1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2013 ARM Ltd.
4 * Copyright (C) 2013 Linaro.
6 * This code is based on glibc cortex strings work originally authored by Linaro
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
13 #include <linux/linkage.h>
14 #include <asm/assembler.h>
17 * determine the length of a fixed-size string
20 * x0 - const string pointer
21 * x1 - maximal string length
23 * x0 - the return length of specific string
26 /* Arguments and results. */
31 /* Locals and temporaries. */
46 #define REP8_01 0x0101010101010101
47 #define REP8_7f 0x7f7f7f7f7f7f7f7f
48 #define REP8_80 0x8080808080808080
50 SYM_FUNC_START_WEAK_PI(strnlen)
51 cbz limit, .Lhit_limit
52 mov zeroones, #REP8_01
56 /* Calculate the number of full and partial words -1. */
57 sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */
58 lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */
61 * NUL detection works on the principle that (X - 1) & (~X) & 0x80
62 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
63 * can be done in parallel across the entire word.
66 * The inner loop deals with two Dwords at a time. This has a
67 * slightly higher start-up cost, but we should win quite quickly,
68 * especially on cores with a high number of issue slots per
69 * cycle, as we get much better parallelism out of the operations.
72 ldp data1, data2, [src], #16
74 sub tmp1, data1, zeroones
75 orr tmp2, data1, #REP8_7f
76 sub tmp3, data2, zeroones
77 orr tmp4, data2, #REP8_7f
78 bic has_nul1, tmp1, tmp2
79 bic has_nul2, tmp3, tmp4
80 subs limit_wd, limit_wd, #1
81 orr tmp1, has_nul1, has_nul2
82 ccmp tmp1, #0, #0, pl /* NZCV = 0000 */
85 cbz tmp1, .Lhit_limit /* No null in final Qword. */
88 * We know there's a null in the final Qword. The easiest thing
89 * to do now is work out the length of the string and return
93 cbz has_nul1, .Lnul_in_data2
94 CPU_BE( mov data2, data1 ) /*perpare data to re-calculate the syndrome*/
97 mov has_nul2, has_nul1
100 * For big-endian, carry propagation (if the final byte in the
101 * string is 0x01) means we cannot use has_nul directly. The
102 * easiest way to get the correct byte is to byte-swap the data
103 * and calculate the syndrome a second time.
105 CPU_BE( rev data2, data2 )
106 CPU_BE( sub tmp1, data2, zeroones )
107 CPU_BE( orr tmp2, data2, #REP8_7f )
108 CPU_BE( bic has_nul2, tmp1, tmp2 )
111 rev has_nul2, has_nul2
113 add len, len, pos, lsr #3 /* Bits to bytes. */
115 csel len, len, limit, ls /* Return the lower value. */
120 * Deal with a partial first word.
121 * We're doing two things in parallel here;
122 * 1) Calculate the number of words (but avoiding overflow if
123 * limit is near ULONG_MAX) - to do this we need to work out
124 * limit + tmp1 - 1 as a 65-bit value before shifting it;
125 * 2) Load and mask the initial data words - we force the bytes
126 * before the ones we are interested in to 0xff - this ensures
127 * early bytes will not hit any zero detection.
129 ldp data1, data2, [src], #16
131 sub limit_wd, limit, #1
132 and tmp3, limit_wd, #15
133 lsr limit_wd, limit_wd, #4
136 add limit_wd, limit_wd, tmp3, lsr #4
139 lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */
142 /* Big-endian. Early bytes are at MSB. */
143 CPU_BE( lsl tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
144 /* Little-endian. Early bytes are at LSB. */
145 CPU_LE( lsr tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
149 orr data1, data1, tmp2
150 orr data2a, data2, tmp2
152 csinv data1, data1, xzr, le
153 csel data2, data2, data2a, le
159 SYM_FUNC_END_PI(strnlen)
160 EXPORT_SYMBOL_NOKASAN(strnlen)