usb: typec: intel_pmc_mux: Add support for USB4
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob10dd470876b30256374996319304b5c0938c7a73
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
49 #include <trace/events/ext4.h>
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 return csum;
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
86 __u32 provided, calculated;
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
101 return provided == calculated;
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
107 __u32 csum;
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
124 trace_ext4_begin_ordered_truncate(inode, new_size);
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 if (ext4_has_inline_data(inode))
156 return 0;
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
165 * Called at the last iput() if i_nlink is zero.
167 void ext4_evict_inode(struct inode *inode)
169 handle_t *handle;
170 int err;
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 trace_ext4_evict_inode(inode);
181 if (inode->i_nlink) {
183 * When journalling data dirty buffers are tracked only in the
184 * journal. So although mm thinks everything is clean and
185 * ready for reaping the inode might still have some pages to
186 * write in the running transaction or waiting to be
187 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 * (via truncate_inode_pages()) to discard these buffers can
189 * cause data loss. Also even if we did not discard these
190 * buffers, we would have no way to find them after the inode
191 * is reaped and thus user could see stale data if he tries to
192 * read them before the transaction is checkpointed. So be
193 * careful and force everything to disk here... We use
194 * ei->i_datasync_tid to store the newest transaction
195 * containing inode's data.
197 * Note that directories do not have this problem because they
198 * don't use page cache.
200 if (inode->i_ino != EXT4_JOURNAL_INO &&
201 ext4_should_journal_data(inode) &&
202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
210 truncate_inode_pages_final(&inode->i_data);
212 goto no_delete;
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 * flag but we still need to remove the inode from the writeback lists.
228 if (!list_empty_careful(&inode->i_io_list)) {
229 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 inode_io_list_del(inode);
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
237 sb_start_intwrite(inode->i_sb);
239 if (!IS_NOQUOTA(inode))
240 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243 * Block bitmap, group descriptor, and inode are accounted in both
244 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
246 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247 ext4_blocks_for_truncate(inode) + extra_credits - 3);
248 if (IS_ERR(handle)) {
249 ext4_std_error(inode->i_sb, PTR_ERR(handle));
251 * If we're going to skip the normal cleanup, we still need to
252 * make sure that the in-core orphan linked list is properly
253 * cleaned up.
255 ext4_orphan_del(NULL, inode);
256 sb_end_intwrite(inode->i_sb);
257 goto no_delete;
260 if (IS_SYNC(inode))
261 ext4_handle_sync(handle);
264 * Set inode->i_size to 0 before calling ext4_truncate(). We need
265 * special handling of symlinks here because i_size is used to
266 * determine whether ext4_inode_info->i_data contains symlink data or
267 * block mappings. Setting i_size to 0 will remove its fast symlink
268 * status. Erase i_data so that it becomes a valid empty block map.
270 if (ext4_inode_is_fast_symlink(inode))
271 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272 inode->i_size = 0;
273 err = ext4_mark_inode_dirty(handle, inode);
274 if (err) {
275 ext4_warning(inode->i_sb,
276 "couldn't mark inode dirty (err %d)", err);
277 goto stop_handle;
279 if (inode->i_blocks) {
280 err = ext4_truncate(inode);
281 if (err) {
282 ext4_error_err(inode->i_sb, -err,
283 "couldn't truncate inode %lu (err %d)",
284 inode->i_ino, err);
285 goto stop_handle;
289 /* Remove xattr references. */
290 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 extra_credits);
292 if (err) {
293 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295 ext4_journal_stop(handle);
296 ext4_orphan_del(NULL, inode);
297 sb_end_intwrite(inode->i_sb);
298 ext4_xattr_inode_array_free(ea_inode_array);
299 goto no_delete;
303 * Kill off the orphan record which ext4_truncate created.
304 * AKPM: I think this can be inside the above `if'.
305 * Note that ext4_orphan_del() has to be able to cope with the
306 * deletion of a non-existent orphan - this is because we don't
307 * know if ext4_truncate() actually created an orphan record.
308 * (Well, we could do this if we need to, but heck - it works)
310 ext4_orphan_del(handle, inode);
311 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
314 * One subtle ordering requirement: if anything has gone wrong
315 * (transaction abort, IO errors, whatever), then we can still
316 * do these next steps (the fs will already have been marked as
317 * having errors), but we can't free the inode if the mark_dirty
318 * fails.
320 if (ext4_mark_inode_dirty(handle, inode))
321 /* If that failed, just do the required in-core inode clear. */
322 ext4_clear_inode(inode);
323 else
324 ext4_free_inode(handle, inode);
325 ext4_journal_stop(handle);
326 sb_end_intwrite(inode->i_sb);
327 ext4_xattr_inode_array_free(ea_inode_array);
328 return;
329 no_delete:
330 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
336 return &EXT4_I(inode)->i_reserved_quota;
338 #endif
341 * Called with i_data_sem down, which is important since we can call
342 * ext4_discard_preallocations() from here.
344 void ext4_da_update_reserve_space(struct inode *inode,
345 int used, int quota_claim)
347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348 struct ext4_inode_info *ei = EXT4_I(inode);
350 spin_lock(&ei->i_block_reservation_lock);
351 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352 if (unlikely(used > ei->i_reserved_data_blocks)) {
353 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354 "with only %d reserved data blocks",
355 __func__, inode->i_ino, used,
356 ei->i_reserved_data_blocks);
357 WARN_ON(1);
358 used = ei->i_reserved_data_blocks;
361 /* Update per-inode reservations */
362 ei->i_reserved_data_blocks -= used;
363 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
365 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
367 /* Update quota subsystem for data blocks */
368 if (quota_claim)
369 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 else {
372 * We did fallocate with an offset that is already delayed
373 * allocated. So on delayed allocated writeback we should
374 * not re-claim the quota for fallocated blocks.
376 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
380 * If we have done all the pending block allocations and if
381 * there aren't any writers on the inode, we can discard the
382 * inode's preallocations.
384 if ((ei->i_reserved_data_blocks == 0) &&
385 !inode_is_open_for_write(inode))
386 ext4_discard_preallocations(inode);
389 static int __check_block_validity(struct inode *inode, const char *func,
390 unsigned int line,
391 struct ext4_map_blocks *map)
393 if (ext4_has_feature_journal(inode->i_sb) &&
394 (inode->i_ino ==
395 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396 return 0;
397 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
398 map->m_len)) {
399 ext4_error_inode(inode, func, line, map->m_pblk,
400 "lblock %lu mapped to illegal pblock %llu "
401 "(length %d)", (unsigned long) map->m_lblk,
402 map->m_pblk, map->m_len);
403 return -EFSCORRUPTED;
405 return 0;
408 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
409 ext4_lblk_t len)
411 int ret;
413 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
414 return fscrypt_zeroout_range(inode, lblk, pblk, len);
416 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
417 if (ret > 0)
418 ret = 0;
420 return ret;
423 #define check_block_validity(inode, map) \
424 __check_block_validity((inode), __func__, __LINE__, (map))
426 #ifdef ES_AGGRESSIVE_TEST
427 static void ext4_map_blocks_es_recheck(handle_t *handle,
428 struct inode *inode,
429 struct ext4_map_blocks *es_map,
430 struct ext4_map_blocks *map,
431 int flags)
433 int retval;
435 map->m_flags = 0;
437 * There is a race window that the result is not the same.
438 * e.g. xfstests #223 when dioread_nolock enables. The reason
439 * is that we lookup a block mapping in extent status tree with
440 * out taking i_data_sem. So at the time the unwritten extent
441 * could be converted.
443 down_read(&EXT4_I(inode)->i_data_sem);
444 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
445 retval = ext4_ext_map_blocks(handle, inode, map, 0);
446 } else {
447 retval = ext4_ind_map_blocks(handle, inode, map, 0);
449 up_read((&EXT4_I(inode)->i_data_sem));
452 * We don't check m_len because extent will be collpased in status
453 * tree. So the m_len might not equal.
455 if (es_map->m_lblk != map->m_lblk ||
456 es_map->m_flags != map->m_flags ||
457 es_map->m_pblk != map->m_pblk) {
458 printk("ES cache assertion failed for inode: %lu "
459 "es_cached ex [%d/%d/%llu/%x] != "
460 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
461 inode->i_ino, es_map->m_lblk, es_map->m_len,
462 es_map->m_pblk, es_map->m_flags, map->m_lblk,
463 map->m_len, map->m_pblk, map->m_flags,
464 retval, flags);
467 #endif /* ES_AGGRESSIVE_TEST */
470 * The ext4_map_blocks() function tries to look up the requested blocks,
471 * and returns if the blocks are already mapped.
473 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
474 * and store the allocated blocks in the result buffer head and mark it
475 * mapped.
477 * If file type is extents based, it will call ext4_ext_map_blocks(),
478 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
479 * based files
481 * On success, it returns the number of blocks being mapped or allocated. if
482 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
483 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
485 * It returns 0 if plain look up failed (blocks have not been allocated), in
486 * that case, @map is returned as unmapped but we still do fill map->m_len to
487 * indicate the length of a hole starting at map->m_lblk.
489 * It returns the error in case of allocation failure.
491 int ext4_map_blocks(handle_t *handle, struct inode *inode,
492 struct ext4_map_blocks *map, int flags)
494 struct extent_status es;
495 int retval;
496 int ret = 0;
497 #ifdef ES_AGGRESSIVE_TEST
498 struct ext4_map_blocks orig_map;
500 memcpy(&orig_map, map, sizeof(*map));
501 #endif
503 map->m_flags = 0;
504 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
505 flags, map->m_len, (unsigned long) map->m_lblk);
508 * ext4_map_blocks returns an int, and m_len is an unsigned int
510 if (unlikely(map->m_len > INT_MAX))
511 map->m_len = INT_MAX;
513 /* We can handle the block number less than EXT_MAX_BLOCKS */
514 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
515 return -EFSCORRUPTED;
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
519 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
520 map->m_pblk = ext4_es_pblock(&es) +
521 map->m_lblk - es.es_lblk;
522 map->m_flags |= ext4_es_is_written(&es) ?
523 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
524 retval = es.es_len - (map->m_lblk - es.es_lblk);
525 if (retval > map->m_len)
526 retval = map->m_len;
527 map->m_len = retval;
528 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
529 map->m_pblk = 0;
530 retval = es.es_len - (map->m_lblk - es.es_lblk);
531 if (retval > map->m_len)
532 retval = map->m_len;
533 map->m_len = retval;
534 retval = 0;
535 } else {
536 BUG();
538 #ifdef ES_AGGRESSIVE_TEST
539 ext4_map_blocks_es_recheck(handle, inode, map,
540 &orig_map, flags);
541 #endif
542 goto found;
546 * Try to see if we can get the block without requesting a new
547 * file system block.
549 down_read(&EXT4_I(inode)->i_data_sem);
550 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551 retval = ext4_ext_map_blocks(handle, inode, map, 0);
552 } else {
553 retval = ext4_ind_map_blocks(handle, inode, map, 0);
555 if (retval > 0) {
556 unsigned int status;
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 !(status & EXTENT_STATUS_WRITTEN) &&
570 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571 map->m_lblk + map->m_len - 1))
572 status |= EXTENT_STATUS_DELAYED;
573 ret = ext4_es_insert_extent(inode, map->m_lblk,
574 map->m_len, map->m_pblk, status);
575 if (ret < 0)
576 retval = ret;
578 up_read((&EXT4_I(inode)->i_data_sem));
580 found:
581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 ret = check_block_validity(inode, map);
583 if (ret != 0)
584 return ret;
587 /* If it is only a block(s) look up */
588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 return retval;
592 * Returns if the blocks have already allocated
594 * Note that if blocks have been preallocated
595 * ext4_ext_get_block() returns the create = 0
596 * with buffer head unmapped.
598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
600 * If we need to convert extent to unwritten
601 * we continue and do the actual work in
602 * ext4_ext_map_blocks()
604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605 return retval;
608 * Here we clear m_flags because after allocating an new extent,
609 * it will be set again.
611 map->m_flags &= ~EXT4_MAP_FLAGS;
614 * New blocks allocate and/or writing to unwritten extent
615 * will possibly result in updating i_data, so we take
616 * the write lock of i_data_sem, and call get_block()
617 * with create == 1 flag.
619 down_write(&EXT4_I(inode)->i_data_sem);
622 * We need to check for EXT4 here because migrate
623 * could have changed the inode type in between
625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
626 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627 } else {
628 retval = ext4_ind_map_blocks(handle, inode, map, flags);
630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
632 * We allocated new blocks which will result in
633 * i_data's format changing. Force the migrate
634 * to fail by clearing migrate flags
636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640 * Update reserved blocks/metadata blocks after successful
641 * block allocation which had been deferred till now. We don't
642 * support fallocate for non extent files. So we can update
643 * reserve space here.
645 if ((retval > 0) &&
646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
647 ext4_da_update_reserve_space(inode, retval, 1);
650 if (retval > 0) {
651 unsigned int status;
653 if (unlikely(retval != map->m_len)) {
654 ext4_warning(inode->i_sb,
655 "ES len assertion failed for inode "
656 "%lu: retval %d != map->m_len %d",
657 inode->i_ino, retval, map->m_len);
658 WARN_ON(1);
662 * We have to zeroout blocks before inserting them into extent
663 * status tree. Otherwise someone could look them up there and
664 * use them before they are really zeroed. We also have to
665 * unmap metadata before zeroing as otherwise writeback can
666 * overwrite zeros with stale data from block device.
668 if (flags & EXT4_GET_BLOCKS_ZERO &&
669 map->m_flags & EXT4_MAP_MAPPED &&
670 map->m_flags & EXT4_MAP_NEW) {
671 ret = ext4_issue_zeroout(inode, map->m_lblk,
672 map->m_pblk, map->m_len);
673 if (ret) {
674 retval = ret;
675 goto out_sem;
680 * If the extent has been zeroed out, we don't need to update
681 * extent status tree.
683 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
684 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
685 if (ext4_es_is_written(&es))
686 goto out_sem;
688 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
689 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
690 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
691 !(status & EXTENT_STATUS_WRITTEN) &&
692 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
693 map->m_lblk + map->m_len - 1))
694 status |= EXTENT_STATUS_DELAYED;
695 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
696 map->m_pblk, status);
697 if (ret < 0) {
698 retval = ret;
699 goto out_sem;
703 out_sem:
704 up_write((&EXT4_I(inode)->i_data_sem));
705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 ret = check_block_validity(inode, map);
707 if (ret != 0)
708 return ret;
711 * Inodes with freshly allocated blocks where contents will be
712 * visible after transaction commit must be on transaction's
713 * ordered data list.
715 if (map->m_flags & EXT4_MAP_NEW &&
716 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
717 !(flags & EXT4_GET_BLOCKS_ZERO) &&
718 !ext4_is_quota_file(inode) &&
719 ext4_should_order_data(inode)) {
720 loff_t start_byte =
721 (loff_t)map->m_lblk << inode->i_blkbits;
722 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
724 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
725 ret = ext4_jbd2_inode_add_wait(handle, inode,
726 start_byte, length);
727 else
728 ret = ext4_jbd2_inode_add_write(handle, inode,
729 start_byte, length);
730 if (ret)
731 return ret;
735 if (retval < 0)
736 ext_debug(inode, "failed with err %d\n", retval);
737 return retval;
741 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
742 * we have to be careful as someone else may be manipulating b_state as well.
744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
746 unsigned long old_state;
747 unsigned long new_state;
749 flags &= EXT4_MAP_FLAGS;
751 /* Dummy buffer_head? Set non-atomically. */
752 if (!bh->b_page) {
753 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
754 return;
757 * Someone else may be modifying b_state. Be careful! This is ugly but
758 * once we get rid of using bh as a container for mapping information
759 * to pass to / from get_block functions, this can go away.
761 do {
762 old_state = READ_ONCE(bh->b_state);
763 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
764 } while (unlikely(
765 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
768 static int _ext4_get_block(struct inode *inode, sector_t iblock,
769 struct buffer_head *bh, int flags)
771 struct ext4_map_blocks map;
772 int ret = 0;
774 if (ext4_has_inline_data(inode))
775 return -ERANGE;
777 map.m_lblk = iblock;
778 map.m_len = bh->b_size >> inode->i_blkbits;
780 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
781 flags);
782 if (ret > 0) {
783 map_bh(bh, inode->i_sb, map.m_pblk);
784 ext4_update_bh_state(bh, map.m_flags);
785 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
786 ret = 0;
787 } else if (ret == 0) {
788 /* hole case, need to fill in bh->b_size */
789 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 return ret;
794 int ext4_get_block(struct inode *inode, sector_t iblock,
795 struct buffer_head *bh, int create)
797 return _ext4_get_block(inode, iblock, bh,
798 create ? EXT4_GET_BLOCKS_CREATE : 0);
802 * Get block function used when preparing for buffered write if we require
803 * creating an unwritten extent if blocks haven't been allocated. The extent
804 * will be converted to written after the IO is complete.
806 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
807 struct buffer_head *bh_result, int create)
809 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
810 inode->i_ino, create);
811 return _ext4_get_block(inode, iblock, bh_result,
812 EXT4_GET_BLOCKS_IO_CREATE_EXT);
815 /* Maximum number of blocks we map for direct IO at once. */
816 #define DIO_MAX_BLOCKS 4096
819 * `handle' can be NULL if create is zero
821 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
822 ext4_lblk_t block, int map_flags)
824 struct ext4_map_blocks map;
825 struct buffer_head *bh;
826 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
827 int err;
829 J_ASSERT(handle != NULL || create == 0);
831 map.m_lblk = block;
832 map.m_len = 1;
833 err = ext4_map_blocks(handle, inode, &map, map_flags);
835 if (err == 0)
836 return create ? ERR_PTR(-ENOSPC) : NULL;
837 if (err < 0)
838 return ERR_PTR(err);
840 bh = sb_getblk(inode->i_sb, map.m_pblk);
841 if (unlikely(!bh))
842 return ERR_PTR(-ENOMEM);
843 if (map.m_flags & EXT4_MAP_NEW) {
844 J_ASSERT(create != 0);
845 J_ASSERT(handle != NULL);
848 * Now that we do not always journal data, we should
849 * keep in mind whether this should always journal the
850 * new buffer as metadata. For now, regular file
851 * writes use ext4_get_block instead, so it's not a
852 * problem.
854 lock_buffer(bh);
855 BUFFER_TRACE(bh, "call get_create_access");
856 err = ext4_journal_get_create_access(handle, bh);
857 if (unlikely(err)) {
858 unlock_buffer(bh);
859 goto errout;
861 if (!buffer_uptodate(bh)) {
862 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
863 set_buffer_uptodate(bh);
865 unlock_buffer(bh);
866 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
867 err = ext4_handle_dirty_metadata(handle, inode, bh);
868 if (unlikely(err))
869 goto errout;
870 } else
871 BUFFER_TRACE(bh, "not a new buffer");
872 return bh;
873 errout:
874 brelse(bh);
875 return ERR_PTR(err);
878 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
879 ext4_lblk_t block, int map_flags)
881 struct buffer_head *bh;
883 bh = ext4_getblk(handle, inode, block, map_flags);
884 if (IS_ERR(bh))
885 return bh;
886 if (!bh || ext4_buffer_uptodate(bh))
887 return bh;
888 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
889 wait_on_buffer(bh);
890 if (buffer_uptodate(bh))
891 return bh;
892 put_bh(bh);
893 return ERR_PTR(-EIO);
896 /* Read a contiguous batch of blocks. */
897 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
898 bool wait, struct buffer_head **bhs)
900 int i, err;
902 for (i = 0; i < bh_count; i++) {
903 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
904 if (IS_ERR(bhs[i])) {
905 err = PTR_ERR(bhs[i]);
906 bh_count = i;
907 goto out_brelse;
911 for (i = 0; i < bh_count; i++)
912 /* Note that NULL bhs[i] is valid because of holes. */
913 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
914 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
915 &bhs[i]);
917 if (!wait)
918 return 0;
920 for (i = 0; i < bh_count; i++)
921 if (bhs[i])
922 wait_on_buffer(bhs[i]);
924 for (i = 0; i < bh_count; i++) {
925 if (bhs[i] && !buffer_uptodate(bhs[i])) {
926 err = -EIO;
927 goto out_brelse;
930 return 0;
932 out_brelse:
933 for (i = 0; i < bh_count; i++) {
934 brelse(bhs[i]);
935 bhs[i] = NULL;
937 return err;
940 int ext4_walk_page_buffers(handle_t *handle,
941 struct buffer_head *head,
942 unsigned from,
943 unsigned to,
944 int *partial,
945 int (*fn)(handle_t *handle,
946 struct buffer_head *bh))
948 struct buffer_head *bh;
949 unsigned block_start, block_end;
950 unsigned blocksize = head->b_size;
951 int err, ret = 0;
952 struct buffer_head *next;
954 for (bh = head, block_start = 0;
955 ret == 0 && (bh != head || !block_start);
956 block_start = block_end, bh = next) {
957 next = bh->b_this_page;
958 block_end = block_start + blocksize;
959 if (block_end <= from || block_start >= to) {
960 if (partial && !buffer_uptodate(bh))
961 *partial = 1;
962 continue;
964 err = (*fn)(handle, bh);
965 if (!ret)
966 ret = err;
968 return ret;
972 * To preserve ordering, it is essential that the hole instantiation and
973 * the data write be encapsulated in a single transaction. We cannot
974 * close off a transaction and start a new one between the ext4_get_block()
975 * and the commit_write(). So doing the jbd2_journal_start at the start of
976 * prepare_write() is the right place.
978 * Also, this function can nest inside ext4_writepage(). In that case, we
979 * *know* that ext4_writepage() has generated enough buffer credits to do the
980 * whole page. So we won't block on the journal in that case, which is good,
981 * because the caller may be PF_MEMALLOC.
983 * By accident, ext4 can be reentered when a transaction is open via
984 * quota file writes. If we were to commit the transaction while thus
985 * reentered, there can be a deadlock - we would be holding a quota
986 * lock, and the commit would never complete if another thread had a
987 * transaction open and was blocking on the quota lock - a ranking
988 * violation.
990 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
991 * will _not_ run commit under these circumstances because handle->h_ref
992 * is elevated. We'll still have enough credits for the tiny quotafile
993 * write.
995 int do_journal_get_write_access(handle_t *handle,
996 struct buffer_head *bh)
998 int dirty = buffer_dirty(bh);
999 int ret;
1001 if (!buffer_mapped(bh) || buffer_freed(bh))
1002 return 0;
1004 * __block_write_begin() could have dirtied some buffers. Clean
1005 * the dirty bit as jbd2_journal_get_write_access() could complain
1006 * otherwise about fs integrity issues. Setting of the dirty bit
1007 * by __block_write_begin() isn't a real problem here as we clear
1008 * the bit before releasing a page lock and thus writeback cannot
1009 * ever write the buffer.
1011 if (dirty)
1012 clear_buffer_dirty(bh);
1013 BUFFER_TRACE(bh, "get write access");
1014 ret = ext4_journal_get_write_access(handle, bh);
1015 if (!ret && dirty)
1016 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017 return ret;
1020 #ifdef CONFIG_FS_ENCRYPTION
1021 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1022 get_block_t *get_block)
1024 unsigned from = pos & (PAGE_SIZE - 1);
1025 unsigned to = from + len;
1026 struct inode *inode = page->mapping->host;
1027 unsigned block_start, block_end;
1028 sector_t block;
1029 int err = 0;
1030 unsigned blocksize = inode->i_sb->s_blocksize;
1031 unsigned bbits;
1032 struct buffer_head *bh, *head, *wait[2];
1033 int nr_wait = 0;
1034 int i;
1036 BUG_ON(!PageLocked(page));
1037 BUG_ON(from > PAGE_SIZE);
1038 BUG_ON(to > PAGE_SIZE);
1039 BUG_ON(from > to);
1041 if (!page_has_buffers(page))
1042 create_empty_buffers(page, blocksize, 0);
1043 head = page_buffers(page);
1044 bbits = ilog2(blocksize);
1045 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1047 for (bh = head, block_start = 0; bh != head || !block_start;
1048 block++, block_start = block_end, bh = bh->b_this_page) {
1049 block_end = block_start + blocksize;
1050 if (block_end <= from || block_start >= to) {
1051 if (PageUptodate(page)) {
1052 if (!buffer_uptodate(bh))
1053 set_buffer_uptodate(bh);
1055 continue;
1057 if (buffer_new(bh))
1058 clear_buffer_new(bh);
1059 if (!buffer_mapped(bh)) {
1060 WARN_ON(bh->b_size != blocksize);
1061 err = get_block(inode, block, bh, 1);
1062 if (err)
1063 break;
1064 if (buffer_new(bh)) {
1065 if (PageUptodate(page)) {
1066 clear_buffer_new(bh);
1067 set_buffer_uptodate(bh);
1068 mark_buffer_dirty(bh);
1069 continue;
1071 if (block_end > to || block_start < from)
1072 zero_user_segments(page, to, block_end,
1073 block_start, from);
1074 continue;
1077 if (PageUptodate(page)) {
1078 if (!buffer_uptodate(bh))
1079 set_buffer_uptodate(bh);
1080 continue;
1082 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1083 !buffer_unwritten(bh) &&
1084 (block_start < from || block_end > to)) {
1085 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1086 wait[nr_wait++] = bh;
1090 * If we issued read requests, let them complete.
1092 for (i = 0; i < nr_wait; i++) {
1093 wait_on_buffer(wait[i]);
1094 if (!buffer_uptodate(wait[i]))
1095 err = -EIO;
1097 if (unlikely(err)) {
1098 page_zero_new_buffers(page, from, to);
1099 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1100 for (i = 0; i < nr_wait; i++) {
1101 int err2;
1103 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1104 bh_offset(wait[i]));
1105 if (err2) {
1106 clear_buffer_uptodate(wait[i]);
1107 err = err2;
1112 return err;
1114 #endif
1116 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1117 loff_t pos, unsigned len, unsigned flags,
1118 struct page **pagep, void **fsdata)
1120 struct inode *inode = mapping->host;
1121 int ret, needed_blocks;
1122 handle_t *handle;
1123 int retries = 0;
1124 struct page *page;
1125 pgoff_t index;
1126 unsigned from, to;
1128 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1129 return -EIO;
1131 trace_ext4_write_begin(inode, pos, len, flags);
1133 * Reserve one block more for addition to orphan list in case
1134 * we allocate blocks but write fails for some reason
1136 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1137 index = pos >> PAGE_SHIFT;
1138 from = pos & (PAGE_SIZE - 1);
1139 to = from + len;
1141 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1142 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1143 flags, pagep);
1144 if (ret < 0)
1145 return ret;
1146 if (ret == 1)
1147 return 0;
1151 * grab_cache_page_write_begin() can take a long time if the
1152 * system is thrashing due to memory pressure, or if the page
1153 * is being written back. So grab it first before we start
1154 * the transaction handle. This also allows us to allocate
1155 * the page (if needed) without using GFP_NOFS.
1157 retry_grab:
1158 page = grab_cache_page_write_begin(mapping, index, flags);
1159 if (!page)
1160 return -ENOMEM;
1161 unlock_page(page);
1163 retry_journal:
1164 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1165 if (IS_ERR(handle)) {
1166 put_page(page);
1167 return PTR_ERR(handle);
1170 lock_page(page);
1171 if (page->mapping != mapping) {
1172 /* The page got truncated from under us */
1173 unlock_page(page);
1174 put_page(page);
1175 ext4_journal_stop(handle);
1176 goto retry_grab;
1178 /* In case writeback began while the page was unlocked */
1179 wait_for_stable_page(page);
1181 #ifdef CONFIG_FS_ENCRYPTION
1182 if (ext4_should_dioread_nolock(inode))
1183 ret = ext4_block_write_begin(page, pos, len,
1184 ext4_get_block_unwritten);
1185 else
1186 ret = ext4_block_write_begin(page, pos, len,
1187 ext4_get_block);
1188 #else
1189 if (ext4_should_dioread_nolock(inode))
1190 ret = __block_write_begin(page, pos, len,
1191 ext4_get_block_unwritten);
1192 else
1193 ret = __block_write_begin(page, pos, len, ext4_get_block);
1194 #endif
1195 if (!ret && ext4_should_journal_data(inode)) {
1196 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1197 from, to, NULL,
1198 do_journal_get_write_access);
1201 if (ret) {
1202 bool extended = (pos + len > inode->i_size) &&
1203 !ext4_verity_in_progress(inode);
1205 unlock_page(page);
1207 * __block_write_begin may have instantiated a few blocks
1208 * outside i_size. Trim these off again. Don't need
1209 * i_size_read because we hold i_mutex.
1211 * Add inode to orphan list in case we crash before
1212 * truncate finishes
1214 if (extended && ext4_can_truncate(inode))
1215 ext4_orphan_add(handle, inode);
1217 ext4_journal_stop(handle);
1218 if (extended) {
1219 ext4_truncate_failed_write(inode);
1221 * If truncate failed early the inode might
1222 * still be on the orphan list; we need to
1223 * make sure the inode is removed from the
1224 * orphan list in that case.
1226 if (inode->i_nlink)
1227 ext4_orphan_del(NULL, inode);
1230 if (ret == -ENOSPC &&
1231 ext4_should_retry_alloc(inode->i_sb, &retries))
1232 goto retry_journal;
1233 put_page(page);
1234 return ret;
1236 *pagep = page;
1237 return ret;
1240 /* For write_end() in data=journal mode */
1241 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1243 int ret;
1244 if (!buffer_mapped(bh) || buffer_freed(bh))
1245 return 0;
1246 set_buffer_uptodate(bh);
1247 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1248 clear_buffer_meta(bh);
1249 clear_buffer_prio(bh);
1250 return ret;
1254 * We need to pick up the new inode size which generic_commit_write gave us
1255 * `file' can be NULL - eg, when called from page_symlink().
1257 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1258 * buffers are managed internally.
1260 static int ext4_write_end(struct file *file,
1261 struct address_space *mapping,
1262 loff_t pos, unsigned len, unsigned copied,
1263 struct page *page, void *fsdata)
1265 handle_t *handle = ext4_journal_current_handle();
1266 struct inode *inode = mapping->host;
1267 loff_t old_size = inode->i_size;
1268 int ret = 0, ret2;
1269 int i_size_changed = 0;
1270 int inline_data = ext4_has_inline_data(inode);
1271 bool verity = ext4_verity_in_progress(inode);
1273 trace_ext4_write_end(inode, pos, len, copied);
1274 if (inline_data) {
1275 ret = ext4_write_inline_data_end(inode, pos, len,
1276 copied, page);
1277 if (ret < 0) {
1278 unlock_page(page);
1279 put_page(page);
1280 goto errout;
1282 copied = ret;
1283 } else
1284 copied = block_write_end(file, mapping, pos,
1285 len, copied, page, fsdata);
1287 * it's important to update i_size while still holding page lock:
1288 * page writeout could otherwise come in and zero beyond i_size.
1290 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1291 * blocks are being written past EOF, so skip the i_size update.
1293 if (!verity)
1294 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1295 unlock_page(page);
1296 put_page(page);
1298 if (old_size < pos && !verity)
1299 pagecache_isize_extended(inode, old_size, pos);
1301 * Don't mark the inode dirty under page lock. First, it unnecessarily
1302 * makes the holding time of page lock longer. Second, it forces lock
1303 * ordering of page lock and transaction start for journaling
1304 * filesystems.
1306 if (i_size_changed || inline_data)
1307 ret = ext4_mark_inode_dirty(handle, inode);
1309 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1310 /* if we have allocated more blocks and copied
1311 * less. We will have blocks allocated outside
1312 * inode->i_size. So truncate them
1314 ext4_orphan_add(handle, inode);
1315 errout:
1316 ret2 = ext4_journal_stop(handle);
1317 if (!ret)
1318 ret = ret2;
1320 if (pos + len > inode->i_size && !verity) {
1321 ext4_truncate_failed_write(inode);
1323 * If truncate failed early the inode might still be
1324 * on the orphan list; we need to make sure the inode
1325 * is removed from the orphan list in that case.
1327 if (inode->i_nlink)
1328 ext4_orphan_del(NULL, inode);
1331 return ret ? ret : copied;
1335 * This is a private version of page_zero_new_buffers() which doesn't
1336 * set the buffer to be dirty, since in data=journalled mode we need
1337 * to call ext4_handle_dirty_metadata() instead.
1339 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1340 struct page *page,
1341 unsigned from, unsigned to)
1343 unsigned int block_start = 0, block_end;
1344 struct buffer_head *head, *bh;
1346 bh = head = page_buffers(page);
1347 do {
1348 block_end = block_start + bh->b_size;
1349 if (buffer_new(bh)) {
1350 if (block_end > from && block_start < to) {
1351 if (!PageUptodate(page)) {
1352 unsigned start, size;
1354 start = max(from, block_start);
1355 size = min(to, block_end) - start;
1357 zero_user(page, start, size);
1358 write_end_fn(handle, bh);
1360 clear_buffer_new(bh);
1363 block_start = block_end;
1364 bh = bh->b_this_page;
1365 } while (bh != head);
1368 static int ext4_journalled_write_end(struct file *file,
1369 struct address_space *mapping,
1370 loff_t pos, unsigned len, unsigned copied,
1371 struct page *page, void *fsdata)
1373 handle_t *handle = ext4_journal_current_handle();
1374 struct inode *inode = mapping->host;
1375 loff_t old_size = inode->i_size;
1376 int ret = 0, ret2;
1377 int partial = 0;
1378 unsigned from, to;
1379 int size_changed = 0;
1380 int inline_data = ext4_has_inline_data(inode);
1381 bool verity = ext4_verity_in_progress(inode);
1383 trace_ext4_journalled_write_end(inode, pos, len, copied);
1384 from = pos & (PAGE_SIZE - 1);
1385 to = from + len;
1387 BUG_ON(!ext4_handle_valid(handle));
1389 if (inline_data) {
1390 ret = ext4_write_inline_data_end(inode, pos, len,
1391 copied, page);
1392 if (ret < 0) {
1393 unlock_page(page);
1394 put_page(page);
1395 goto errout;
1397 copied = ret;
1398 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1399 copied = 0;
1400 ext4_journalled_zero_new_buffers(handle, page, from, to);
1401 } else {
1402 if (unlikely(copied < len))
1403 ext4_journalled_zero_new_buffers(handle, page,
1404 from + copied, to);
1405 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1406 from + copied, &partial,
1407 write_end_fn);
1408 if (!partial)
1409 SetPageUptodate(page);
1411 if (!verity)
1412 size_changed = ext4_update_inode_size(inode, pos + copied);
1413 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1414 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1415 unlock_page(page);
1416 put_page(page);
1418 if (old_size < pos && !verity)
1419 pagecache_isize_extended(inode, old_size, pos);
1421 if (size_changed || inline_data) {
1422 ret2 = ext4_mark_inode_dirty(handle, inode);
1423 if (!ret)
1424 ret = ret2;
1427 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1428 /* if we have allocated more blocks and copied
1429 * less. We will have blocks allocated outside
1430 * inode->i_size. So truncate them
1432 ext4_orphan_add(handle, inode);
1434 errout:
1435 ret2 = ext4_journal_stop(handle);
1436 if (!ret)
1437 ret = ret2;
1438 if (pos + len > inode->i_size && !verity) {
1439 ext4_truncate_failed_write(inode);
1441 * If truncate failed early the inode might still be
1442 * on the orphan list; we need to make sure the inode
1443 * is removed from the orphan list in that case.
1445 if (inode->i_nlink)
1446 ext4_orphan_del(NULL, inode);
1449 return ret ? ret : copied;
1453 * Reserve space for a single cluster
1455 static int ext4_da_reserve_space(struct inode *inode)
1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458 struct ext4_inode_info *ei = EXT4_I(inode);
1459 int ret;
1462 * We will charge metadata quota at writeout time; this saves
1463 * us from metadata over-estimation, though we may go over by
1464 * a small amount in the end. Here we just reserve for data.
1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467 if (ret)
1468 return ret;
1470 spin_lock(&ei->i_block_reservation_lock);
1471 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472 spin_unlock(&ei->i_block_reservation_lock);
1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474 return -ENOSPC;
1476 ei->i_reserved_data_blocks++;
1477 trace_ext4_da_reserve_space(inode);
1478 spin_unlock(&ei->i_block_reservation_lock);
1480 return 0; /* success */
1483 void ext4_da_release_space(struct inode *inode, int to_free)
1485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486 struct ext4_inode_info *ei = EXT4_I(inode);
1488 if (!to_free)
1489 return; /* Nothing to release, exit */
1491 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1493 trace_ext4_da_release_space(inode, to_free);
1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1496 * if there aren't enough reserved blocks, then the
1497 * counter is messed up somewhere. Since this
1498 * function is called from invalidate page, it's
1499 * harmless to return without any action.
1501 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502 "ino %lu, to_free %d with only %d reserved "
1503 "data blocks", inode->i_ino, to_free,
1504 ei->i_reserved_data_blocks);
1505 WARN_ON(1);
1506 to_free = ei->i_reserved_data_blocks;
1508 ei->i_reserved_data_blocks -= to_free;
1510 /* update fs dirty data blocks counter */
1511 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1513 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1519 * Delayed allocation stuff
1522 struct mpage_da_data {
1523 struct inode *inode;
1524 struct writeback_control *wbc;
1526 pgoff_t first_page; /* The first page to write */
1527 pgoff_t next_page; /* Current page to examine */
1528 pgoff_t last_page; /* Last page to examine */
1530 * Extent to map - this can be after first_page because that can be
1531 * fully mapped. We somewhat abuse m_flags to store whether the extent
1532 * is delalloc or unwritten.
1534 struct ext4_map_blocks map;
1535 struct ext4_io_submit io_submit; /* IO submission data */
1536 unsigned int do_map:1;
1537 unsigned int scanned_until_end:1;
1540 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1541 bool invalidate)
1543 int nr_pages, i;
1544 pgoff_t index, end;
1545 struct pagevec pvec;
1546 struct inode *inode = mpd->inode;
1547 struct address_space *mapping = inode->i_mapping;
1549 /* This is necessary when next_page == 0. */
1550 if (mpd->first_page >= mpd->next_page)
1551 return;
1553 mpd->scanned_until_end = 0;
1554 index = mpd->first_page;
1555 end = mpd->next_page - 1;
1556 if (invalidate) {
1557 ext4_lblk_t start, last;
1558 start = index << (PAGE_SHIFT - inode->i_blkbits);
1559 last = end << (PAGE_SHIFT - inode->i_blkbits);
1560 ext4_es_remove_extent(inode, start, last - start + 1);
1563 pagevec_init(&pvec);
1564 while (index <= end) {
1565 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1566 if (nr_pages == 0)
1567 break;
1568 for (i = 0; i < nr_pages; i++) {
1569 struct page *page = pvec.pages[i];
1571 BUG_ON(!PageLocked(page));
1572 BUG_ON(PageWriteback(page));
1573 if (invalidate) {
1574 if (page_mapped(page))
1575 clear_page_dirty_for_io(page);
1576 block_invalidatepage(page, 0, PAGE_SIZE);
1577 ClearPageUptodate(page);
1579 unlock_page(page);
1581 pagevec_release(&pvec);
1585 static void ext4_print_free_blocks(struct inode *inode)
1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 struct super_block *sb = inode->i_sb;
1589 struct ext4_inode_info *ei = EXT4_I(inode);
1591 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1592 EXT4_C2B(EXT4_SB(inode->i_sb),
1593 ext4_count_free_clusters(sb)));
1594 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1595 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1596 (long long) EXT4_C2B(EXT4_SB(sb),
1597 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1598 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1599 (long long) EXT4_C2B(EXT4_SB(sb),
1600 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1601 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1602 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1603 ei->i_reserved_data_blocks);
1604 return;
1607 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1609 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1613 * ext4_insert_delayed_block - adds a delayed block to the extents status
1614 * tree, incrementing the reserved cluster/block
1615 * count or making a pending reservation
1616 * where needed
1618 * @inode - file containing the newly added block
1619 * @lblk - logical block to be added
1621 * Returns 0 on success, negative error code on failure.
1623 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1625 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626 int ret;
1627 bool allocated = false;
1630 * If the cluster containing lblk is shared with a delayed,
1631 * written, or unwritten extent in a bigalloc file system, it's
1632 * already been accounted for and does not need to be reserved.
1633 * A pending reservation must be made for the cluster if it's
1634 * shared with a written or unwritten extent and doesn't already
1635 * have one. Written and unwritten extents can be purged from the
1636 * extents status tree if the system is under memory pressure, so
1637 * it's necessary to examine the extent tree if a search of the
1638 * extents status tree doesn't get a match.
1640 if (sbi->s_cluster_ratio == 1) {
1641 ret = ext4_da_reserve_space(inode);
1642 if (ret != 0) /* ENOSPC */
1643 goto errout;
1644 } else { /* bigalloc */
1645 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1646 if (!ext4_es_scan_clu(inode,
1647 &ext4_es_is_mapped, lblk)) {
1648 ret = ext4_clu_mapped(inode,
1649 EXT4_B2C(sbi, lblk));
1650 if (ret < 0)
1651 goto errout;
1652 if (ret == 0) {
1653 ret = ext4_da_reserve_space(inode);
1654 if (ret != 0) /* ENOSPC */
1655 goto errout;
1656 } else {
1657 allocated = true;
1659 } else {
1660 allocated = true;
1665 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1667 errout:
1668 return ret;
1672 * This function is grabs code from the very beginning of
1673 * ext4_map_blocks, but assumes that the caller is from delayed write
1674 * time. This function looks up the requested blocks and sets the
1675 * buffer delay bit under the protection of i_data_sem.
1677 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1678 struct ext4_map_blocks *map,
1679 struct buffer_head *bh)
1681 struct extent_status es;
1682 int retval;
1683 sector_t invalid_block = ~((sector_t) 0xffff);
1684 #ifdef ES_AGGRESSIVE_TEST
1685 struct ext4_map_blocks orig_map;
1687 memcpy(&orig_map, map, sizeof(*map));
1688 #endif
1690 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1691 invalid_block = ~0;
1693 map->m_flags = 0;
1694 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1695 (unsigned long) map->m_lblk);
1697 /* Lookup extent status tree firstly */
1698 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1699 if (ext4_es_is_hole(&es)) {
1700 retval = 0;
1701 down_read(&EXT4_I(inode)->i_data_sem);
1702 goto add_delayed;
1706 * Delayed extent could be allocated by fallocate.
1707 * So we need to check it.
1709 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1710 map_bh(bh, inode->i_sb, invalid_block);
1711 set_buffer_new(bh);
1712 set_buffer_delay(bh);
1713 return 0;
1716 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1717 retval = es.es_len - (iblock - es.es_lblk);
1718 if (retval > map->m_len)
1719 retval = map->m_len;
1720 map->m_len = retval;
1721 if (ext4_es_is_written(&es))
1722 map->m_flags |= EXT4_MAP_MAPPED;
1723 else if (ext4_es_is_unwritten(&es))
1724 map->m_flags |= EXT4_MAP_UNWRITTEN;
1725 else
1726 BUG();
1728 #ifdef ES_AGGRESSIVE_TEST
1729 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1730 #endif
1731 return retval;
1735 * Try to see if we can get the block without requesting a new
1736 * file system block.
1738 down_read(&EXT4_I(inode)->i_data_sem);
1739 if (ext4_has_inline_data(inode))
1740 retval = 0;
1741 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1742 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1743 else
1744 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1746 add_delayed:
1747 if (retval == 0) {
1748 int ret;
1751 * XXX: __block_prepare_write() unmaps passed block,
1752 * is it OK?
1755 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1756 if (ret != 0) {
1757 retval = ret;
1758 goto out_unlock;
1761 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_new(bh);
1763 set_buffer_delay(bh);
1764 } else if (retval > 0) {
1765 int ret;
1766 unsigned int status;
1768 if (unlikely(retval != map->m_len)) {
1769 ext4_warning(inode->i_sb,
1770 "ES len assertion failed for inode "
1771 "%lu: retval %d != map->m_len %d",
1772 inode->i_ino, retval, map->m_len);
1773 WARN_ON(1);
1776 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1777 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1778 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1779 map->m_pblk, status);
1780 if (ret != 0)
1781 retval = ret;
1784 out_unlock:
1785 up_read((&EXT4_I(inode)->i_data_sem));
1787 return retval;
1791 * This is a special get_block_t callback which is used by
1792 * ext4_da_write_begin(). It will either return mapped block or
1793 * reserve space for a single block.
1795 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1796 * We also have b_blocknr = -1 and b_bdev initialized properly
1798 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1799 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1800 * initialized properly.
1802 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1803 struct buffer_head *bh, int create)
1805 struct ext4_map_blocks map;
1806 int ret = 0;
1808 BUG_ON(create == 0);
1809 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1811 map.m_lblk = iblock;
1812 map.m_len = 1;
1815 * first, we need to know whether the block is allocated already
1816 * preallocated blocks are unmapped but should treated
1817 * the same as allocated blocks.
1819 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1820 if (ret <= 0)
1821 return ret;
1823 map_bh(bh, inode->i_sb, map.m_pblk);
1824 ext4_update_bh_state(bh, map.m_flags);
1826 if (buffer_unwritten(bh)) {
1827 /* A delayed write to unwritten bh should be marked
1828 * new and mapped. Mapped ensures that we don't do
1829 * get_block multiple times when we write to the same
1830 * offset and new ensures that we do proper zero out
1831 * for partial write.
1833 set_buffer_new(bh);
1834 set_buffer_mapped(bh);
1836 return 0;
1839 static int bget_one(handle_t *handle, struct buffer_head *bh)
1841 get_bh(bh);
1842 return 0;
1845 static int bput_one(handle_t *handle, struct buffer_head *bh)
1847 put_bh(bh);
1848 return 0;
1851 static int __ext4_journalled_writepage(struct page *page,
1852 unsigned int len)
1854 struct address_space *mapping = page->mapping;
1855 struct inode *inode = mapping->host;
1856 struct buffer_head *page_bufs = NULL;
1857 handle_t *handle = NULL;
1858 int ret = 0, err = 0;
1859 int inline_data = ext4_has_inline_data(inode);
1860 struct buffer_head *inode_bh = NULL;
1862 ClearPageChecked(page);
1864 if (inline_data) {
1865 BUG_ON(page->index != 0);
1866 BUG_ON(len > ext4_get_max_inline_size(inode));
1867 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1868 if (inode_bh == NULL)
1869 goto out;
1870 } else {
1871 page_bufs = page_buffers(page);
1872 if (!page_bufs) {
1873 BUG();
1874 goto out;
1876 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1877 NULL, bget_one);
1880 * We need to release the page lock before we start the
1881 * journal, so grab a reference so the page won't disappear
1882 * out from under us.
1884 get_page(page);
1885 unlock_page(page);
1887 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1888 ext4_writepage_trans_blocks(inode));
1889 if (IS_ERR(handle)) {
1890 ret = PTR_ERR(handle);
1891 put_page(page);
1892 goto out_no_pagelock;
1894 BUG_ON(!ext4_handle_valid(handle));
1896 lock_page(page);
1897 put_page(page);
1898 if (page->mapping != mapping) {
1899 /* The page got truncated from under us */
1900 ext4_journal_stop(handle);
1901 ret = 0;
1902 goto out;
1905 if (inline_data) {
1906 ret = ext4_mark_inode_dirty(handle, inode);
1907 } else {
1908 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1909 do_journal_get_write_access);
1911 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1912 write_end_fn);
1914 if (ret == 0)
1915 ret = err;
1916 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1917 err = ext4_journal_stop(handle);
1918 if (!ret)
1919 ret = err;
1921 if (!ext4_has_inline_data(inode))
1922 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1923 NULL, bput_one);
1924 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1925 out:
1926 unlock_page(page);
1927 out_no_pagelock:
1928 brelse(inode_bh);
1929 return ret;
1933 * Note that we don't need to start a transaction unless we're journaling data
1934 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1935 * need to file the inode to the transaction's list in ordered mode because if
1936 * we are writing back data added by write(), the inode is already there and if
1937 * we are writing back data modified via mmap(), no one guarantees in which
1938 * transaction the data will hit the disk. In case we are journaling data, we
1939 * cannot start transaction directly because transaction start ranks above page
1940 * lock so we have to do some magic.
1942 * This function can get called via...
1943 * - ext4_writepages after taking page lock (have journal handle)
1944 * - journal_submit_inode_data_buffers (no journal handle)
1945 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1946 * - grab_page_cache when doing write_begin (have journal handle)
1948 * We don't do any block allocation in this function. If we have page with
1949 * multiple blocks we need to write those buffer_heads that are mapped. This
1950 * is important for mmaped based write. So if we do with blocksize 1K
1951 * truncate(f, 1024);
1952 * a = mmap(f, 0, 4096);
1953 * a[0] = 'a';
1954 * truncate(f, 4096);
1955 * we have in the page first buffer_head mapped via page_mkwrite call back
1956 * but other buffer_heads would be unmapped but dirty (dirty done via the
1957 * do_wp_page). So writepage should write the first block. If we modify
1958 * the mmap area beyond 1024 we will again get a page_fault and the
1959 * page_mkwrite callback will do the block allocation and mark the
1960 * buffer_heads mapped.
1962 * We redirty the page if we have any buffer_heads that is either delay or
1963 * unwritten in the page.
1965 * We can get recursively called as show below.
1967 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1968 * ext4_writepage()
1970 * But since we don't do any block allocation we should not deadlock.
1971 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1973 static int ext4_writepage(struct page *page,
1974 struct writeback_control *wbc)
1976 int ret = 0;
1977 loff_t size;
1978 unsigned int len;
1979 struct buffer_head *page_bufs = NULL;
1980 struct inode *inode = page->mapping->host;
1981 struct ext4_io_submit io_submit;
1982 bool keep_towrite = false;
1984 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1985 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1986 unlock_page(page);
1987 return -EIO;
1990 trace_ext4_writepage(page);
1991 size = i_size_read(inode);
1992 if (page->index == size >> PAGE_SHIFT &&
1993 !ext4_verity_in_progress(inode))
1994 len = size & ~PAGE_MASK;
1995 else
1996 len = PAGE_SIZE;
1998 page_bufs = page_buffers(page);
2000 * We cannot do block allocation or other extent handling in this
2001 * function. If there are buffers needing that, we have to redirty
2002 * the page. But we may reach here when we do a journal commit via
2003 * journal_submit_inode_data_buffers() and in that case we must write
2004 * allocated buffers to achieve data=ordered mode guarantees.
2006 * Also, if there is only one buffer per page (the fs block
2007 * size == the page size), if one buffer needs block
2008 * allocation or needs to modify the extent tree to clear the
2009 * unwritten flag, we know that the page can't be written at
2010 * all, so we might as well refuse the write immediately.
2011 * Unfortunately if the block size != page size, we can't as
2012 * easily detect this case using ext4_walk_page_buffers(), but
2013 * for the extremely common case, this is an optimization that
2014 * skips a useless round trip through ext4_bio_write_page().
2016 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2017 ext4_bh_delay_or_unwritten)) {
2018 redirty_page_for_writepage(wbc, page);
2019 if ((current->flags & PF_MEMALLOC) ||
2020 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2022 * For memory cleaning there's no point in writing only
2023 * some buffers. So just bail out. Warn if we came here
2024 * from direct reclaim.
2026 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2027 == PF_MEMALLOC);
2028 unlock_page(page);
2029 return 0;
2031 keep_towrite = true;
2034 if (PageChecked(page) && ext4_should_journal_data(inode))
2036 * It's mmapped pagecache. Add buffers and journal it. There
2037 * doesn't seem much point in redirtying the page here.
2039 return __ext4_journalled_writepage(page, len);
2041 ext4_io_submit_init(&io_submit, wbc);
2042 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2043 if (!io_submit.io_end) {
2044 redirty_page_for_writepage(wbc, page);
2045 unlock_page(page);
2046 return -ENOMEM;
2048 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2049 ext4_io_submit(&io_submit);
2050 /* Drop io_end reference we got from init */
2051 ext4_put_io_end_defer(io_submit.io_end);
2052 return ret;
2055 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2057 int len;
2058 loff_t size;
2059 int err;
2061 BUG_ON(page->index != mpd->first_page);
2062 clear_page_dirty_for_io(page);
2064 * We have to be very careful here! Nothing protects writeback path
2065 * against i_size changes and the page can be writeably mapped into
2066 * page tables. So an application can be growing i_size and writing
2067 * data through mmap while writeback runs. clear_page_dirty_for_io()
2068 * write-protects our page in page tables and the page cannot get
2069 * written to again until we release page lock. So only after
2070 * clear_page_dirty_for_io() we are safe to sample i_size for
2071 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2072 * on the barrier provided by TestClearPageDirty in
2073 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2074 * after page tables are updated.
2076 size = i_size_read(mpd->inode);
2077 if (page->index == size >> PAGE_SHIFT &&
2078 !ext4_verity_in_progress(mpd->inode))
2079 len = size & ~PAGE_MASK;
2080 else
2081 len = PAGE_SIZE;
2082 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083 if (!err)
2084 mpd->wbc->nr_to_write--;
2085 mpd->first_page++;
2087 return err;
2090 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
2097 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
2113 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114 struct buffer_head *bh)
2116 struct ext4_map_blocks *map = &mpd->map;
2118 /* Buffer that doesn't need mapping for writeback? */
2119 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121 /* So far no extent to map => we write the buffer right away */
2122 if (map->m_len == 0)
2123 return true;
2124 return false;
2127 /* First block in the extent? */
2128 if (map->m_len == 0) {
2129 /* We cannot map unless handle is started... */
2130 if (!mpd->do_map)
2131 return false;
2132 map->m_lblk = lblk;
2133 map->m_len = 1;
2134 map->m_flags = bh->b_state & BH_FLAGS;
2135 return true;
2138 /* Don't go larger than mballoc is willing to allocate */
2139 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2140 return false;
2142 /* Can we merge the block to our big extent? */
2143 if (lblk == map->m_lblk + map->m_len &&
2144 (bh->b_state & BH_FLAGS) == map->m_flags) {
2145 map->m_len++;
2146 return true;
2148 return false;
2152 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2154 * @mpd - extent of blocks for mapping
2155 * @head - the first buffer in the page
2156 * @bh - buffer we should start processing from
2157 * @lblk - logical number of the block in the file corresponding to @bh
2159 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2160 * the page for IO if all buffers in this page were mapped and there's no
2161 * accumulated extent of buffers to map or add buffers in the page to the
2162 * extent of buffers to map. The function returns 1 if the caller can continue
2163 * by processing the next page, 0 if it should stop adding buffers to the
2164 * extent to map because we cannot extend it anymore. It can also return value
2165 * < 0 in case of error during IO submission.
2167 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2168 struct buffer_head *head,
2169 struct buffer_head *bh,
2170 ext4_lblk_t lblk)
2172 struct inode *inode = mpd->inode;
2173 int err;
2174 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2175 >> inode->i_blkbits;
2177 if (ext4_verity_in_progress(inode))
2178 blocks = EXT_MAX_BLOCKS;
2180 do {
2181 BUG_ON(buffer_locked(bh));
2183 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2184 /* Found extent to map? */
2185 if (mpd->map.m_len)
2186 return 0;
2187 /* Buffer needs mapping and handle is not started? */
2188 if (!mpd->do_map)
2189 return 0;
2190 /* Everything mapped so far and we hit EOF */
2191 break;
2193 } while (lblk++, (bh = bh->b_this_page) != head);
2194 /* So far everything mapped? Submit the page for IO. */
2195 if (mpd->map.m_len == 0) {
2196 err = mpage_submit_page(mpd, head->b_page);
2197 if (err < 0)
2198 return err;
2200 if (lblk >= blocks) {
2201 mpd->scanned_until_end = 1;
2202 return 0;
2204 return 1;
2208 * mpage_process_page - update page buffers corresponding to changed extent and
2209 * may submit fully mapped page for IO
2211 * @mpd - description of extent to map, on return next extent to map
2212 * @m_lblk - logical block mapping.
2213 * @m_pblk - corresponding physical mapping.
2214 * @map_bh - determines on return whether this page requires any further
2215 * mapping or not.
2216 * Scan given page buffers corresponding to changed extent and update buffer
2217 * state according to new extent state.
2218 * We map delalloc buffers to their physical location, clear unwritten bits.
2219 * If the given page is not fully mapped, we update @map to the next extent in
2220 * the given page that needs mapping & return @map_bh as true.
2222 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2223 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2224 bool *map_bh)
2226 struct buffer_head *head, *bh;
2227 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2228 ext4_lblk_t lblk = *m_lblk;
2229 ext4_fsblk_t pblock = *m_pblk;
2230 int err = 0;
2231 int blkbits = mpd->inode->i_blkbits;
2232 ssize_t io_end_size = 0;
2233 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2235 bh = head = page_buffers(page);
2236 do {
2237 if (lblk < mpd->map.m_lblk)
2238 continue;
2239 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2241 * Buffer after end of mapped extent.
2242 * Find next buffer in the page to map.
2244 mpd->map.m_len = 0;
2245 mpd->map.m_flags = 0;
2246 io_end_vec->size += io_end_size;
2247 io_end_size = 0;
2249 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2250 if (err > 0)
2251 err = 0;
2252 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2253 io_end_vec = ext4_alloc_io_end_vec(io_end);
2254 if (IS_ERR(io_end_vec)) {
2255 err = PTR_ERR(io_end_vec);
2256 goto out;
2258 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2260 *map_bh = true;
2261 goto out;
2263 if (buffer_delay(bh)) {
2264 clear_buffer_delay(bh);
2265 bh->b_blocknr = pblock++;
2267 clear_buffer_unwritten(bh);
2268 io_end_size += (1 << blkbits);
2269 } while (lblk++, (bh = bh->b_this_page) != head);
2271 io_end_vec->size += io_end_size;
2272 io_end_size = 0;
2273 *map_bh = false;
2274 out:
2275 *m_lblk = lblk;
2276 *m_pblk = pblock;
2277 return err;
2281 * mpage_map_buffers - update buffers corresponding to changed extent and
2282 * submit fully mapped pages for IO
2284 * @mpd - description of extent to map, on return next extent to map
2286 * Scan buffers corresponding to changed extent (we expect corresponding pages
2287 * to be already locked) and update buffer state according to new extent state.
2288 * We map delalloc buffers to their physical location, clear unwritten bits,
2289 * and mark buffers as uninit when we perform writes to unwritten extents
2290 * and do extent conversion after IO is finished. If the last page is not fully
2291 * mapped, we update @map to the next extent in the last page that needs
2292 * mapping. Otherwise we submit the page for IO.
2294 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2296 struct pagevec pvec;
2297 int nr_pages, i;
2298 struct inode *inode = mpd->inode;
2299 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2300 pgoff_t start, end;
2301 ext4_lblk_t lblk;
2302 ext4_fsblk_t pblock;
2303 int err;
2304 bool map_bh = false;
2306 start = mpd->map.m_lblk >> bpp_bits;
2307 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2308 lblk = start << bpp_bits;
2309 pblock = mpd->map.m_pblk;
2311 pagevec_init(&pvec);
2312 while (start <= end) {
2313 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2314 &start, end);
2315 if (nr_pages == 0)
2316 break;
2317 for (i = 0; i < nr_pages; i++) {
2318 struct page *page = pvec.pages[i];
2320 err = mpage_process_page(mpd, page, &lblk, &pblock,
2321 &map_bh);
2323 * If map_bh is true, means page may require further bh
2324 * mapping, or maybe the page was submitted for IO.
2325 * So we return to call further extent mapping.
2327 if (err < 0 || map_bh)
2328 goto out;
2329 /* Page fully mapped - let IO run! */
2330 err = mpage_submit_page(mpd, page);
2331 if (err < 0)
2332 goto out;
2334 pagevec_release(&pvec);
2336 /* Extent fully mapped and matches with page boundary. We are done. */
2337 mpd->map.m_len = 0;
2338 mpd->map.m_flags = 0;
2339 return 0;
2340 out:
2341 pagevec_release(&pvec);
2342 return err;
2345 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2347 struct inode *inode = mpd->inode;
2348 struct ext4_map_blocks *map = &mpd->map;
2349 int get_blocks_flags;
2350 int err, dioread_nolock;
2352 trace_ext4_da_write_pages_extent(inode, map);
2354 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355 * to convert an unwritten extent to be initialized (in the case
2356 * where we have written into one or more preallocated blocks). It is
2357 * possible that we're going to need more metadata blocks than
2358 * previously reserved. However we must not fail because we're in
2359 * writeback and there is nothing we can do about it so it might result
2360 * in data loss. So use reserved blocks to allocate metadata if
2361 * possible.
2363 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364 * the blocks in question are delalloc blocks. This indicates
2365 * that the blocks and quotas has already been checked when
2366 * the data was copied into the page cache.
2368 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2369 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2370 EXT4_GET_BLOCKS_IO_SUBMIT;
2371 dioread_nolock = ext4_should_dioread_nolock(inode);
2372 if (dioread_nolock)
2373 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2374 if (map->m_flags & BIT(BH_Delay))
2375 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2377 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2378 if (err < 0)
2379 return err;
2380 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2381 if (!mpd->io_submit.io_end->handle &&
2382 ext4_handle_valid(handle)) {
2383 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2384 handle->h_rsv_handle = NULL;
2386 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2389 BUG_ON(map->m_len == 0);
2390 return 0;
2394 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2395 * mpd->len and submit pages underlying it for IO
2397 * @handle - handle for journal operations
2398 * @mpd - extent to map
2399 * @give_up_on_write - we set this to true iff there is a fatal error and there
2400 * is no hope of writing the data. The caller should discard
2401 * dirty pages to avoid infinite loops.
2403 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2404 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2405 * them to initialized or split the described range from larger unwritten
2406 * extent. Note that we need not map all the described range since allocation
2407 * can return less blocks or the range is covered by more unwritten extents. We
2408 * cannot map more because we are limited by reserved transaction credits. On
2409 * the other hand we always make sure that the last touched page is fully
2410 * mapped so that it can be written out (and thus forward progress is
2411 * guaranteed). After mapping we submit all mapped pages for IO.
2413 static int mpage_map_and_submit_extent(handle_t *handle,
2414 struct mpage_da_data *mpd,
2415 bool *give_up_on_write)
2417 struct inode *inode = mpd->inode;
2418 struct ext4_map_blocks *map = &mpd->map;
2419 int err;
2420 loff_t disksize;
2421 int progress = 0;
2422 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2423 struct ext4_io_end_vec *io_end_vec;
2425 io_end_vec = ext4_alloc_io_end_vec(io_end);
2426 if (IS_ERR(io_end_vec))
2427 return PTR_ERR(io_end_vec);
2428 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2429 do {
2430 err = mpage_map_one_extent(handle, mpd);
2431 if (err < 0) {
2432 struct super_block *sb = inode->i_sb;
2434 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2435 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2436 goto invalidate_dirty_pages;
2438 * Let the uper layers retry transient errors.
2439 * In the case of ENOSPC, if ext4_count_free_blocks()
2440 * is non-zero, a commit should free up blocks.
2442 if ((err == -ENOMEM) ||
2443 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2444 if (progress)
2445 goto update_disksize;
2446 return err;
2448 ext4_msg(sb, KERN_CRIT,
2449 "Delayed block allocation failed for "
2450 "inode %lu at logical offset %llu with"
2451 " max blocks %u with error %d",
2452 inode->i_ino,
2453 (unsigned long long)map->m_lblk,
2454 (unsigned)map->m_len, -err);
2455 ext4_msg(sb, KERN_CRIT,
2456 "This should not happen!! Data will "
2457 "be lost\n");
2458 if (err == -ENOSPC)
2459 ext4_print_free_blocks(inode);
2460 invalidate_dirty_pages:
2461 *give_up_on_write = true;
2462 return err;
2464 progress = 1;
2466 * Update buffer state, submit mapped pages, and get us new
2467 * extent to map
2469 err = mpage_map_and_submit_buffers(mpd);
2470 if (err < 0)
2471 goto update_disksize;
2472 } while (map->m_len);
2474 update_disksize:
2476 * Update on-disk size after IO is submitted. Races with
2477 * truncate are avoided by checking i_size under i_data_sem.
2479 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2480 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2481 int err2;
2482 loff_t i_size;
2484 down_write(&EXT4_I(inode)->i_data_sem);
2485 i_size = i_size_read(inode);
2486 if (disksize > i_size)
2487 disksize = i_size;
2488 if (disksize > EXT4_I(inode)->i_disksize)
2489 EXT4_I(inode)->i_disksize = disksize;
2490 up_write(&EXT4_I(inode)->i_data_sem);
2491 err2 = ext4_mark_inode_dirty(handle, inode);
2492 if (err2) {
2493 ext4_error_err(inode->i_sb, -err2,
2494 "Failed to mark inode %lu dirty",
2495 inode->i_ino);
2497 if (!err)
2498 err = err2;
2500 return err;
2504 * Calculate the total number of credits to reserve for one writepages
2505 * iteration. This is called from ext4_writepages(). We map an extent of
2506 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2507 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2508 * bpp - 1 blocks in bpp different extents.
2510 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2512 int bpp = ext4_journal_blocks_per_page(inode);
2514 return ext4_meta_trans_blocks(inode,
2515 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2519 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2520 * and underlying extent to map
2522 * @mpd - where to look for pages
2524 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2525 * IO immediately. When we find a page which isn't mapped we start accumulating
2526 * extent of buffers underlying these pages that needs mapping (formed by
2527 * either delayed or unwritten buffers). We also lock the pages containing
2528 * these buffers. The extent found is returned in @mpd structure (starting at
2529 * mpd->lblk with length mpd->len blocks).
2531 * Note that this function can attach bios to one io_end structure which are
2532 * neither logically nor physically contiguous. Although it may seem as an
2533 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2534 * case as we need to track IO to all buffers underlying a page in one io_end.
2536 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2538 struct address_space *mapping = mpd->inode->i_mapping;
2539 struct pagevec pvec;
2540 unsigned int nr_pages;
2541 long left = mpd->wbc->nr_to_write;
2542 pgoff_t index = mpd->first_page;
2543 pgoff_t end = mpd->last_page;
2544 xa_mark_t tag;
2545 int i, err = 0;
2546 int blkbits = mpd->inode->i_blkbits;
2547 ext4_lblk_t lblk;
2548 struct buffer_head *head;
2550 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2551 tag = PAGECACHE_TAG_TOWRITE;
2552 else
2553 tag = PAGECACHE_TAG_DIRTY;
2555 pagevec_init(&pvec);
2556 mpd->map.m_len = 0;
2557 mpd->next_page = index;
2558 while (index <= end) {
2559 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2560 tag);
2561 if (nr_pages == 0)
2562 break;
2564 for (i = 0; i < nr_pages; i++) {
2565 struct page *page = pvec.pages[i];
2568 * Accumulated enough dirty pages? This doesn't apply
2569 * to WB_SYNC_ALL mode. For integrity sync we have to
2570 * keep going because someone may be concurrently
2571 * dirtying pages, and we might have synced a lot of
2572 * newly appeared dirty pages, but have not synced all
2573 * of the old dirty pages.
2575 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2576 goto out;
2578 /* If we can't merge this page, we are done. */
2579 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2580 goto out;
2582 lock_page(page);
2584 * If the page is no longer dirty, or its mapping no
2585 * longer corresponds to inode we are writing (which
2586 * means it has been truncated or invalidated), or the
2587 * page is already under writeback and we are not doing
2588 * a data integrity writeback, skip the page
2590 if (!PageDirty(page) ||
2591 (PageWriteback(page) &&
2592 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2593 unlikely(page->mapping != mapping)) {
2594 unlock_page(page);
2595 continue;
2598 wait_on_page_writeback(page);
2599 BUG_ON(PageWriteback(page));
2601 if (mpd->map.m_len == 0)
2602 mpd->first_page = page->index;
2603 mpd->next_page = page->index + 1;
2604 /* Add all dirty buffers to mpd */
2605 lblk = ((ext4_lblk_t)page->index) <<
2606 (PAGE_SHIFT - blkbits);
2607 head = page_buffers(page);
2608 err = mpage_process_page_bufs(mpd, head, head, lblk);
2609 if (err <= 0)
2610 goto out;
2611 err = 0;
2612 left--;
2614 pagevec_release(&pvec);
2615 cond_resched();
2617 mpd->scanned_until_end = 1;
2618 return 0;
2619 out:
2620 pagevec_release(&pvec);
2621 return err;
2624 static int ext4_writepages(struct address_space *mapping,
2625 struct writeback_control *wbc)
2627 pgoff_t writeback_index = 0;
2628 long nr_to_write = wbc->nr_to_write;
2629 int range_whole = 0;
2630 int cycled = 1;
2631 handle_t *handle = NULL;
2632 struct mpage_da_data mpd;
2633 struct inode *inode = mapping->host;
2634 int needed_blocks, rsv_blocks = 0, ret = 0;
2635 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2636 struct blk_plug plug;
2637 bool give_up_on_write = false;
2639 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2640 return -EIO;
2642 percpu_down_read(&sbi->s_writepages_rwsem);
2643 trace_ext4_writepages(inode, wbc);
2646 * No pages to write? This is mainly a kludge to avoid starting
2647 * a transaction for special inodes like journal inode on last iput()
2648 * because that could violate lock ordering on umount
2650 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2651 goto out_writepages;
2653 if (ext4_should_journal_data(inode)) {
2654 ret = generic_writepages(mapping, wbc);
2655 goto out_writepages;
2659 * If the filesystem has aborted, it is read-only, so return
2660 * right away instead of dumping stack traces later on that
2661 * will obscure the real source of the problem. We test
2662 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2663 * the latter could be true if the filesystem is mounted
2664 * read-only, and in that case, ext4_writepages should
2665 * *never* be called, so if that ever happens, we would want
2666 * the stack trace.
2668 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2669 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2670 ret = -EROFS;
2671 goto out_writepages;
2675 * If we have inline data and arrive here, it means that
2676 * we will soon create the block for the 1st page, so
2677 * we'd better clear the inline data here.
2679 if (ext4_has_inline_data(inode)) {
2680 /* Just inode will be modified... */
2681 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2682 if (IS_ERR(handle)) {
2683 ret = PTR_ERR(handle);
2684 goto out_writepages;
2686 BUG_ON(ext4_test_inode_state(inode,
2687 EXT4_STATE_MAY_INLINE_DATA));
2688 ext4_destroy_inline_data(handle, inode);
2689 ext4_journal_stop(handle);
2692 if (ext4_should_dioread_nolock(inode)) {
2694 * We may need to convert up to one extent per block in
2695 * the page and we may dirty the inode.
2697 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2698 PAGE_SIZE >> inode->i_blkbits);
2701 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702 range_whole = 1;
2704 if (wbc->range_cyclic) {
2705 writeback_index = mapping->writeback_index;
2706 if (writeback_index)
2707 cycled = 0;
2708 mpd.first_page = writeback_index;
2709 mpd.last_page = -1;
2710 } else {
2711 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2715 mpd.inode = inode;
2716 mpd.wbc = wbc;
2717 ext4_io_submit_init(&mpd.io_submit, wbc);
2718 retry:
2719 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721 blk_start_plug(&plug);
2724 * First writeback pages that don't need mapping - we can avoid
2725 * starting a transaction unnecessarily and also avoid being blocked
2726 * in the block layer on device congestion while having transaction
2727 * started.
2729 mpd.do_map = 0;
2730 mpd.scanned_until_end = 0;
2731 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2732 if (!mpd.io_submit.io_end) {
2733 ret = -ENOMEM;
2734 goto unplug;
2736 ret = mpage_prepare_extent_to_map(&mpd);
2737 /* Unlock pages we didn't use */
2738 mpage_release_unused_pages(&mpd, false);
2739 /* Submit prepared bio */
2740 ext4_io_submit(&mpd.io_submit);
2741 ext4_put_io_end_defer(mpd.io_submit.io_end);
2742 mpd.io_submit.io_end = NULL;
2743 if (ret < 0)
2744 goto unplug;
2746 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2747 /* For each extent of pages we use new io_end */
2748 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2749 if (!mpd.io_submit.io_end) {
2750 ret = -ENOMEM;
2751 break;
2755 * We have two constraints: We find one extent to map and we
2756 * must always write out whole page (makes a difference when
2757 * blocksize < pagesize) so that we don't block on IO when we
2758 * try to write out the rest of the page. Journalled mode is
2759 * not supported by delalloc.
2761 BUG_ON(ext4_should_journal_data(inode));
2762 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2764 /* start a new transaction */
2765 handle = ext4_journal_start_with_reserve(inode,
2766 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2767 if (IS_ERR(handle)) {
2768 ret = PTR_ERR(handle);
2769 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2770 "%ld pages, ino %lu; err %d", __func__,
2771 wbc->nr_to_write, inode->i_ino, ret);
2772 /* Release allocated io_end */
2773 ext4_put_io_end(mpd.io_submit.io_end);
2774 mpd.io_submit.io_end = NULL;
2775 break;
2777 mpd.do_map = 1;
2779 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2780 ret = mpage_prepare_extent_to_map(&mpd);
2781 if (!ret && mpd.map.m_len)
2782 ret = mpage_map_and_submit_extent(handle, &mpd,
2783 &give_up_on_write);
2785 * Caution: If the handle is synchronous,
2786 * ext4_journal_stop() can wait for transaction commit
2787 * to finish which may depend on writeback of pages to
2788 * complete or on page lock to be released. In that
2789 * case, we have to wait until after after we have
2790 * submitted all the IO, released page locks we hold,
2791 * and dropped io_end reference (for extent conversion
2792 * to be able to complete) before stopping the handle.
2794 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2795 ext4_journal_stop(handle);
2796 handle = NULL;
2797 mpd.do_map = 0;
2799 /* Unlock pages we didn't use */
2800 mpage_release_unused_pages(&mpd, give_up_on_write);
2801 /* Submit prepared bio */
2802 ext4_io_submit(&mpd.io_submit);
2805 * Drop our io_end reference we got from init. We have
2806 * to be careful and use deferred io_end finishing if
2807 * we are still holding the transaction as we can
2808 * release the last reference to io_end which may end
2809 * up doing unwritten extent conversion.
2811 if (handle) {
2812 ext4_put_io_end_defer(mpd.io_submit.io_end);
2813 ext4_journal_stop(handle);
2814 } else
2815 ext4_put_io_end(mpd.io_submit.io_end);
2816 mpd.io_submit.io_end = NULL;
2818 if (ret == -ENOSPC && sbi->s_journal) {
2820 * Commit the transaction which would
2821 * free blocks released in the transaction
2822 * and try again
2824 jbd2_journal_force_commit_nested(sbi->s_journal);
2825 ret = 0;
2826 continue;
2828 /* Fatal error - ENOMEM, EIO... */
2829 if (ret)
2830 break;
2832 unplug:
2833 blk_finish_plug(&plug);
2834 if (!ret && !cycled && wbc->nr_to_write > 0) {
2835 cycled = 1;
2836 mpd.last_page = writeback_index - 1;
2837 mpd.first_page = 0;
2838 goto retry;
2841 /* Update index */
2842 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2844 * Set the writeback_index so that range_cyclic
2845 * mode will write it back later
2847 mapping->writeback_index = mpd.first_page;
2849 out_writepages:
2850 trace_ext4_writepages_result(inode, wbc, ret,
2851 nr_to_write - wbc->nr_to_write);
2852 percpu_up_read(&sbi->s_writepages_rwsem);
2853 return ret;
2856 static int ext4_dax_writepages(struct address_space *mapping,
2857 struct writeback_control *wbc)
2859 int ret;
2860 long nr_to_write = wbc->nr_to_write;
2861 struct inode *inode = mapping->host;
2862 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2864 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2865 return -EIO;
2867 percpu_down_read(&sbi->s_writepages_rwsem);
2868 trace_ext4_writepages(inode, wbc);
2870 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2871 trace_ext4_writepages_result(inode, wbc, ret,
2872 nr_to_write - wbc->nr_to_write);
2873 percpu_up_read(&sbi->s_writepages_rwsem);
2874 return ret;
2877 static int ext4_nonda_switch(struct super_block *sb)
2879 s64 free_clusters, dirty_clusters;
2880 struct ext4_sb_info *sbi = EXT4_SB(sb);
2883 * switch to non delalloc mode if we are running low
2884 * on free block. The free block accounting via percpu
2885 * counters can get slightly wrong with percpu_counter_batch getting
2886 * accumulated on each CPU without updating global counters
2887 * Delalloc need an accurate free block accounting. So switch
2888 * to non delalloc when we are near to error range.
2890 free_clusters =
2891 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2892 dirty_clusters =
2893 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2895 * Start pushing delalloc when 1/2 of free blocks are dirty.
2897 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2898 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2900 if (2 * free_clusters < 3 * dirty_clusters ||
2901 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2903 * free block count is less than 150% of dirty blocks
2904 * or free blocks is less than watermark
2906 return 1;
2908 return 0;
2911 /* We always reserve for an inode update; the superblock could be there too */
2912 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2914 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2915 return 1;
2917 if (pos + len <= 0x7fffffffULL)
2918 return 1;
2920 /* We might need to update the superblock to set LARGE_FILE */
2921 return 2;
2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925 loff_t pos, unsigned len, unsigned flags,
2926 struct page **pagep, void **fsdata)
2928 int ret, retries = 0;
2929 struct page *page;
2930 pgoff_t index;
2931 struct inode *inode = mapping->host;
2932 handle_t *handle;
2934 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2935 return -EIO;
2937 index = pos >> PAGE_SHIFT;
2939 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2940 ext4_verity_in_progress(inode)) {
2941 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2942 return ext4_write_begin(file, mapping, pos,
2943 len, flags, pagep, fsdata);
2945 *fsdata = (void *)0;
2946 trace_ext4_da_write_begin(inode, pos, len, flags);
2948 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2949 ret = ext4_da_write_inline_data_begin(mapping, inode,
2950 pos, len, flags,
2951 pagep, fsdata);
2952 if (ret < 0)
2953 return ret;
2954 if (ret == 1)
2955 return 0;
2959 * grab_cache_page_write_begin() can take a long time if the
2960 * system is thrashing due to memory pressure, or if the page
2961 * is being written back. So grab it first before we start
2962 * the transaction handle. This also allows us to allocate
2963 * the page (if needed) without using GFP_NOFS.
2965 retry_grab:
2966 page = grab_cache_page_write_begin(mapping, index, flags);
2967 if (!page)
2968 return -ENOMEM;
2969 unlock_page(page);
2972 * With delayed allocation, we don't log the i_disksize update
2973 * if there is delayed block allocation. But we still need
2974 * to journalling the i_disksize update if writes to the end
2975 * of file which has an already mapped buffer.
2977 retry_journal:
2978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2979 ext4_da_write_credits(inode, pos, len));
2980 if (IS_ERR(handle)) {
2981 put_page(page);
2982 return PTR_ERR(handle);
2985 lock_page(page);
2986 if (page->mapping != mapping) {
2987 /* The page got truncated from under us */
2988 unlock_page(page);
2989 put_page(page);
2990 ext4_journal_stop(handle);
2991 goto retry_grab;
2993 /* In case writeback began while the page was unlocked */
2994 wait_for_stable_page(page);
2996 #ifdef CONFIG_FS_ENCRYPTION
2997 ret = ext4_block_write_begin(page, pos, len,
2998 ext4_da_get_block_prep);
2999 #else
3000 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3001 #endif
3002 if (ret < 0) {
3003 unlock_page(page);
3004 ext4_journal_stop(handle);
3006 * block_write_begin may have instantiated a few blocks
3007 * outside i_size. Trim these off again. Don't need
3008 * i_size_read because we hold i_mutex.
3010 if (pos + len > inode->i_size)
3011 ext4_truncate_failed_write(inode);
3013 if (ret == -ENOSPC &&
3014 ext4_should_retry_alloc(inode->i_sb, &retries))
3015 goto retry_journal;
3017 put_page(page);
3018 return ret;
3021 *pagep = page;
3022 return ret;
3026 * Check if we should update i_disksize
3027 * when write to the end of file but not require block allocation
3029 static int ext4_da_should_update_i_disksize(struct page *page,
3030 unsigned long offset)
3032 struct buffer_head *bh;
3033 struct inode *inode = page->mapping->host;
3034 unsigned int idx;
3035 int i;
3037 bh = page_buffers(page);
3038 idx = offset >> inode->i_blkbits;
3040 for (i = 0; i < idx; i++)
3041 bh = bh->b_this_page;
3043 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3044 return 0;
3045 return 1;
3048 static int ext4_da_write_end(struct file *file,
3049 struct address_space *mapping,
3050 loff_t pos, unsigned len, unsigned copied,
3051 struct page *page, void *fsdata)
3053 struct inode *inode = mapping->host;
3054 int ret = 0, ret2;
3055 handle_t *handle = ext4_journal_current_handle();
3056 loff_t new_i_size;
3057 unsigned long start, end;
3058 int write_mode = (int)(unsigned long)fsdata;
3060 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3061 return ext4_write_end(file, mapping, pos,
3062 len, copied, page, fsdata);
3064 trace_ext4_da_write_end(inode, pos, len, copied);
3065 start = pos & (PAGE_SIZE - 1);
3066 end = start + copied - 1;
3069 * generic_write_end() will run mark_inode_dirty() if i_size
3070 * changes. So let's piggyback the i_disksize mark_inode_dirty
3071 * into that.
3073 new_i_size = pos + copied;
3074 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3075 if (ext4_has_inline_data(inode) ||
3076 ext4_da_should_update_i_disksize(page, end)) {
3077 ext4_update_i_disksize(inode, new_i_size);
3078 /* We need to mark inode dirty even if
3079 * new_i_size is less that inode->i_size
3080 * bu greater than i_disksize.(hint delalloc)
3082 ret = ext4_mark_inode_dirty(handle, inode);
3086 if (write_mode != CONVERT_INLINE_DATA &&
3087 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3088 ext4_has_inline_data(inode))
3089 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3090 page);
3091 else
3092 ret2 = generic_write_end(file, mapping, pos, len, copied,
3093 page, fsdata);
3095 copied = ret2;
3096 if (ret2 < 0)
3097 ret = ret2;
3098 ret2 = ext4_journal_stop(handle);
3099 if (unlikely(ret2 && !ret))
3100 ret = ret2;
3102 return ret ? ret : copied;
3106 * Force all delayed allocation blocks to be allocated for a given inode.
3108 int ext4_alloc_da_blocks(struct inode *inode)
3110 trace_ext4_alloc_da_blocks(inode);
3112 if (!EXT4_I(inode)->i_reserved_data_blocks)
3113 return 0;
3116 * We do something simple for now. The filemap_flush() will
3117 * also start triggering a write of the data blocks, which is
3118 * not strictly speaking necessary (and for users of
3119 * laptop_mode, not even desirable). However, to do otherwise
3120 * would require replicating code paths in:
3122 * ext4_writepages() ->
3123 * write_cache_pages() ---> (via passed in callback function)
3124 * __mpage_da_writepage() -->
3125 * mpage_add_bh_to_extent()
3126 * mpage_da_map_blocks()
3128 * The problem is that write_cache_pages(), located in
3129 * mm/page-writeback.c, marks pages clean in preparation for
3130 * doing I/O, which is not desirable if we're not planning on
3131 * doing I/O at all.
3133 * We could call write_cache_pages(), and then redirty all of
3134 * the pages by calling redirty_page_for_writepage() but that
3135 * would be ugly in the extreme. So instead we would need to
3136 * replicate parts of the code in the above functions,
3137 * simplifying them because we wouldn't actually intend to
3138 * write out the pages, but rather only collect contiguous
3139 * logical block extents, call the multi-block allocator, and
3140 * then update the buffer heads with the block allocations.
3142 * For now, though, we'll cheat by calling filemap_flush(),
3143 * which will map the blocks, and start the I/O, but not
3144 * actually wait for the I/O to complete.
3146 return filemap_flush(inode->i_mapping);
3150 * bmap() is special. It gets used by applications such as lilo and by
3151 * the swapper to find the on-disk block of a specific piece of data.
3153 * Naturally, this is dangerous if the block concerned is still in the
3154 * journal. If somebody makes a swapfile on an ext4 data-journaling
3155 * filesystem and enables swap, then they may get a nasty shock when the
3156 * data getting swapped to that swapfile suddenly gets overwritten by
3157 * the original zero's written out previously to the journal and
3158 * awaiting writeback in the kernel's buffer cache.
3160 * So, if we see any bmap calls here on a modified, data-journaled file,
3161 * take extra steps to flush any blocks which might be in the cache.
3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3165 struct inode *inode = mapping->host;
3166 journal_t *journal;
3167 int err;
3170 * We can get here for an inline file via the FIBMAP ioctl
3172 if (ext4_has_inline_data(inode))
3173 return 0;
3175 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3176 test_opt(inode->i_sb, DELALLOC)) {
3178 * With delalloc we want to sync the file
3179 * so that we can make sure we allocate
3180 * blocks for file
3182 filemap_write_and_wait(mapping);
3185 if (EXT4_JOURNAL(inode) &&
3186 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3188 * This is a REALLY heavyweight approach, but the use of
3189 * bmap on dirty files is expected to be extremely rare:
3190 * only if we run lilo or swapon on a freshly made file
3191 * do we expect this to happen.
3193 * (bmap requires CAP_SYS_RAWIO so this does not
3194 * represent an unprivileged user DOS attack --- we'd be
3195 * in trouble if mortal users could trigger this path at
3196 * will.)
3198 * NB. EXT4_STATE_JDATA is not set on files other than
3199 * regular files. If somebody wants to bmap a directory
3200 * or symlink and gets confused because the buffer
3201 * hasn't yet been flushed to disk, they deserve
3202 * everything they get.
3205 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3206 journal = EXT4_JOURNAL(inode);
3207 jbd2_journal_lock_updates(journal);
3208 err = jbd2_journal_flush(journal);
3209 jbd2_journal_unlock_updates(journal);
3211 if (err)
3212 return 0;
3215 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3218 static int ext4_readpage(struct file *file, struct page *page)
3220 int ret = -EAGAIN;
3221 struct inode *inode = page->mapping->host;
3223 trace_ext4_readpage(page);
3225 if (ext4_has_inline_data(inode))
3226 ret = ext4_readpage_inline(inode, page);
3228 if (ret == -EAGAIN)
3229 return ext4_mpage_readpages(inode, NULL, page);
3231 return ret;
3234 static void ext4_readahead(struct readahead_control *rac)
3236 struct inode *inode = rac->mapping->host;
3238 /* If the file has inline data, no need to do readahead. */
3239 if (ext4_has_inline_data(inode))
3240 return;
3242 ext4_mpage_readpages(inode, rac, NULL);
3245 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3246 unsigned int length)
3248 trace_ext4_invalidatepage(page, offset, length);
3250 /* No journalling happens on data buffers when this function is used */
3251 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3253 block_invalidatepage(page, offset, length);
3256 static int __ext4_journalled_invalidatepage(struct page *page,
3257 unsigned int offset,
3258 unsigned int length)
3260 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262 trace_ext4_journalled_invalidatepage(page, offset, length);
3265 * If it's a full truncate we just forget about the pending dirtying
3267 if (offset == 0 && length == PAGE_SIZE)
3268 ClearPageChecked(page);
3270 return jbd2_journal_invalidatepage(journal, page, offset, length);
3273 /* Wrapper for aops... */
3274 static void ext4_journalled_invalidatepage(struct page *page,
3275 unsigned int offset,
3276 unsigned int length)
3278 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3281 static int ext4_releasepage(struct page *page, gfp_t wait)
3283 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3285 trace_ext4_releasepage(page);
3287 /* Page has dirty journalled data -> cannot release */
3288 if (PageChecked(page))
3289 return 0;
3290 if (journal)
3291 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3292 else
3293 return try_to_free_buffers(page);
3296 static bool ext4_inode_datasync_dirty(struct inode *inode)
3298 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3300 if (journal)
3301 return !jbd2_transaction_committed(journal,
3302 EXT4_I(inode)->i_datasync_tid);
3303 /* Any metadata buffers to write? */
3304 if (!list_empty(&inode->i_mapping->private_list))
3305 return true;
3306 return inode->i_state & I_DIRTY_DATASYNC;
3309 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3310 struct ext4_map_blocks *map, loff_t offset,
3311 loff_t length)
3313 u8 blkbits = inode->i_blkbits;
3316 * Writes that span EOF might trigger an I/O size update on completion,
3317 * so consider them to be dirty for the purpose of O_DSYNC, even if
3318 * there is no other metadata changes being made or are pending.
3320 iomap->flags = 0;
3321 if (ext4_inode_datasync_dirty(inode) ||
3322 offset + length > i_size_read(inode))
3323 iomap->flags |= IOMAP_F_DIRTY;
3325 if (map->m_flags & EXT4_MAP_NEW)
3326 iomap->flags |= IOMAP_F_NEW;
3328 iomap->bdev = inode->i_sb->s_bdev;
3329 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3330 iomap->offset = (u64) map->m_lblk << blkbits;
3331 iomap->length = (u64) map->m_len << blkbits;
3333 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3334 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3335 iomap->flags |= IOMAP_F_MERGED;
3338 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3339 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3340 * set. In order for any allocated unwritten extents to be converted
3341 * into written extents correctly within the ->end_io() handler, we
3342 * need to ensure that the iomap->type is set appropriately. Hence, the
3343 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3344 * been set first.
3346 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3347 iomap->type = IOMAP_UNWRITTEN;
3348 iomap->addr = (u64) map->m_pblk << blkbits;
3349 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3350 iomap->type = IOMAP_MAPPED;
3351 iomap->addr = (u64) map->m_pblk << blkbits;
3352 } else {
3353 iomap->type = IOMAP_HOLE;
3354 iomap->addr = IOMAP_NULL_ADDR;
3358 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3359 unsigned int flags)
3361 handle_t *handle;
3362 u8 blkbits = inode->i_blkbits;
3363 int ret, dio_credits, m_flags = 0, retries = 0;
3366 * Trim the mapping request to the maximum value that we can map at
3367 * once for direct I/O.
3369 if (map->m_len > DIO_MAX_BLOCKS)
3370 map->m_len = DIO_MAX_BLOCKS;
3371 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3373 retry:
3375 * Either we allocate blocks and then don't get an unwritten extent, so
3376 * in that case we have reserved enough credits. Or, the blocks are
3377 * already allocated and unwritten. In that case, the extent conversion
3378 * fits into the credits as well.
3380 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3381 if (IS_ERR(handle))
3382 return PTR_ERR(handle);
3385 * DAX and direct I/O are the only two operations that are currently
3386 * supported with IOMAP_WRITE.
3388 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3389 if (IS_DAX(inode))
3390 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3392 * We use i_size instead of i_disksize here because delalloc writeback
3393 * can complete at any point during the I/O and subsequently push the
3394 * i_disksize out to i_size. This could be beyond where direct I/O is
3395 * happening and thus expose allocated blocks to direct I/O reads.
3397 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3398 m_flags = EXT4_GET_BLOCKS_CREATE;
3399 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3400 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3402 ret = ext4_map_blocks(handle, inode, map, m_flags);
3405 * We cannot fill holes in indirect tree based inodes as that could
3406 * expose stale data in the case of a crash. Use the magic error code
3407 * to fallback to buffered I/O.
3409 if (!m_flags && !ret)
3410 ret = -ENOTBLK;
3412 ext4_journal_stop(handle);
3413 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3414 goto retry;
3416 return ret;
3420 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3421 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3423 int ret;
3424 struct ext4_map_blocks map;
3425 u8 blkbits = inode->i_blkbits;
3427 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3428 return -EINVAL;
3430 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3431 return -ERANGE;
3434 * Calculate the first and last logical blocks respectively.
3436 map.m_lblk = offset >> blkbits;
3437 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3438 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3440 if (flags & IOMAP_WRITE)
3441 ret = ext4_iomap_alloc(inode, &map, flags);
3442 else
3443 ret = ext4_map_blocks(NULL, inode, &map, 0);
3445 if (ret < 0)
3446 return ret;
3448 ext4_set_iomap(inode, iomap, &map, offset, length);
3450 return 0;
3453 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3454 loff_t length, unsigned flags, struct iomap *iomap,
3455 struct iomap *srcmap)
3457 int ret;
3460 * Even for writes we don't need to allocate blocks, so just pretend
3461 * we are reading to save overhead of starting a transaction.
3463 flags &= ~IOMAP_WRITE;
3464 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3465 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3466 return ret;
3469 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3470 ssize_t written, unsigned flags, struct iomap *iomap)
3473 * Check to see whether an error occurred while writing out the data to
3474 * the allocated blocks. If so, return the magic error code so that we
3475 * fallback to buffered I/O and attempt to complete the remainder of
3476 * the I/O. Any blocks that may have been allocated in preparation for
3477 * the direct I/O will be reused during buffered I/O.
3479 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3480 return -ENOTBLK;
3482 return 0;
3485 const struct iomap_ops ext4_iomap_ops = {
3486 .iomap_begin = ext4_iomap_begin,
3487 .iomap_end = ext4_iomap_end,
3490 const struct iomap_ops ext4_iomap_overwrite_ops = {
3491 .iomap_begin = ext4_iomap_overwrite_begin,
3492 .iomap_end = ext4_iomap_end,
3495 static bool ext4_iomap_is_delalloc(struct inode *inode,
3496 struct ext4_map_blocks *map)
3498 struct extent_status es;
3499 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3501 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3502 map->m_lblk, end, &es);
3504 if (!es.es_len || es.es_lblk > end)
3505 return false;
3507 if (es.es_lblk > map->m_lblk) {
3508 map->m_len = es.es_lblk - map->m_lblk;
3509 return false;
3512 offset = map->m_lblk - es.es_lblk;
3513 map->m_len = es.es_len - offset;
3515 return true;
3518 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3519 loff_t length, unsigned int flags,
3520 struct iomap *iomap, struct iomap *srcmap)
3522 int ret;
3523 bool delalloc = false;
3524 struct ext4_map_blocks map;
3525 u8 blkbits = inode->i_blkbits;
3527 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3528 return -EINVAL;
3530 if (ext4_has_inline_data(inode)) {
3531 ret = ext4_inline_data_iomap(inode, iomap);
3532 if (ret != -EAGAIN) {
3533 if (ret == 0 && offset >= iomap->length)
3534 ret = -ENOENT;
3535 return ret;
3540 * Calculate the first and last logical block respectively.
3542 map.m_lblk = offset >> blkbits;
3543 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3544 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3547 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3548 * So handle it here itself instead of querying ext4_map_blocks().
3549 * Since ext4_map_blocks() will warn about it and will return
3550 * -EIO error.
3552 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3553 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3555 if (offset >= sbi->s_bitmap_maxbytes) {
3556 map.m_flags = 0;
3557 goto set_iomap;
3561 ret = ext4_map_blocks(NULL, inode, &map, 0);
3562 if (ret < 0)
3563 return ret;
3564 if (ret == 0)
3565 delalloc = ext4_iomap_is_delalloc(inode, &map);
3567 set_iomap:
3568 ext4_set_iomap(inode, iomap, &map, offset, length);
3569 if (delalloc && iomap->type == IOMAP_HOLE)
3570 iomap->type = IOMAP_DELALLOC;
3572 return 0;
3575 const struct iomap_ops ext4_iomap_report_ops = {
3576 .iomap_begin = ext4_iomap_begin_report,
3580 * Pages can be marked dirty completely asynchronously from ext4's journalling
3581 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3582 * much here because ->set_page_dirty is called under VFS locks. The page is
3583 * not necessarily locked.
3585 * We cannot just dirty the page and leave attached buffers clean, because the
3586 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3587 * or jbddirty because all the journalling code will explode.
3589 * So what we do is to mark the page "pending dirty" and next time writepage
3590 * is called, propagate that into the buffers appropriately.
3592 static int ext4_journalled_set_page_dirty(struct page *page)
3594 SetPageChecked(page);
3595 return __set_page_dirty_nobuffers(page);
3598 static int ext4_set_page_dirty(struct page *page)
3600 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3601 WARN_ON_ONCE(!page_has_buffers(page));
3602 return __set_page_dirty_buffers(page);
3605 static const struct address_space_operations ext4_aops = {
3606 .readpage = ext4_readpage,
3607 .readahead = ext4_readahead,
3608 .writepage = ext4_writepage,
3609 .writepages = ext4_writepages,
3610 .write_begin = ext4_write_begin,
3611 .write_end = ext4_write_end,
3612 .set_page_dirty = ext4_set_page_dirty,
3613 .bmap = ext4_bmap,
3614 .invalidatepage = ext4_invalidatepage,
3615 .releasepage = ext4_releasepage,
3616 .direct_IO = noop_direct_IO,
3617 .migratepage = buffer_migrate_page,
3618 .is_partially_uptodate = block_is_partially_uptodate,
3619 .error_remove_page = generic_error_remove_page,
3622 static const struct address_space_operations ext4_journalled_aops = {
3623 .readpage = ext4_readpage,
3624 .readahead = ext4_readahead,
3625 .writepage = ext4_writepage,
3626 .writepages = ext4_writepages,
3627 .write_begin = ext4_write_begin,
3628 .write_end = ext4_journalled_write_end,
3629 .set_page_dirty = ext4_journalled_set_page_dirty,
3630 .bmap = ext4_bmap,
3631 .invalidatepage = ext4_journalled_invalidatepage,
3632 .releasepage = ext4_releasepage,
3633 .direct_IO = noop_direct_IO,
3634 .is_partially_uptodate = block_is_partially_uptodate,
3635 .error_remove_page = generic_error_remove_page,
3638 static const struct address_space_operations ext4_da_aops = {
3639 .readpage = ext4_readpage,
3640 .readahead = ext4_readahead,
3641 .writepage = ext4_writepage,
3642 .writepages = ext4_writepages,
3643 .write_begin = ext4_da_write_begin,
3644 .write_end = ext4_da_write_end,
3645 .set_page_dirty = ext4_set_page_dirty,
3646 .bmap = ext4_bmap,
3647 .invalidatepage = ext4_invalidatepage,
3648 .releasepage = ext4_releasepage,
3649 .direct_IO = noop_direct_IO,
3650 .migratepage = buffer_migrate_page,
3651 .is_partially_uptodate = block_is_partially_uptodate,
3652 .error_remove_page = generic_error_remove_page,
3655 static const struct address_space_operations ext4_dax_aops = {
3656 .writepages = ext4_dax_writepages,
3657 .direct_IO = noop_direct_IO,
3658 .set_page_dirty = noop_set_page_dirty,
3659 .bmap = ext4_bmap,
3660 .invalidatepage = noop_invalidatepage,
3663 void ext4_set_aops(struct inode *inode)
3665 switch (ext4_inode_journal_mode(inode)) {
3666 case EXT4_INODE_ORDERED_DATA_MODE:
3667 case EXT4_INODE_WRITEBACK_DATA_MODE:
3668 break;
3669 case EXT4_INODE_JOURNAL_DATA_MODE:
3670 inode->i_mapping->a_ops = &ext4_journalled_aops;
3671 return;
3672 default:
3673 BUG();
3675 if (IS_DAX(inode))
3676 inode->i_mapping->a_ops = &ext4_dax_aops;
3677 else if (test_opt(inode->i_sb, DELALLOC))
3678 inode->i_mapping->a_ops = &ext4_da_aops;
3679 else
3680 inode->i_mapping->a_ops = &ext4_aops;
3683 static int __ext4_block_zero_page_range(handle_t *handle,
3684 struct address_space *mapping, loff_t from, loff_t length)
3686 ext4_fsblk_t index = from >> PAGE_SHIFT;
3687 unsigned offset = from & (PAGE_SIZE-1);
3688 unsigned blocksize, pos;
3689 ext4_lblk_t iblock;
3690 struct inode *inode = mapping->host;
3691 struct buffer_head *bh;
3692 struct page *page;
3693 int err = 0;
3695 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3696 mapping_gfp_constraint(mapping, ~__GFP_FS));
3697 if (!page)
3698 return -ENOMEM;
3700 blocksize = inode->i_sb->s_blocksize;
3702 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704 if (!page_has_buffers(page))
3705 create_empty_buffers(page, blocksize, 0);
3707 /* Find the buffer that contains "offset" */
3708 bh = page_buffers(page);
3709 pos = blocksize;
3710 while (offset >= pos) {
3711 bh = bh->b_this_page;
3712 iblock++;
3713 pos += blocksize;
3715 if (buffer_freed(bh)) {
3716 BUFFER_TRACE(bh, "freed: skip");
3717 goto unlock;
3719 if (!buffer_mapped(bh)) {
3720 BUFFER_TRACE(bh, "unmapped");
3721 ext4_get_block(inode, iblock, bh, 0);
3722 /* unmapped? It's a hole - nothing to do */
3723 if (!buffer_mapped(bh)) {
3724 BUFFER_TRACE(bh, "still unmapped");
3725 goto unlock;
3729 /* Ok, it's mapped. Make sure it's up-to-date */
3730 if (PageUptodate(page))
3731 set_buffer_uptodate(bh);
3733 if (!buffer_uptodate(bh)) {
3734 err = -EIO;
3735 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3736 wait_on_buffer(bh);
3737 /* Uhhuh. Read error. Complain and punt. */
3738 if (!buffer_uptodate(bh))
3739 goto unlock;
3740 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3741 /* We expect the key to be set. */
3742 BUG_ON(!fscrypt_has_encryption_key(inode));
3743 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3744 bh_offset(bh));
3745 if (err) {
3746 clear_buffer_uptodate(bh);
3747 goto unlock;
3751 if (ext4_should_journal_data(inode)) {
3752 BUFFER_TRACE(bh, "get write access");
3753 err = ext4_journal_get_write_access(handle, bh);
3754 if (err)
3755 goto unlock;
3757 zero_user(page, offset, length);
3758 BUFFER_TRACE(bh, "zeroed end of block");
3760 if (ext4_should_journal_data(inode)) {
3761 err = ext4_handle_dirty_metadata(handle, inode, bh);
3762 } else {
3763 err = 0;
3764 mark_buffer_dirty(bh);
3765 if (ext4_should_order_data(inode))
3766 err = ext4_jbd2_inode_add_write(handle, inode, from,
3767 length);
3770 unlock:
3771 unlock_page(page);
3772 put_page(page);
3773 return err;
3777 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3778 * starting from file offset 'from'. The range to be zero'd must
3779 * be contained with in one block. If the specified range exceeds
3780 * the end of the block it will be shortened to end of the block
3781 * that cooresponds to 'from'
3783 static int ext4_block_zero_page_range(handle_t *handle,
3784 struct address_space *mapping, loff_t from, loff_t length)
3786 struct inode *inode = mapping->host;
3787 unsigned offset = from & (PAGE_SIZE-1);
3788 unsigned blocksize = inode->i_sb->s_blocksize;
3789 unsigned max = blocksize - (offset & (blocksize - 1));
3792 * correct length if it does not fall between
3793 * 'from' and the end of the block
3795 if (length > max || length < 0)
3796 length = max;
3798 if (IS_DAX(inode)) {
3799 return iomap_zero_range(inode, from, length, NULL,
3800 &ext4_iomap_ops);
3802 return __ext4_block_zero_page_range(handle, mapping, from, length);
3806 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3807 * up to the end of the block which corresponds to `from'.
3808 * This required during truncate. We need to physically zero the tail end
3809 * of that block so it doesn't yield old data if the file is later grown.
3811 static int ext4_block_truncate_page(handle_t *handle,
3812 struct address_space *mapping, loff_t from)
3814 unsigned offset = from & (PAGE_SIZE-1);
3815 unsigned length;
3816 unsigned blocksize;
3817 struct inode *inode = mapping->host;
3819 /* If we are processing an encrypted inode during orphan list handling */
3820 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3821 return 0;
3823 blocksize = inode->i_sb->s_blocksize;
3824 length = blocksize - (offset & (blocksize - 1));
3826 return ext4_block_zero_page_range(handle, mapping, from, length);
3829 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3830 loff_t lstart, loff_t length)
3832 struct super_block *sb = inode->i_sb;
3833 struct address_space *mapping = inode->i_mapping;
3834 unsigned partial_start, partial_end;
3835 ext4_fsblk_t start, end;
3836 loff_t byte_end = (lstart + length - 1);
3837 int err = 0;
3839 partial_start = lstart & (sb->s_blocksize - 1);
3840 partial_end = byte_end & (sb->s_blocksize - 1);
3842 start = lstart >> sb->s_blocksize_bits;
3843 end = byte_end >> sb->s_blocksize_bits;
3845 /* Handle partial zero within the single block */
3846 if (start == end &&
3847 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3848 err = ext4_block_zero_page_range(handle, mapping,
3849 lstart, length);
3850 return err;
3852 /* Handle partial zero out on the start of the range */
3853 if (partial_start) {
3854 err = ext4_block_zero_page_range(handle, mapping,
3855 lstart, sb->s_blocksize);
3856 if (err)
3857 return err;
3859 /* Handle partial zero out on the end of the range */
3860 if (partial_end != sb->s_blocksize - 1)
3861 err = ext4_block_zero_page_range(handle, mapping,
3862 byte_end - partial_end,
3863 partial_end + 1);
3864 return err;
3867 int ext4_can_truncate(struct inode *inode)
3869 if (S_ISREG(inode->i_mode))
3870 return 1;
3871 if (S_ISDIR(inode->i_mode))
3872 return 1;
3873 if (S_ISLNK(inode->i_mode))
3874 return !ext4_inode_is_fast_symlink(inode);
3875 return 0;
3879 * We have to make sure i_disksize gets properly updated before we truncate
3880 * page cache due to hole punching or zero range. Otherwise i_disksize update
3881 * can get lost as it may have been postponed to submission of writeback but
3882 * that will never happen after we truncate page cache.
3884 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3885 loff_t len)
3887 handle_t *handle;
3888 int ret;
3890 loff_t size = i_size_read(inode);
3892 WARN_ON(!inode_is_locked(inode));
3893 if (offset > size || offset + len < size)
3894 return 0;
3896 if (EXT4_I(inode)->i_disksize >= size)
3897 return 0;
3899 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3900 if (IS_ERR(handle))
3901 return PTR_ERR(handle);
3902 ext4_update_i_disksize(inode, size);
3903 ret = ext4_mark_inode_dirty(handle, inode);
3904 ext4_journal_stop(handle);
3906 return ret;
3909 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3911 up_write(&ei->i_mmap_sem);
3912 schedule();
3913 down_write(&ei->i_mmap_sem);
3916 int ext4_break_layouts(struct inode *inode)
3918 struct ext4_inode_info *ei = EXT4_I(inode);
3919 struct page *page;
3920 int error;
3922 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3923 return -EINVAL;
3925 do {
3926 page = dax_layout_busy_page(inode->i_mapping);
3927 if (!page)
3928 return 0;
3930 error = ___wait_var_event(&page->_refcount,
3931 atomic_read(&page->_refcount) == 1,
3932 TASK_INTERRUPTIBLE, 0, 0,
3933 ext4_wait_dax_page(ei));
3934 } while (error == 0);
3936 return error;
3940 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3941 * associated with the given offset and length
3943 * @inode: File inode
3944 * @offset: The offset where the hole will begin
3945 * @len: The length of the hole
3947 * Returns: 0 on success or negative on failure
3950 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3952 struct super_block *sb = inode->i_sb;
3953 ext4_lblk_t first_block, stop_block;
3954 struct address_space *mapping = inode->i_mapping;
3955 loff_t first_block_offset, last_block_offset;
3956 handle_t *handle;
3957 unsigned int credits;
3958 int ret = 0, ret2 = 0;
3960 trace_ext4_punch_hole(inode, offset, length, 0);
3962 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3963 if (ext4_has_inline_data(inode)) {
3964 down_write(&EXT4_I(inode)->i_mmap_sem);
3965 ret = ext4_convert_inline_data(inode);
3966 up_write(&EXT4_I(inode)->i_mmap_sem);
3967 if (ret)
3968 return ret;
3972 * Write out all dirty pages to avoid race conditions
3973 * Then release them.
3975 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3976 ret = filemap_write_and_wait_range(mapping, offset,
3977 offset + length - 1);
3978 if (ret)
3979 return ret;
3982 inode_lock(inode);
3984 /* No need to punch hole beyond i_size */
3985 if (offset >= inode->i_size)
3986 goto out_mutex;
3989 * If the hole extends beyond i_size, set the hole
3990 * to end after the page that contains i_size
3992 if (offset + length > inode->i_size) {
3993 length = inode->i_size +
3994 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3995 offset;
3998 if (offset & (sb->s_blocksize - 1) ||
3999 (offset + length) & (sb->s_blocksize - 1)) {
4001 * Attach jinode to inode for jbd2 if we do any zeroing of
4002 * partial block
4004 ret = ext4_inode_attach_jinode(inode);
4005 if (ret < 0)
4006 goto out_mutex;
4010 /* Wait all existing dio workers, newcomers will block on i_mutex */
4011 inode_dio_wait(inode);
4014 * Prevent page faults from reinstantiating pages we have released from
4015 * page cache.
4017 down_write(&EXT4_I(inode)->i_mmap_sem);
4019 ret = ext4_break_layouts(inode);
4020 if (ret)
4021 goto out_dio;
4023 first_block_offset = round_up(offset, sb->s_blocksize);
4024 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4026 /* Now release the pages and zero block aligned part of pages*/
4027 if (last_block_offset > first_block_offset) {
4028 ret = ext4_update_disksize_before_punch(inode, offset, length);
4029 if (ret)
4030 goto out_dio;
4031 truncate_pagecache_range(inode, first_block_offset,
4032 last_block_offset);
4035 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036 credits = ext4_writepage_trans_blocks(inode);
4037 else
4038 credits = ext4_blocks_for_truncate(inode);
4039 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040 if (IS_ERR(handle)) {
4041 ret = PTR_ERR(handle);
4042 ext4_std_error(sb, ret);
4043 goto out_dio;
4046 ret = ext4_zero_partial_blocks(handle, inode, offset,
4047 length);
4048 if (ret)
4049 goto out_stop;
4051 first_block = (offset + sb->s_blocksize - 1) >>
4052 EXT4_BLOCK_SIZE_BITS(sb);
4053 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4055 /* If there are blocks to remove, do it */
4056 if (stop_block > first_block) {
4058 down_write(&EXT4_I(inode)->i_data_sem);
4059 ext4_discard_preallocations(inode);
4061 ret = ext4_es_remove_extent(inode, first_block,
4062 stop_block - first_block);
4063 if (ret) {
4064 up_write(&EXT4_I(inode)->i_data_sem);
4065 goto out_stop;
4068 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4069 ret = ext4_ext_remove_space(inode, first_block,
4070 stop_block - 1);
4071 else
4072 ret = ext4_ind_remove_space(handle, inode, first_block,
4073 stop_block);
4075 up_write(&EXT4_I(inode)->i_data_sem);
4077 if (IS_SYNC(inode))
4078 ext4_handle_sync(handle);
4080 inode->i_mtime = inode->i_ctime = current_time(inode);
4081 ret2 = ext4_mark_inode_dirty(handle, inode);
4082 if (unlikely(ret2))
4083 ret = ret2;
4084 if (ret >= 0)
4085 ext4_update_inode_fsync_trans(handle, inode, 1);
4086 out_stop:
4087 ext4_journal_stop(handle);
4088 out_dio:
4089 up_write(&EXT4_I(inode)->i_mmap_sem);
4090 out_mutex:
4091 inode_unlock(inode);
4092 return ret;
4095 int ext4_inode_attach_jinode(struct inode *inode)
4097 struct ext4_inode_info *ei = EXT4_I(inode);
4098 struct jbd2_inode *jinode;
4100 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4101 return 0;
4103 jinode = jbd2_alloc_inode(GFP_KERNEL);
4104 spin_lock(&inode->i_lock);
4105 if (!ei->jinode) {
4106 if (!jinode) {
4107 spin_unlock(&inode->i_lock);
4108 return -ENOMEM;
4110 ei->jinode = jinode;
4111 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4112 jinode = NULL;
4114 spin_unlock(&inode->i_lock);
4115 if (unlikely(jinode != NULL))
4116 jbd2_free_inode(jinode);
4117 return 0;
4121 * ext4_truncate()
4123 * We block out ext4_get_block() block instantiations across the entire
4124 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4125 * simultaneously on behalf of the same inode.
4127 * As we work through the truncate and commit bits of it to the journal there
4128 * is one core, guiding principle: the file's tree must always be consistent on
4129 * disk. We must be able to restart the truncate after a crash.
4131 * The file's tree may be transiently inconsistent in memory (although it
4132 * probably isn't), but whenever we close off and commit a journal transaction,
4133 * the contents of (the filesystem + the journal) must be consistent and
4134 * restartable. It's pretty simple, really: bottom up, right to left (although
4135 * left-to-right works OK too).
4137 * Note that at recovery time, journal replay occurs *before* the restart of
4138 * truncate against the orphan inode list.
4140 * The committed inode has the new, desired i_size (which is the same as
4141 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4142 * that this inode's truncate did not complete and it will again call
4143 * ext4_truncate() to have another go. So there will be instantiated blocks
4144 * to the right of the truncation point in a crashed ext4 filesystem. But
4145 * that's fine - as long as they are linked from the inode, the post-crash
4146 * ext4_truncate() run will find them and release them.
4148 int ext4_truncate(struct inode *inode)
4150 struct ext4_inode_info *ei = EXT4_I(inode);
4151 unsigned int credits;
4152 int err = 0, err2;
4153 handle_t *handle;
4154 struct address_space *mapping = inode->i_mapping;
4157 * There is a possibility that we're either freeing the inode
4158 * or it's a completely new inode. In those cases we might not
4159 * have i_mutex locked because it's not necessary.
4161 if (!(inode->i_state & (I_NEW|I_FREEING)))
4162 WARN_ON(!inode_is_locked(inode));
4163 trace_ext4_truncate_enter(inode);
4165 if (!ext4_can_truncate(inode))
4166 return 0;
4168 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4169 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4171 if (ext4_has_inline_data(inode)) {
4172 int has_inline = 1;
4174 err = ext4_inline_data_truncate(inode, &has_inline);
4175 if (err)
4176 return err;
4177 if (has_inline)
4178 return 0;
4181 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4182 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4183 if (ext4_inode_attach_jinode(inode) < 0)
4184 return 0;
4187 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4188 credits = ext4_writepage_trans_blocks(inode);
4189 else
4190 credits = ext4_blocks_for_truncate(inode);
4192 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4193 if (IS_ERR(handle))
4194 return PTR_ERR(handle);
4196 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197 ext4_block_truncate_page(handle, mapping, inode->i_size);
4200 * We add the inode to the orphan list, so that if this
4201 * truncate spans multiple transactions, and we crash, we will
4202 * resume the truncate when the filesystem recovers. It also
4203 * marks the inode dirty, to catch the new size.
4205 * Implication: the file must always be in a sane, consistent
4206 * truncatable state while each transaction commits.
4208 err = ext4_orphan_add(handle, inode);
4209 if (err)
4210 goto out_stop;
4212 down_write(&EXT4_I(inode)->i_data_sem);
4214 ext4_discard_preallocations(inode);
4216 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217 err = ext4_ext_truncate(handle, inode);
4218 else
4219 ext4_ind_truncate(handle, inode);
4221 up_write(&ei->i_data_sem);
4222 if (err)
4223 goto out_stop;
4225 if (IS_SYNC(inode))
4226 ext4_handle_sync(handle);
4228 out_stop:
4230 * If this was a simple ftruncate() and the file will remain alive,
4231 * then we need to clear up the orphan record which we created above.
4232 * However, if this was a real unlink then we were called by
4233 * ext4_evict_inode(), and we allow that function to clean up the
4234 * orphan info for us.
4236 if (inode->i_nlink)
4237 ext4_orphan_del(handle, inode);
4239 inode->i_mtime = inode->i_ctime = current_time(inode);
4240 err2 = ext4_mark_inode_dirty(handle, inode);
4241 if (unlikely(err2 && !err))
4242 err = err2;
4243 ext4_journal_stop(handle);
4245 trace_ext4_truncate_exit(inode);
4246 return err;
4250 * ext4_get_inode_loc returns with an extra refcount against the inode's
4251 * underlying buffer_head on success. If 'in_mem' is true, we have all
4252 * data in memory that is needed to recreate the on-disk version of this
4253 * inode.
4255 static int __ext4_get_inode_loc(struct inode *inode,
4256 struct ext4_iloc *iloc, int in_mem)
4258 struct ext4_group_desc *gdp;
4259 struct buffer_head *bh;
4260 struct super_block *sb = inode->i_sb;
4261 ext4_fsblk_t block;
4262 struct blk_plug plug;
4263 int inodes_per_block, inode_offset;
4265 iloc->bh = NULL;
4266 if (inode->i_ino < EXT4_ROOT_INO ||
4267 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4268 return -EFSCORRUPTED;
4270 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4271 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4272 if (!gdp)
4273 return -EIO;
4276 * Figure out the offset within the block group inode table
4278 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4279 inode_offset = ((inode->i_ino - 1) %
4280 EXT4_INODES_PER_GROUP(sb));
4281 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4282 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4284 bh = sb_getblk(sb, block);
4285 if (unlikely(!bh))
4286 return -ENOMEM;
4287 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4288 goto simulate_eio;
4289 if (!buffer_uptodate(bh)) {
4290 lock_buffer(bh);
4293 * If the buffer has the write error flag, we have failed
4294 * to write out another inode in the same block. In this
4295 * case, we don't have to read the block because we may
4296 * read the old inode data successfully.
4298 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4299 set_buffer_uptodate(bh);
4301 if (buffer_uptodate(bh)) {
4302 /* someone brought it uptodate while we waited */
4303 unlock_buffer(bh);
4304 goto has_buffer;
4308 * If we have all information of the inode in memory and this
4309 * is the only valid inode in the block, we need not read the
4310 * block.
4312 if (in_mem) {
4313 struct buffer_head *bitmap_bh;
4314 int i, start;
4316 start = inode_offset & ~(inodes_per_block - 1);
4318 /* Is the inode bitmap in cache? */
4319 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4320 if (unlikely(!bitmap_bh))
4321 goto make_io;
4324 * If the inode bitmap isn't in cache then the
4325 * optimisation may end up performing two reads instead
4326 * of one, so skip it.
4328 if (!buffer_uptodate(bitmap_bh)) {
4329 brelse(bitmap_bh);
4330 goto make_io;
4332 for (i = start; i < start + inodes_per_block; i++) {
4333 if (i == inode_offset)
4334 continue;
4335 if (ext4_test_bit(i, bitmap_bh->b_data))
4336 break;
4338 brelse(bitmap_bh);
4339 if (i == start + inodes_per_block) {
4340 /* all other inodes are free, so skip I/O */
4341 memset(bh->b_data, 0, bh->b_size);
4342 set_buffer_uptodate(bh);
4343 unlock_buffer(bh);
4344 goto has_buffer;
4348 make_io:
4350 * If we need to do any I/O, try to pre-readahead extra
4351 * blocks from the inode table.
4353 blk_start_plug(&plug);
4354 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4355 ext4_fsblk_t b, end, table;
4356 unsigned num;
4357 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4359 table = ext4_inode_table(sb, gdp);
4360 /* s_inode_readahead_blks is always a power of 2 */
4361 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4362 if (table > b)
4363 b = table;
4364 end = b + ra_blks;
4365 num = EXT4_INODES_PER_GROUP(sb);
4366 if (ext4_has_group_desc_csum(sb))
4367 num -= ext4_itable_unused_count(sb, gdp);
4368 table += num / inodes_per_block;
4369 if (end > table)
4370 end = table;
4371 while (b <= end)
4372 sb_breadahead_unmovable(sb, b++);
4376 * There are other valid inodes in the buffer, this inode
4377 * has in-inode xattrs, or we don't have this inode in memory.
4378 * Read the block from disk.
4380 trace_ext4_load_inode(inode);
4381 get_bh(bh);
4382 bh->b_end_io = end_buffer_read_sync;
4383 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4384 blk_finish_plug(&plug);
4385 wait_on_buffer(bh);
4386 if (!buffer_uptodate(bh)) {
4387 simulate_eio:
4388 ext4_error_inode_block(inode, block, EIO,
4389 "unable to read itable block");
4390 brelse(bh);
4391 return -EIO;
4394 has_buffer:
4395 iloc->bh = bh;
4396 return 0;
4399 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4401 /* We have all inode data except xattrs in memory here. */
4402 return __ext4_get_inode_loc(inode, iloc,
4403 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4406 static bool ext4_should_enable_dax(struct inode *inode)
4408 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4410 if (test_opt2(inode->i_sb, DAX_NEVER))
4411 return false;
4412 if (!S_ISREG(inode->i_mode))
4413 return false;
4414 if (ext4_should_journal_data(inode))
4415 return false;
4416 if (ext4_has_inline_data(inode))
4417 return false;
4418 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4419 return false;
4420 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4421 return false;
4422 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4423 return false;
4424 if (test_opt(inode->i_sb, DAX_ALWAYS))
4425 return true;
4427 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4430 void ext4_set_inode_flags(struct inode *inode, bool init)
4432 unsigned int flags = EXT4_I(inode)->i_flags;
4433 unsigned int new_fl = 0;
4435 WARN_ON_ONCE(IS_DAX(inode) && init);
4437 if (flags & EXT4_SYNC_FL)
4438 new_fl |= S_SYNC;
4439 if (flags & EXT4_APPEND_FL)
4440 new_fl |= S_APPEND;
4441 if (flags & EXT4_IMMUTABLE_FL)
4442 new_fl |= S_IMMUTABLE;
4443 if (flags & EXT4_NOATIME_FL)
4444 new_fl |= S_NOATIME;
4445 if (flags & EXT4_DIRSYNC_FL)
4446 new_fl |= S_DIRSYNC;
4448 /* Because of the way inode_set_flags() works we must preserve S_DAX
4449 * here if already set. */
4450 new_fl |= (inode->i_flags & S_DAX);
4451 if (init && ext4_should_enable_dax(inode))
4452 new_fl |= S_DAX;
4454 if (flags & EXT4_ENCRYPT_FL)
4455 new_fl |= S_ENCRYPTED;
4456 if (flags & EXT4_CASEFOLD_FL)
4457 new_fl |= S_CASEFOLD;
4458 if (flags & EXT4_VERITY_FL)
4459 new_fl |= S_VERITY;
4460 inode_set_flags(inode, new_fl,
4461 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4462 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4465 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4466 struct ext4_inode_info *ei)
4468 blkcnt_t i_blocks ;
4469 struct inode *inode = &(ei->vfs_inode);
4470 struct super_block *sb = inode->i_sb;
4472 if (ext4_has_feature_huge_file(sb)) {
4473 /* we are using combined 48 bit field */
4474 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4475 le32_to_cpu(raw_inode->i_blocks_lo);
4476 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4477 /* i_blocks represent file system block size */
4478 return i_blocks << (inode->i_blkbits - 9);
4479 } else {
4480 return i_blocks;
4482 } else {
4483 return le32_to_cpu(raw_inode->i_blocks_lo);
4487 static inline int ext4_iget_extra_inode(struct inode *inode,
4488 struct ext4_inode *raw_inode,
4489 struct ext4_inode_info *ei)
4491 __le32 *magic = (void *)raw_inode +
4492 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4494 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4495 EXT4_INODE_SIZE(inode->i_sb) &&
4496 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4497 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4498 return ext4_find_inline_data_nolock(inode);
4499 } else
4500 EXT4_I(inode)->i_inline_off = 0;
4501 return 0;
4504 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4506 if (!ext4_has_feature_project(inode->i_sb))
4507 return -EOPNOTSUPP;
4508 *projid = EXT4_I(inode)->i_projid;
4509 return 0;
4513 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4514 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4515 * set.
4517 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4519 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4520 inode_set_iversion_raw(inode, val);
4521 else
4522 inode_set_iversion_queried(inode, val);
4524 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4526 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527 return inode_peek_iversion_raw(inode);
4528 else
4529 return inode_peek_iversion(inode);
4532 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4533 ext4_iget_flags flags, const char *function,
4534 unsigned int line)
4536 struct ext4_iloc iloc;
4537 struct ext4_inode *raw_inode;
4538 struct ext4_inode_info *ei;
4539 struct inode *inode;
4540 journal_t *journal = EXT4_SB(sb)->s_journal;
4541 long ret;
4542 loff_t size;
4543 int block;
4544 uid_t i_uid;
4545 gid_t i_gid;
4546 projid_t i_projid;
4548 if ((!(flags & EXT4_IGET_SPECIAL) &&
4549 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4550 (ino < EXT4_ROOT_INO) ||
4551 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4552 if (flags & EXT4_IGET_HANDLE)
4553 return ERR_PTR(-ESTALE);
4554 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4555 "inode #%lu: comm %s: iget: illegal inode #",
4556 ino, current->comm);
4557 return ERR_PTR(-EFSCORRUPTED);
4560 inode = iget_locked(sb, ino);
4561 if (!inode)
4562 return ERR_PTR(-ENOMEM);
4563 if (!(inode->i_state & I_NEW))
4564 return inode;
4566 ei = EXT4_I(inode);
4567 iloc.bh = NULL;
4569 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4570 if (ret < 0)
4571 goto bad_inode;
4572 raw_inode = ext4_raw_inode(&iloc);
4574 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4575 ext4_error_inode(inode, function, line, 0,
4576 "iget: root inode unallocated");
4577 ret = -EFSCORRUPTED;
4578 goto bad_inode;
4581 if ((flags & EXT4_IGET_HANDLE) &&
4582 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4583 ret = -ESTALE;
4584 goto bad_inode;
4587 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4588 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4589 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4590 EXT4_INODE_SIZE(inode->i_sb) ||
4591 (ei->i_extra_isize & 3)) {
4592 ext4_error_inode(inode, function, line, 0,
4593 "iget: bad extra_isize %u "
4594 "(inode size %u)",
4595 ei->i_extra_isize,
4596 EXT4_INODE_SIZE(inode->i_sb));
4597 ret = -EFSCORRUPTED;
4598 goto bad_inode;
4600 } else
4601 ei->i_extra_isize = 0;
4603 /* Precompute checksum seed for inode metadata */
4604 if (ext4_has_metadata_csum(sb)) {
4605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4606 __u32 csum;
4607 __le32 inum = cpu_to_le32(inode->i_ino);
4608 __le32 gen = raw_inode->i_generation;
4609 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4610 sizeof(inum));
4611 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4612 sizeof(gen));
4615 if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4616 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4617 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4618 "iget: checksum invalid");
4619 ret = -EFSBADCRC;
4620 goto bad_inode;
4623 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626 if (ext4_has_feature_project(sb) &&
4627 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630 else
4631 i_projid = EXT4_DEF_PROJID;
4633 if (!(test_opt(inode->i_sb, NO_UID32))) {
4634 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4637 i_uid_write(inode, i_uid);
4638 i_gid_write(inode, i_gid);
4639 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4642 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4643 ei->i_inline_off = 0;
4644 ei->i_dir_start_lookup = 0;
4645 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646 /* We now have enough fields to check if the inode was active or not.
4647 * This is needed because nfsd might try to access dead inodes
4648 * the test is that same one that e2fsck uses
4649 * NeilBrown 1999oct15
4651 if (inode->i_nlink == 0) {
4652 if ((inode->i_mode == 0 ||
4653 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654 ino != EXT4_BOOT_LOADER_INO) {
4655 /* this inode is deleted */
4656 ret = -ESTALE;
4657 goto bad_inode;
4659 /* The only unlinked inodes we let through here have
4660 * valid i_mode and are being read by the orphan
4661 * recovery code: that's fine, we're about to complete
4662 * the process of deleting those.
4663 * OR it is the EXT4_BOOT_LOADER_INO which is
4664 * not initialized on a new filesystem. */
4666 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667 ext4_set_inode_flags(inode, true);
4668 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670 if (ext4_has_feature_64bit(sb))
4671 ei->i_file_acl |=
4672 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673 inode->i_size = ext4_isize(sb, raw_inode);
4674 if ((size = i_size_read(inode)) < 0) {
4675 ext4_error_inode(inode, function, line, 0,
4676 "iget: bad i_size value: %lld", size);
4677 ret = -EFSCORRUPTED;
4678 goto bad_inode;
4681 * If dir_index is not enabled but there's dir with INDEX flag set,
4682 * we'd normally treat htree data as empty space. But with metadata
4683 * checksumming that corrupts checksums so forbid that.
4685 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687 ext4_error_inode(inode, function, line, 0,
4688 "iget: Dir with htree data on filesystem without dir_index feature.");
4689 ret = -EFSCORRUPTED;
4690 goto bad_inode;
4692 ei->i_disksize = inode->i_size;
4693 #ifdef CONFIG_QUOTA
4694 ei->i_reserved_quota = 0;
4695 #endif
4696 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697 ei->i_block_group = iloc.block_group;
4698 ei->i_last_alloc_group = ~0;
4700 * NOTE! The in-memory inode i_data array is in little-endian order
4701 * even on big-endian machines: we do NOT byteswap the block numbers!
4703 for (block = 0; block < EXT4_N_BLOCKS; block++)
4704 ei->i_data[block] = raw_inode->i_block[block];
4705 INIT_LIST_HEAD(&ei->i_orphan);
4708 * Set transaction id's of transactions that have to be committed
4709 * to finish f[data]sync. We set them to currently running transaction
4710 * as we cannot be sure that the inode or some of its metadata isn't
4711 * part of the transaction - the inode could have been reclaimed and
4712 * now it is reread from disk.
4714 if (journal) {
4715 transaction_t *transaction;
4716 tid_t tid;
4718 read_lock(&journal->j_state_lock);
4719 if (journal->j_running_transaction)
4720 transaction = journal->j_running_transaction;
4721 else
4722 transaction = journal->j_committing_transaction;
4723 if (transaction)
4724 tid = transaction->t_tid;
4725 else
4726 tid = journal->j_commit_sequence;
4727 read_unlock(&journal->j_state_lock);
4728 ei->i_sync_tid = tid;
4729 ei->i_datasync_tid = tid;
4732 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733 if (ei->i_extra_isize == 0) {
4734 /* The extra space is currently unused. Use it. */
4735 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4736 ei->i_extra_isize = sizeof(struct ext4_inode) -
4737 EXT4_GOOD_OLD_INODE_SIZE;
4738 } else {
4739 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4740 if (ret)
4741 goto bad_inode;
4745 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4746 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4747 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4748 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4750 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4751 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4753 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4755 ivers |=
4756 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4758 ext4_inode_set_iversion_queried(inode, ivers);
4761 ret = 0;
4762 if (ei->i_file_acl &&
4763 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4764 ext4_error_inode(inode, function, line, 0,
4765 "iget: bad extended attribute block %llu",
4766 ei->i_file_acl);
4767 ret = -EFSCORRUPTED;
4768 goto bad_inode;
4769 } else if (!ext4_has_inline_data(inode)) {
4770 /* validate the block references in the inode */
4771 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4772 (S_ISLNK(inode->i_mode) &&
4773 !ext4_inode_is_fast_symlink(inode))) {
4774 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4775 ret = ext4_ext_check_inode(inode);
4776 else
4777 ret = ext4_ind_check_inode(inode);
4780 if (ret)
4781 goto bad_inode;
4783 if (S_ISREG(inode->i_mode)) {
4784 inode->i_op = &ext4_file_inode_operations;
4785 inode->i_fop = &ext4_file_operations;
4786 ext4_set_aops(inode);
4787 } else if (S_ISDIR(inode->i_mode)) {
4788 inode->i_op = &ext4_dir_inode_operations;
4789 inode->i_fop = &ext4_dir_operations;
4790 } else if (S_ISLNK(inode->i_mode)) {
4791 /* VFS does not allow setting these so must be corruption */
4792 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4793 ext4_error_inode(inode, function, line, 0,
4794 "iget: immutable or append flags "
4795 "not allowed on symlinks");
4796 ret = -EFSCORRUPTED;
4797 goto bad_inode;
4799 if (IS_ENCRYPTED(inode)) {
4800 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4801 ext4_set_aops(inode);
4802 } else if (ext4_inode_is_fast_symlink(inode)) {
4803 inode->i_link = (char *)ei->i_data;
4804 inode->i_op = &ext4_fast_symlink_inode_operations;
4805 nd_terminate_link(ei->i_data, inode->i_size,
4806 sizeof(ei->i_data) - 1);
4807 } else {
4808 inode->i_op = &ext4_symlink_inode_operations;
4809 ext4_set_aops(inode);
4811 inode_nohighmem(inode);
4812 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4813 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4814 inode->i_op = &ext4_special_inode_operations;
4815 if (raw_inode->i_block[0])
4816 init_special_inode(inode, inode->i_mode,
4817 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4818 else
4819 init_special_inode(inode, inode->i_mode,
4820 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4821 } else if (ino == EXT4_BOOT_LOADER_INO) {
4822 make_bad_inode(inode);
4823 } else {
4824 ret = -EFSCORRUPTED;
4825 ext4_error_inode(inode, function, line, 0,
4826 "iget: bogus i_mode (%o)", inode->i_mode);
4827 goto bad_inode;
4829 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4830 ext4_error_inode(inode, function, line, 0,
4831 "casefold flag without casefold feature");
4832 brelse(iloc.bh);
4834 unlock_new_inode(inode);
4835 return inode;
4837 bad_inode:
4838 brelse(iloc.bh);
4839 iget_failed(inode);
4840 return ERR_PTR(ret);
4843 static int ext4_inode_blocks_set(handle_t *handle,
4844 struct ext4_inode *raw_inode,
4845 struct ext4_inode_info *ei)
4847 struct inode *inode = &(ei->vfs_inode);
4848 u64 i_blocks = READ_ONCE(inode->i_blocks);
4849 struct super_block *sb = inode->i_sb;
4851 if (i_blocks <= ~0U) {
4853 * i_blocks can be represented in a 32 bit variable
4854 * as multiple of 512 bytes
4856 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4857 raw_inode->i_blocks_high = 0;
4858 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4859 return 0;
4861 if (!ext4_has_feature_huge_file(sb))
4862 return -EFBIG;
4864 if (i_blocks <= 0xffffffffffffULL) {
4866 * i_blocks can be represented in a 48 bit variable
4867 * as multiple of 512 bytes
4869 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4870 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4871 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4872 } else {
4873 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874 /* i_block is stored in file system block size */
4875 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4876 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4877 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4879 return 0;
4882 static void __ext4_update_other_inode_time(struct super_block *sb,
4883 unsigned long orig_ino,
4884 unsigned long ino,
4885 struct ext4_inode *raw_inode)
4887 struct inode *inode;
4889 inode = find_inode_by_ino_rcu(sb, ino);
4890 if (!inode)
4891 return;
4893 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4894 I_DIRTY_INODE)) ||
4895 ((inode->i_state & I_DIRTY_TIME) == 0))
4896 return;
4898 spin_lock(&inode->i_lock);
4899 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900 I_DIRTY_INODE)) == 0) &&
4901 (inode->i_state & I_DIRTY_TIME)) {
4902 struct ext4_inode_info *ei = EXT4_I(inode);
4904 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4905 spin_unlock(&inode->i_lock);
4907 spin_lock(&ei->i_raw_lock);
4908 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4909 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4910 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4911 ext4_inode_csum_set(inode, raw_inode, ei);
4912 spin_unlock(&ei->i_raw_lock);
4913 trace_ext4_other_inode_update_time(inode, orig_ino);
4914 return;
4916 spin_unlock(&inode->i_lock);
4920 * Opportunistically update the other time fields for other inodes in
4921 * the same inode table block.
4923 static void ext4_update_other_inodes_time(struct super_block *sb,
4924 unsigned long orig_ino, char *buf)
4926 unsigned long ino;
4927 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4928 int inode_size = EXT4_INODE_SIZE(sb);
4931 * Calculate the first inode in the inode table block. Inode
4932 * numbers are one-based. That is, the first inode in a block
4933 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4935 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4936 rcu_read_lock();
4937 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4938 if (ino == orig_ino)
4939 continue;
4940 __ext4_update_other_inode_time(sb, orig_ino, ino,
4941 (struct ext4_inode *)buf);
4943 rcu_read_unlock();
4947 * Post the struct inode info into an on-disk inode location in the
4948 * buffer-cache. This gobbles the caller's reference to the
4949 * buffer_head in the inode location struct.
4951 * The caller must have write access to iloc->bh.
4953 static int ext4_do_update_inode(handle_t *handle,
4954 struct inode *inode,
4955 struct ext4_iloc *iloc)
4957 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4958 struct ext4_inode_info *ei = EXT4_I(inode);
4959 struct buffer_head *bh = iloc->bh;
4960 struct super_block *sb = inode->i_sb;
4961 int err = 0, rc, block;
4962 int need_datasync = 0, set_large_file = 0;
4963 uid_t i_uid;
4964 gid_t i_gid;
4965 projid_t i_projid;
4967 spin_lock(&ei->i_raw_lock);
4969 /* For fields not tracked in the in-memory inode,
4970 * initialise them to zero for new inodes. */
4971 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4972 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4974 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4975 i_uid = i_uid_read(inode);
4976 i_gid = i_gid_read(inode);
4977 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4978 if (!(test_opt(inode->i_sb, NO_UID32))) {
4979 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4980 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4982 * Fix up interoperability with old kernels. Otherwise, old inodes get
4983 * re-used with the upper 16 bits of the uid/gid intact
4985 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4986 raw_inode->i_uid_high = 0;
4987 raw_inode->i_gid_high = 0;
4988 } else {
4989 raw_inode->i_uid_high =
4990 cpu_to_le16(high_16_bits(i_uid));
4991 raw_inode->i_gid_high =
4992 cpu_to_le16(high_16_bits(i_gid));
4994 } else {
4995 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4996 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4997 raw_inode->i_uid_high = 0;
4998 raw_inode->i_gid_high = 0;
5000 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5002 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5003 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5004 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5005 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5007 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5008 if (err) {
5009 spin_unlock(&ei->i_raw_lock);
5010 goto out_brelse;
5012 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5013 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5014 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5015 raw_inode->i_file_acl_high =
5016 cpu_to_le16(ei->i_file_acl >> 32);
5017 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5018 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5019 ext4_isize_set(raw_inode, ei->i_disksize);
5020 need_datasync = 1;
5022 if (ei->i_disksize > 0x7fffffffULL) {
5023 if (!ext4_has_feature_large_file(sb) ||
5024 EXT4_SB(sb)->s_es->s_rev_level ==
5025 cpu_to_le32(EXT4_GOOD_OLD_REV))
5026 set_large_file = 1;
5028 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5029 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5030 if (old_valid_dev(inode->i_rdev)) {
5031 raw_inode->i_block[0] =
5032 cpu_to_le32(old_encode_dev(inode->i_rdev));
5033 raw_inode->i_block[1] = 0;
5034 } else {
5035 raw_inode->i_block[0] = 0;
5036 raw_inode->i_block[1] =
5037 cpu_to_le32(new_encode_dev(inode->i_rdev));
5038 raw_inode->i_block[2] = 0;
5040 } else if (!ext4_has_inline_data(inode)) {
5041 for (block = 0; block < EXT4_N_BLOCKS; block++)
5042 raw_inode->i_block[block] = ei->i_data[block];
5045 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5046 u64 ivers = ext4_inode_peek_iversion(inode);
5048 raw_inode->i_disk_version = cpu_to_le32(ivers);
5049 if (ei->i_extra_isize) {
5050 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5051 raw_inode->i_version_hi =
5052 cpu_to_le32(ivers >> 32);
5053 raw_inode->i_extra_isize =
5054 cpu_to_le16(ei->i_extra_isize);
5058 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5059 i_projid != EXT4_DEF_PROJID);
5061 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5062 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5063 raw_inode->i_projid = cpu_to_le32(i_projid);
5065 ext4_inode_csum_set(inode, raw_inode, ei);
5066 spin_unlock(&ei->i_raw_lock);
5067 if (inode->i_sb->s_flags & SB_LAZYTIME)
5068 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5069 bh->b_data);
5071 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5072 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5073 if (!err)
5074 err = rc;
5075 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5076 if (set_large_file) {
5077 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5078 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5079 if (err)
5080 goto out_brelse;
5081 ext4_set_feature_large_file(sb);
5082 ext4_handle_sync(handle);
5083 err = ext4_handle_dirty_super(handle, sb);
5085 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5086 out_brelse:
5087 brelse(bh);
5088 ext4_std_error(inode->i_sb, err);
5089 return err;
5093 * ext4_write_inode()
5095 * We are called from a few places:
5097 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5098 * Here, there will be no transaction running. We wait for any running
5099 * transaction to commit.
5101 * - Within flush work (sys_sync(), kupdate and such).
5102 * We wait on commit, if told to.
5104 * - Within iput_final() -> write_inode_now()
5105 * We wait on commit, if told to.
5107 * In all cases it is actually safe for us to return without doing anything,
5108 * because the inode has been copied into a raw inode buffer in
5109 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5110 * writeback.
5112 * Note that we are absolutely dependent upon all inode dirtiers doing the
5113 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5114 * which we are interested.
5116 * It would be a bug for them to not do this. The code:
5118 * mark_inode_dirty(inode)
5119 * stuff();
5120 * inode->i_size = expr;
5122 * is in error because write_inode() could occur while `stuff()' is running,
5123 * and the new i_size will be lost. Plus the inode will no longer be on the
5124 * superblock's dirty inode list.
5126 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5128 int err;
5130 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5131 sb_rdonly(inode->i_sb))
5132 return 0;
5134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5135 return -EIO;
5137 if (EXT4_SB(inode->i_sb)->s_journal) {
5138 if (ext4_journal_current_handle()) {
5139 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5140 dump_stack();
5141 return -EIO;
5145 * No need to force transaction in WB_SYNC_NONE mode. Also
5146 * ext4_sync_fs() will force the commit after everything is
5147 * written.
5149 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5150 return 0;
5152 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5153 EXT4_I(inode)->i_sync_tid);
5154 } else {
5155 struct ext4_iloc iloc;
5157 err = __ext4_get_inode_loc(inode, &iloc, 0);
5158 if (err)
5159 return err;
5161 * sync(2) will flush the whole buffer cache. No need to do
5162 * it here separately for each inode.
5164 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5165 sync_dirty_buffer(iloc.bh);
5166 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5167 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5168 "IO error syncing inode");
5169 err = -EIO;
5171 brelse(iloc.bh);
5173 return err;
5177 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178 * buffers that are attached to a page stradding i_size and are undergoing
5179 * commit. In that case we have to wait for commit to finish and try again.
5181 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5183 struct page *page;
5184 unsigned offset;
5185 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186 tid_t commit_tid = 0;
5187 int ret;
5189 offset = inode->i_size & (PAGE_SIZE - 1);
5191 * If the page is fully truncated, we don't need to wait for any commit
5192 * (and we even should not as __ext4_journalled_invalidatepage() may
5193 * strip all buffers from the page but keep the page dirty which can then
5194 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5195 * buffers). Also we don't need to wait for any commit if all buffers in
5196 * the page remain valid. This is most beneficial for the common case of
5197 * blocksize == PAGESIZE.
5199 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5200 return;
5201 while (1) {
5202 page = find_lock_page(inode->i_mapping,
5203 inode->i_size >> PAGE_SHIFT);
5204 if (!page)
5205 return;
5206 ret = __ext4_journalled_invalidatepage(page, offset,
5207 PAGE_SIZE - offset);
5208 unlock_page(page);
5209 put_page(page);
5210 if (ret != -EBUSY)
5211 return;
5212 commit_tid = 0;
5213 read_lock(&journal->j_state_lock);
5214 if (journal->j_committing_transaction)
5215 commit_tid = journal->j_committing_transaction->t_tid;
5216 read_unlock(&journal->j_state_lock);
5217 if (commit_tid)
5218 jbd2_log_wait_commit(journal, commit_tid);
5223 * ext4_setattr()
5225 * Called from notify_change.
5227 * We want to trap VFS attempts to truncate the file as soon as
5228 * possible. In particular, we want to make sure that when the VFS
5229 * shrinks i_size, we put the inode on the orphan list and modify
5230 * i_disksize immediately, so that during the subsequent flushing of
5231 * dirty pages and freeing of disk blocks, we can guarantee that any
5232 * commit will leave the blocks being flushed in an unused state on
5233 * disk. (On recovery, the inode will get truncated and the blocks will
5234 * be freed, so we have a strong guarantee that no future commit will
5235 * leave these blocks visible to the user.)
5237 * Another thing we have to assure is that if we are in ordered mode
5238 * and inode is still attached to the committing transaction, we must
5239 * we start writeout of all the dirty pages which are being truncated.
5240 * This way we are sure that all the data written in the previous
5241 * transaction are already on disk (truncate waits for pages under
5242 * writeback).
5244 * Called with inode->i_mutex down.
5246 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5248 struct inode *inode = d_inode(dentry);
5249 int error, rc = 0;
5250 int orphan = 0;
5251 const unsigned int ia_valid = attr->ia_valid;
5253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5254 return -EIO;
5256 if (unlikely(IS_IMMUTABLE(inode)))
5257 return -EPERM;
5259 if (unlikely(IS_APPEND(inode) &&
5260 (ia_valid & (ATTR_MODE | ATTR_UID |
5261 ATTR_GID | ATTR_TIMES_SET))))
5262 return -EPERM;
5264 error = setattr_prepare(dentry, attr);
5265 if (error)
5266 return error;
5268 error = fscrypt_prepare_setattr(dentry, attr);
5269 if (error)
5270 return error;
5272 error = fsverity_prepare_setattr(dentry, attr);
5273 if (error)
5274 return error;
5276 if (is_quota_modification(inode, attr)) {
5277 error = dquot_initialize(inode);
5278 if (error)
5279 return error;
5281 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5282 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5283 handle_t *handle;
5285 /* (user+group)*(old+new) structure, inode write (sb,
5286 * inode block, ? - but truncate inode update has it) */
5287 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5288 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5289 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5290 if (IS_ERR(handle)) {
5291 error = PTR_ERR(handle);
5292 goto err_out;
5295 /* dquot_transfer() calls back ext4_get_inode_usage() which
5296 * counts xattr inode references.
5298 down_read(&EXT4_I(inode)->xattr_sem);
5299 error = dquot_transfer(inode, attr);
5300 up_read(&EXT4_I(inode)->xattr_sem);
5302 if (error) {
5303 ext4_journal_stop(handle);
5304 return error;
5306 /* Update corresponding info in inode so that everything is in
5307 * one transaction */
5308 if (attr->ia_valid & ATTR_UID)
5309 inode->i_uid = attr->ia_uid;
5310 if (attr->ia_valid & ATTR_GID)
5311 inode->i_gid = attr->ia_gid;
5312 error = ext4_mark_inode_dirty(handle, inode);
5313 ext4_journal_stop(handle);
5314 if (unlikely(error))
5315 return error;
5318 if (attr->ia_valid & ATTR_SIZE) {
5319 handle_t *handle;
5320 loff_t oldsize = inode->i_size;
5321 int shrink = (attr->ia_size < inode->i_size);
5323 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5326 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327 return -EFBIG;
5329 if (!S_ISREG(inode->i_mode))
5330 return -EINVAL;
5332 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5333 inode_inc_iversion(inode);
5335 if (shrink) {
5336 if (ext4_should_order_data(inode)) {
5337 error = ext4_begin_ordered_truncate(inode,
5338 attr->ia_size);
5339 if (error)
5340 goto err_out;
5343 * Blocks are going to be removed from the inode. Wait
5344 * for dio in flight.
5346 inode_dio_wait(inode);
5349 down_write(&EXT4_I(inode)->i_mmap_sem);
5351 rc = ext4_break_layouts(inode);
5352 if (rc) {
5353 up_write(&EXT4_I(inode)->i_mmap_sem);
5354 return rc;
5357 if (attr->ia_size != inode->i_size) {
5358 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5359 if (IS_ERR(handle)) {
5360 error = PTR_ERR(handle);
5361 goto out_mmap_sem;
5363 if (ext4_handle_valid(handle) && shrink) {
5364 error = ext4_orphan_add(handle, inode);
5365 orphan = 1;
5368 * Update c/mtime on truncate up, ext4_truncate() will
5369 * update c/mtime in shrink case below
5371 if (!shrink) {
5372 inode->i_mtime = current_time(inode);
5373 inode->i_ctime = inode->i_mtime;
5375 down_write(&EXT4_I(inode)->i_data_sem);
5376 EXT4_I(inode)->i_disksize = attr->ia_size;
5377 rc = ext4_mark_inode_dirty(handle, inode);
5378 if (!error)
5379 error = rc;
5381 * We have to update i_size under i_data_sem together
5382 * with i_disksize to avoid races with writeback code
5383 * running ext4_wb_update_i_disksize().
5385 if (!error)
5386 i_size_write(inode, attr->ia_size);
5387 up_write(&EXT4_I(inode)->i_data_sem);
5388 ext4_journal_stop(handle);
5389 if (error)
5390 goto out_mmap_sem;
5391 if (!shrink) {
5392 pagecache_isize_extended(inode, oldsize,
5393 inode->i_size);
5394 } else if (ext4_should_journal_data(inode)) {
5395 ext4_wait_for_tail_page_commit(inode);
5400 * Truncate pagecache after we've waited for commit
5401 * in data=journal mode to make pages freeable.
5403 truncate_pagecache(inode, inode->i_size);
5405 * Call ext4_truncate() even if i_size didn't change to
5406 * truncate possible preallocated blocks.
5408 if (attr->ia_size <= oldsize) {
5409 rc = ext4_truncate(inode);
5410 if (rc)
5411 error = rc;
5413 out_mmap_sem:
5414 up_write(&EXT4_I(inode)->i_mmap_sem);
5417 if (!error) {
5418 setattr_copy(inode, attr);
5419 mark_inode_dirty(inode);
5423 * If the call to ext4_truncate failed to get a transaction handle at
5424 * all, we need to clean up the in-core orphan list manually.
5426 if (orphan && inode->i_nlink)
5427 ext4_orphan_del(NULL, inode);
5429 if (!error && (ia_valid & ATTR_MODE))
5430 rc = posix_acl_chmod(inode, inode->i_mode);
5432 err_out:
5433 ext4_std_error(inode->i_sb, error);
5434 if (!error)
5435 error = rc;
5436 return error;
5439 int ext4_getattr(const struct path *path, struct kstat *stat,
5440 u32 request_mask, unsigned int query_flags)
5442 struct inode *inode = d_inode(path->dentry);
5443 struct ext4_inode *raw_inode;
5444 struct ext4_inode_info *ei = EXT4_I(inode);
5445 unsigned int flags;
5447 if ((request_mask & STATX_BTIME) &&
5448 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5449 stat->result_mask |= STATX_BTIME;
5450 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5451 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5454 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5455 if (flags & EXT4_APPEND_FL)
5456 stat->attributes |= STATX_ATTR_APPEND;
5457 if (flags & EXT4_COMPR_FL)
5458 stat->attributes |= STATX_ATTR_COMPRESSED;
5459 if (flags & EXT4_ENCRYPT_FL)
5460 stat->attributes |= STATX_ATTR_ENCRYPTED;
5461 if (flags & EXT4_IMMUTABLE_FL)
5462 stat->attributes |= STATX_ATTR_IMMUTABLE;
5463 if (flags & EXT4_NODUMP_FL)
5464 stat->attributes |= STATX_ATTR_NODUMP;
5465 if (flags & EXT4_VERITY_FL)
5466 stat->attributes |= STATX_ATTR_VERITY;
5468 stat->attributes_mask |= (STATX_ATTR_APPEND |
5469 STATX_ATTR_COMPRESSED |
5470 STATX_ATTR_ENCRYPTED |
5471 STATX_ATTR_IMMUTABLE |
5472 STATX_ATTR_NODUMP |
5473 STATX_ATTR_VERITY);
5475 generic_fillattr(inode, stat);
5476 return 0;
5479 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5480 u32 request_mask, unsigned int query_flags)
5482 struct inode *inode = d_inode(path->dentry);
5483 u64 delalloc_blocks;
5485 ext4_getattr(path, stat, request_mask, query_flags);
5488 * If there is inline data in the inode, the inode will normally not
5489 * have data blocks allocated (it may have an external xattr block).
5490 * Report at least one sector for such files, so tools like tar, rsync,
5491 * others don't incorrectly think the file is completely sparse.
5493 if (unlikely(ext4_has_inline_data(inode)))
5494 stat->blocks += (stat->size + 511) >> 9;
5497 * We can't update i_blocks if the block allocation is delayed
5498 * otherwise in the case of system crash before the real block
5499 * allocation is done, we will have i_blocks inconsistent with
5500 * on-disk file blocks.
5501 * We always keep i_blocks updated together with real
5502 * allocation. But to not confuse with user, stat
5503 * will return the blocks that include the delayed allocation
5504 * blocks for this file.
5506 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5507 EXT4_I(inode)->i_reserved_data_blocks);
5508 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5509 return 0;
5512 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5513 int pextents)
5515 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5516 return ext4_ind_trans_blocks(inode, lblocks);
5517 return ext4_ext_index_trans_blocks(inode, pextents);
5521 * Account for index blocks, block groups bitmaps and block group
5522 * descriptor blocks if modify datablocks and index blocks
5523 * worse case, the indexs blocks spread over different block groups
5525 * If datablocks are discontiguous, they are possible to spread over
5526 * different block groups too. If they are contiguous, with flexbg,
5527 * they could still across block group boundary.
5529 * Also account for superblock, inode, quota and xattr blocks
5531 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5532 int pextents)
5534 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535 int gdpblocks;
5536 int idxblocks;
5537 int ret = 0;
5540 * How many index blocks need to touch to map @lblocks logical blocks
5541 * to @pextents physical extents?
5543 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5545 ret = idxblocks;
5548 * Now let's see how many group bitmaps and group descriptors need
5549 * to account
5551 groups = idxblocks + pextents;
5552 gdpblocks = groups;
5553 if (groups > ngroups)
5554 groups = ngroups;
5555 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5556 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5558 /* bitmaps and block group descriptor blocks */
5559 ret += groups + gdpblocks;
5561 /* Blocks for super block, inode, quota and xattr blocks */
5562 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5564 return ret;
5568 * Calculate the total number of credits to reserve to fit
5569 * the modification of a single pages into a single transaction,
5570 * which may include multiple chunks of block allocations.
5572 * This could be called via ext4_write_begin()
5574 * We need to consider the worse case, when
5575 * one new block per extent.
5577 int ext4_writepage_trans_blocks(struct inode *inode)
5579 int bpp = ext4_journal_blocks_per_page(inode);
5580 int ret;
5582 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5584 /* Account for data blocks for journalled mode */
5585 if (ext4_should_journal_data(inode))
5586 ret += bpp;
5587 return ret;
5591 * Calculate the journal credits for a chunk of data modification.
5593 * This is called from DIO, fallocate or whoever calling
5594 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5596 * journal buffers for data blocks are not included here, as DIO
5597 * and fallocate do no need to journal data buffers.
5599 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5601 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5605 * The caller must have previously called ext4_reserve_inode_write().
5606 * Give this, we know that the caller already has write access to iloc->bh.
5608 int ext4_mark_iloc_dirty(handle_t *handle,
5609 struct inode *inode, struct ext4_iloc *iloc)
5611 int err = 0;
5613 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5614 put_bh(iloc->bh);
5615 return -EIO;
5617 if (IS_I_VERSION(inode))
5618 inode_inc_iversion(inode);
5620 /* the do_update_inode consumes one bh->b_count */
5621 get_bh(iloc->bh);
5623 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5624 err = ext4_do_update_inode(handle, inode, iloc);
5625 put_bh(iloc->bh);
5626 return err;
5630 * On success, We end up with an outstanding reference count against
5631 * iloc->bh. This _must_ be cleaned up later.
5635 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5636 struct ext4_iloc *iloc)
5638 int err;
5640 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5641 return -EIO;
5643 err = ext4_get_inode_loc(inode, iloc);
5644 if (!err) {
5645 BUFFER_TRACE(iloc->bh, "get_write_access");
5646 err = ext4_journal_get_write_access(handle, iloc->bh);
5647 if (err) {
5648 brelse(iloc->bh);
5649 iloc->bh = NULL;
5652 ext4_std_error(inode->i_sb, err);
5653 return err;
5656 static int __ext4_expand_extra_isize(struct inode *inode,
5657 unsigned int new_extra_isize,
5658 struct ext4_iloc *iloc,
5659 handle_t *handle, int *no_expand)
5661 struct ext4_inode *raw_inode;
5662 struct ext4_xattr_ibody_header *header;
5663 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5664 struct ext4_inode_info *ei = EXT4_I(inode);
5665 int error;
5667 /* this was checked at iget time, but double check for good measure */
5668 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5669 (ei->i_extra_isize & 3)) {
5670 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5671 ei->i_extra_isize,
5672 EXT4_INODE_SIZE(inode->i_sb));
5673 return -EFSCORRUPTED;
5675 if ((new_extra_isize < ei->i_extra_isize) ||
5676 (new_extra_isize < 4) ||
5677 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5678 return -EINVAL; /* Should never happen */
5680 raw_inode = ext4_raw_inode(iloc);
5682 header = IHDR(inode, raw_inode);
5684 /* No extended attributes present */
5685 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5686 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5687 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5688 EXT4_I(inode)->i_extra_isize, 0,
5689 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5690 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5691 return 0;
5694 /* try to expand with EAs present */
5695 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5696 raw_inode, handle);
5697 if (error) {
5699 * Inode size expansion failed; don't try again
5701 *no_expand = 1;
5704 return error;
5708 * Expand an inode by new_extra_isize bytes.
5709 * Returns 0 on success or negative error number on failure.
5711 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5712 unsigned int new_extra_isize,
5713 struct ext4_iloc iloc,
5714 handle_t *handle)
5716 int no_expand;
5717 int error;
5719 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5720 return -EOVERFLOW;
5723 * In nojournal mode, we can immediately attempt to expand
5724 * the inode. When journaled, we first need to obtain extra
5725 * buffer credits since we may write into the EA block
5726 * with this same handle. If journal_extend fails, then it will
5727 * only result in a minor loss of functionality for that inode.
5728 * If this is felt to be critical, then e2fsck should be run to
5729 * force a large enough s_min_extra_isize.
5731 if (ext4_journal_extend(handle,
5732 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5733 return -ENOSPC;
5735 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5736 return -EBUSY;
5738 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5739 handle, &no_expand);
5740 ext4_write_unlock_xattr(inode, &no_expand);
5742 return error;
5745 int ext4_expand_extra_isize(struct inode *inode,
5746 unsigned int new_extra_isize,
5747 struct ext4_iloc *iloc)
5749 handle_t *handle;
5750 int no_expand;
5751 int error, rc;
5753 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5754 brelse(iloc->bh);
5755 return -EOVERFLOW;
5758 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5759 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5760 if (IS_ERR(handle)) {
5761 error = PTR_ERR(handle);
5762 brelse(iloc->bh);
5763 return error;
5766 ext4_write_lock_xattr(inode, &no_expand);
5768 BUFFER_TRACE(iloc->bh, "get_write_access");
5769 error = ext4_journal_get_write_access(handle, iloc->bh);
5770 if (error) {
5771 brelse(iloc->bh);
5772 goto out_unlock;
5775 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5776 handle, &no_expand);
5778 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5779 if (!error)
5780 error = rc;
5782 out_unlock:
5783 ext4_write_unlock_xattr(inode, &no_expand);
5784 ext4_journal_stop(handle);
5785 return error;
5789 * What we do here is to mark the in-core inode as clean with respect to inode
5790 * dirtiness (it may still be data-dirty).
5791 * This means that the in-core inode may be reaped by prune_icache
5792 * without having to perform any I/O. This is a very good thing,
5793 * because *any* task may call prune_icache - even ones which
5794 * have a transaction open against a different journal.
5796 * Is this cheating? Not really. Sure, we haven't written the
5797 * inode out, but prune_icache isn't a user-visible syncing function.
5798 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5799 * we start and wait on commits.
5801 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5802 const char *func, unsigned int line)
5804 struct ext4_iloc iloc;
5805 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806 int err;
5808 might_sleep();
5809 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5810 err = ext4_reserve_inode_write(handle, inode, &iloc);
5811 if (err)
5812 goto out;
5814 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5815 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5816 iloc, handle);
5818 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819 out:
5820 if (unlikely(err))
5821 ext4_error_inode_err(inode, func, line, 0, err,
5822 "mark_inode_dirty error");
5823 return err;
5827 * ext4_dirty_inode() is called from __mark_inode_dirty()
5829 * We're really interested in the case where a file is being extended.
5830 * i_size has been changed by generic_commit_write() and we thus need
5831 * to include the updated inode in the current transaction.
5833 * Also, dquot_alloc_block() will always dirty the inode when blocks
5834 * are allocated to the file.
5836 * If the inode is marked synchronous, we don't honour that here - doing
5837 * so would cause a commit on atime updates, which we don't bother doing.
5838 * We handle synchronous inodes at the highest possible level.
5840 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5841 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5842 * to copy into the on-disk inode structure are the timestamp files.
5844 void ext4_dirty_inode(struct inode *inode, int flags)
5846 handle_t *handle;
5848 if (flags == I_DIRTY_TIME)
5849 return;
5850 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5851 if (IS_ERR(handle))
5852 goto out;
5854 ext4_mark_inode_dirty(handle, inode);
5856 ext4_journal_stop(handle);
5857 out:
5858 return;
5861 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5863 journal_t *journal;
5864 handle_t *handle;
5865 int err;
5866 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5869 * We have to be very careful here: changing a data block's
5870 * journaling status dynamically is dangerous. If we write a
5871 * data block to the journal, change the status and then delete
5872 * that block, we risk forgetting to revoke the old log record
5873 * from the journal and so a subsequent replay can corrupt data.
5874 * So, first we make sure that the journal is empty and that
5875 * nobody is changing anything.
5878 journal = EXT4_JOURNAL(inode);
5879 if (!journal)
5880 return 0;
5881 if (is_journal_aborted(journal))
5882 return -EROFS;
5884 /* Wait for all existing dio workers */
5885 inode_dio_wait(inode);
5888 * Before flushing the journal and switching inode's aops, we have
5889 * to flush all dirty data the inode has. There can be outstanding
5890 * delayed allocations, there can be unwritten extents created by
5891 * fallocate or buffered writes in dioread_nolock mode covered by
5892 * dirty data which can be converted only after flushing the dirty
5893 * data (and journalled aops don't know how to handle these cases).
5895 if (val) {
5896 down_write(&EXT4_I(inode)->i_mmap_sem);
5897 err = filemap_write_and_wait(inode->i_mapping);
5898 if (err < 0) {
5899 up_write(&EXT4_I(inode)->i_mmap_sem);
5900 return err;
5904 percpu_down_write(&sbi->s_writepages_rwsem);
5905 jbd2_journal_lock_updates(journal);
5908 * OK, there are no updates running now, and all cached data is
5909 * synced to disk. We are now in a completely consistent state
5910 * which doesn't have anything in the journal, and we know that
5911 * no filesystem updates are running, so it is safe to modify
5912 * the inode's in-core data-journaling state flag now.
5915 if (val)
5916 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5917 else {
5918 err = jbd2_journal_flush(journal);
5919 if (err < 0) {
5920 jbd2_journal_unlock_updates(journal);
5921 percpu_up_write(&sbi->s_writepages_rwsem);
5922 return err;
5924 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5926 ext4_set_aops(inode);
5928 jbd2_journal_unlock_updates(journal);
5929 percpu_up_write(&sbi->s_writepages_rwsem);
5931 if (val)
5932 up_write(&EXT4_I(inode)->i_mmap_sem);
5934 /* Finally we can mark the inode as dirty. */
5936 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5937 if (IS_ERR(handle))
5938 return PTR_ERR(handle);
5940 err = ext4_mark_inode_dirty(handle, inode);
5941 ext4_handle_sync(handle);
5942 ext4_journal_stop(handle);
5943 ext4_std_error(inode->i_sb, err);
5945 return err;
5948 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5950 return !buffer_mapped(bh);
5953 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5955 struct vm_area_struct *vma = vmf->vma;
5956 struct page *page = vmf->page;
5957 loff_t size;
5958 unsigned long len;
5959 int err;
5960 vm_fault_t ret;
5961 struct file *file = vma->vm_file;
5962 struct inode *inode = file_inode(file);
5963 struct address_space *mapping = inode->i_mapping;
5964 handle_t *handle;
5965 get_block_t *get_block;
5966 int retries = 0;
5968 if (unlikely(IS_IMMUTABLE(inode)))
5969 return VM_FAULT_SIGBUS;
5971 sb_start_pagefault(inode->i_sb);
5972 file_update_time(vma->vm_file);
5974 down_read(&EXT4_I(inode)->i_mmap_sem);
5976 err = ext4_convert_inline_data(inode);
5977 if (err)
5978 goto out_ret;
5980 /* Delalloc case is easy... */
5981 if (test_opt(inode->i_sb, DELALLOC) &&
5982 !ext4_should_journal_data(inode) &&
5983 !ext4_nonda_switch(inode->i_sb)) {
5984 do {
5985 err = block_page_mkwrite(vma, vmf,
5986 ext4_da_get_block_prep);
5987 } while (err == -ENOSPC &&
5988 ext4_should_retry_alloc(inode->i_sb, &retries));
5989 goto out_ret;
5992 lock_page(page);
5993 size = i_size_read(inode);
5994 /* Page got truncated from under us? */
5995 if (page->mapping != mapping || page_offset(page) > size) {
5996 unlock_page(page);
5997 ret = VM_FAULT_NOPAGE;
5998 goto out;
6001 if (page->index == size >> PAGE_SHIFT)
6002 len = size & ~PAGE_MASK;
6003 else
6004 len = PAGE_SIZE;
6006 * Return if we have all the buffers mapped. This avoids the need to do
6007 * journal_start/journal_stop which can block and take a long time
6009 if (page_has_buffers(page)) {
6010 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6011 0, len, NULL,
6012 ext4_bh_unmapped)) {
6013 /* Wait so that we don't change page under IO */
6014 wait_for_stable_page(page);
6015 ret = VM_FAULT_LOCKED;
6016 goto out;
6019 unlock_page(page);
6020 /* OK, we need to fill the hole... */
6021 if (ext4_should_dioread_nolock(inode))
6022 get_block = ext4_get_block_unwritten;
6023 else
6024 get_block = ext4_get_block;
6025 retry_alloc:
6026 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6027 ext4_writepage_trans_blocks(inode));
6028 if (IS_ERR(handle)) {
6029 ret = VM_FAULT_SIGBUS;
6030 goto out;
6032 err = block_page_mkwrite(vma, vmf, get_block);
6033 if (!err && ext4_should_journal_data(inode)) {
6034 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6035 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6036 unlock_page(page);
6037 ret = VM_FAULT_SIGBUS;
6038 ext4_journal_stop(handle);
6039 goto out;
6041 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6043 ext4_journal_stop(handle);
6044 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6045 goto retry_alloc;
6046 out_ret:
6047 ret = block_page_mkwrite_return(err);
6048 out:
6049 up_read(&EXT4_I(inode)->i_mmap_sem);
6050 sb_end_pagefault(inode->i_sb);
6051 return ret;
6054 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6056 struct inode *inode = file_inode(vmf->vma->vm_file);
6057 vm_fault_t ret;
6059 down_read(&EXT4_I(inode)->i_mmap_sem);
6060 ret = filemap_fault(vmf);
6061 up_read(&EXT4_I(inode)->i_mmap_sem);
6063 return ret;