ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / arm64 / kvm / sys_regs.c
blob3e909b117f0cd8e5bb704463c363e9ba23fb6041
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/perf_event.h>
29 #include <asm/sysreg.h>
31 #include <trace/events/kvm.h>
33 #include "sys_regs.h"
35 #include "trace.h"
38 * All of this file is extremly similar to the ARM coproc.c, but the
39 * types are different. My gut feeling is that it should be pretty
40 * easy to merge, but that would be an ABI breakage -- again. VFP
41 * would also need to be abstracted.
43 * For AArch32, we only take care of what is being trapped. Anything
44 * that has to do with init and userspace access has to go via the
45 * 64bit interface.
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49 struct sys_reg_params *params,
50 const struct sys_reg_desc *r)
52 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 print_sys_reg_instr(params);
54 kvm_inject_undefined(vcpu);
55 return false;
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 struct sys_reg_params *params,
60 const struct sys_reg_desc *r)
62 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 print_sys_reg_instr(params);
64 kvm_inject_undefined(vcpu);
65 return false;
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
70 if (!vcpu->arch.sysregs_loaded_on_cpu)
71 goto immediate_read;
74 * System registers listed in the switch are not saved on every
75 * exit from the guest but are only saved on vcpu_put.
77 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
78 * should never be listed below, because the guest cannot modify its
79 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
80 * thread when emulating cross-VCPU communication.
82 switch (reg) {
83 case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
84 case SCTLR_EL1: return read_sysreg_s(SYS_SCTLR_EL12);
85 case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
86 case CPACR_EL1: return read_sysreg_s(SYS_CPACR_EL12);
87 case TTBR0_EL1: return read_sysreg_s(SYS_TTBR0_EL12);
88 case TTBR1_EL1: return read_sysreg_s(SYS_TTBR1_EL12);
89 case TCR_EL1: return read_sysreg_s(SYS_TCR_EL12);
90 case ESR_EL1: return read_sysreg_s(SYS_ESR_EL12);
91 case AFSR0_EL1: return read_sysreg_s(SYS_AFSR0_EL12);
92 case AFSR1_EL1: return read_sysreg_s(SYS_AFSR1_EL12);
93 case FAR_EL1: return read_sysreg_s(SYS_FAR_EL12);
94 case MAIR_EL1: return read_sysreg_s(SYS_MAIR_EL12);
95 case VBAR_EL1: return read_sysreg_s(SYS_VBAR_EL12);
96 case CONTEXTIDR_EL1: return read_sysreg_s(SYS_CONTEXTIDR_EL12);
97 case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
98 case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
99 case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
100 case AMAIR_EL1: return read_sysreg_s(SYS_AMAIR_EL12);
101 case CNTKCTL_EL1: return read_sysreg_s(SYS_CNTKCTL_EL12);
102 case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
103 case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
104 case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
105 case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
108 immediate_read:
109 return __vcpu_sys_reg(vcpu, reg);
112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
114 if (!vcpu->arch.sysregs_loaded_on_cpu)
115 goto immediate_write;
118 * System registers listed in the switch are not restored on every
119 * entry to the guest but are only restored on vcpu_load.
121 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
122 * should never be listed below, because the the MPIDR should only be
123 * set once, before running the VCPU, and never changed later.
125 switch (reg) {
126 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
127 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); return;
128 case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
129 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); return;
130 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); return;
131 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); return;
132 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); return;
133 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); return;
134 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); return;
135 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); return;
136 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); return;
137 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); return;
138 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); return;
139 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
140 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
141 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
142 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
143 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); return;
144 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); return;
145 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
146 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
147 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
148 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
151 immediate_write:
152 __vcpu_sys_reg(vcpu, reg) = val;
155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
156 static u32 cache_levels;
158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
159 #define CSSELR_MAX 12
161 /* Which cache CCSIDR represents depends on CSSELR value. */
162 static u32 get_ccsidr(u32 csselr)
164 u32 ccsidr;
166 /* Make sure noone else changes CSSELR during this! */
167 local_irq_disable();
168 write_sysreg(csselr, csselr_el1);
169 isb();
170 ccsidr = read_sysreg(ccsidr_el1);
171 local_irq_enable();
173 return ccsidr;
177 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
179 static bool access_dcsw(struct kvm_vcpu *vcpu,
180 struct sys_reg_params *p,
181 const struct sys_reg_desc *r)
183 if (!p->is_write)
184 return read_from_write_only(vcpu, p, r);
187 * Only track S/W ops if we don't have FWB. It still indicates
188 * that the guest is a bit broken (S/W operations should only
189 * be done by firmware, knowing that there is only a single
190 * CPU left in the system, and certainly not from non-secure
191 * software).
193 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
194 kvm_set_way_flush(vcpu);
196 return true;
200 * Generic accessor for VM registers. Only called as long as HCR_TVM
201 * is set. If the guest enables the MMU, we stop trapping the VM
202 * sys_regs and leave it in complete control of the caches.
204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
205 struct sys_reg_params *p,
206 const struct sys_reg_desc *r)
208 bool was_enabled = vcpu_has_cache_enabled(vcpu);
209 u64 val;
210 int reg = r->reg;
212 BUG_ON(!p->is_write);
214 /* See the 32bit mapping in kvm_host.h */
215 if (p->is_aarch32)
216 reg = r->reg / 2;
218 if (!p->is_aarch32 || !p->is_32bit) {
219 val = p->regval;
220 } else {
221 val = vcpu_read_sys_reg(vcpu, reg);
222 if (r->reg % 2)
223 val = (p->regval << 32) | (u64)lower_32_bits(val);
224 else
225 val = ((u64)upper_32_bits(val) << 32) |
226 lower_32_bits(p->regval);
228 vcpu_write_sys_reg(vcpu, val, reg);
230 kvm_toggle_cache(vcpu, was_enabled);
231 return true;
235 * Trap handler for the GICv3 SGI generation system register.
236 * Forward the request to the VGIC emulation.
237 * The cp15_64 code makes sure this automatically works
238 * for both AArch64 and AArch32 accesses.
240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
241 struct sys_reg_params *p,
242 const struct sys_reg_desc *r)
244 bool g1;
246 if (!p->is_write)
247 return read_from_write_only(vcpu, p, r);
250 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
251 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
252 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
253 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
254 * group.
256 if (p->is_aarch32) {
257 switch (p->Op1) {
258 default: /* Keep GCC quiet */
259 case 0: /* ICC_SGI1R */
260 g1 = true;
261 break;
262 case 1: /* ICC_ASGI1R */
263 case 2: /* ICC_SGI0R */
264 g1 = false;
265 break;
267 } else {
268 switch (p->Op2) {
269 default: /* Keep GCC quiet */
270 case 5: /* ICC_SGI1R_EL1 */
271 g1 = true;
272 break;
273 case 6: /* ICC_ASGI1R_EL1 */
274 case 7: /* ICC_SGI0R_EL1 */
275 g1 = false;
276 break;
280 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
282 return true;
285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
286 struct sys_reg_params *p,
287 const struct sys_reg_desc *r)
289 if (p->is_write)
290 return ignore_write(vcpu, p);
292 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
293 return true;
296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
297 struct sys_reg_params *p,
298 const struct sys_reg_desc *r)
300 if (p->is_write)
301 return ignore_write(vcpu, p);
302 else
303 return read_zero(vcpu, p);
307 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
308 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
309 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
310 * treat it separately.
312 static bool trap_loregion(struct kvm_vcpu *vcpu,
313 struct sys_reg_params *p,
314 const struct sys_reg_desc *r)
316 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
317 u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
318 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
320 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
321 kvm_inject_undefined(vcpu);
322 return false;
325 if (p->is_write && sr == SYS_LORID_EL1)
326 return write_to_read_only(vcpu, p, r);
328 return trap_raz_wi(vcpu, p, r);
331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
332 struct sys_reg_params *p,
333 const struct sys_reg_desc *r)
335 if (p->is_write) {
336 return ignore_write(vcpu, p);
337 } else {
338 p->regval = (1 << 3);
339 return true;
343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
344 struct sys_reg_params *p,
345 const struct sys_reg_desc *r)
347 if (p->is_write) {
348 return ignore_write(vcpu, p);
349 } else {
350 p->regval = read_sysreg(dbgauthstatus_el1);
351 return true;
356 * We want to avoid world-switching all the DBG registers all the
357 * time:
359 * - If we've touched any debug register, it is likely that we're
360 * going to touch more of them. It then makes sense to disable the
361 * traps and start doing the save/restore dance
362 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
363 * then mandatory to save/restore the registers, as the guest
364 * depends on them.
366 * For this, we use a DIRTY bit, indicating the guest has modified the
367 * debug registers, used as follow:
369 * On guest entry:
370 * - If the dirty bit is set (because we're coming back from trapping),
371 * disable the traps, save host registers, restore guest registers.
372 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
373 * set the dirty bit, disable the traps, save host registers,
374 * restore guest registers.
375 * - Otherwise, enable the traps
377 * On guest exit:
378 * - If the dirty bit is set, save guest registers, restore host
379 * registers and clear the dirty bit. This ensure that the host can
380 * now use the debug registers.
382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
383 struct sys_reg_params *p,
384 const struct sys_reg_desc *r)
386 if (p->is_write) {
387 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
388 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
389 } else {
390 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
393 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
395 return true;
399 * reg_to_dbg/dbg_to_reg
401 * A 32 bit write to a debug register leave top bits alone
402 * A 32 bit read from a debug register only returns the bottom bits
404 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
405 * hyp.S code switches between host and guest values in future.
407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
408 struct sys_reg_params *p,
409 u64 *dbg_reg)
411 u64 val = p->regval;
413 if (p->is_32bit) {
414 val &= 0xffffffffUL;
415 val |= ((*dbg_reg >> 32) << 32);
418 *dbg_reg = val;
419 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
423 struct sys_reg_params *p,
424 u64 *dbg_reg)
426 p->regval = *dbg_reg;
427 if (p->is_32bit)
428 p->regval &= 0xffffffffUL;
431 static bool trap_bvr(struct kvm_vcpu *vcpu,
432 struct sys_reg_params *p,
433 const struct sys_reg_desc *rd)
435 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
437 if (p->is_write)
438 reg_to_dbg(vcpu, p, dbg_reg);
439 else
440 dbg_to_reg(vcpu, p, dbg_reg);
442 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
444 return true;
447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
448 const struct kvm_one_reg *reg, void __user *uaddr)
450 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
452 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
453 return -EFAULT;
454 return 0;
457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
458 const struct kvm_one_reg *reg, void __user *uaddr)
460 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
462 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
463 return -EFAULT;
464 return 0;
467 static void reset_bvr(struct kvm_vcpu *vcpu,
468 const struct sys_reg_desc *rd)
470 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
473 static bool trap_bcr(struct kvm_vcpu *vcpu,
474 struct sys_reg_params *p,
475 const struct sys_reg_desc *rd)
477 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
479 if (p->is_write)
480 reg_to_dbg(vcpu, p, dbg_reg);
481 else
482 dbg_to_reg(vcpu, p, dbg_reg);
484 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
486 return true;
489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490 const struct kvm_one_reg *reg, void __user *uaddr)
492 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
494 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
495 return -EFAULT;
497 return 0;
500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501 const struct kvm_one_reg *reg, void __user *uaddr)
503 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
505 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
506 return -EFAULT;
507 return 0;
510 static void reset_bcr(struct kvm_vcpu *vcpu,
511 const struct sys_reg_desc *rd)
513 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
516 static bool trap_wvr(struct kvm_vcpu *vcpu,
517 struct sys_reg_params *p,
518 const struct sys_reg_desc *rd)
520 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
522 if (p->is_write)
523 reg_to_dbg(vcpu, p, dbg_reg);
524 else
525 dbg_to_reg(vcpu, p, dbg_reg);
527 trace_trap_reg(__func__, rd->reg, p->is_write,
528 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
530 return true;
533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
534 const struct kvm_one_reg *reg, void __user *uaddr)
536 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
538 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
539 return -EFAULT;
540 return 0;
543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
544 const struct kvm_one_reg *reg, void __user *uaddr)
546 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
548 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
549 return -EFAULT;
550 return 0;
553 static void reset_wvr(struct kvm_vcpu *vcpu,
554 const struct sys_reg_desc *rd)
556 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
559 static bool trap_wcr(struct kvm_vcpu *vcpu,
560 struct sys_reg_params *p,
561 const struct sys_reg_desc *rd)
563 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
565 if (p->is_write)
566 reg_to_dbg(vcpu, p, dbg_reg);
567 else
568 dbg_to_reg(vcpu, p, dbg_reg);
570 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
572 return true;
575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576 const struct kvm_one_reg *reg, void __user *uaddr)
578 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
580 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
581 return -EFAULT;
582 return 0;
585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586 const struct kvm_one_reg *reg, void __user *uaddr)
588 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
590 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
591 return -EFAULT;
592 return 0;
595 static void reset_wcr(struct kvm_vcpu *vcpu,
596 const struct sys_reg_desc *rd)
598 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
603 u64 amair = read_sysreg(amair_el1);
604 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
609 u64 mpidr;
612 * Map the vcpu_id into the first three affinity level fields of
613 * the MPIDR. We limit the number of VCPUs in level 0 due to a
614 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
615 * of the GICv3 to be able to address each CPU directly when
616 * sending IPIs.
618 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
619 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
620 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
621 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
626 u64 pmcr, val;
628 pmcr = read_sysreg(pmcr_el0);
630 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
631 * except PMCR.E resetting to zero.
633 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
634 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
635 if (!system_supports_32bit_el0())
636 val |= ARMV8_PMU_PMCR_LC;
637 __vcpu_sys_reg(vcpu, r->reg) = val;
640 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
642 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
643 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
645 if (!enabled)
646 kvm_inject_undefined(vcpu);
648 return !enabled;
651 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
653 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
656 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
658 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
661 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
663 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
666 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
668 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
671 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
672 const struct sys_reg_desc *r)
674 u64 val;
676 if (!kvm_arm_pmu_v3_ready(vcpu))
677 return trap_raz_wi(vcpu, p, r);
679 if (pmu_access_el0_disabled(vcpu))
680 return false;
682 if (p->is_write) {
683 /* Only update writeable bits of PMCR */
684 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
685 val &= ~ARMV8_PMU_PMCR_MASK;
686 val |= p->regval & ARMV8_PMU_PMCR_MASK;
687 if (!system_supports_32bit_el0())
688 val |= ARMV8_PMU_PMCR_LC;
689 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
690 kvm_pmu_handle_pmcr(vcpu, val);
691 kvm_vcpu_pmu_restore_guest(vcpu);
692 } else {
693 /* PMCR.P & PMCR.C are RAZ */
694 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
695 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
696 p->regval = val;
699 return true;
702 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
703 const struct sys_reg_desc *r)
705 if (!kvm_arm_pmu_v3_ready(vcpu))
706 return trap_raz_wi(vcpu, p, r);
708 if (pmu_access_event_counter_el0_disabled(vcpu))
709 return false;
711 if (p->is_write)
712 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
713 else
714 /* return PMSELR.SEL field */
715 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
716 & ARMV8_PMU_COUNTER_MASK;
718 return true;
721 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
722 const struct sys_reg_desc *r)
724 u64 pmceid;
726 if (!kvm_arm_pmu_v3_ready(vcpu))
727 return trap_raz_wi(vcpu, p, r);
729 BUG_ON(p->is_write);
731 if (pmu_access_el0_disabled(vcpu))
732 return false;
734 if (!(p->Op2 & 1))
735 pmceid = read_sysreg(pmceid0_el0);
736 else
737 pmceid = read_sysreg(pmceid1_el0);
739 p->regval = pmceid;
741 return true;
744 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
746 u64 pmcr, val;
748 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
749 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
750 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
751 kvm_inject_undefined(vcpu);
752 return false;
755 return true;
758 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
759 struct sys_reg_params *p,
760 const struct sys_reg_desc *r)
762 u64 idx;
764 if (!kvm_arm_pmu_v3_ready(vcpu))
765 return trap_raz_wi(vcpu, p, r);
767 if (r->CRn == 9 && r->CRm == 13) {
768 if (r->Op2 == 2) {
769 /* PMXEVCNTR_EL0 */
770 if (pmu_access_event_counter_el0_disabled(vcpu))
771 return false;
773 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
774 & ARMV8_PMU_COUNTER_MASK;
775 } else if (r->Op2 == 0) {
776 /* PMCCNTR_EL0 */
777 if (pmu_access_cycle_counter_el0_disabled(vcpu))
778 return false;
780 idx = ARMV8_PMU_CYCLE_IDX;
781 } else {
782 return false;
784 } else if (r->CRn == 0 && r->CRm == 9) {
785 /* PMCCNTR */
786 if (pmu_access_event_counter_el0_disabled(vcpu))
787 return false;
789 idx = ARMV8_PMU_CYCLE_IDX;
790 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
791 /* PMEVCNTRn_EL0 */
792 if (pmu_access_event_counter_el0_disabled(vcpu))
793 return false;
795 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
796 } else {
797 return false;
800 if (!pmu_counter_idx_valid(vcpu, idx))
801 return false;
803 if (p->is_write) {
804 if (pmu_access_el0_disabled(vcpu))
805 return false;
807 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
808 } else {
809 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
812 return true;
815 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
816 const struct sys_reg_desc *r)
818 u64 idx, reg;
820 if (!kvm_arm_pmu_v3_ready(vcpu))
821 return trap_raz_wi(vcpu, p, r);
823 if (pmu_access_el0_disabled(vcpu))
824 return false;
826 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
827 /* PMXEVTYPER_EL0 */
828 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
829 reg = PMEVTYPER0_EL0 + idx;
830 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
831 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
832 if (idx == ARMV8_PMU_CYCLE_IDX)
833 reg = PMCCFILTR_EL0;
834 else
835 /* PMEVTYPERn_EL0 */
836 reg = PMEVTYPER0_EL0 + idx;
837 } else {
838 BUG();
841 if (!pmu_counter_idx_valid(vcpu, idx))
842 return false;
844 if (p->is_write) {
845 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
846 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
847 kvm_vcpu_pmu_restore_guest(vcpu);
848 } else {
849 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
852 return true;
855 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
856 const struct sys_reg_desc *r)
858 u64 val, mask;
860 if (!kvm_arm_pmu_v3_ready(vcpu))
861 return trap_raz_wi(vcpu, p, r);
863 if (pmu_access_el0_disabled(vcpu))
864 return false;
866 mask = kvm_pmu_valid_counter_mask(vcpu);
867 if (p->is_write) {
868 val = p->regval & mask;
869 if (r->Op2 & 0x1) {
870 /* accessing PMCNTENSET_EL0 */
871 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
872 kvm_pmu_enable_counter_mask(vcpu, val);
873 kvm_vcpu_pmu_restore_guest(vcpu);
874 } else {
875 /* accessing PMCNTENCLR_EL0 */
876 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
877 kvm_pmu_disable_counter_mask(vcpu, val);
879 } else {
880 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
883 return true;
886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
887 const struct sys_reg_desc *r)
889 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
891 if (!kvm_arm_pmu_v3_ready(vcpu))
892 return trap_raz_wi(vcpu, p, r);
894 if (!vcpu_mode_priv(vcpu)) {
895 kvm_inject_undefined(vcpu);
896 return false;
899 if (p->is_write) {
900 u64 val = p->regval & mask;
902 if (r->Op2 & 0x1)
903 /* accessing PMINTENSET_EL1 */
904 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
905 else
906 /* accessing PMINTENCLR_EL1 */
907 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
908 } else {
909 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
912 return true;
915 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
916 const struct sys_reg_desc *r)
918 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
920 if (!kvm_arm_pmu_v3_ready(vcpu))
921 return trap_raz_wi(vcpu, p, r);
923 if (pmu_access_el0_disabled(vcpu))
924 return false;
926 if (p->is_write) {
927 if (r->CRm & 0x2)
928 /* accessing PMOVSSET_EL0 */
929 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
930 else
931 /* accessing PMOVSCLR_EL0 */
932 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
933 } else {
934 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
937 return true;
940 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
941 const struct sys_reg_desc *r)
943 u64 mask;
945 if (!kvm_arm_pmu_v3_ready(vcpu))
946 return trap_raz_wi(vcpu, p, r);
948 if (!p->is_write)
949 return read_from_write_only(vcpu, p, r);
951 if (pmu_write_swinc_el0_disabled(vcpu))
952 return false;
954 mask = kvm_pmu_valid_counter_mask(vcpu);
955 kvm_pmu_software_increment(vcpu, p->regval & mask);
956 return true;
959 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
960 const struct sys_reg_desc *r)
962 if (!kvm_arm_pmu_v3_ready(vcpu))
963 return trap_raz_wi(vcpu, p, r);
965 if (p->is_write) {
966 if (!vcpu_mode_priv(vcpu)) {
967 kvm_inject_undefined(vcpu);
968 return false;
971 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
972 p->regval & ARMV8_PMU_USERENR_MASK;
973 } else {
974 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
975 & ARMV8_PMU_USERENR_MASK;
978 return true;
981 #define reg_to_encoding(x) \
982 sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
983 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
985 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
986 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
987 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
988 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
989 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
990 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
991 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
992 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
993 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
994 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
996 /* Macro to expand the PMEVCNTRn_EL0 register */
997 #define PMU_PMEVCNTR_EL0(n) \
998 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
999 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1001 /* Macro to expand the PMEVTYPERn_EL0 register */
1002 #define PMU_PMEVTYPER_EL0(n) \
1003 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
1004 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1006 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1007 struct sys_reg_params *p,
1008 const struct sys_reg_desc *rd)
1010 kvm_arm_vcpu_ptrauth_trap(vcpu);
1013 * Return false for both cases as we never skip the trapped
1014 * instruction:
1016 * - Either we re-execute the same key register access instruction
1017 * after enabling ptrauth.
1018 * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1020 return false;
1023 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1024 const struct sys_reg_desc *rd)
1026 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1029 #define __PTRAUTH_KEY(k) \
1030 { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k, \
1031 .visibility = ptrauth_visibility}
1033 #define PTRAUTH_KEY(k) \
1034 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1035 __PTRAUTH_KEY(k ## KEYHI_EL1)
1037 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1038 struct sys_reg_params *p,
1039 const struct sys_reg_desc *r)
1041 enum kvm_arch_timers tmr;
1042 enum kvm_arch_timer_regs treg;
1043 u64 reg = reg_to_encoding(r);
1045 switch (reg) {
1046 case SYS_CNTP_TVAL_EL0:
1047 case SYS_AARCH32_CNTP_TVAL:
1048 tmr = TIMER_PTIMER;
1049 treg = TIMER_REG_TVAL;
1050 break;
1051 case SYS_CNTP_CTL_EL0:
1052 case SYS_AARCH32_CNTP_CTL:
1053 tmr = TIMER_PTIMER;
1054 treg = TIMER_REG_CTL;
1055 break;
1056 case SYS_CNTP_CVAL_EL0:
1057 case SYS_AARCH32_CNTP_CVAL:
1058 tmr = TIMER_PTIMER;
1059 treg = TIMER_REG_CVAL;
1060 break;
1061 default:
1062 BUG();
1065 if (p->is_write)
1066 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1067 else
1068 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1070 return true;
1073 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1074 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1075 struct sys_reg_desc const *r, bool raz)
1077 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1078 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1079 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1081 if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1082 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1083 } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1084 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1085 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1086 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1087 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1090 return val;
1093 /* cpufeature ID register access trap handlers */
1095 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1096 struct sys_reg_params *p,
1097 const struct sys_reg_desc *r,
1098 bool raz)
1100 if (p->is_write)
1101 return write_to_read_only(vcpu, p, r);
1103 p->regval = read_id_reg(vcpu, r, raz);
1104 return true;
1107 static bool access_id_reg(struct kvm_vcpu *vcpu,
1108 struct sys_reg_params *p,
1109 const struct sys_reg_desc *r)
1111 return __access_id_reg(vcpu, p, r, false);
1114 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1115 struct sys_reg_params *p,
1116 const struct sys_reg_desc *r)
1118 return __access_id_reg(vcpu, p, r, true);
1121 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1122 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1123 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1125 /* Visibility overrides for SVE-specific control registers */
1126 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1127 const struct sys_reg_desc *rd)
1129 if (vcpu_has_sve(vcpu))
1130 return 0;
1132 return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1135 /* Visibility overrides for SVE-specific ID registers */
1136 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1137 const struct sys_reg_desc *rd)
1139 if (vcpu_has_sve(vcpu))
1140 return 0;
1142 return REG_HIDDEN_USER;
1145 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1146 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1148 if (!vcpu_has_sve(vcpu))
1149 return 0;
1151 return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1154 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1155 struct sys_reg_params *p,
1156 const struct sys_reg_desc *rd)
1158 if (p->is_write)
1159 return write_to_read_only(vcpu, p, rd);
1161 p->regval = guest_id_aa64zfr0_el1(vcpu);
1162 return true;
1165 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1166 const struct sys_reg_desc *rd,
1167 const struct kvm_one_reg *reg, void __user *uaddr)
1169 u64 val;
1171 if (WARN_ON(!vcpu_has_sve(vcpu)))
1172 return -ENOENT;
1174 val = guest_id_aa64zfr0_el1(vcpu);
1175 return reg_to_user(uaddr, &val, reg->id);
1178 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1179 const struct sys_reg_desc *rd,
1180 const struct kvm_one_reg *reg, void __user *uaddr)
1182 const u64 id = sys_reg_to_index(rd);
1183 int err;
1184 u64 val;
1186 if (WARN_ON(!vcpu_has_sve(vcpu)))
1187 return -ENOENT;
1189 err = reg_from_user(&val, uaddr, id);
1190 if (err)
1191 return err;
1193 /* This is what we mean by invariant: you can't change it. */
1194 if (val != guest_id_aa64zfr0_el1(vcpu))
1195 return -EINVAL;
1197 return 0;
1201 * cpufeature ID register user accessors
1203 * For now, these registers are immutable for userspace, so no values
1204 * are stored, and for set_id_reg() we don't allow the effective value
1205 * to be changed.
1207 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1208 const struct sys_reg_desc *rd, void __user *uaddr,
1209 bool raz)
1211 const u64 id = sys_reg_to_index(rd);
1212 const u64 val = read_id_reg(vcpu, rd, raz);
1214 return reg_to_user(uaddr, &val, id);
1217 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1218 const struct sys_reg_desc *rd, void __user *uaddr,
1219 bool raz)
1221 const u64 id = sys_reg_to_index(rd);
1222 int err;
1223 u64 val;
1225 err = reg_from_user(&val, uaddr, id);
1226 if (err)
1227 return err;
1229 /* This is what we mean by invariant: you can't change it. */
1230 if (val != read_id_reg(vcpu, rd, raz))
1231 return -EINVAL;
1233 return 0;
1236 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1237 const struct kvm_one_reg *reg, void __user *uaddr)
1239 return __get_id_reg(vcpu, rd, uaddr, false);
1242 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1243 const struct kvm_one_reg *reg, void __user *uaddr)
1245 return __set_id_reg(vcpu, rd, uaddr, false);
1248 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1249 const struct kvm_one_reg *reg, void __user *uaddr)
1251 return __get_id_reg(vcpu, rd, uaddr, true);
1254 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1255 const struct kvm_one_reg *reg, void __user *uaddr)
1257 return __set_id_reg(vcpu, rd, uaddr, true);
1260 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1261 const struct sys_reg_desc *r)
1263 if (p->is_write)
1264 return write_to_read_only(vcpu, p, r);
1266 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1267 return true;
1270 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1271 const struct sys_reg_desc *r)
1273 if (p->is_write)
1274 return write_to_read_only(vcpu, p, r);
1276 p->regval = read_sysreg(clidr_el1);
1277 return true;
1280 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1281 const struct sys_reg_desc *r)
1283 if (p->is_write)
1284 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1285 else
1286 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1287 return true;
1290 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1291 const struct sys_reg_desc *r)
1293 u32 csselr;
1295 if (p->is_write)
1296 return write_to_read_only(vcpu, p, r);
1298 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1299 p->regval = get_ccsidr(csselr);
1302 * Guests should not be doing cache operations by set/way at all, and
1303 * for this reason, we trap them and attempt to infer the intent, so
1304 * that we can flush the entire guest's address space at the appropriate
1305 * time.
1306 * To prevent this trapping from causing performance problems, let's
1307 * expose the geometry of all data and unified caches (which are
1308 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1309 * [If guests should attempt to infer aliasing properties from the
1310 * geometry (which is not permitted by the architecture), they would
1311 * only do so for virtually indexed caches.]
1313 if (!(csselr & 1)) // data or unified cache
1314 p->regval &= ~GENMASK(27, 3);
1315 return true;
1318 /* sys_reg_desc initialiser for known cpufeature ID registers */
1319 #define ID_SANITISED(name) { \
1320 SYS_DESC(SYS_##name), \
1321 .access = access_id_reg, \
1322 .get_user = get_id_reg, \
1323 .set_user = set_id_reg, \
1327 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1328 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1329 * (1 <= crm < 8, 0 <= Op2 < 8).
1331 #define ID_UNALLOCATED(crm, op2) { \
1332 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1333 .access = access_raz_id_reg, \
1334 .get_user = get_raz_id_reg, \
1335 .set_user = set_raz_id_reg, \
1339 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1340 * For now, these are exposed just like unallocated ID regs: they appear
1341 * RAZ for the guest.
1343 #define ID_HIDDEN(name) { \
1344 SYS_DESC(SYS_##name), \
1345 .access = access_raz_id_reg, \
1346 .get_user = get_raz_id_reg, \
1347 .set_user = set_raz_id_reg, \
1351 * Architected system registers.
1352 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1354 * Debug handling: We do trap most, if not all debug related system
1355 * registers. The implementation is good enough to ensure that a guest
1356 * can use these with minimal performance degradation. The drawback is
1357 * that we don't implement any of the external debug, none of the
1358 * OSlock protocol. This should be revisited if we ever encounter a
1359 * more demanding guest...
1361 static const struct sys_reg_desc sys_reg_descs[] = {
1362 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1363 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1364 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1366 DBG_BCR_BVR_WCR_WVR_EL1(0),
1367 DBG_BCR_BVR_WCR_WVR_EL1(1),
1368 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1369 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1370 DBG_BCR_BVR_WCR_WVR_EL1(2),
1371 DBG_BCR_BVR_WCR_WVR_EL1(3),
1372 DBG_BCR_BVR_WCR_WVR_EL1(4),
1373 DBG_BCR_BVR_WCR_WVR_EL1(5),
1374 DBG_BCR_BVR_WCR_WVR_EL1(6),
1375 DBG_BCR_BVR_WCR_WVR_EL1(7),
1376 DBG_BCR_BVR_WCR_WVR_EL1(8),
1377 DBG_BCR_BVR_WCR_WVR_EL1(9),
1378 DBG_BCR_BVR_WCR_WVR_EL1(10),
1379 DBG_BCR_BVR_WCR_WVR_EL1(11),
1380 DBG_BCR_BVR_WCR_WVR_EL1(12),
1381 DBG_BCR_BVR_WCR_WVR_EL1(13),
1382 DBG_BCR_BVR_WCR_WVR_EL1(14),
1383 DBG_BCR_BVR_WCR_WVR_EL1(15),
1385 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1386 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1387 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1388 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1389 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1390 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1391 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1392 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1394 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1395 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1396 // DBGDTR[TR]X_EL0 share the same encoding
1397 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1399 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1401 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1404 * ID regs: all ID_SANITISED() entries here must have corresponding
1405 * entries in arm64_ftr_regs[].
1408 /* AArch64 mappings of the AArch32 ID registers */
1409 /* CRm=1 */
1410 ID_SANITISED(ID_PFR0_EL1),
1411 ID_SANITISED(ID_PFR1_EL1),
1412 ID_SANITISED(ID_DFR0_EL1),
1413 ID_HIDDEN(ID_AFR0_EL1),
1414 ID_SANITISED(ID_MMFR0_EL1),
1415 ID_SANITISED(ID_MMFR1_EL1),
1416 ID_SANITISED(ID_MMFR2_EL1),
1417 ID_SANITISED(ID_MMFR3_EL1),
1419 /* CRm=2 */
1420 ID_SANITISED(ID_ISAR0_EL1),
1421 ID_SANITISED(ID_ISAR1_EL1),
1422 ID_SANITISED(ID_ISAR2_EL1),
1423 ID_SANITISED(ID_ISAR3_EL1),
1424 ID_SANITISED(ID_ISAR4_EL1),
1425 ID_SANITISED(ID_ISAR5_EL1),
1426 ID_SANITISED(ID_MMFR4_EL1),
1427 ID_SANITISED(ID_ISAR6_EL1),
1429 /* CRm=3 */
1430 ID_SANITISED(MVFR0_EL1),
1431 ID_SANITISED(MVFR1_EL1),
1432 ID_SANITISED(MVFR2_EL1),
1433 ID_UNALLOCATED(3,3),
1434 ID_UNALLOCATED(3,4),
1435 ID_UNALLOCATED(3,5),
1436 ID_UNALLOCATED(3,6),
1437 ID_UNALLOCATED(3,7),
1439 /* AArch64 ID registers */
1440 /* CRm=4 */
1441 ID_SANITISED(ID_AA64PFR0_EL1),
1442 ID_SANITISED(ID_AA64PFR1_EL1),
1443 ID_UNALLOCATED(4,2),
1444 ID_UNALLOCATED(4,3),
1445 { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1446 ID_UNALLOCATED(4,5),
1447 ID_UNALLOCATED(4,6),
1448 ID_UNALLOCATED(4,7),
1450 /* CRm=5 */
1451 ID_SANITISED(ID_AA64DFR0_EL1),
1452 ID_SANITISED(ID_AA64DFR1_EL1),
1453 ID_UNALLOCATED(5,2),
1454 ID_UNALLOCATED(5,3),
1455 ID_HIDDEN(ID_AA64AFR0_EL1),
1456 ID_HIDDEN(ID_AA64AFR1_EL1),
1457 ID_UNALLOCATED(5,6),
1458 ID_UNALLOCATED(5,7),
1460 /* CRm=6 */
1461 ID_SANITISED(ID_AA64ISAR0_EL1),
1462 ID_SANITISED(ID_AA64ISAR1_EL1),
1463 ID_UNALLOCATED(6,2),
1464 ID_UNALLOCATED(6,3),
1465 ID_UNALLOCATED(6,4),
1466 ID_UNALLOCATED(6,5),
1467 ID_UNALLOCATED(6,6),
1468 ID_UNALLOCATED(6,7),
1470 /* CRm=7 */
1471 ID_SANITISED(ID_AA64MMFR0_EL1),
1472 ID_SANITISED(ID_AA64MMFR1_EL1),
1473 ID_SANITISED(ID_AA64MMFR2_EL1),
1474 ID_UNALLOCATED(7,3),
1475 ID_UNALLOCATED(7,4),
1476 ID_UNALLOCATED(7,5),
1477 ID_UNALLOCATED(7,6),
1478 ID_UNALLOCATED(7,7),
1480 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1481 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1482 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1483 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1484 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1485 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1487 PTRAUTH_KEY(APIA),
1488 PTRAUTH_KEY(APIB),
1489 PTRAUTH_KEY(APDA),
1490 PTRAUTH_KEY(APDB),
1491 PTRAUTH_KEY(APGA),
1493 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1494 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1495 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1497 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1498 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1499 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1500 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1501 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1502 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1503 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1504 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1506 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1507 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1509 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1510 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1512 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1513 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1515 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1516 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1517 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1518 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1519 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1521 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1522 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1524 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1525 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1526 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1527 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1528 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1529 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1530 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1531 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1532 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1533 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1534 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1535 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1537 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1538 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1540 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1542 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1543 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1544 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1545 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1547 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1548 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1549 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1550 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1551 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1552 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1553 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1554 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1555 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1556 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1557 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1559 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1560 * in 32bit mode. Here we choose to reset it as zero for consistency.
1562 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1563 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1565 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1566 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1568 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1569 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1570 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1572 /* PMEVCNTRn_EL0 */
1573 PMU_PMEVCNTR_EL0(0),
1574 PMU_PMEVCNTR_EL0(1),
1575 PMU_PMEVCNTR_EL0(2),
1576 PMU_PMEVCNTR_EL0(3),
1577 PMU_PMEVCNTR_EL0(4),
1578 PMU_PMEVCNTR_EL0(5),
1579 PMU_PMEVCNTR_EL0(6),
1580 PMU_PMEVCNTR_EL0(7),
1581 PMU_PMEVCNTR_EL0(8),
1582 PMU_PMEVCNTR_EL0(9),
1583 PMU_PMEVCNTR_EL0(10),
1584 PMU_PMEVCNTR_EL0(11),
1585 PMU_PMEVCNTR_EL0(12),
1586 PMU_PMEVCNTR_EL0(13),
1587 PMU_PMEVCNTR_EL0(14),
1588 PMU_PMEVCNTR_EL0(15),
1589 PMU_PMEVCNTR_EL0(16),
1590 PMU_PMEVCNTR_EL0(17),
1591 PMU_PMEVCNTR_EL0(18),
1592 PMU_PMEVCNTR_EL0(19),
1593 PMU_PMEVCNTR_EL0(20),
1594 PMU_PMEVCNTR_EL0(21),
1595 PMU_PMEVCNTR_EL0(22),
1596 PMU_PMEVCNTR_EL0(23),
1597 PMU_PMEVCNTR_EL0(24),
1598 PMU_PMEVCNTR_EL0(25),
1599 PMU_PMEVCNTR_EL0(26),
1600 PMU_PMEVCNTR_EL0(27),
1601 PMU_PMEVCNTR_EL0(28),
1602 PMU_PMEVCNTR_EL0(29),
1603 PMU_PMEVCNTR_EL0(30),
1604 /* PMEVTYPERn_EL0 */
1605 PMU_PMEVTYPER_EL0(0),
1606 PMU_PMEVTYPER_EL0(1),
1607 PMU_PMEVTYPER_EL0(2),
1608 PMU_PMEVTYPER_EL0(3),
1609 PMU_PMEVTYPER_EL0(4),
1610 PMU_PMEVTYPER_EL0(5),
1611 PMU_PMEVTYPER_EL0(6),
1612 PMU_PMEVTYPER_EL0(7),
1613 PMU_PMEVTYPER_EL0(8),
1614 PMU_PMEVTYPER_EL0(9),
1615 PMU_PMEVTYPER_EL0(10),
1616 PMU_PMEVTYPER_EL0(11),
1617 PMU_PMEVTYPER_EL0(12),
1618 PMU_PMEVTYPER_EL0(13),
1619 PMU_PMEVTYPER_EL0(14),
1620 PMU_PMEVTYPER_EL0(15),
1621 PMU_PMEVTYPER_EL0(16),
1622 PMU_PMEVTYPER_EL0(17),
1623 PMU_PMEVTYPER_EL0(18),
1624 PMU_PMEVTYPER_EL0(19),
1625 PMU_PMEVTYPER_EL0(20),
1626 PMU_PMEVTYPER_EL0(21),
1627 PMU_PMEVTYPER_EL0(22),
1628 PMU_PMEVTYPER_EL0(23),
1629 PMU_PMEVTYPER_EL0(24),
1630 PMU_PMEVTYPER_EL0(25),
1631 PMU_PMEVTYPER_EL0(26),
1632 PMU_PMEVTYPER_EL0(27),
1633 PMU_PMEVTYPER_EL0(28),
1634 PMU_PMEVTYPER_EL0(29),
1635 PMU_PMEVTYPER_EL0(30),
1637 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1638 * in 32bit mode. Here we choose to reset it as zero for consistency.
1640 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1642 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1643 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1644 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1647 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1648 struct sys_reg_params *p,
1649 const struct sys_reg_desc *r)
1651 if (p->is_write) {
1652 return ignore_write(vcpu, p);
1653 } else {
1654 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1655 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1656 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1658 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1659 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1660 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1661 | (6 << 16) | (el3 << 14) | (el3 << 12));
1662 return true;
1666 static bool trap_debug32(struct kvm_vcpu *vcpu,
1667 struct sys_reg_params *p,
1668 const struct sys_reg_desc *r)
1670 if (p->is_write) {
1671 vcpu_cp14(vcpu, r->reg) = p->regval;
1672 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1673 } else {
1674 p->regval = vcpu_cp14(vcpu, r->reg);
1677 return true;
1680 /* AArch32 debug register mappings
1682 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1683 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1685 * All control registers and watchpoint value registers are mapped to
1686 * the lower 32 bits of their AArch64 equivalents. We share the trap
1687 * handlers with the above AArch64 code which checks what mode the
1688 * system is in.
1691 static bool trap_xvr(struct kvm_vcpu *vcpu,
1692 struct sys_reg_params *p,
1693 const struct sys_reg_desc *rd)
1695 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1697 if (p->is_write) {
1698 u64 val = *dbg_reg;
1700 val &= 0xffffffffUL;
1701 val |= p->regval << 32;
1702 *dbg_reg = val;
1704 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1705 } else {
1706 p->regval = *dbg_reg >> 32;
1709 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1711 return true;
1714 #define DBG_BCR_BVR_WCR_WVR(n) \
1715 /* DBGBVRn */ \
1716 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1717 /* DBGBCRn */ \
1718 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1719 /* DBGWVRn */ \
1720 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1721 /* DBGWCRn */ \
1722 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1724 #define DBGBXVR(n) \
1725 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1728 * Trapped cp14 registers. We generally ignore most of the external
1729 * debug, on the principle that they don't really make sense to a
1730 * guest. Revisit this one day, would this principle change.
1732 static const struct sys_reg_desc cp14_regs[] = {
1733 /* DBGIDR */
1734 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1735 /* DBGDTRRXext */
1736 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1738 DBG_BCR_BVR_WCR_WVR(0),
1739 /* DBGDSCRint */
1740 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1741 DBG_BCR_BVR_WCR_WVR(1),
1742 /* DBGDCCINT */
1743 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1744 /* DBGDSCRext */
1745 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1746 DBG_BCR_BVR_WCR_WVR(2),
1747 /* DBGDTR[RT]Xint */
1748 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1749 /* DBGDTR[RT]Xext */
1750 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1751 DBG_BCR_BVR_WCR_WVR(3),
1752 DBG_BCR_BVR_WCR_WVR(4),
1753 DBG_BCR_BVR_WCR_WVR(5),
1754 /* DBGWFAR */
1755 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1756 /* DBGOSECCR */
1757 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1758 DBG_BCR_BVR_WCR_WVR(6),
1759 /* DBGVCR */
1760 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1761 DBG_BCR_BVR_WCR_WVR(7),
1762 DBG_BCR_BVR_WCR_WVR(8),
1763 DBG_BCR_BVR_WCR_WVR(9),
1764 DBG_BCR_BVR_WCR_WVR(10),
1765 DBG_BCR_BVR_WCR_WVR(11),
1766 DBG_BCR_BVR_WCR_WVR(12),
1767 DBG_BCR_BVR_WCR_WVR(13),
1768 DBG_BCR_BVR_WCR_WVR(14),
1769 DBG_BCR_BVR_WCR_WVR(15),
1771 /* DBGDRAR (32bit) */
1772 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1774 DBGBXVR(0),
1775 /* DBGOSLAR */
1776 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1777 DBGBXVR(1),
1778 /* DBGOSLSR */
1779 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1780 DBGBXVR(2),
1781 DBGBXVR(3),
1782 /* DBGOSDLR */
1783 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1784 DBGBXVR(4),
1785 /* DBGPRCR */
1786 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1787 DBGBXVR(5),
1788 DBGBXVR(6),
1789 DBGBXVR(7),
1790 DBGBXVR(8),
1791 DBGBXVR(9),
1792 DBGBXVR(10),
1793 DBGBXVR(11),
1794 DBGBXVR(12),
1795 DBGBXVR(13),
1796 DBGBXVR(14),
1797 DBGBXVR(15),
1799 /* DBGDSAR (32bit) */
1800 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1802 /* DBGDEVID2 */
1803 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1804 /* DBGDEVID1 */
1805 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1806 /* DBGDEVID */
1807 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1808 /* DBGCLAIMSET */
1809 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1810 /* DBGCLAIMCLR */
1811 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1812 /* DBGAUTHSTATUS */
1813 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1816 /* Trapped cp14 64bit registers */
1817 static const struct sys_reg_desc cp14_64_regs[] = {
1818 /* DBGDRAR (64bit) */
1819 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1821 /* DBGDSAR (64bit) */
1822 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1825 /* Macro to expand the PMEVCNTRn register */
1826 #define PMU_PMEVCNTR(n) \
1827 /* PMEVCNTRn */ \
1828 { Op1(0), CRn(0b1110), \
1829 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1830 access_pmu_evcntr }
1832 /* Macro to expand the PMEVTYPERn register */
1833 #define PMU_PMEVTYPER(n) \
1834 /* PMEVTYPERn */ \
1835 { Op1(0), CRn(0b1110), \
1836 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1837 access_pmu_evtyper }
1840 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1841 * depending on the way they are accessed (as a 32bit or a 64bit
1842 * register).
1844 static const struct sys_reg_desc cp15_regs[] = {
1845 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1846 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1847 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1848 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1849 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1850 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1851 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1852 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1853 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1854 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1855 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1856 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1859 * DC{C,I,CI}SW operations:
1861 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1862 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1863 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1865 /* PMU */
1866 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1867 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1868 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1869 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1870 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1871 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1872 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1873 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1874 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1875 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1876 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1877 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1878 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1879 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1880 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1882 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1883 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1884 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1885 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1887 /* ICC_SRE */
1888 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1890 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1892 /* Arch Tmers */
1893 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1894 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1896 /* PMEVCNTRn */
1897 PMU_PMEVCNTR(0),
1898 PMU_PMEVCNTR(1),
1899 PMU_PMEVCNTR(2),
1900 PMU_PMEVCNTR(3),
1901 PMU_PMEVCNTR(4),
1902 PMU_PMEVCNTR(5),
1903 PMU_PMEVCNTR(6),
1904 PMU_PMEVCNTR(7),
1905 PMU_PMEVCNTR(8),
1906 PMU_PMEVCNTR(9),
1907 PMU_PMEVCNTR(10),
1908 PMU_PMEVCNTR(11),
1909 PMU_PMEVCNTR(12),
1910 PMU_PMEVCNTR(13),
1911 PMU_PMEVCNTR(14),
1912 PMU_PMEVCNTR(15),
1913 PMU_PMEVCNTR(16),
1914 PMU_PMEVCNTR(17),
1915 PMU_PMEVCNTR(18),
1916 PMU_PMEVCNTR(19),
1917 PMU_PMEVCNTR(20),
1918 PMU_PMEVCNTR(21),
1919 PMU_PMEVCNTR(22),
1920 PMU_PMEVCNTR(23),
1921 PMU_PMEVCNTR(24),
1922 PMU_PMEVCNTR(25),
1923 PMU_PMEVCNTR(26),
1924 PMU_PMEVCNTR(27),
1925 PMU_PMEVCNTR(28),
1926 PMU_PMEVCNTR(29),
1927 PMU_PMEVCNTR(30),
1928 /* PMEVTYPERn */
1929 PMU_PMEVTYPER(0),
1930 PMU_PMEVTYPER(1),
1931 PMU_PMEVTYPER(2),
1932 PMU_PMEVTYPER(3),
1933 PMU_PMEVTYPER(4),
1934 PMU_PMEVTYPER(5),
1935 PMU_PMEVTYPER(6),
1936 PMU_PMEVTYPER(7),
1937 PMU_PMEVTYPER(8),
1938 PMU_PMEVTYPER(9),
1939 PMU_PMEVTYPER(10),
1940 PMU_PMEVTYPER(11),
1941 PMU_PMEVTYPER(12),
1942 PMU_PMEVTYPER(13),
1943 PMU_PMEVTYPER(14),
1944 PMU_PMEVTYPER(15),
1945 PMU_PMEVTYPER(16),
1946 PMU_PMEVTYPER(17),
1947 PMU_PMEVTYPER(18),
1948 PMU_PMEVTYPER(19),
1949 PMU_PMEVTYPER(20),
1950 PMU_PMEVTYPER(21),
1951 PMU_PMEVTYPER(22),
1952 PMU_PMEVTYPER(23),
1953 PMU_PMEVTYPER(24),
1954 PMU_PMEVTYPER(25),
1955 PMU_PMEVTYPER(26),
1956 PMU_PMEVTYPER(27),
1957 PMU_PMEVTYPER(28),
1958 PMU_PMEVTYPER(29),
1959 PMU_PMEVTYPER(30),
1960 /* PMCCFILTR */
1961 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1963 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1964 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1965 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1968 static const struct sys_reg_desc cp15_64_regs[] = {
1969 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1970 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1971 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1972 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1973 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1974 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1975 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
1978 /* Target specific emulation tables */
1979 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1981 void kvm_register_target_sys_reg_table(unsigned int target,
1982 struct kvm_sys_reg_target_table *table)
1984 target_tables[target] = table;
1987 /* Get specific register table for this target. */
1988 static const struct sys_reg_desc *get_target_table(unsigned target,
1989 bool mode_is_64,
1990 size_t *num)
1992 struct kvm_sys_reg_target_table *table;
1994 table = target_tables[target];
1995 if (mode_is_64) {
1996 *num = table->table64.num;
1997 return table->table64.table;
1998 } else {
1999 *num = table->table32.num;
2000 return table->table32.table;
2004 static int match_sys_reg(const void *key, const void *elt)
2006 const unsigned long pval = (unsigned long)key;
2007 const struct sys_reg_desc *r = elt;
2009 return pval - reg_to_encoding(r);
2012 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2013 const struct sys_reg_desc table[],
2014 unsigned int num)
2016 unsigned long pval = reg_to_encoding(params);
2018 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2021 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2023 kvm_inject_undefined(vcpu);
2024 return 1;
2027 static void perform_access(struct kvm_vcpu *vcpu,
2028 struct sys_reg_params *params,
2029 const struct sys_reg_desc *r)
2031 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2033 /* Check for regs disabled by runtime config */
2034 if (sysreg_hidden_from_guest(vcpu, r)) {
2035 kvm_inject_undefined(vcpu);
2036 return;
2040 * Not having an accessor means that we have configured a trap
2041 * that we don't know how to handle. This certainly qualifies
2042 * as a gross bug that should be fixed right away.
2044 BUG_ON(!r->access);
2046 /* Skip instruction if instructed so */
2047 if (likely(r->access(vcpu, params, r)))
2048 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2052 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2053 * call the corresponding trap handler.
2055 * @params: pointer to the descriptor of the access
2056 * @table: array of trap descriptors
2057 * @num: size of the trap descriptor array
2059 * Return 0 if the access has been handled, and -1 if not.
2061 static int emulate_cp(struct kvm_vcpu *vcpu,
2062 struct sys_reg_params *params,
2063 const struct sys_reg_desc *table,
2064 size_t num)
2066 const struct sys_reg_desc *r;
2068 if (!table)
2069 return -1; /* Not handled */
2071 r = find_reg(params, table, num);
2073 if (r) {
2074 perform_access(vcpu, params, r);
2075 return 0;
2078 /* Not handled */
2079 return -1;
2082 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2083 struct sys_reg_params *params)
2085 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2086 int cp = -1;
2088 switch(hsr_ec) {
2089 case ESR_ELx_EC_CP15_32:
2090 case ESR_ELx_EC_CP15_64:
2091 cp = 15;
2092 break;
2093 case ESR_ELx_EC_CP14_MR:
2094 case ESR_ELx_EC_CP14_64:
2095 cp = 14;
2096 break;
2097 default:
2098 WARN_ON(1);
2101 print_sys_reg_msg(params,
2102 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2103 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2104 kvm_inject_undefined(vcpu);
2108 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2109 * @vcpu: The VCPU pointer
2110 * @run: The kvm_run struct
2112 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2113 const struct sys_reg_desc *global,
2114 size_t nr_global,
2115 const struct sys_reg_desc *target_specific,
2116 size_t nr_specific)
2118 struct sys_reg_params params;
2119 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2120 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2121 int Rt2 = (hsr >> 10) & 0x1f;
2123 params.is_aarch32 = true;
2124 params.is_32bit = false;
2125 params.CRm = (hsr >> 1) & 0xf;
2126 params.is_write = ((hsr & 1) == 0);
2128 params.Op0 = 0;
2129 params.Op1 = (hsr >> 16) & 0xf;
2130 params.Op2 = 0;
2131 params.CRn = 0;
2134 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2135 * backends between AArch32 and AArch64, we get away with it.
2137 if (params.is_write) {
2138 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2139 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2143 * Try to emulate the coprocessor access using the target
2144 * specific table first, and using the global table afterwards.
2145 * If either of the tables contains a handler, handle the
2146 * potential register operation in the case of a read and return
2147 * with success.
2149 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2150 !emulate_cp(vcpu, &params, global, nr_global)) {
2151 /* Split up the value between registers for the read side */
2152 if (!params.is_write) {
2153 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2154 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2157 return 1;
2160 unhandled_cp_access(vcpu, &params);
2161 return 1;
2165 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2166 * @vcpu: The VCPU pointer
2167 * @run: The kvm_run struct
2169 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2170 const struct sys_reg_desc *global,
2171 size_t nr_global,
2172 const struct sys_reg_desc *target_specific,
2173 size_t nr_specific)
2175 struct sys_reg_params params;
2176 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2177 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2179 params.is_aarch32 = true;
2180 params.is_32bit = true;
2181 params.CRm = (hsr >> 1) & 0xf;
2182 params.regval = vcpu_get_reg(vcpu, Rt);
2183 params.is_write = ((hsr & 1) == 0);
2184 params.CRn = (hsr >> 10) & 0xf;
2185 params.Op0 = 0;
2186 params.Op1 = (hsr >> 14) & 0x7;
2187 params.Op2 = (hsr >> 17) & 0x7;
2189 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2190 !emulate_cp(vcpu, &params, global, nr_global)) {
2191 if (!params.is_write)
2192 vcpu_set_reg(vcpu, Rt, params.regval);
2193 return 1;
2196 unhandled_cp_access(vcpu, &params);
2197 return 1;
2200 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2202 const struct sys_reg_desc *target_specific;
2203 size_t num;
2205 target_specific = get_target_table(vcpu->arch.target, false, &num);
2206 return kvm_handle_cp_64(vcpu,
2207 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2208 target_specific, num);
2211 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2213 const struct sys_reg_desc *target_specific;
2214 size_t num;
2216 target_specific = get_target_table(vcpu->arch.target, false, &num);
2217 return kvm_handle_cp_32(vcpu,
2218 cp15_regs, ARRAY_SIZE(cp15_regs),
2219 target_specific, num);
2222 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2224 return kvm_handle_cp_64(vcpu,
2225 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2226 NULL, 0);
2229 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2231 return kvm_handle_cp_32(vcpu,
2232 cp14_regs, ARRAY_SIZE(cp14_regs),
2233 NULL, 0);
2236 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2238 // See ARM DDI 0487E.a, section D12.3.2
2239 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2242 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2243 struct sys_reg_params *params)
2245 size_t num;
2246 const struct sys_reg_desc *table, *r;
2248 table = get_target_table(vcpu->arch.target, true, &num);
2250 /* Search target-specific then generic table. */
2251 r = find_reg(params, table, num);
2252 if (!r)
2253 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2255 if (likely(r)) {
2256 perform_access(vcpu, params, r);
2257 } else if (is_imp_def_sys_reg(params)) {
2258 kvm_inject_undefined(vcpu);
2259 } else {
2260 print_sys_reg_msg(params,
2261 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2262 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2263 kvm_inject_undefined(vcpu);
2265 return 1;
2268 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2269 const struct sys_reg_desc *table, size_t num,
2270 unsigned long *bmap)
2272 unsigned long i;
2274 for (i = 0; i < num; i++)
2275 if (table[i].reset) {
2276 int reg = table[i].reg;
2278 table[i].reset(vcpu, &table[i]);
2279 if (reg > 0 && reg < NR_SYS_REGS)
2280 set_bit(reg, bmap);
2285 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2286 * @vcpu: The VCPU pointer
2287 * @run: The kvm_run struct
2289 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2291 struct sys_reg_params params;
2292 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2293 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2294 int ret;
2296 trace_kvm_handle_sys_reg(esr);
2298 params.is_aarch32 = false;
2299 params.is_32bit = false;
2300 params.Op0 = (esr >> 20) & 3;
2301 params.Op1 = (esr >> 14) & 0x7;
2302 params.CRn = (esr >> 10) & 0xf;
2303 params.CRm = (esr >> 1) & 0xf;
2304 params.Op2 = (esr >> 17) & 0x7;
2305 params.regval = vcpu_get_reg(vcpu, Rt);
2306 params.is_write = !(esr & 1);
2308 ret = emulate_sys_reg(vcpu, &params);
2310 if (!params.is_write)
2311 vcpu_set_reg(vcpu, Rt, params.regval);
2312 return ret;
2315 /******************************************************************************
2316 * Userspace API
2317 *****************************************************************************/
2319 static bool index_to_params(u64 id, struct sys_reg_params *params)
2321 switch (id & KVM_REG_SIZE_MASK) {
2322 case KVM_REG_SIZE_U64:
2323 /* Any unused index bits means it's not valid. */
2324 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2325 | KVM_REG_ARM_COPROC_MASK
2326 | KVM_REG_ARM64_SYSREG_OP0_MASK
2327 | KVM_REG_ARM64_SYSREG_OP1_MASK
2328 | KVM_REG_ARM64_SYSREG_CRN_MASK
2329 | KVM_REG_ARM64_SYSREG_CRM_MASK
2330 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2331 return false;
2332 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2333 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2334 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2335 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2336 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2337 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2338 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2339 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2340 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2341 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2342 return true;
2343 default:
2344 return false;
2348 const struct sys_reg_desc *find_reg_by_id(u64 id,
2349 struct sys_reg_params *params,
2350 const struct sys_reg_desc table[],
2351 unsigned int num)
2353 if (!index_to_params(id, params))
2354 return NULL;
2356 return find_reg(params, table, num);
2359 /* Decode an index value, and find the sys_reg_desc entry. */
2360 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2361 u64 id)
2363 size_t num;
2364 const struct sys_reg_desc *table, *r;
2365 struct sys_reg_params params;
2367 /* We only do sys_reg for now. */
2368 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2369 return NULL;
2371 if (!index_to_params(id, &params))
2372 return NULL;
2374 table = get_target_table(vcpu->arch.target, true, &num);
2375 r = find_reg(&params, table, num);
2376 if (!r)
2377 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2379 /* Not saved in the sys_reg array and not otherwise accessible? */
2380 if (r && !(r->reg || r->get_user))
2381 r = NULL;
2383 return r;
2387 * These are the invariant sys_reg registers: we let the guest see the
2388 * host versions of these, so they're part of the guest state.
2390 * A future CPU may provide a mechanism to present different values to
2391 * the guest, or a future kvm may trap them.
2394 #define FUNCTION_INVARIANT(reg) \
2395 static void get_##reg(struct kvm_vcpu *v, \
2396 const struct sys_reg_desc *r) \
2398 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2401 FUNCTION_INVARIANT(midr_el1)
2402 FUNCTION_INVARIANT(revidr_el1)
2403 FUNCTION_INVARIANT(clidr_el1)
2404 FUNCTION_INVARIANT(aidr_el1)
2406 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2408 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2411 /* ->val is filled in by kvm_sys_reg_table_init() */
2412 static struct sys_reg_desc invariant_sys_regs[] = {
2413 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2414 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2415 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2416 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2417 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2420 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2422 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2423 return -EFAULT;
2424 return 0;
2427 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2429 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2430 return -EFAULT;
2431 return 0;
2434 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2436 struct sys_reg_params params;
2437 const struct sys_reg_desc *r;
2439 r = find_reg_by_id(id, &params, invariant_sys_regs,
2440 ARRAY_SIZE(invariant_sys_regs));
2441 if (!r)
2442 return -ENOENT;
2444 return reg_to_user(uaddr, &r->val, id);
2447 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2449 struct sys_reg_params params;
2450 const struct sys_reg_desc *r;
2451 int err;
2452 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2454 r = find_reg_by_id(id, &params, invariant_sys_regs,
2455 ARRAY_SIZE(invariant_sys_regs));
2456 if (!r)
2457 return -ENOENT;
2459 err = reg_from_user(&val, uaddr, id);
2460 if (err)
2461 return err;
2463 /* This is what we mean by invariant: you can't change it. */
2464 if (r->val != val)
2465 return -EINVAL;
2467 return 0;
2470 static bool is_valid_cache(u32 val)
2472 u32 level, ctype;
2474 if (val >= CSSELR_MAX)
2475 return false;
2477 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2478 level = (val >> 1);
2479 ctype = (cache_levels >> (level * 3)) & 7;
2481 switch (ctype) {
2482 case 0: /* No cache */
2483 return false;
2484 case 1: /* Instruction cache only */
2485 return (val & 1);
2486 case 2: /* Data cache only */
2487 case 4: /* Unified cache */
2488 return !(val & 1);
2489 case 3: /* Separate instruction and data caches */
2490 return true;
2491 default: /* Reserved: we can't know instruction or data. */
2492 return false;
2496 static int demux_c15_get(u64 id, void __user *uaddr)
2498 u32 val;
2499 u32 __user *uval = uaddr;
2501 /* Fail if we have unknown bits set. */
2502 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2503 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2504 return -ENOENT;
2506 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2507 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2508 if (KVM_REG_SIZE(id) != 4)
2509 return -ENOENT;
2510 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2511 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2512 if (!is_valid_cache(val))
2513 return -ENOENT;
2515 return put_user(get_ccsidr(val), uval);
2516 default:
2517 return -ENOENT;
2521 static int demux_c15_set(u64 id, void __user *uaddr)
2523 u32 val, newval;
2524 u32 __user *uval = uaddr;
2526 /* Fail if we have unknown bits set. */
2527 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2528 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2529 return -ENOENT;
2531 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2532 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2533 if (KVM_REG_SIZE(id) != 4)
2534 return -ENOENT;
2535 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2536 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2537 if (!is_valid_cache(val))
2538 return -ENOENT;
2540 if (get_user(newval, uval))
2541 return -EFAULT;
2543 /* This is also invariant: you can't change it. */
2544 if (newval != get_ccsidr(val))
2545 return -EINVAL;
2546 return 0;
2547 default:
2548 return -ENOENT;
2552 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2554 const struct sys_reg_desc *r;
2555 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2557 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2558 return demux_c15_get(reg->id, uaddr);
2560 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2561 return -ENOENT;
2563 r = index_to_sys_reg_desc(vcpu, reg->id);
2564 if (!r)
2565 return get_invariant_sys_reg(reg->id, uaddr);
2567 /* Check for regs disabled by runtime config */
2568 if (sysreg_hidden_from_user(vcpu, r))
2569 return -ENOENT;
2571 if (r->get_user)
2572 return (r->get_user)(vcpu, r, reg, uaddr);
2574 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2577 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2579 const struct sys_reg_desc *r;
2580 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2582 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2583 return demux_c15_set(reg->id, uaddr);
2585 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2586 return -ENOENT;
2588 r = index_to_sys_reg_desc(vcpu, reg->id);
2589 if (!r)
2590 return set_invariant_sys_reg(reg->id, uaddr);
2592 /* Check for regs disabled by runtime config */
2593 if (sysreg_hidden_from_user(vcpu, r))
2594 return -ENOENT;
2596 if (r->set_user)
2597 return (r->set_user)(vcpu, r, reg, uaddr);
2599 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2602 static unsigned int num_demux_regs(void)
2604 unsigned int i, count = 0;
2606 for (i = 0; i < CSSELR_MAX; i++)
2607 if (is_valid_cache(i))
2608 count++;
2610 return count;
2613 static int write_demux_regids(u64 __user *uindices)
2615 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2616 unsigned int i;
2618 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2619 for (i = 0; i < CSSELR_MAX; i++) {
2620 if (!is_valid_cache(i))
2621 continue;
2622 if (put_user(val | i, uindices))
2623 return -EFAULT;
2624 uindices++;
2626 return 0;
2629 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2631 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2632 KVM_REG_ARM64_SYSREG |
2633 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2634 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2635 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2636 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2637 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2640 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2642 if (!*uind)
2643 return true;
2645 if (put_user(sys_reg_to_index(reg), *uind))
2646 return false;
2648 (*uind)++;
2649 return true;
2652 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2653 const struct sys_reg_desc *rd,
2654 u64 __user **uind,
2655 unsigned int *total)
2658 * Ignore registers we trap but don't save,
2659 * and for which no custom user accessor is provided.
2661 if (!(rd->reg || rd->get_user))
2662 return 0;
2664 if (sysreg_hidden_from_user(vcpu, rd))
2665 return 0;
2667 if (!copy_reg_to_user(rd, uind))
2668 return -EFAULT;
2670 (*total)++;
2671 return 0;
2674 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2675 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2677 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2678 unsigned int total = 0;
2679 size_t num;
2680 int err;
2682 /* We check for duplicates here, to allow arch-specific overrides. */
2683 i1 = get_target_table(vcpu->arch.target, true, &num);
2684 end1 = i1 + num;
2685 i2 = sys_reg_descs;
2686 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2688 BUG_ON(i1 == end1 || i2 == end2);
2690 /* Walk carefully, as both tables may refer to the same register. */
2691 while (i1 || i2) {
2692 int cmp = cmp_sys_reg(i1, i2);
2693 /* target-specific overrides generic entry. */
2694 if (cmp <= 0)
2695 err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2696 else
2697 err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2699 if (err)
2700 return err;
2702 if (cmp <= 0 && ++i1 == end1)
2703 i1 = NULL;
2704 if (cmp >= 0 && ++i2 == end2)
2705 i2 = NULL;
2707 return total;
2710 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2712 return ARRAY_SIZE(invariant_sys_regs)
2713 + num_demux_regs()
2714 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2717 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2719 unsigned int i;
2720 int err;
2722 /* Then give them all the invariant registers' indices. */
2723 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2724 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2725 return -EFAULT;
2726 uindices++;
2729 err = walk_sys_regs(vcpu, uindices);
2730 if (err < 0)
2731 return err;
2732 uindices += err;
2734 return write_demux_regids(uindices);
2737 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2739 unsigned int i;
2741 for (i = 1; i < n; i++) {
2742 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2743 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2744 return 1;
2748 return 0;
2751 void kvm_sys_reg_table_init(void)
2753 unsigned int i;
2754 struct sys_reg_desc clidr;
2756 /* Make sure tables are unique and in order. */
2757 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2758 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2759 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2760 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2761 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2762 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2764 /* We abuse the reset function to overwrite the table itself. */
2765 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2766 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2769 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2771 * If software reads the Cache Type fields from Ctype1
2772 * upwards, once it has seen a value of 0b000, no caches
2773 * exist at further-out levels of the hierarchy. So, for
2774 * example, if Ctype3 is the first Cache Type field with a
2775 * value of 0b000, the values of Ctype4 to Ctype7 must be
2776 * ignored.
2778 get_clidr_el1(NULL, &clidr); /* Ugly... */
2779 cache_levels = clidr.val;
2780 for (i = 0; i < 7; i++)
2781 if (((cache_levels >> (i*3)) & 7) == 0)
2782 break;
2783 /* Clear all higher bits. */
2784 cache_levels &= (1 << (i*3))-1;
2788 * kvm_reset_sys_regs - sets system registers to reset value
2789 * @vcpu: The VCPU pointer
2791 * This function finds the right table above and sets the registers on the
2792 * virtual CPU struct to their architecturally defined reset values.
2794 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2796 size_t num;
2797 const struct sys_reg_desc *table;
2798 DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2800 /* Generic chip reset first (so target could override). */
2801 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2803 table = get_target_table(vcpu->arch.target, true, &num);
2804 reset_sys_reg_descs(vcpu, table, num, bmap);
2806 for (num = 1; num < NR_SYS_REGS; num++) {
2807 if (WARN(!test_bit(num, bmap),
2808 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2809 break;