ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / arm64 / mm / init.c
blobb65dffdfb201908faadb7206c74ae56684273050
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/init.c
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
33 #include <asm/boot.h>
34 #include <asm/fixmap.h>
35 #include <asm/kasan.h>
36 #include <asm/kernel-pgtable.h>
37 #include <asm/memory.h>
38 #include <asm/numa.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <linux/sizes.h>
42 #include <asm/tlb.h>
43 #include <asm/alternative.h>
45 #define ARM64_ZONE_DMA_BITS 30
48 * We need to be able to catch inadvertent references to memstart_addr
49 * that occur (potentially in generic code) before arm64_memblock_init()
50 * executes, which assigns it its actual value. So use a default value
51 * that cannot be mistaken for a real physical address.
53 s64 memstart_addr __ro_after_init = -1;
54 EXPORT_SYMBOL(memstart_addr);
56 s64 physvirt_offset __ro_after_init;
57 EXPORT_SYMBOL(physvirt_offset);
59 struct page *vmemmap __ro_after_init;
60 EXPORT_SYMBOL(vmemmap);
63 * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
64 * memory as some devices, namely the Raspberry Pi 4, have peripherals with
65 * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
66 * bit addressable memory area.
68 phys_addr_t arm64_dma_phys_limit __ro_after_init;
69 static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
71 #ifdef CONFIG_KEXEC_CORE
73 * reserve_crashkernel() - reserves memory for crash kernel
75 * This function reserves memory area given in "crashkernel=" kernel command
76 * line parameter. The memory reserved is used by dump capture kernel when
77 * primary kernel is crashing.
79 static void __init reserve_crashkernel(void)
81 unsigned long long crash_base, crash_size;
82 int ret;
84 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
85 &crash_size, &crash_base);
86 /* no crashkernel= or invalid value specified */
87 if (ret || !crash_size)
88 return;
90 crash_size = PAGE_ALIGN(crash_size);
92 if (crash_base == 0) {
93 /* Current arm64 boot protocol requires 2MB alignment */
94 crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
95 crash_size, SZ_2M);
96 if (crash_base == 0) {
97 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
98 crash_size);
99 return;
101 } else {
102 /* User specifies base address explicitly. */
103 if (!memblock_is_region_memory(crash_base, crash_size)) {
104 pr_warn("cannot reserve crashkernel: region is not memory\n");
105 return;
108 if (memblock_is_region_reserved(crash_base, crash_size)) {
109 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
110 return;
113 if (!IS_ALIGNED(crash_base, SZ_2M)) {
114 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
115 return;
118 memblock_reserve(crash_base, crash_size);
120 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
121 crash_base, crash_base + crash_size, crash_size >> 20);
123 crashk_res.start = crash_base;
124 crashk_res.end = crash_base + crash_size - 1;
126 #else
127 static void __init reserve_crashkernel(void)
130 #endif /* CONFIG_KEXEC_CORE */
132 #ifdef CONFIG_CRASH_DUMP
133 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
134 const char *uname, int depth, void *data)
136 const __be32 *reg;
137 int len;
139 if (depth != 1 || strcmp(uname, "chosen") != 0)
140 return 0;
142 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
143 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
144 return 1;
146 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
147 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
149 return 1;
153 * reserve_elfcorehdr() - reserves memory for elf core header
155 * This function reserves the memory occupied by an elf core header
156 * described in the device tree. This region contains all the
157 * information about primary kernel's core image and is used by a dump
158 * capture kernel to access the system memory on primary kernel.
160 static void __init reserve_elfcorehdr(void)
162 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
164 if (!elfcorehdr_size)
165 return;
167 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
168 pr_warn("elfcorehdr is overlapped\n");
169 return;
172 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
174 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
175 elfcorehdr_size >> 10, elfcorehdr_addr);
177 #else
178 static void __init reserve_elfcorehdr(void)
181 #endif /* CONFIG_CRASH_DUMP */
184 * Return the maximum physical address for a zone with a given address size
185 * limit. It currently assumes that for memory starting above 4G, 32-bit
186 * devices will use a DMA offset.
188 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
190 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
191 return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
194 #ifdef CONFIG_NUMA
196 static void __init zone_sizes_init(unsigned long min, unsigned long max)
198 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
200 #ifdef CONFIG_ZONE_DMA
201 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
202 #endif
203 #ifdef CONFIG_ZONE_DMA32
204 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
205 #endif
206 max_zone_pfns[ZONE_NORMAL] = max;
208 free_area_init_nodes(max_zone_pfns);
211 #else
213 static void __init zone_sizes_init(unsigned long min, unsigned long max)
215 struct memblock_region *reg;
216 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
217 unsigned long __maybe_unused max_dma, max_dma32;
219 memset(zone_size, 0, sizeof(zone_size));
221 max_dma = max_dma32 = min;
222 #ifdef CONFIG_ZONE_DMA
223 max_dma = max_dma32 = PFN_DOWN(arm64_dma_phys_limit);
224 zone_size[ZONE_DMA] = max_dma - min;
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 max_dma32 = PFN_DOWN(arm64_dma32_phys_limit);
228 zone_size[ZONE_DMA32] = max_dma32 - max_dma;
229 #endif
230 zone_size[ZONE_NORMAL] = max - max_dma32;
232 memcpy(zhole_size, zone_size, sizeof(zhole_size));
234 for_each_memblock(memory, reg) {
235 unsigned long start = memblock_region_memory_base_pfn(reg);
236 unsigned long end = memblock_region_memory_end_pfn(reg);
238 #ifdef CONFIG_ZONE_DMA
239 if (start >= min && start < max_dma) {
240 unsigned long dma_end = min(end, max_dma);
241 zhole_size[ZONE_DMA] -= dma_end - start;
242 start = dma_end;
244 #endif
245 #ifdef CONFIG_ZONE_DMA32
246 if (start >= max_dma && start < max_dma32) {
247 unsigned long dma32_end = min(end, max_dma32);
248 zhole_size[ZONE_DMA32] -= dma32_end - start;
249 start = dma32_end;
251 #endif
252 if (start >= max_dma32 && start < max) {
253 unsigned long normal_end = min(end, max);
254 zhole_size[ZONE_NORMAL] -= normal_end - start;
258 free_area_init_node(0, zone_size, min, zhole_size);
261 #endif /* CONFIG_NUMA */
263 int pfn_valid(unsigned long pfn)
265 phys_addr_t addr = pfn << PAGE_SHIFT;
267 if ((addr >> PAGE_SHIFT) != pfn)
268 return 0;
270 #ifdef CONFIG_SPARSEMEM
271 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
272 return 0;
274 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
275 return 0;
276 #endif
277 return memblock_is_map_memory(addr);
279 EXPORT_SYMBOL(pfn_valid);
281 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
284 * Limit the memory size that was specified via FDT.
286 static int __init early_mem(char *p)
288 if (!p)
289 return 1;
291 memory_limit = memparse(p, &p) & PAGE_MASK;
292 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
294 return 0;
296 early_param("mem", early_mem);
298 static int __init early_init_dt_scan_usablemem(unsigned long node,
299 const char *uname, int depth, void *data)
301 struct memblock_region *usablemem = data;
302 const __be32 *reg;
303 int len;
305 if (depth != 1 || strcmp(uname, "chosen") != 0)
306 return 0;
308 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
309 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
310 return 1;
312 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
313 usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
315 return 1;
318 static void __init fdt_enforce_memory_region(void)
320 struct memblock_region reg = {
321 .size = 0,
324 of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
326 if (reg.size)
327 memblock_cap_memory_range(reg.base, reg.size);
330 void __init arm64_memblock_init(void)
332 const s64 linear_region_size = BIT(vabits_actual - 1);
334 /* Handle linux,usable-memory-range property */
335 fdt_enforce_memory_region();
337 /* Remove memory above our supported physical address size */
338 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
341 * Select a suitable value for the base of physical memory.
343 memstart_addr = round_down(memblock_start_of_DRAM(),
344 ARM64_MEMSTART_ALIGN);
346 physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
348 vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
351 * If we are running with a 52-bit kernel VA config on a system that
352 * does not support it, we have to offset our vmemmap and physvirt_offset
353 * s.t. we avoid the 52-bit portion of the direct linear map
355 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
356 vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
357 physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
361 * Remove the memory that we will not be able to cover with the
362 * linear mapping. Take care not to clip the kernel which may be
363 * high in memory.
365 memblock_remove(max_t(u64, memstart_addr + linear_region_size,
366 __pa_symbol(_end)), ULLONG_MAX);
367 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
368 /* ensure that memstart_addr remains sufficiently aligned */
369 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
370 ARM64_MEMSTART_ALIGN);
371 memblock_remove(0, memstart_addr);
375 * Apply the memory limit if it was set. Since the kernel may be loaded
376 * high up in memory, add back the kernel region that must be accessible
377 * via the linear mapping.
379 if (memory_limit != PHYS_ADDR_MAX) {
380 memblock_mem_limit_remove_map(memory_limit);
381 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
384 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
386 * Add back the memory we just removed if it results in the
387 * initrd to become inaccessible via the linear mapping.
388 * Otherwise, this is a no-op
390 u64 base = phys_initrd_start & PAGE_MASK;
391 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
394 * We can only add back the initrd memory if we don't end up
395 * with more memory than we can address via the linear mapping.
396 * It is up to the bootloader to position the kernel and the
397 * initrd reasonably close to each other (i.e., within 32 GB of
398 * each other) so that all granule/#levels combinations can
399 * always access both.
401 if (WARN(base < memblock_start_of_DRAM() ||
402 base + size > memblock_start_of_DRAM() +
403 linear_region_size,
404 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
405 phys_initrd_size = 0;
406 } else {
407 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
408 memblock_add(base, size);
409 memblock_reserve(base, size);
413 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
414 extern u16 memstart_offset_seed;
415 u64 range = linear_region_size -
416 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
419 * If the size of the linear region exceeds, by a sufficient
420 * margin, the size of the region that the available physical
421 * memory spans, randomize the linear region as well.
423 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
424 range /= ARM64_MEMSTART_ALIGN;
425 memstart_addr -= ARM64_MEMSTART_ALIGN *
426 ((range * memstart_offset_seed) >> 16);
431 * Register the kernel text, kernel data, initrd, and initial
432 * pagetables with memblock.
434 memblock_reserve(__pa_symbol(_text), _end - _text);
435 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
436 /* the generic initrd code expects virtual addresses */
437 initrd_start = __phys_to_virt(phys_initrd_start);
438 initrd_end = initrd_start + phys_initrd_size;
441 early_init_fdt_scan_reserved_mem();
443 if (IS_ENABLED(CONFIG_ZONE_DMA)) {
444 zone_dma_bits = ARM64_ZONE_DMA_BITS;
445 arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
448 if (IS_ENABLED(CONFIG_ZONE_DMA32))
449 arm64_dma32_phys_limit = max_zone_phys(32);
450 else
451 arm64_dma32_phys_limit = PHYS_MASK + 1;
453 reserve_crashkernel();
455 reserve_elfcorehdr();
457 high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
459 dma_contiguous_reserve(arm64_dma32_phys_limit);
462 void __init bootmem_init(void)
464 unsigned long min, max;
466 min = PFN_UP(memblock_start_of_DRAM());
467 max = PFN_DOWN(memblock_end_of_DRAM());
469 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
471 max_pfn = max_low_pfn = max;
472 min_low_pfn = min;
474 arm64_numa_init();
476 * Sparsemem tries to allocate bootmem in memory_present(), so must be
477 * done after the fixed reservations.
479 memblocks_present();
481 sparse_init();
482 zone_sizes_init(min, max);
484 memblock_dump_all();
487 #ifndef CONFIG_SPARSEMEM_VMEMMAP
488 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
490 struct page *start_pg, *end_pg;
491 unsigned long pg, pgend;
494 * Convert start_pfn/end_pfn to a struct page pointer.
496 start_pg = pfn_to_page(start_pfn - 1) + 1;
497 end_pg = pfn_to_page(end_pfn - 1) + 1;
500 * Convert to physical addresses, and round start upwards and end
501 * downwards.
503 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
504 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
507 * If there are free pages between these, free the section of the
508 * memmap array.
510 if (pg < pgend)
511 memblock_free(pg, pgend - pg);
515 * The mem_map array can get very big. Free the unused area of the memory map.
517 static void __init free_unused_memmap(void)
519 unsigned long start, prev_end = 0;
520 struct memblock_region *reg;
522 for_each_memblock(memory, reg) {
523 start = __phys_to_pfn(reg->base);
525 #ifdef CONFIG_SPARSEMEM
527 * Take care not to free memmap entries that don't exist due
528 * to SPARSEMEM sections which aren't present.
530 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
531 #endif
533 * If we had a previous bank, and there is a space between the
534 * current bank and the previous, free it.
536 if (prev_end && prev_end < start)
537 free_memmap(prev_end, start);
540 * Align up here since the VM subsystem insists that the
541 * memmap entries are valid from the bank end aligned to
542 * MAX_ORDER_NR_PAGES.
544 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
545 MAX_ORDER_NR_PAGES);
548 #ifdef CONFIG_SPARSEMEM
549 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
550 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
551 #endif
553 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
556 * mem_init() marks the free areas in the mem_map and tells us how much memory
557 * is free. This is done after various parts of the system have claimed their
558 * memory after the kernel image.
560 void __init mem_init(void)
562 if (swiotlb_force == SWIOTLB_FORCE ||
563 max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
564 swiotlb_init(1);
565 else
566 swiotlb_force = SWIOTLB_NO_FORCE;
568 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
570 #ifndef CONFIG_SPARSEMEM_VMEMMAP
571 free_unused_memmap();
572 #endif
573 /* this will put all unused low memory onto the freelists */
574 memblock_free_all();
576 mem_init_print_info(NULL);
579 * Check boundaries twice: Some fundamental inconsistencies can be
580 * detected at build time already.
582 #ifdef CONFIG_COMPAT
583 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
584 #endif
586 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
587 extern int sysctl_overcommit_memory;
589 * On a machine this small we won't get anywhere without
590 * overcommit, so turn it on by default.
592 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
596 void free_initmem(void)
598 free_reserved_area(lm_alias(__init_begin),
599 lm_alias(__init_end),
600 POISON_FREE_INITMEM, "unused kernel");
602 * Unmap the __init region but leave the VM area in place. This
603 * prevents the region from being reused for kernel modules, which
604 * is not supported by kallsyms.
606 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
610 * Dump out memory limit information on panic.
612 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
614 if (memory_limit != PHYS_ADDR_MAX) {
615 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
616 } else {
617 pr_emerg("Memory Limit: none\n");
619 return 0;
622 static struct notifier_block mem_limit_notifier = {
623 .notifier_call = dump_mem_limit,
626 static int __init register_mem_limit_dumper(void)
628 atomic_notifier_chain_register(&panic_notifier_list,
629 &mem_limit_notifier);
630 return 0;
632 __initcall(register_mem_limit_dumper);