fw_info
.version
.func_version
,
2721 fw_info
.version
.errata
);
2725 void __init
db8500_prcmu_early_init(u32 phy_base
, u32 size
)
2728 * This is a temporary remap to bring up the clocks. It is
2729 * subsequently replaces with a real remap. After the merge of
2730 * the mailbox subsystem all of this early code goes away, and the
2731 * clock driver can probe independently. An early initcall will
2732 * still be needed, but it can be diverted into drivers/clk/ux500.
2734 prcmu_base
= ioremap(phy_base
, size
);
2736 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__
);
2738 spin_lock_init(&mb0_transfer
.lock
);
2739 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2740 mutex_init(&mb0_transfer
.ac_wake_lock
);
2741 init_completion(&mb0_transfer
.ac_wake_work
);
2742 mutex_init(&mb1_transfer
.lock
);
2743 init_completion(&mb1_transfer
.work
);
2744 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2745 mutex_init(&mb2_transfer
.lock
);
2746 init_completion(&mb2_transfer
.work
);
2747 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2748 spin_lock_init(&mb3_transfer
.lock
);
2749 mutex_init(&mb3_transfer
.sysclk_lock
);
2750 init_completion(&mb3_transfer
.sysclk_work
);
2751 mutex_init(&mb4_transfer
.lock
);
2752 init_completion(&mb4_transfer
.work
);
2753 mutex_init(&mb5_transfer
.lock
);
2754 init_completion(&mb5_transfer
.work
);
2756 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2759 static void __init
init_prcm_registers(void)
2763 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2764 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2765 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2766 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2770 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2772 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2773 REGULATOR_SUPPLY("v-ape", NULL
),
2774 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2775 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2776 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2777 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2778 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2779 /* "v-mmc" changed to "vcore" in the mainline kernel */
2780 REGULATOR_SUPPLY("vcore", "sdi0"),
2781 REGULATOR_SUPPLY("vcore", "sdi1"),
2782 REGULATOR_SUPPLY("vcore", "sdi2"),
2783 REGULATOR_SUPPLY("vcore", "sdi3"),
2784 REGULATOR_SUPPLY("vcore", "sdi4"),
2785 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2786 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2787 /* "v-uart" changed to "vcore" in the mainline kernel */
2788 REGULATOR_SUPPLY("vcore", "uart0"),
2789 REGULATOR_SUPPLY("vcore", "uart1"),
2790 REGULATOR_SUPPLY("vcore", "uart2"),
2791 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2792 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2793 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2796 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2797 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2798 /* AV8100 regulator */
2799 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2802 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2803 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2804 REGULATOR_SUPPLY("vsupply", "mcde"),
2807 /* SVA MMDSP regulator switch */
2808 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2809 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2812 /* SVA pipe regulator switch */
2813 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2814 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2817 /* SIA MMDSP regulator switch */
2818 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2819 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2822 /* SIA pipe regulator switch */
2823 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2824 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2827 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2828 REGULATOR_SUPPLY("v-mali", NULL
),
2831 /* ESRAM1 and 2 regulator switch */
2832 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2833 REGULATOR_SUPPLY("esram12", "cm_control"),
2836 /* ESRAM3 and 4 regulator switch */
2837 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2838 REGULATOR_SUPPLY("v-esram34", "mcde"),
2839 REGULATOR_SUPPLY("esram34", "cm_control"),
2840 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2843 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2844 [DB8500_REGULATOR_VAPE
] = {
2846 .name
= "db8500-vape",
2847 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2850 .consumer_supplies
= db8500_vape_consumers
,
2851 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2853 [DB8500_REGULATOR_VARM
] = {
2855 .name
= "db8500-varm",
2856 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2859 [DB8500_REGULATOR_VMODEM
] = {
2861 .name
= "db8500-vmodem",
2862 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2865 [DB8500_REGULATOR_VPLL
] = {
2867 .name
= "db8500-vpll",
2868 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2871 [DB8500_REGULATOR_VSMPS1
] = {
2873 .name
= "db8500-vsmps1",
2874 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2877 [DB8500_REGULATOR_VSMPS2
] = {
2879 .name
= "db8500-vsmps2",
2880 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2882 .consumer_supplies
= db8500_vsmps2_consumers
,
2883 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2885 [DB8500_REGULATOR_VSMPS3
] = {
2887 .name
= "db8500-vsmps3",
2888 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2891 [DB8500_REGULATOR_VRF1
] = {
2893 .name
= "db8500-vrf1",
2894 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2897 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2898 /* dependency to u8500-vape is handled outside regulator framework */
2900 .name
= "db8500-sva-mmdsp",
2901 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2903 .consumer_supplies
= db8500_svammdsp_consumers
,
2904 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2906 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2908 /* "ret" means "retention" */
2909 .name
= "db8500-sva-mmdsp-ret",
2910 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2913 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2914 /* dependency to u8500-vape is handled outside regulator framework */
2916 .name
= "db8500-sva-pipe",
2917 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2919 .consumer_supplies
= db8500_svapipe_consumers
,
2920 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2922 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2923 /* dependency to u8500-vape is handled outside regulator framework */
2925 .name
= "db8500-sia-mmdsp",
2926 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2928 .consumer_supplies
= db8500_siammdsp_consumers
,
2929 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2931 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2933 .name
= "db8500-sia-mmdsp-ret",
2934 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2937 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2938 /* dependency to u8500-vape is handled outside regulator framework */
2940 .name
= "db8500-sia-pipe",
2941 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2943 .consumer_supplies
= db8500_siapipe_consumers
,
2944 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2946 [DB8500_REGULATOR_SWITCH_SGA
] = {
2947 .supply_regulator
= "db8500-vape",
2949 .name
= "db8500-sga",
2950 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2952 .consumer_supplies
= db8500_sga_consumers
,
2953 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2956 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2957 .supply_regulator
= "db8500-vape",
2959 .name
= "db8500-b2r2-mcde",
2960 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2962 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2963 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2965 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2967 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2968 * no need to hold Vape
2971 .name
= "db8500-esram12",
2972 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2974 .consumer_supplies
= db8500_esram12_consumers
,
2975 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2977 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2979 .name
= "db8500-esram12-ret",
2980 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2983 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
2985 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2986 * no need to hold Vape
2989 .name
= "db8500-esram34",
2990 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2992 .consumer_supplies
= db8500_esram34_consumers
,
2993 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
2995 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
2997 .name
= "db8500-esram34-ret",
2998 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
3003 static struct ux500_wdt_data db8500_wdt_pdata
= {
3004 .timeout
= 600, /* 10 minutes */
3005 .has_28_bits_resolution
= true,
3011 static struct resource db8500_thsens_resources
[] = {
3013 .name
= "IRQ_HOTMON_LOW",
3014 .start
= IRQ_PRCMU_HOTMON_LOW
,
3015 .end
= IRQ_PRCMU_HOTMON_LOW
,
3016 .flags
= IORESOURCE_IRQ
,
3019 .name
= "IRQ_HOTMON_HIGH",
3020 .start
= IRQ_PRCMU_HOTMON_HIGH
,
3021 .end
= IRQ_PRCMU_HOTMON_HIGH
,
3022 .flags
= IORESOURCE_IRQ
,
3026 static struct db8500_thsens_platform_data db8500_thsens_data
= {
3029 .type
= THERMAL_TRIP_ACTIVE
,
3031 [0] = "thermal-cpufreq-0",
3036 .type
= THERMAL_TRIP_ACTIVE
,
3038 [0] = "thermal-cpufreq-0",
3043 .type
= THERMAL_TRIP_ACTIVE
,
3045 [0] = "thermal-cpufreq-0",
3050 .type
= THERMAL_TRIP_CRITICAL
,
3055 static const struct mfd_cell common_prcmu_devs
[] = {
3057 .name
= "ux500_wdt",
3058 .platform_data
= &db8500_wdt_pdata
,
3059 .pdata_size
= sizeof(db8500_wdt_pdata
),
3064 static const struct mfd_cell db8500_prcmu_devs
[] = {
3066 .name
= "db8500-prcmu-regulators",
3067 .of_compatible
= "stericsson,db8500-prcmu-regulator",
3068 .platform_data
= &db8500_regulators
,
3069 .pdata_size
= sizeof(db8500_regulators
),
3072 .name
= "cpufreq-ux500",
3073 .of_compatible
= "stericsson,cpufreq-ux500",
3074 .platform_data
= &db8500_cpufreq_table
,
3075 .pdata_size
= sizeof(db8500_cpufreq_table
),
3078 .name
= "cpuidle-dbx500",
3079 .of_compatible
= "stericsson,cpuidle-dbx500",
3082 .name
= "db8500-thermal",
3083 .num_resources
= ARRAY_SIZE(db8500_thsens_resources
),
3084 .resources
= db8500_thsens_resources
,
3085 .platform_data
= &db8500_thsens_data
,
3086 .pdata_size
= sizeof(db8500_thsens_data
),
3090 static void db8500_prcmu_update_cpufreq(void)
3092 if (prcmu_has_arm_maxopp()) {
3093 db8500_cpufreq_table
[3].frequency
= 1000000;
3094 db8500_cpufreq_table
[3].driver_data
= ARM_MAX_OPP
;
3098 static int db8500_prcmu_register_ab8500(struct device
*parent
,
3099 struct ab8500_platform_data
*pdata
)
3101 struct device_node
*np
;
3102 struct resource ab8500_resource
;
3103 const struct mfd_cell ab8500_cell
= {
3104 .name
= "ab8500-core",
3105 .of_compatible
= "stericsson,ab8500",
3106 .id
= AB8500_VERSION_AB8500
,
3107 .platform_data
= pdata
,
3108 .pdata_size
= sizeof(struct ab8500_platform_data
),
3109 .resources
= &ab8500_resource
,
3113 if (!parent
->of_node
)
3116 /* Look up the device node, sneak the IRQ out of it */
3117 for_each_child_of_node(parent
->of_node
, np
) {
3118 if (of_device_is_compatible(np
, ab8500_cell
.of_compatible
))
3122 dev_info(parent
, "could not find AB8500 node in the device tree\n");
3125 of_irq_to_resource_table(np
, &ab8500_resource
, 1);
3127 return mfd_add_devices(parent
, 0, &ab8500_cell
, 1, NULL
, 0, NULL
);
3131 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3134 static int db8500_prcmu_probe(struct platform_device
*pdev
)
3136 struct device_node
*np
= pdev
->dev
.of_node
;
3137 struct prcmu_pdata
*pdata
= dev_get_platdata(&pdev
->dev
);
3138 int irq
= 0, err
= 0;
3139 struct resource
*res
;
3141 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu");
3143 dev_err(&pdev
->dev
, "no prcmu memory region provided\n");
3146 prcmu_base
= devm_ioremap(&pdev
->dev
, res
->start
, resource_size(res
));
3149 "failed to ioremap prcmu register memory\n");
3152 init_prcm_registers();
3153 dbx500_fw_version_init(pdev
, pdata
->version_offset
);
3154 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu-tcdm");
3156 dev_err(&pdev
->dev
, "no prcmu tcdm region provided\n");
3159 tcdm_base
= devm_ioremap(&pdev
->dev
, res
->start
,
3160 resource_size(res
));
3163 "failed to ioremap prcmu-tcdm register memory\n");
3167 /* Clean up the mailbox interrupts after pre-kernel code. */
3168 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
3170 irq
= platform_get_irq(pdev
, 0);
3172 dev_err(&pdev
->dev
, "no prcmu irq provided\n");
3176 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
3177 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
3179 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3183 db8500_irq_init(np
);
3185 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3187 db8500_prcmu_update_cpufreq();
3189 err
= mfd_add_devices(&pdev
->dev
, 0, common_prcmu_devs
,
3190 ARRAY_SIZE(common_prcmu_devs
), NULL
, 0, db8500_irq_domain
);
3192 pr_err("prcmu: Failed to add subdevices\n");
3196 /* TODO: Remove restriction when clk definitions are available. */
3197 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3199 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0,
3202 mfd_remove_devices(&pdev
->dev
);
3203 pr_err("prcmu: Failed to add subdevices\n");
3208 err
= db8500_prcmu_register_ab8500(&pdev
->dev
, pdata
->ab_platdata
);
3210 mfd_remove_devices(&pdev
->dev
);
3211 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3215 pr_info("DB8500 PRCMU initialized\n");
3218 static const struct of_device_id db8500_prcmu_match
[] = {
3219 { .compatible
= "stericsson,db8500-prcmu"},
3223 static struct platform_driver db8500_prcmu_driver
= {
3225 .name
= "db8500-prcmu",
3226 .of_match_table
= db8500_prcmu_match
,
3228 .probe
= db8500_prcmu_probe
,
3231 static int __init
db8500_prcmu_init(void)
3233 return platform_driver_register(&db8500_prcmu_driver
);
3236 core_initcall(db8500_prcmu_init
);
3238 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3239 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3240 MODULE_LICENSE("GPL v2");