1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2013 ARM Ltd.
4 * Copyright (C) 2013 Linaro.
6 * This code is based on glibc cortex strings work originally authored by Linaro
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
13 #include <linux/linkage.h>
14 #include <asm/assembler.h>
20 * x0 - const string 1 pointer
21 * x1 - const string 2 pointer
23 * x0 - an integer less than, equal to, or greater than zero
24 * if s1 is found, respectively, to be less than, to match,
25 * or be greater than s2.
28 #define REP8_01 0x0101010101010101
29 #define REP8_7f 0x7f7f7f7f7f7f7f7f
30 #define REP8_80 0x8080808080808080
32 /* Parameters and result. */
37 /* Internal variables. */
51 SYM_FUNC_START_WEAK_PI(strcmp)
53 mov zeroones, #REP8_01
60 * NUL detection works on the principle that (X - 1) & (~X) & 0x80
61 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
62 * can be done in parallel across the entire word.
68 sub tmp1, data1, zeroones
69 orr tmp2, data1, #REP8_7f
70 eor diff, data1, data2 /* Non-zero if differences found. */
71 bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
72 orr syndrome, diff, has_nul
73 cbz syndrome, .Lloop_aligned
78 * Sources are mutually aligned, but are not currently at an
79 * alignment boundary. Round down the addresses and then mask off
80 * the bytes that preceed the start point.
84 lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
86 neg tmp1, tmp1 /* Bits to alignment -64. */
89 /* Big-endian. Early bytes are at MSB. */
90 CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
91 /* Little-endian. Early bytes are at LSB. */
92 CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
94 orr data1, data1, tmp2
95 orr data2, data2, tmp2
100 * Get the align offset length to compare per byte first.
101 * After this process, one string's address will be aligned.
109 subs tmp3, tmp1, tmp2
110 csel pos, tmp1, tmp2, hi /*Choose the maximum. */
112 ldrb data1w, [src1], #1
113 ldrb data2w, [src2], #1
115 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
116 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
118 cbnz pos, 1f /*find the null or unequal...*/
120 ccmp data1w, data2w, #0, cs
121 b.eq .Lstart_align /*the last bytes are equal....*/
123 sub result, data1, data2
129 /*process more leading bytes to make str1 aligned...*/
132 /*load 8 bytes from aligned str1 and non-aligned str2..*/
133 ldr data1, [src1], #8
134 ldr data2, [src2], #8
136 sub tmp1, data1, zeroones
137 orr tmp2, data1, #REP8_7f
138 bic has_nul, tmp1, tmp2
139 eor diff, data1, data2 /* Non-zero if differences found. */
140 orr syndrome, diff, has_nul
141 cbnz syndrome, .Lcal_cmpresult
142 /*How far is the current str2 from the alignment boundary...*/
148 * Divide the eight bytes into two parts. First,backwards the src2
149 * to an alignment boundary,load eight bytes from the SRC2 alignment
150 * boundary,then compare with the relative bytes from SRC1.
151 * If all 8 bytes are equal,then start the second part's comparison.
152 * Otherwise finish the comparison.
153 * This special handle can garantee all the accesses are in the
154 * thread/task space in avoid to overrange access.
156 ldr data1, [src1,pos]
157 ldr data2, [src2,pos]
158 sub tmp1, data1, zeroones
159 orr tmp2, data1, #REP8_7f
160 bic has_nul, tmp1, tmp2
161 eor diff, data1, data2 /* Non-zero if differences found. */
162 orr syndrome, diff, has_nul
163 cbnz syndrome, .Lcal_cmpresult
165 /*The second part process*/
166 ldr data1, [src1], #8
167 ldr data2, [src2], #8
168 sub tmp1, data1, zeroones
169 orr tmp2, data1, #REP8_7f
170 bic has_nul, tmp1, tmp2
171 eor diff, data1, data2 /* Non-zero if differences found. */
172 orr syndrome, diff, has_nul
173 cbz syndrome, .Lloopcmp_proc
177 * reversed the byte-order as big-endian,then CLZ can find the most
178 * significant zero bits.
180 CPU_LE( rev syndrome, syndrome )
181 CPU_LE( rev data1, data1 )
182 CPU_LE( rev data2, data2 )
185 * For big-endian we cannot use the trick with the syndrome value
186 * as carry-propagation can corrupt the upper bits if the trailing
187 * bytes in the string contain 0x01.
188 * However, if there is no NUL byte in the dword, we can generate
189 * the result directly. We ca not just subtract the bytes as the
190 * MSB might be significant.
192 CPU_BE( cbnz has_nul, 1f )
193 CPU_BE( cmp data1, data2 )
194 CPU_BE( cset result, ne )
195 CPU_BE( cneg result, result, lo )
198 /*Re-compute the NUL-byte detection, using a byte-reversed value. */
199 CPU_BE( rev tmp3, data1 )
200 CPU_BE( sub tmp1, tmp3, zeroones )
201 CPU_BE( orr tmp2, tmp3, #REP8_7f )
202 CPU_BE( bic has_nul, tmp1, tmp2 )
203 CPU_BE( rev has_nul, has_nul )
204 CPU_BE( orr syndrome, diff, has_nul )
208 * The MS-non-zero bit of the syndrome marks either the first bit
209 * that is different, or the top bit of the first zero byte.
210 * Shifting left now will bring the critical information into the
213 lsl data1, data1, pos
214 lsl data2, data2, pos
216 * But we need to zero-extend (char is unsigned) the value and then
217 * perform a signed 32-bit subtraction.
219 lsr data1, data1, #56
220 sub result, data1, data2, lsr #56
222 SYM_FUNC_END_PI(strcmp)
223 EXPORT_SYMBOL_NOKASAN(strcmp)