1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
35 #include <asm/kprobes.h>
36 #include <asm/processor.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/traps.h>
44 int (*fn
)(unsigned long addr
, unsigned int esr
,
45 struct pt_regs
*regs
);
51 static const struct fault_info fault_info
[];
52 static struct fault_info debug_fault_info
[];
54 static inline const struct fault_info
*esr_to_fault_info(unsigned int esr
)
56 return fault_info
+ (esr
& ESR_ELx_FSC
);
59 static inline const struct fault_info
*esr_to_debug_fault_info(unsigned int esr
)
61 return debug_fault_info
+ DBG_ESR_EVT(esr
);
64 static void data_abort_decode(unsigned int esr
)
66 pr_alert("Data abort info:\n");
68 if (esr
& ESR_ELx_ISV
) {
69 pr_alert(" Access size = %u byte(s)\n",
70 1U << ((esr
& ESR_ELx_SAS
) >> ESR_ELx_SAS_SHIFT
));
71 pr_alert(" SSE = %lu, SRT = %lu\n",
72 (esr
& ESR_ELx_SSE
) >> ESR_ELx_SSE_SHIFT
,
73 (esr
& ESR_ELx_SRT_MASK
) >> ESR_ELx_SRT_SHIFT
);
74 pr_alert(" SF = %lu, AR = %lu\n",
75 (esr
& ESR_ELx_SF
) >> ESR_ELx_SF_SHIFT
,
76 (esr
& ESR_ELx_AR
) >> ESR_ELx_AR_SHIFT
);
78 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr
& ESR_ELx_ISS_MASK
);
81 pr_alert(" CM = %lu, WnR = %lu\n",
82 (esr
& ESR_ELx_CM
) >> ESR_ELx_CM_SHIFT
,
83 (esr
& ESR_ELx_WNR
) >> ESR_ELx_WNR_SHIFT
);
86 static void mem_abort_decode(unsigned int esr
)
88 pr_alert("Mem abort info:\n");
90 pr_alert(" ESR = 0x%08x\n", esr
);
91 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
92 ESR_ELx_EC(esr
), esr_get_class_string(esr
),
93 (esr
& ESR_ELx_IL
) ? 32 : 16);
94 pr_alert(" SET = %lu, FnV = %lu\n",
95 (esr
& ESR_ELx_SET_MASK
) >> ESR_ELx_SET_SHIFT
,
96 (esr
& ESR_ELx_FnV
) >> ESR_ELx_FnV_SHIFT
);
97 pr_alert(" EA = %lu, S1PTW = %lu\n",
98 (esr
& ESR_ELx_EA
) >> ESR_ELx_EA_SHIFT
,
99 (esr
& ESR_ELx_S1PTW
) >> ESR_ELx_S1PTW_SHIFT
);
101 if (esr_is_data_abort(esr
))
102 data_abort_decode(esr
);
105 static inline unsigned long mm_to_pgd_phys(struct mm_struct
*mm
)
107 /* Either init_pg_dir or swapper_pg_dir */
109 return __pa_symbol(mm
->pgd
);
111 return (unsigned long)virt_to_phys(mm
->pgd
);
115 * Dump out the page tables associated with 'addr' in the currently active mm.
117 static void show_pte(unsigned long addr
)
119 struct mm_struct
*mm
;
123 if (is_ttbr0_addr(addr
)) {
125 mm
= current
->active_mm
;
126 if (mm
== &init_mm
) {
127 pr_alert("[%016lx] user address but active_mm is swapper\n",
131 } else if (is_ttbr1_addr(addr
)) {
135 pr_alert("[%016lx] address between user and kernel address ranges\n",
140 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
141 mm
== &init_mm
? "swapper" : "user", PAGE_SIZE
/ SZ_1K
,
142 vabits_actual
, mm_to_pgd_phys(mm
));
143 pgdp
= pgd_offset(mm
, addr
);
144 pgd
= READ_ONCE(*pgdp
);
145 pr_alert("[%016lx] pgd=%016llx", addr
, pgd_val(pgd
));
152 if (pgd_none(pgd
) || pgd_bad(pgd
))
155 pudp
= pud_offset(pgdp
, addr
);
156 pud
= READ_ONCE(*pudp
);
157 pr_cont(", pud=%016llx", pud_val(pud
));
158 if (pud_none(pud
) || pud_bad(pud
))
161 pmdp
= pmd_offset(pudp
, addr
);
162 pmd
= READ_ONCE(*pmdp
);
163 pr_cont(", pmd=%016llx", pmd_val(pmd
));
164 if (pmd_none(pmd
) || pmd_bad(pmd
))
167 ptep
= pte_offset_map(pmdp
, addr
);
168 pte
= READ_ONCE(*ptep
);
169 pr_cont(", pte=%016llx", pte_val(pte
));
177 * This function sets the access flags (dirty, accessed), as well as write
178 * permission, and only to a more permissive setting.
180 * It needs to cope with hardware update of the accessed/dirty state by other
181 * agents in the system and can safely skip the __sync_icache_dcache() call as,
182 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
184 * Returns whether or not the PTE actually changed.
186 int ptep_set_access_flags(struct vm_area_struct
*vma
,
187 unsigned long address
, pte_t
*ptep
,
188 pte_t entry
, int dirty
)
190 pteval_t old_pteval
, pteval
;
191 pte_t pte
= READ_ONCE(*ptep
);
193 if (pte_same(pte
, entry
))
196 /* only preserve the access flags and write permission */
197 pte_val(entry
) &= PTE_RDONLY
| PTE_AF
| PTE_WRITE
| PTE_DIRTY
;
200 * Setting the flags must be done atomically to avoid racing with the
201 * hardware update of the access/dirty state. The PTE_RDONLY bit must
202 * be set to the most permissive (lowest value) of *ptep and entry
203 * (calculated as: a & b == ~(~a | ~b)).
205 pte_val(entry
) ^= PTE_RDONLY
;
206 pteval
= pte_val(pte
);
209 pteval
^= PTE_RDONLY
;
210 pteval
|= pte_val(entry
);
211 pteval
^= PTE_RDONLY
;
212 pteval
= cmpxchg_relaxed(&pte_val(*ptep
), old_pteval
, pteval
);
213 } while (pteval
!= old_pteval
);
215 flush_tlb_fix_spurious_fault(vma
, address
);
219 static bool is_el1_instruction_abort(unsigned int esr
)
221 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_CUR
;
224 static inline bool is_el1_permission_fault(unsigned long addr
, unsigned int esr
,
225 struct pt_regs
*regs
)
227 unsigned int ec
= ESR_ELx_EC(esr
);
228 unsigned int fsc_type
= esr
& ESR_ELx_FSC_TYPE
;
230 if (ec
!= ESR_ELx_EC_DABT_CUR
&& ec
!= ESR_ELx_EC_IABT_CUR
)
233 if (fsc_type
== ESR_ELx_FSC_PERM
)
236 if (is_ttbr0_addr(addr
) && system_uses_ttbr0_pan())
237 return fsc_type
== ESR_ELx_FSC_FAULT
&&
238 (regs
->pstate
& PSR_PAN_BIT
);
243 static bool __kprobes
is_spurious_el1_translation_fault(unsigned long addr
,
245 struct pt_regs
*regs
)
250 if (ESR_ELx_EC(esr
) != ESR_ELx_EC_DABT_CUR
||
251 (esr
& ESR_ELx_FSC_TYPE
) != ESR_ELx_FSC_FAULT
)
254 local_irq_save(flags
);
255 asm volatile("at s1e1r, %0" :: "r" (addr
));
257 par
= read_sysreg(par_el1
);
258 local_irq_restore(flags
);
261 * If we now have a valid translation, treat the translation fault as
264 if (!(par
& SYS_PAR_EL1_F
))
268 * If we got a different type of fault from the AT instruction,
269 * treat the translation fault as spurious.
271 dfsc
= FIELD_GET(SYS_PAR_EL1_FST
, par
);
272 return (dfsc
& ESR_ELx_FSC_TYPE
) != ESR_ELx_FSC_FAULT
;
275 static void die_kernel_fault(const char *msg
, unsigned long addr
,
276 unsigned int esr
, struct pt_regs
*regs
)
280 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg
,
283 mem_abort_decode(esr
);
286 die("Oops", regs
, esr
);
291 static void __do_kernel_fault(unsigned long addr
, unsigned int esr
,
292 struct pt_regs
*regs
)
297 * Are we prepared to handle this kernel fault?
298 * We are almost certainly not prepared to handle instruction faults.
300 if (!is_el1_instruction_abort(esr
) && fixup_exception(regs
))
303 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr
, esr
, regs
),
304 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr
))
307 if (is_el1_permission_fault(addr
, esr
, regs
)) {
308 if (esr
& ESR_ELx_WNR
)
309 msg
= "write to read-only memory";
310 else if (is_el1_instruction_abort(esr
))
311 msg
= "execute from non-executable memory";
313 msg
= "read from unreadable memory";
314 } else if (addr
< PAGE_SIZE
) {
315 msg
= "NULL pointer dereference";
317 msg
= "paging request";
320 die_kernel_fault(msg
, addr
, esr
, regs
);
323 static void set_thread_esr(unsigned long address
, unsigned int esr
)
325 current
->thread
.fault_address
= address
;
328 * If the faulting address is in the kernel, we must sanitize the ESR.
329 * From userspace's point of view, kernel-only mappings don't exist
330 * at all, so we report them as level 0 translation faults.
331 * (This is not quite the way that "no mapping there at all" behaves:
332 * an alignment fault not caused by the memory type would take
333 * precedence over translation fault for a real access to empty
334 * space. Unfortunately we can't easily distinguish "alignment fault
335 * not caused by memory type" from "alignment fault caused by memory
336 * type", so we ignore this wrinkle and just return the translation
339 if (!is_ttbr0_addr(current
->thread
.fault_address
)) {
340 switch (ESR_ELx_EC(esr
)) {
341 case ESR_ELx_EC_DABT_LOW
:
343 * These bits provide only information about the
344 * faulting instruction, which userspace knows already.
345 * We explicitly clear bits which are architecturally
346 * RES0 in case they are given meanings in future.
347 * We always report the ESR as if the fault was taken
348 * to EL1 and so ISV and the bits in ISS[23:14] are
349 * clear. (In fact it always will be a fault to EL1.)
351 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
|
352 ESR_ELx_CM
| ESR_ELx_WNR
;
353 esr
|= ESR_ELx_FSC_FAULT
;
355 case ESR_ELx_EC_IABT_LOW
:
357 * Claim a level 0 translation fault.
358 * All other bits are architecturally RES0 for faults
359 * reported with that DFSC value, so we clear them.
361 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
;
362 esr
|= ESR_ELx_FSC_FAULT
;
366 * This should never happen (entry.S only brings us
367 * into this code for insn and data aborts from a lower
368 * exception level). Fail safe by not providing an ESR
369 * context record at all.
371 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr
);
377 current
->thread
.fault_code
= esr
;
380 static void do_bad_area(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
383 * If we are in kernel mode at this point, we have no context to
384 * handle this fault with.
386 if (user_mode(regs
)) {
387 const struct fault_info
*inf
= esr_to_fault_info(esr
);
389 set_thread_esr(addr
, esr
);
390 arm64_force_sig_fault(inf
->sig
, inf
->code
, (void __user
*)addr
,
393 __do_kernel_fault(addr
, esr
, regs
);
397 #define VM_FAULT_BADMAP 0x010000
398 #define VM_FAULT_BADACCESS 0x020000
400 static vm_fault_t
__do_page_fault(struct mm_struct
*mm
, unsigned long addr
,
401 unsigned int mm_flags
, unsigned long vm_flags
)
403 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
406 return VM_FAULT_BADMAP
;
409 * Ok, we have a good vm_area for this memory access, so we can handle
412 if (unlikely(vma
->vm_start
> addr
)) {
413 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
414 return VM_FAULT_BADMAP
;
415 if (expand_stack(vma
, addr
))
416 return VM_FAULT_BADMAP
;
420 * Check that the permissions on the VMA allow for the fault which
423 if (!(vma
->vm_flags
& vm_flags
))
424 return VM_FAULT_BADACCESS
;
425 return handle_mm_fault(vma
, addr
& PAGE_MASK
, mm_flags
);
428 static bool is_el0_instruction_abort(unsigned int esr
)
430 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_LOW
;
434 * Note: not valid for EL1 DC IVAC, but we never use that such that it
435 * should fault. EL0 cannot issue DC IVAC (undef).
437 static bool is_write_abort(unsigned int esr
)
439 return (esr
& ESR_ELx_WNR
) && !(esr
& ESR_ELx_CM
);
442 static int __kprobes
do_page_fault(unsigned long addr
, unsigned int esr
,
443 struct pt_regs
*regs
)
445 const struct fault_info
*inf
;
446 struct mm_struct
*mm
= current
->mm
;
447 vm_fault_t fault
, major
= 0;
448 unsigned long vm_flags
= VM_READ
| VM_WRITE
| VM_EXEC
;
449 unsigned int mm_flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
451 if (kprobe_page_fault(regs
, esr
))
455 * If we're in an interrupt or have no user context, we must not take
458 if (faulthandler_disabled() || !mm
)
462 mm_flags
|= FAULT_FLAG_USER
;
464 if (is_el0_instruction_abort(esr
)) {
466 mm_flags
|= FAULT_FLAG_INSTRUCTION
;
467 } else if (is_write_abort(esr
)) {
469 mm_flags
|= FAULT_FLAG_WRITE
;
472 if (is_ttbr0_addr(addr
) && is_el1_permission_fault(addr
, esr
, regs
)) {
473 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
474 if (regs
->orig_addr_limit
== KERNEL_DS
)
475 die_kernel_fault("access to user memory with fs=KERNEL_DS",
478 if (is_el1_instruction_abort(esr
))
479 die_kernel_fault("execution of user memory",
482 if (!search_exception_tables(regs
->pc
))
483 die_kernel_fault("access to user memory outside uaccess routines",
487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, addr
);
490 * As per x86, we may deadlock here. However, since the kernel only
491 * validly references user space from well defined areas of the code,
492 * we can bug out early if this is from code which shouldn't.
494 if (!down_read_trylock(&mm
->mmap_sem
)) {
495 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
))
498 down_read(&mm
->mmap_sem
);
501 * The above down_read_trylock() might have succeeded in which
502 * case, we'll have missed the might_sleep() from down_read().
505 #ifdef CONFIG_DEBUG_VM
506 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
)) {
507 up_read(&mm
->mmap_sem
);
513 fault
= __do_page_fault(mm
, addr
, mm_flags
, vm_flags
);
514 major
|= fault
& VM_FAULT_MAJOR
;
516 if (fault
& VM_FAULT_RETRY
) {
518 * If we need to retry but a fatal signal is pending,
519 * handle the signal first. We do not need to release
520 * the mmap_sem because it would already be released
521 * in __lock_page_or_retry in mm/filemap.c.
523 if (fatal_signal_pending(current
)) {
524 if (!user_mode(regs
))
530 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
533 if (mm_flags
& FAULT_FLAG_ALLOW_RETRY
) {
534 mm_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
535 mm_flags
|= FAULT_FLAG_TRIED
;
539 up_read(&mm
->mmap_sem
);
542 * Handle the "normal" (no error) case first.
544 if (likely(!(fault
& (VM_FAULT_ERROR
| VM_FAULT_BADMAP
|
545 VM_FAULT_BADACCESS
)))) {
547 * Major/minor page fault accounting is only done
548 * once. If we go through a retry, it is extremely
549 * likely that the page will be found in page cache at
554 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
,
558 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
,
566 * If we are in kernel mode at this point, we have no context to
567 * handle this fault with.
569 if (!user_mode(regs
))
572 if (fault
& VM_FAULT_OOM
) {
574 * We ran out of memory, call the OOM killer, and return to
575 * userspace (which will retry the fault, or kill us if we got
578 pagefault_out_of_memory();
582 inf
= esr_to_fault_info(esr
);
583 set_thread_esr(addr
, esr
);
584 if (fault
& VM_FAULT_SIGBUS
) {
586 * We had some memory, but were unable to successfully fix up
589 arm64_force_sig_fault(SIGBUS
, BUS_ADRERR
, (void __user
*)addr
,
591 } else if (fault
& (VM_FAULT_HWPOISON_LARGE
| VM_FAULT_HWPOISON
)) {
595 if (fault
& VM_FAULT_HWPOISON_LARGE
)
596 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
598 arm64_force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)addr
, lsb
,
602 * Something tried to access memory that isn't in our memory
605 arm64_force_sig_fault(SIGSEGV
,
606 fault
== VM_FAULT_BADACCESS
? SEGV_ACCERR
: SEGV_MAPERR
,
614 __do_kernel_fault(addr
, esr
, regs
);
618 static int __kprobes
do_translation_fault(unsigned long addr
,
620 struct pt_regs
*regs
)
622 if (is_ttbr0_addr(addr
))
623 return do_page_fault(addr
, esr
, regs
);
625 do_bad_area(addr
, esr
, regs
);
629 static int do_alignment_fault(unsigned long addr
, unsigned int esr
,
630 struct pt_regs
*regs
)
632 do_bad_area(addr
, esr
, regs
);
636 static int do_bad(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
638 return 1; /* "fault" */
641 static int do_sea(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
643 const struct fault_info
*inf
;
646 inf
= esr_to_fault_info(esr
);
649 * Return value ignored as we rely on signal merging.
650 * Future patches will make this more robust.
652 apei_claim_sea(regs
);
654 if (esr
& ESR_ELx_FnV
)
657 siaddr
= (void __user
*)addr
;
658 arm64_notify_die(inf
->name
, regs
, inf
->sig
, inf
->code
, siaddr
, esr
);
663 static const struct fault_info fault_info
[] = {
664 { do_bad
, SIGKILL
, SI_KERNEL
, "ttbr address size fault" },
665 { do_bad
, SIGKILL
, SI_KERNEL
, "level 1 address size fault" },
666 { do_bad
, SIGKILL
, SI_KERNEL
, "level 2 address size fault" },
667 { do_bad
, SIGKILL
, SI_KERNEL
, "level 3 address size fault" },
668 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 0 translation fault" },
669 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 1 translation fault" },
670 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 2 translation fault" },
671 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 3 translation fault" },
672 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 8" },
673 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 access flag fault" },
674 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 access flag fault" },
675 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 access flag fault" },
676 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 12" },
677 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 permission fault" },
678 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 permission fault" },
679 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 permission fault" },
680 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous external abort" },
681 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 17" },
682 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 18" },
683 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 19" },
684 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 (translation table walk)" },
685 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 (translation table walk)" },
686 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 (translation table walk)" },
687 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 (translation table walk)" },
688 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
689 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 25" },
690 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 26" },
691 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 27" },
692 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
693 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
694 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
695 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
696 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 32" },
697 { do_alignment_fault
, SIGBUS
, BUS_ADRALN
, "alignment fault" },
698 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 34" },
699 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 35" },
700 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 36" },
701 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 37" },
702 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 38" },
703 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 39" },
704 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 40" },
705 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 41" },
706 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 42" },
707 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 43" },
708 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 44" },
709 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 45" },
710 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 46" },
711 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 47" },
712 { do_bad
, SIGKILL
, SI_KERNEL
, "TLB conflict abort" },
713 { do_bad
, SIGKILL
, SI_KERNEL
, "Unsupported atomic hardware update fault" },
714 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 50" },
715 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 51" },
716 { do_bad
, SIGKILL
, SI_KERNEL
, "implementation fault (lockdown abort)" },
717 { do_bad
, SIGBUS
, BUS_OBJERR
, "implementation fault (unsupported exclusive)" },
718 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 54" },
719 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 55" },
720 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 56" },
721 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 57" },
722 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 58" },
723 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 59" },
724 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 60" },
725 { do_bad
, SIGKILL
, SI_KERNEL
, "section domain fault" },
726 { do_bad
, SIGKILL
, SI_KERNEL
, "page domain fault" },
727 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 63" },
730 void do_mem_abort(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
732 const struct fault_info
*inf
= esr_to_fault_info(esr
);
734 if (!inf
->fn(addr
, esr
, regs
))
737 if (!user_mode(regs
)) {
738 pr_alert("Unhandled fault at 0x%016lx\n", addr
);
739 mem_abort_decode(esr
);
743 arm64_notify_die(inf
->name
, regs
,
744 inf
->sig
, inf
->code
, (void __user
*)addr
, esr
);
746 NOKPROBE_SYMBOL(do_mem_abort
);
748 void do_el0_irq_bp_hardening(void)
750 /* PC has already been checked in entry.S */
751 arm64_apply_bp_hardening();
753 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening
);
755 void do_sp_pc_abort(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
757 arm64_notify_die("SP/PC alignment exception", regs
,
758 SIGBUS
, BUS_ADRALN
, (void __user
*)addr
, esr
);
760 NOKPROBE_SYMBOL(do_sp_pc_abort
);
762 int __init
early_brk64(unsigned long addr
, unsigned int esr
,
763 struct pt_regs
*regs
);
766 * __refdata because early_brk64 is __init, but the reference to it is
767 * clobbered at arch_initcall time.
768 * See traps.c and debug-monitors.c:debug_traps_init().
770 static struct fault_info __refdata debug_fault_info
[] = {
771 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware breakpoint" },
772 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware single-step" },
773 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware watchpoint" },
774 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 3" },
775 { do_bad
, SIGTRAP
, TRAP_BRKPT
, "aarch32 BKPT" },
776 { do_bad
, SIGKILL
, SI_KERNEL
, "aarch32 vector catch" },
777 { early_brk64
, SIGTRAP
, TRAP_BRKPT
, "aarch64 BRK" },
778 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 7" },
781 void __init
hook_debug_fault_code(int nr
,
782 int (*fn
)(unsigned long, unsigned int, struct pt_regs
*),
783 int sig
, int code
, const char *name
)
785 BUG_ON(nr
< 0 || nr
>= ARRAY_SIZE(debug_fault_info
));
787 debug_fault_info
[nr
].fn
= fn
;
788 debug_fault_info
[nr
].sig
= sig
;
789 debug_fault_info
[nr
].code
= code
;
790 debug_fault_info
[nr
].name
= name
;
794 * In debug exception context, we explicitly disable preemption despite
795 * having interrupts disabled.
796 * This serves two purposes: it makes it much less likely that we would
797 * accidentally schedule in exception context and it will force a warning
798 * if we somehow manage to schedule by accident.
800 static void debug_exception_enter(struct pt_regs
*regs
)
803 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
804 * already disabled to preserve the last enabled/disabled addresses.
806 if (interrupts_enabled(regs
))
807 trace_hardirqs_off();
809 if (user_mode(regs
)) {
810 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
813 * We might have interrupted pretty much anything. In
814 * fact, if we're a debug exception, we can even interrupt
815 * NMI processing. We don't want this code makes in_nmi()
816 * to return true, but we need to notify RCU.
823 /* This code is a bit fragile. Test it. */
824 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
826 NOKPROBE_SYMBOL(debug_exception_enter
);
828 static void debug_exception_exit(struct pt_regs
*regs
)
830 preempt_enable_no_resched();
832 if (!user_mode(regs
))
835 if (interrupts_enabled(regs
))
838 NOKPROBE_SYMBOL(debug_exception_exit
);
840 #ifdef CONFIG_ARM64_ERRATUM_1463225
841 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa
);
843 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
848 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa
))
852 * We've taken a dummy step exception from the kernel to ensure
853 * that interrupts are re-enabled on the syscall path. Return back
854 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
855 * masked so that we can safely restore the mdscr and get on with
856 * handling the syscall.
858 regs
->pstate
|= PSR_D_BIT
;
862 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
866 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
867 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler
);
869 void do_debug_exception(unsigned long addr_if_watchpoint
, unsigned int esr
,
870 struct pt_regs
*regs
)
872 const struct fault_info
*inf
= esr_to_debug_fault_info(esr
);
873 unsigned long pc
= instruction_pointer(regs
);
875 if (cortex_a76_erratum_1463225_debug_handler(regs
))
878 debug_exception_enter(regs
);
880 if (user_mode(regs
) && !is_ttbr0_addr(pc
))
881 arm64_apply_bp_hardening();
883 if (inf
->fn(addr_if_watchpoint
, esr
, regs
)) {
884 arm64_notify_die(inf
->name
, regs
,
885 inf
->sig
, inf
->code
, (void __user
*)pc
, esr
);
888 debug_exception_exit(regs
);
890 NOKPROBE_SYMBOL(do_debug_exception
);