ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / ia64 / kernel / mca.c
blobbf2cb9294795cd097cc56424f750c36892a48eb0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * File: mca.c
4 * Purpose: Generic MCA handling layer
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
24 * Copyright (C) 2006 FUJITSU LIMITED
25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29 * added min save state dump, added INIT handler.
31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
33 * errors, completed code for logging of corrected & uncorrected
34 * machine check errors, and updated for conformance with Nov. 2000
35 * revision of the SAL 3.0 spec.
37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39 * set SAL default return values, changed error record structure to
40 * linked list, added init call to sal_get_state_info_size().
42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43 * GUID cleanups.
45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46 * Added INIT backtrace support.
48 * 2003-12-08 Keith Owens <kaos@sgi.com>
49 * smp_call_function() must not be called from interrupt context
50 * (can deadlock on tasklist_lock).
51 * Use keventd to call smp_call_function().
53 * 2004-02-01 Keith Owens <kaos@sgi.com>
54 * Avoid deadlock when using printk() for MCA and INIT records.
55 * Delete all record printing code, moved to salinfo_decode in user
56 * space. Mark variables and functions static where possible.
57 * Delete dead variables and functions. Reorder to remove the need
58 * for forward declarations and to consolidate related code.
60 * 2005-08-12 Keith Owens <kaos@sgi.com>
61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
62 * state.
64 * 2005-10-07 Keith Owens <kaos@sgi.com>
65 * Add notify_die() hooks.
67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68 * Add printing support for MCA/INIT.
70 * 2007-04-27 Russ Anderson <rja@sgi.com>
71 * Support multiple cpus going through OS_MCA in the same event.
73 #include <linux/jiffies.h>
74 #include <linux/types.h>
75 #include <linux/init.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/debug.h>
78 #include <linux/sched/task.h>
79 #include <linux/interrupt.h>
80 #include <linux/irq.h>
81 #include <linux/memblock.h>
82 #include <linux/acpi.h>
83 #include <linux/timer.h>
84 #include <linux/module.h>
85 #include <linux/kernel.h>
86 #include <linux/smp.h>
87 #include <linux/workqueue.h>
88 #include <linux/cpumask.h>
89 #include <linux/kdebug.h>
90 #include <linux/cpu.h>
91 #include <linux/gfp.h>
93 #include <asm/delay.h>
94 #include <asm/meminit.h>
95 #include <asm/page.h>
96 #include <asm/ptrace.h>
97 #include <asm/sal.h>
98 #include <asm/mca.h>
99 #include <asm/kexec.h>
101 #include <asm/irq.h>
102 #include <asm/hw_irq.h>
103 #include <asm/tlb.h>
105 #include "mca_drv.h"
106 #include "entry.h"
108 #if defined(IA64_MCA_DEBUG_INFO)
109 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
110 #else
111 # define IA64_MCA_DEBUG(fmt...)
112 #endif
114 #define NOTIFY_INIT(event, regs, arg, spin) \
115 do { \
116 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
117 == NOTIFY_STOP) && ((spin) == 1)) \
118 ia64_mca_spin(__func__); \
119 } while (0)
121 #define NOTIFY_MCA(event, regs, arg, spin) \
122 do { \
123 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
124 == NOTIFY_STOP) && ((spin) == 1)) \
125 ia64_mca_spin(__func__); \
126 } while (0)
128 /* Used by mca_asm.S */
129 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
130 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
131 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
132 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
133 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
135 unsigned long __per_cpu_mca[NR_CPUS];
137 /* In mca_asm.S */
138 extern void ia64_os_init_dispatch_monarch (void);
139 extern void ia64_os_init_dispatch_slave (void);
141 static int monarch_cpu = -1;
143 static ia64_mc_info_t ia64_mc_info;
145 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
146 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
147 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
148 #define CPE_HISTORY_LENGTH 5
149 #define CMC_HISTORY_LENGTH 5
151 static struct timer_list cpe_poll_timer;
152 static struct timer_list cmc_poll_timer;
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
158 static int cmc_polling_enabled = 1;
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
166 static int cpe_poll_enabled = 1;
168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170 static int mca_init __initdata;
173 * limited & delayed printing support for MCA/INIT handler
176 #define mprintk(fmt...) ia64_mca_printk(fmt)
178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
179 #define MLOGBUF_MSGMAX 256
180 static char mlogbuf[MLOGBUF_SIZE];
181 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183 static unsigned long mlogbuf_start;
184 static unsigned long mlogbuf_end;
185 static unsigned int mlogbuf_finished = 0;
186 static unsigned long mlogbuf_timestamp = 0;
188 static int loglevel_save = -1;
189 #define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
195 #define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
204 * Push messages into buffer, print them later if not urgent.
206 void ia64_mca_printk(const char *fmt, ...)
208 va_list args;
209 int printed_len;
210 char temp_buf[MLOGBUF_MSGMAX];
211 char *p;
213 va_start(args, fmt);
214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215 va_end(args);
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress) {
219 /* mlogbuf was abandoned, use printk directly instead. */
220 printk("%s", temp_buf);
221 } else {
222 spin_lock(&mlogbuf_wlock);
223 for (p = temp_buf; *p; p++) {
224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 if (next != mlogbuf_start) {
226 mlogbuf[mlogbuf_end] = *p;
227 mlogbuf_end = next;
228 } else {
229 /* buffer full */
230 break;
233 mlogbuf[mlogbuf_end] = '\0';
234 spin_unlock(&mlogbuf_wlock);
237 EXPORT_SYMBOL(ia64_mca_printk);
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
243 void ia64_mlogbuf_dump(void)
245 char temp_buf[MLOGBUF_MSGMAX];
246 char *p;
247 unsigned long index;
248 unsigned long flags;
249 unsigned int printed_len;
251 /* Get output from mlogbuf */
252 while (mlogbuf_start != mlogbuf_end) {
253 temp_buf[0] = '\0';
254 p = temp_buf;
255 printed_len = 0;
257 spin_lock_irqsave(&mlogbuf_rlock, flags);
259 index = mlogbuf_start;
260 while (index != mlogbuf_end) {
261 *p = mlogbuf[index];
262 index = (index + 1) % MLOGBUF_SIZE;
263 if (!*p)
264 break;
265 p++;
266 if (++printed_len >= MLOGBUF_MSGMAX - 1)
267 break;
269 *p = '\0';
270 if (temp_buf[0])
271 printk("%s", temp_buf);
272 mlogbuf_start = index;
274 mlogbuf_timestamp = 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
278 EXPORT_SYMBOL(ia64_mlogbuf_dump);
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
286 static void ia64_mlogbuf_finish(int wait)
288 BREAK_LOGLEVEL(console_loglevel);
290 spin_lock_init(&mlogbuf_rlock);
291 ia64_mlogbuf_dump();
292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
295 if (!wait)
296 return;
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
300 udelay(5*1000000);
302 mlogbuf_finished = 1;
306 * Print buffered messages from INIT context.
308 static void ia64_mlogbuf_dump_from_init(void)
310 if (mlogbuf_finished)
311 return;
313 if (mlogbuf_timestamp &&
314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
318 return;
321 if (!spin_trylock(&mlogbuf_rlock)) {
322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR "INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp)
328 mlogbuf_timestamp = jiffies;
329 return;
331 spin_unlock(&mlogbuf_rlock);
332 ia64_mlogbuf_dump();
335 static inline void
336 ia64_mca_spin(const char *func)
338 if (monarch_cpu == smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
341 while (1)
342 cpu_relax();
345 * IA64_MCA log support
347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350 typedef struct ia64_state_log_s
352 spinlock_t isl_lock;
353 int isl_index;
354 unsigned long isl_count;
355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356 } ia64_state_log_t;
358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
361 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
362 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
363 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
364 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
365 #define IA64_LOG_INDEX_INC(it) \
366 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
367 ia64_state_log[it].isl_count++;}
368 #define IA64_LOG_INDEX_DEC(it) \
369 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
370 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
371 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
372 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
374 static inline void ia64_log_allocate(int it, u64 size)
376 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
377 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
378 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
379 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
381 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
382 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
383 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
384 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
388 * ia64_log_init
389 * Reset the OS ia64 log buffer
390 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
391 * Outputs : None
393 static void __init
394 ia64_log_init(int sal_info_type)
396 u64 max_size = 0;
398 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
399 IA64_LOG_LOCK_INIT(sal_info_type);
401 // SAL will tell us the maximum size of any error record of this type
402 max_size = ia64_sal_get_state_info_size(sal_info_type);
403 if (!max_size)
404 /* alloc_bootmem() doesn't like zero-sized allocations! */
405 return;
407 // set up OS data structures to hold error info
408 ia64_log_allocate(sal_info_type, max_size);
412 * ia64_log_get
414 * Get the current MCA log from SAL and copy it into the OS log buffer.
416 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
417 * irq_safe whether you can use printk at this point
418 * Outputs : size (total record length)
419 * *buffer (ptr to error record)
422 static u64
423 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
425 sal_log_record_header_t *log_buffer;
426 u64 total_len = 0;
427 unsigned long s;
429 IA64_LOG_LOCK(sal_info_type);
431 /* Get the process state information */
432 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
434 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
436 if (total_len) {
437 IA64_LOG_INDEX_INC(sal_info_type);
438 IA64_LOG_UNLOCK(sal_info_type);
439 if (irq_safe) {
440 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
441 __func__, sal_info_type, total_len);
443 *buffer = (u8 *) log_buffer;
444 return total_len;
445 } else {
446 IA64_LOG_UNLOCK(sal_info_type);
447 return 0;
452 * ia64_mca_log_sal_error_record
454 * This function retrieves a specified error record type from SAL
455 * and wakes up any processes waiting for error records.
457 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
458 * FIXME: remove MCA and irq_safe.
460 static void
461 ia64_mca_log_sal_error_record(int sal_info_type)
463 u8 *buffer;
464 sal_log_record_header_t *rh;
465 u64 size;
466 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
467 #ifdef IA64_MCA_DEBUG_INFO
468 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
469 #endif
471 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
472 if (!size)
473 return;
475 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
477 if (irq_safe)
478 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
479 smp_processor_id(),
480 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
482 /* Clear logs from corrected errors in case there's no user-level logger */
483 rh = (sal_log_record_header_t *)buffer;
484 if (rh->severity == sal_log_severity_corrected)
485 ia64_sal_clear_state_info(sal_info_type);
489 * search_mca_table
490 * See if the MCA surfaced in an instruction range
491 * that has been tagged as recoverable.
493 * Inputs
494 * first First address range to check
495 * last Last address range to check
496 * ip Instruction pointer, address we are looking for
498 * Return value:
499 * 1 on Success (in the table)/ 0 on Failure (not in the table)
502 search_mca_table (const struct mca_table_entry *first,
503 const struct mca_table_entry *last,
504 unsigned long ip)
506 const struct mca_table_entry *curr;
507 u64 curr_start, curr_end;
509 curr = first;
510 while (curr <= last) {
511 curr_start = (u64) &curr->start_addr + curr->start_addr;
512 curr_end = (u64) &curr->end_addr + curr->end_addr;
514 if ((ip >= curr_start) && (ip <= curr_end)) {
515 return 1;
517 curr++;
519 return 0;
522 /* Given an address, look for it in the mca tables. */
523 int mca_recover_range(unsigned long addr)
525 extern struct mca_table_entry __start___mca_table[];
526 extern struct mca_table_entry __stop___mca_table[];
528 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
530 EXPORT_SYMBOL_GPL(mca_recover_range);
532 int cpe_vector = -1;
533 int ia64_cpe_irq = -1;
535 static irqreturn_t
536 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
538 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
539 static int index;
540 static DEFINE_SPINLOCK(cpe_history_lock);
542 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
543 __func__, cpe_irq, smp_processor_id());
545 /* SAL spec states this should run w/ interrupts enabled */
546 local_irq_enable();
548 spin_lock(&cpe_history_lock);
549 if (!cpe_poll_enabled && cpe_vector >= 0) {
551 int i, count = 1; /* we know 1 happened now */
552 unsigned long now = jiffies;
554 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
555 if (now - cpe_history[i] <= HZ)
556 count++;
559 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
560 if (count >= CPE_HISTORY_LENGTH) {
562 cpe_poll_enabled = 1;
563 spin_unlock(&cpe_history_lock);
564 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
567 * Corrected errors will still be corrected, but
568 * make sure there's a log somewhere that indicates
569 * something is generating more than we can handle.
571 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
573 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
575 /* lock already released, get out now */
576 goto out;
577 } else {
578 cpe_history[index++] = now;
579 if (index == CPE_HISTORY_LENGTH)
580 index = 0;
583 spin_unlock(&cpe_history_lock);
584 out:
585 /* Get the CPE error record and log it */
586 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
588 local_irq_disable();
590 return IRQ_HANDLED;
594 * ia64_mca_register_cpev
596 * Register the corrected platform error vector with SAL.
598 * Inputs
599 * cpev Corrected Platform Error Vector number
601 * Outputs
602 * None
604 void
605 ia64_mca_register_cpev (int cpev)
607 /* Register the CPE interrupt vector with SAL */
608 struct ia64_sal_retval isrv;
610 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
611 if (isrv.status) {
612 printk(KERN_ERR "Failed to register Corrected Platform "
613 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
614 return;
617 IA64_MCA_DEBUG("%s: corrected platform error "
618 "vector %#x registered\n", __func__, cpev);
622 * ia64_mca_cmc_vector_setup
624 * Setup the corrected machine check vector register in the processor.
625 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
626 * This function is invoked on a per-processor basis.
628 * Inputs
629 * None
631 * Outputs
632 * None
634 void
635 ia64_mca_cmc_vector_setup (void)
637 cmcv_reg_t cmcv;
639 cmcv.cmcv_regval = 0;
640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
641 cmcv.cmcv_vector = IA64_CMC_VECTOR;
642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
645 __func__, smp_processor_id(), IA64_CMC_VECTOR);
647 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
648 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
652 * ia64_mca_cmc_vector_disable
654 * Mask the corrected machine check vector register in the processor.
655 * This function is invoked on a per-processor basis.
657 * Inputs
658 * dummy(unused)
660 * Outputs
661 * None
663 static void
664 ia64_mca_cmc_vector_disable (void *dummy)
666 cmcv_reg_t cmcv;
668 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
670 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
671 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
673 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
674 __func__, smp_processor_id(), cmcv.cmcv_vector);
678 * ia64_mca_cmc_vector_enable
680 * Unmask the corrected machine check vector register in the processor.
681 * This function is invoked on a per-processor basis.
683 * Inputs
684 * dummy(unused)
686 * Outputs
687 * None
689 static void
690 ia64_mca_cmc_vector_enable (void *dummy)
692 cmcv_reg_t cmcv;
694 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
696 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
697 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
699 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
700 __func__, smp_processor_id(), cmcv.cmcv_vector);
704 * ia64_mca_cmc_vector_disable_keventd
706 * Called via keventd (smp_call_function() is not safe in interrupt context) to
707 * disable the cmc interrupt vector.
709 static void
710 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
712 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
716 * ia64_mca_cmc_vector_enable_keventd
718 * Called via keventd (smp_call_function() is not safe in interrupt context) to
719 * enable the cmc interrupt vector.
721 static void
722 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
724 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
728 * ia64_mca_wakeup
730 * Send an inter-cpu interrupt to wake-up a particular cpu.
732 * Inputs : cpuid
733 * Outputs : None
735 static void
736 ia64_mca_wakeup(int cpu)
738 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
742 * ia64_mca_wakeup_all
744 * Wakeup all the slave cpus which have rendez'ed previously.
746 * Inputs : None
747 * Outputs : None
749 static void
750 ia64_mca_wakeup_all(void)
752 int cpu;
754 /* Clear the Rendez checkin flag for all cpus */
755 for_each_online_cpu(cpu) {
756 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
757 ia64_mca_wakeup(cpu);
763 * ia64_mca_rendez_interrupt_handler
765 * This is handler used to put slave processors into spinloop
766 * while the monarch processor does the mca handling and later
767 * wake each slave up once the monarch is done. The state
768 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
769 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
770 * the cpu has come out of OS rendezvous.
772 * Inputs : None
773 * Outputs : None
775 static irqreturn_t
776 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
778 unsigned long flags;
779 int cpu = smp_processor_id();
780 struct ia64_mca_notify_die nd =
781 { .sos = NULL, .monarch_cpu = &monarch_cpu };
783 /* Mask all interrupts */
784 local_irq_save(flags);
786 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
788 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
789 /* Register with the SAL monarch that the slave has
790 * reached SAL
792 ia64_sal_mc_rendez();
794 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
796 /* Wait for the monarch cpu to exit. */
797 while (monarch_cpu != -1)
798 cpu_relax(); /* spin until monarch leaves */
800 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
802 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
803 /* Enable all interrupts */
804 local_irq_restore(flags);
805 return IRQ_HANDLED;
809 * ia64_mca_wakeup_int_handler
811 * The interrupt handler for processing the inter-cpu interrupt to the
812 * slave cpu which was spinning in the rendez loop.
813 * Since this spinning is done by turning off the interrupts and
814 * polling on the wakeup-interrupt bit in the IRR, there is
815 * nothing useful to be done in the handler.
817 * Inputs : wakeup_irq (Wakeup-interrupt bit)
818 * arg (Interrupt handler specific argument)
819 * Outputs : None
822 static irqreturn_t
823 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
825 return IRQ_HANDLED;
828 /* Function pointer for extra MCA recovery */
829 int (*ia64_mca_ucmc_extension)
830 (void*,struct ia64_sal_os_state*)
831 = NULL;
834 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
836 if (ia64_mca_ucmc_extension)
837 return 1;
839 ia64_mca_ucmc_extension = fn;
840 return 0;
843 void
844 ia64_unreg_MCA_extension(void)
846 if (ia64_mca_ucmc_extension)
847 ia64_mca_ucmc_extension = NULL;
850 EXPORT_SYMBOL(ia64_reg_MCA_extension);
851 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
854 static inline void
855 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
857 u64 fslot, tslot, nat;
858 *tr = *fr;
859 fslot = ((unsigned long)fr >> 3) & 63;
860 tslot = ((unsigned long)tr >> 3) & 63;
861 *tnat &= ~(1UL << tslot);
862 nat = (fnat >> fslot) & 1;
863 *tnat |= (nat << tslot);
866 /* Change the comm field on the MCA/INT task to include the pid that
867 * was interrupted, it makes for easier debugging. If that pid was 0
868 * (swapper or nested MCA/INIT) then use the start of the previous comm
869 * field suffixed with its cpu.
872 static void
873 ia64_mca_modify_comm(const struct task_struct *previous_current)
875 char *p, comm[sizeof(current->comm)];
876 if (previous_current->pid)
877 snprintf(comm, sizeof(comm), "%s %d",
878 current->comm, previous_current->pid);
879 else {
880 int l;
881 if ((p = strchr(previous_current->comm, ' ')))
882 l = p - previous_current->comm;
883 else
884 l = strlen(previous_current->comm);
885 snprintf(comm, sizeof(comm), "%s %*s %d",
886 current->comm, l, previous_current->comm,
887 task_thread_info(previous_current)->cpu);
889 memcpy(current->comm, comm, sizeof(current->comm));
892 static void
893 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
894 unsigned long *nat)
896 const pal_min_state_area_t *ms = sos->pal_min_state;
897 const u64 *bank;
899 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
900 * pmsa_{xip,xpsr,xfs}
902 if (ia64_psr(regs)->ic) {
903 regs->cr_iip = ms->pmsa_iip;
904 regs->cr_ipsr = ms->pmsa_ipsr;
905 regs->cr_ifs = ms->pmsa_ifs;
906 } else {
907 regs->cr_iip = ms->pmsa_xip;
908 regs->cr_ipsr = ms->pmsa_xpsr;
909 regs->cr_ifs = ms->pmsa_xfs;
911 sos->iip = ms->pmsa_iip;
912 sos->ipsr = ms->pmsa_ipsr;
913 sos->ifs = ms->pmsa_ifs;
915 regs->pr = ms->pmsa_pr;
916 regs->b0 = ms->pmsa_br0;
917 regs->ar_rsc = ms->pmsa_rsc;
918 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
919 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
920 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
921 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
922 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
923 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
924 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
925 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
926 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
927 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
928 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
929 if (ia64_psr(regs)->bn)
930 bank = ms->pmsa_bank1_gr;
931 else
932 bank = ms->pmsa_bank0_gr;
933 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
934 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
935 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
936 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
937 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
938 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
939 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
940 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
941 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
942 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
943 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
944 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
945 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
946 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
947 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
948 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
951 /* On entry to this routine, we are running on the per cpu stack, see
952 * mca_asm.h. The original stack has not been touched by this event. Some of
953 * the original stack's registers will be in the RBS on this stack. This stack
954 * also contains a partial pt_regs and switch_stack, the rest of the data is in
955 * PAL minstate.
957 * The first thing to do is modify the original stack to look like a blocked
958 * task so we can run backtrace on the original task. Also mark the per cpu
959 * stack as current to ensure that we use the correct task state, it also means
960 * that we can do backtrace on the MCA/INIT handler code itself.
963 static struct task_struct *
964 ia64_mca_modify_original_stack(struct pt_regs *regs,
965 const struct switch_stack *sw,
966 struct ia64_sal_os_state *sos,
967 const char *type)
969 char *p;
970 ia64_va va;
971 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
972 const pal_min_state_area_t *ms = sos->pal_min_state;
973 struct task_struct *previous_current;
974 struct pt_regs *old_regs;
975 struct switch_stack *old_sw;
976 unsigned size = sizeof(struct pt_regs) +
977 sizeof(struct switch_stack) + 16;
978 unsigned long *old_bspstore, *old_bsp;
979 unsigned long *new_bspstore, *new_bsp;
980 unsigned long old_unat, old_rnat, new_rnat, nat;
981 u64 slots, loadrs = regs->loadrs;
982 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
983 u64 ar_bspstore = regs->ar_bspstore;
984 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
985 const char *msg;
986 int cpu = smp_processor_id();
988 previous_current = curr_task(cpu);
989 ia64_set_curr_task(cpu, current);
990 if ((p = strchr(current->comm, ' ')))
991 *p = '\0';
993 /* Best effort attempt to cope with MCA/INIT delivered while in
994 * physical mode.
996 regs->cr_ipsr = ms->pmsa_ipsr;
997 if (ia64_psr(regs)->dt == 0) {
998 va.l = r12;
999 if (va.f.reg == 0) {
1000 va.f.reg = 7;
1001 r12 = va.l;
1003 va.l = r13;
1004 if (va.f.reg == 0) {
1005 va.f.reg = 7;
1006 r13 = va.l;
1009 if (ia64_psr(regs)->rt == 0) {
1010 va.l = ar_bspstore;
1011 if (va.f.reg == 0) {
1012 va.f.reg = 7;
1013 ar_bspstore = va.l;
1015 va.l = ar_bsp;
1016 if (va.f.reg == 0) {
1017 va.f.reg = 7;
1018 ar_bsp = va.l;
1022 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023 * have been copied to the old stack, the old stack may fail the
1024 * validation tests below. So ia64_old_stack() must restore the dirty
1025 * registers from the new stack. The old and new bspstore probably
1026 * have different alignments, so loadrs calculated on the old bsp
1027 * cannot be used to restore from the new bsp. Calculate a suitable
1028 * loadrs for the new stack and save it in the new pt_regs, where
1029 * ia64_old_stack() can get it.
1031 old_bspstore = (unsigned long *)ar_bspstore;
1032 old_bsp = (unsigned long *)ar_bsp;
1033 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1034 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1035 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1038 /* Verify the previous stack state before we change it */
1039 if (user_mode(regs)) {
1040 msg = "occurred in user space";
1041 /* previous_current is guaranteed to be valid when the task was
1042 * in user space, so ...
1044 ia64_mca_modify_comm(previous_current);
1045 goto no_mod;
1048 if (r13 != sos->prev_IA64_KR_CURRENT) {
1049 msg = "inconsistent previous current and r13";
1050 goto no_mod;
1053 if (!mca_recover_range(ms->pmsa_iip)) {
1054 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055 msg = "inconsistent r12 and r13";
1056 goto no_mod;
1058 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059 msg = "inconsistent ar.bspstore and r13";
1060 goto no_mod;
1062 va.p = old_bspstore;
1063 if (va.f.reg < 5) {
1064 msg = "old_bspstore is in the wrong region";
1065 goto no_mod;
1067 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068 msg = "inconsistent ar.bsp and r13";
1069 goto no_mod;
1071 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072 if (ar_bspstore + size > r12) {
1073 msg = "no room for blocked state";
1074 goto no_mod;
1078 ia64_mca_modify_comm(previous_current);
1080 /* Make the original task look blocked. First stack a struct pt_regs,
1081 * describing the state at the time of interrupt. mca_asm.S built a
1082 * partial pt_regs, copy it and fill in the blanks using minstate.
1084 p = (char *)r12 - sizeof(*regs);
1085 old_regs = (struct pt_regs *)p;
1086 memcpy(old_regs, regs, sizeof(*regs));
1087 old_regs->loadrs = loadrs;
1088 old_unat = old_regs->ar_unat;
1089 finish_pt_regs(old_regs, sos, &old_unat);
1091 /* Next stack a struct switch_stack. mca_asm.S built a partial
1092 * switch_stack, copy it and fill in the blanks using pt_regs and
1093 * minstate.
1095 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096 * ar.pfs is set to 0.
1098 * unwind.c::unw_unwind() does special processing for interrupt frames.
1099 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1101 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1102 * switch_stack on the original stack so it will unwind correctly when
1103 * unwind.c reads pt_regs.
1105 * thread.ksp is updated to point to the synthesized switch_stack.
1107 p -= sizeof(struct switch_stack);
1108 old_sw = (struct switch_stack *)p;
1109 memcpy(old_sw, sw, sizeof(*sw));
1110 old_sw->caller_unat = old_unat;
1111 old_sw->ar_fpsr = old_regs->ar_fpsr;
1112 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116 old_sw->b0 = (u64)ia64_leave_kernel;
1117 old_sw->b1 = ms->pmsa_br1;
1118 old_sw->ar_pfs = 0;
1119 old_sw->ar_unat = old_unat;
1120 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121 previous_current->thread.ksp = (u64)p - 16;
1123 /* Finally copy the original stack's registers back to its RBS.
1124 * Registers from ar.bspstore through ar.bsp at the time of the event
1125 * are in the current RBS, copy them back to the original stack. The
1126 * copy must be done register by register because the original bspstore
1127 * and the current one have different alignments, so the saved RNAT
1128 * data occurs at different places.
1130 * mca_asm does cover, so the old_bsp already includes all registers at
1131 * the time of MCA/INIT. It also does flushrs, so all registers before
1132 * this function have been written to backing store on the MCA/INIT
1133 * stack.
1135 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136 old_rnat = regs->ar_rnat;
1137 while (slots--) {
1138 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139 new_rnat = ia64_get_rnat(new_bspstore++);
1141 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142 *old_bspstore++ = old_rnat;
1143 old_rnat = 0;
1145 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148 *old_bspstore++ = *new_bspstore++;
1150 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151 old_sw->ar_rnat = old_rnat;
1153 sos->prev_task = previous_current;
1154 return previous_current;
1156 no_mod:
1157 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1158 smp_processor_id(), type, msg);
1159 old_unat = regs->ar_unat;
1160 finish_pt_regs(regs, sos, &old_unat);
1161 return previous_current;
1164 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1165 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1166 * not entered rendezvous yet then wait a bit. The assumption is that any
1167 * slave that has not rendezvoused after a reasonable time is never going to do
1168 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1169 * interrupt, as well as cpus that receive the INIT slave event.
1172 static void
1173 ia64_wait_for_slaves(int monarch, const char *type)
1175 int c, i , wait;
1178 * wait 5 seconds total for slaves (arbitrary)
1180 for (i = 0; i < 5000; i++) {
1181 wait = 0;
1182 for_each_online_cpu(c) {
1183 if (c == monarch)
1184 continue;
1185 if (ia64_mc_info.imi_rendez_checkin[c]
1186 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1187 udelay(1000); /* short wait */
1188 wait = 1;
1189 break;
1192 if (!wait)
1193 goto all_in;
1197 * Maybe slave(s) dead. Print buffered messages immediately.
1199 ia64_mlogbuf_finish(0);
1200 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1201 for_each_online_cpu(c) {
1202 if (c == monarch)
1203 continue;
1204 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1205 mprintk(" %d", c);
1207 mprintk("\n");
1208 return;
1210 all_in:
1211 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1212 return;
1215 /* mca_insert_tr
1217 * Switch rid when TR reload and needed!
1218 * iord: 1: itr, 2: itr;
1221 static void mca_insert_tr(u64 iord)
1224 int i;
1225 u64 old_rr;
1226 struct ia64_tr_entry *p;
1227 unsigned long psr;
1228 int cpu = smp_processor_id();
1230 if (!ia64_idtrs[cpu])
1231 return;
1233 psr = ia64_clear_ic();
1234 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1235 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1236 if (p->pte & 0x1) {
1237 old_rr = ia64_get_rr(p->ifa);
1238 if (old_rr != p->rr) {
1239 ia64_set_rr(p->ifa, p->rr);
1240 ia64_srlz_d();
1242 ia64_ptr(iord, p->ifa, p->itir >> 2);
1243 ia64_srlz_i();
1244 if (iord & 0x1) {
1245 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246 ia64_srlz_i();
1248 if (iord & 0x2) {
1249 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250 ia64_srlz_i();
1252 if (old_rr != p->rr) {
1253 ia64_set_rr(p->ifa, old_rr);
1254 ia64_srlz_d();
1258 ia64_set_psr(psr);
1262 * ia64_mca_handler
1264 * This is uncorrectable machine check handler called from OS_MCA
1265 * dispatch code which is in turn called from SAL_CHECK().
1266 * This is the place where the core of OS MCA handling is done.
1267 * Right now the logs are extracted and displayed in a well-defined
1268 * format. This handler code is supposed to be run only on the
1269 * monarch processor. Once the monarch is done with MCA handling
1270 * further MCA logging is enabled by clearing logs.
1271 * Monarch also has the duty of sending wakeup-IPIs to pull the
1272 * slave processors out of rendezvous spinloop.
1274 * If multiple processors call into OS_MCA, the first will become
1275 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1276 * bitmask. After the first monarch has processed its MCA, it
1277 * will wake up the next cpu in the mca_cpu bitmask and then go
1278 * into the rendezvous loop. When all processors have serviced
1279 * their MCA, the last monarch frees up the rest of the processors.
1281 void
1282 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283 struct ia64_sal_os_state *sos)
1285 int recover, cpu = smp_processor_id();
1286 struct task_struct *previous_current;
1287 struct ia64_mca_notify_die nd =
1288 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1289 static atomic_t mca_count;
1290 static cpumask_t mca_cpu;
1292 if (atomic_add_return(1, &mca_count) == 1) {
1293 monarch_cpu = cpu;
1294 sos->monarch = 1;
1295 } else {
1296 cpumask_set_cpu(cpu, &mca_cpu);
1297 sos->monarch = 0;
1299 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1302 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1304 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1306 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1307 if (sos->monarch) {
1308 ia64_wait_for_slaves(cpu, "MCA");
1310 /* Wakeup all the processors which are spinning in the
1311 * rendezvous loop. They will leave SAL, then spin in the OS
1312 * with interrupts disabled until this monarch cpu leaves the
1313 * MCA handler. That gets control back to the OS so we can
1314 * backtrace the other cpus, backtrace when spinning in SAL
1315 * does not work.
1317 ia64_mca_wakeup_all();
1318 } else {
1319 while (cpumask_test_cpu(cpu, &mca_cpu))
1320 cpu_relax(); /* spin until monarch wakes us */
1323 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1325 /* Get the MCA error record and log it */
1326 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1328 /* MCA error recovery */
1329 recover = (ia64_mca_ucmc_extension
1330 && ia64_mca_ucmc_extension(
1331 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1332 sos));
1334 if (recover) {
1335 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1336 rh->severity = sal_log_severity_corrected;
1337 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1338 sos->os_status = IA64_MCA_CORRECTED;
1339 } else {
1340 /* Dump buffered message to console */
1341 ia64_mlogbuf_finish(1);
1344 if (__this_cpu_read(ia64_mca_tr_reload)) {
1345 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1349 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1351 if (atomic_dec_return(&mca_count) > 0) {
1352 int i;
1354 /* wake up the next monarch cpu,
1355 * and put this cpu in the rendez loop.
1357 for_each_online_cpu(i) {
1358 if (cpumask_test_cpu(i, &mca_cpu)) {
1359 monarch_cpu = i;
1360 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1361 while (monarch_cpu != -1)
1362 cpu_relax(); /* spin until last cpu leaves */
1363 ia64_set_curr_task(cpu, previous_current);
1364 ia64_mc_info.imi_rendez_checkin[cpu]
1365 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1366 return;
1370 ia64_set_curr_task(cpu, previous_current);
1371 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1372 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1375 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1379 * ia64_mca_cmc_int_handler
1381 * This is corrected machine check interrupt handler.
1382 * Right now the logs are extracted and displayed in a well-defined
1383 * format.
1385 * Inputs
1386 * interrupt number
1387 * client data arg ptr
1389 * Outputs
1390 * None
1392 static irqreturn_t
1393 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1395 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1396 static int index;
1397 static DEFINE_SPINLOCK(cmc_history_lock);
1399 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400 __func__, cmc_irq, smp_processor_id());
1402 /* SAL spec states this should run w/ interrupts enabled */
1403 local_irq_enable();
1405 spin_lock(&cmc_history_lock);
1406 if (!cmc_polling_enabled) {
1407 int i, count = 1; /* we know 1 happened now */
1408 unsigned long now = jiffies;
1410 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411 if (now - cmc_history[i] <= HZ)
1412 count++;
1415 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416 if (count >= CMC_HISTORY_LENGTH) {
1418 cmc_polling_enabled = 1;
1419 spin_unlock(&cmc_history_lock);
1420 /* If we're being hit with CMC interrupts, we won't
1421 * ever execute the schedule_work() below. Need to
1422 * disable CMC interrupts on this processor now.
1424 ia64_mca_cmc_vector_disable(NULL);
1425 schedule_work(&cmc_disable_work);
1428 * Corrected errors will still be corrected, but
1429 * make sure there's a log somewhere that indicates
1430 * something is generating more than we can handle.
1432 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1434 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1436 /* lock already released, get out now */
1437 goto out;
1438 } else {
1439 cmc_history[index++] = now;
1440 if (index == CMC_HISTORY_LENGTH)
1441 index = 0;
1444 spin_unlock(&cmc_history_lock);
1445 out:
1446 /* Get the CMC error record and log it */
1447 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1449 local_irq_disable();
1451 return IRQ_HANDLED;
1455 * ia64_mca_cmc_int_caller
1457 * Triggered by sw interrupt from CMC polling routine. Calls
1458 * real interrupt handler and either triggers a sw interrupt
1459 * on the next cpu or does cleanup at the end.
1461 * Inputs
1462 * interrupt number
1463 * client data arg ptr
1464 * Outputs
1465 * handled
1467 static irqreturn_t
1468 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1470 static int start_count = -1;
1471 unsigned int cpuid;
1473 cpuid = smp_processor_id();
1475 /* If first cpu, update count */
1476 if (start_count == -1)
1477 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1479 ia64_mca_cmc_int_handler(cmc_irq, arg);
1481 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1483 if (cpuid < nr_cpu_ids) {
1484 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1485 } else {
1486 /* If no log record, switch out of polling mode */
1487 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1489 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1490 schedule_work(&cmc_enable_work);
1491 cmc_polling_enabled = 0;
1493 } else {
1495 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1498 start_count = -1;
1501 return IRQ_HANDLED;
1505 * ia64_mca_cmc_poll
1507 * Poll for Corrected Machine Checks (CMCs)
1509 * Inputs : dummy(unused)
1510 * Outputs : None
1513 static void
1514 ia64_mca_cmc_poll (struct timer_list *unused)
1516 /* Trigger a CMC interrupt cascade */
1517 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1518 IA64_IPI_DM_INT, 0);
1522 * ia64_mca_cpe_int_caller
1524 * Triggered by sw interrupt from CPE polling routine. Calls
1525 * real interrupt handler and either triggers a sw interrupt
1526 * on the next cpu or does cleanup at the end.
1528 * Inputs
1529 * interrupt number
1530 * client data arg ptr
1531 * Outputs
1532 * handled
1534 static irqreturn_t
1535 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1537 static int start_count = -1;
1538 static int poll_time = MIN_CPE_POLL_INTERVAL;
1539 unsigned int cpuid;
1541 cpuid = smp_processor_id();
1543 /* If first cpu, update count */
1544 if (start_count == -1)
1545 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1547 ia64_mca_cpe_int_handler(cpe_irq, arg);
1549 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1551 if (cpuid < NR_CPUS) {
1552 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1553 } else {
1555 * If a log was recorded, increase our polling frequency,
1556 * otherwise, backoff or return to interrupt mode.
1558 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1559 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1560 } else if (cpe_vector < 0) {
1561 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1562 } else {
1563 poll_time = MIN_CPE_POLL_INTERVAL;
1565 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1566 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1567 cpe_poll_enabled = 0;
1570 if (cpe_poll_enabled)
1571 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1572 start_count = -1;
1575 return IRQ_HANDLED;
1579 * ia64_mca_cpe_poll
1581 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1582 * on first cpu, from there it will trickle through all the cpus.
1584 * Inputs : dummy(unused)
1585 * Outputs : None
1588 static void
1589 ia64_mca_cpe_poll (struct timer_list *unused)
1591 /* Trigger a CPE interrupt cascade */
1592 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1593 IA64_IPI_DM_INT, 0);
1596 static int
1597 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1599 int c;
1600 struct task_struct *g, *t;
1601 if (val != DIE_INIT_MONARCH_PROCESS)
1602 return NOTIFY_DONE;
1603 #ifdef CONFIG_KEXEC
1604 if (atomic_read(&kdump_in_progress))
1605 return NOTIFY_DONE;
1606 #endif
1609 * FIXME: mlogbuf will brim over with INIT stack dumps.
1610 * To enable show_stack from INIT, we use oops_in_progress which should
1611 * be used in real oops. This would cause something wrong after INIT.
1613 BREAK_LOGLEVEL(console_loglevel);
1614 ia64_mlogbuf_dump_from_init();
1616 printk(KERN_ERR "Processes interrupted by INIT -");
1617 for_each_online_cpu(c) {
1618 struct ia64_sal_os_state *s;
1619 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1620 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1621 g = s->prev_task;
1622 if (g) {
1623 if (g->pid)
1624 printk(" %d", g->pid);
1625 else
1626 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1629 printk("\n\n");
1630 if (read_trylock(&tasklist_lock)) {
1631 do_each_thread (g, t) {
1632 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1633 show_stack(t, NULL);
1634 } while_each_thread (g, t);
1635 read_unlock(&tasklist_lock);
1637 /* FIXME: This will not restore zapped printk locks. */
1638 RESTORE_LOGLEVEL(console_loglevel);
1639 return NOTIFY_DONE;
1643 * C portion of the OS INIT handler
1645 * Called from ia64_os_init_dispatch
1647 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1648 * this event. This code is used for both monarch and slave INIT events, see
1649 * sos->monarch.
1651 * All INIT events switch to the INIT stack and change the previous process to
1652 * blocked status. If one of the INIT events is the monarch then we are
1653 * probably processing the nmi button/command. Use the monarch cpu to dump all
1654 * the processes. The slave INIT events all spin until the monarch cpu
1655 * returns. We can also get INIT slave events for MCA, in which case the MCA
1656 * process is the monarch.
1659 void
1660 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1661 struct ia64_sal_os_state *sos)
1663 static atomic_t slaves;
1664 static atomic_t monarchs;
1665 struct task_struct *previous_current;
1666 int cpu = smp_processor_id();
1667 struct ia64_mca_notify_die nd =
1668 { .sos = sos, .monarch_cpu = &monarch_cpu };
1670 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1672 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1673 sos->proc_state_param, cpu, sos->monarch);
1674 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1676 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1677 sos->os_status = IA64_INIT_RESUME;
1679 /* FIXME: Workaround for broken proms that drive all INIT events as
1680 * slaves. The last slave that enters is promoted to be a monarch.
1681 * Remove this code in September 2006, that gives platforms a year to
1682 * fix their proms and get their customers updated.
1684 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1685 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1686 __func__, cpu);
1687 atomic_dec(&slaves);
1688 sos->monarch = 1;
1691 /* FIXME: Workaround for broken proms that drive all INIT events as
1692 * monarchs. Second and subsequent monarchs are demoted to slaves.
1693 * Remove this code in September 2006, that gives platforms a year to
1694 * fix their proms and get their customers updated.
1696 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1697 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1698 __func__, cpu);
1699 atomic_dec(&monarchs);
1700 sos->monarch = 0;
1703 if (!sos->monarch) {
1704 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1706 #ifdef CONFIG_KEXEC
1707 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1708 udelay(1000);
1709 #else
1710 while (monarch_cpu == -1)
1711 cpu_relax(); /* spin until monarch enters */
1712 #endif
1714 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1715 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1717 #ifdef CONFIG_KEXEC
1718 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1719 udelay(1000);
1720 #else
1721 while (monarch_cpu != -1)
1722 cpu_relax(); /* spin until monarch leaves */
1723 #endif
1725 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1727 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1728 ia64_set_curr_task(cpu, previous_current);
1729 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1730 atomic_dec(&slaves);
1731 return;
1734 monarch_cpu = cpu;
1735 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1738 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1739 * generated via the BMC's command-line interface, but since the console is on the
1740 * same serial line, the user will need some time to switch out of the BMC before
1741 * the dump begins.
1743 mprintk("Delaying for 5 seconds...\n");
1744 udelay(5*1000000);
1745 ia64_wait_for_slaves(cpu, "INIT");
1746 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1747 * to default_monarch_init_process() above and just print all the
1748 * tasks.
1750 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1751 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1753 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1754 atomic_dec(&monarchs);
1755 ia64_set_curr_task(cpu, previous_current);
1756 monarch_cpu = -1;
1757 return;
1760 static int __init
1761 ia64_mca_disable_cpe_polling(char *str)
1763 cpe_poll_enabled = 0;
1764 return 1;
1767 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1769 static struct irqaction cmci_irqaction = {
1770 .handler = ia64_mca_cmc_int_handler,
1771 .name = "cmc_hndlr"
1774 static struct irqaction cmcp_irqaction = {
1775 .handler = ia64_mca_cmc_int_caller,
1776 .name = "cmc_poll"
1779 static struct irqaction mca_rdzv_irqaction = {
1780 .handler = ia64_mca_rendez_int_handler,
1781 .name = "mca_rdzv"
1784 static struct irqaction mca_wkup_irqaction = {
1785 .handler = ia64_mca_wakeup_int_handler,
1786 .name = "mca_wkup"
1789 static struct irqaction mca_cpe_irqaction = {
1790 .handler = ia64_mca_cpe_int_handler,
1791 .name = "cpe_hndlr"
1794 static struct irqaction mca_cpep_irqaction = {
1795 .handler = ia64_mca_cpe_int_caller,
1796 .name = "cpe_poll"
1799 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1800 * these stacks can never sleep, they cannot return from the kernel to user
1801 * space, they do not appear in a normal ps listing. So there is no need to
1802 * format most of the fields.
1805 static void
1806 format_mca_init_stack(void *mca_data, unsigned long offset,
1807 const char *type, int cpu)
1809 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1810 struct thread_info *ti;
1811 memset(p, 0, KERNEL_STACK_SIZE);
1812 ti = task_thread_info(p);
1813 ti->flags = _TIF_MCA_INIT;
1814 ti->preempt_count = 1;
1815 ti->task = p;
1816 ti->cpu = cpu;
1817 p->stack = ti;
1818 p->state = TASK_UNINTERRUPTIBLE;
1819 cpumask_set_cpu(cpu, &p->cpus_mask);
1820 INIT_LIST_HEAD(&p->tasks);
1821 p->parent = p->real_parent = p->group_leader = p;
1822 INIT_LIST_HEAD(&p->children);
1823 INIT_LIST_HEAD(&p->sibling);
1824 strncpy(p->comm, type, sizeof(p->comm)-1);
1827 /* Caller prevents this from being called after init */
1828 static void * __ref mca_bootmem(void)
1830 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1833 /* Do per-CPU MCA-related initialization. */
1834 void
1835 ia64_mca_cpu_init(void *cpu_data)
1837 void *pal_vaddr;
1838 void *data;
1839 long sz = sizeof(struct ia64_mca_cpu);
1840 int cpu = smp_processor_id();
1841 static int first_time = 1;
1844 * Structure will already be allocated if cpu has been online,
1845 * then offlined.
1847 if (__per_cpu_mca[cpu]) {
1848 data = __va(__per_cpu_mca[cpu]);
1849 } else {
1850 if (first_time) {
1851 data = mca_bootmem();
1852 first_time = 0;
1853 } else
1854 data = (void *)__get_free_pages(GFP_KERNEL,
1855 get_order(sz));
1856 if (!data)
1857 panic("Could not allocate MCA memory for cpu %d\n",
1858 cpu);
1860 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1861 "MCA", cpu);
1862 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1863 "INIT", cpu);
1864 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1867 * Stash away a copy of the PTE needed to map the per-CPU page.
1868 * We may need it during MCA recovery.
1870 __this_cpu_write(ia64_mca_per_cpu_pte,
1871 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1874 * Also, stash away a copy of the PAL address and the PTE
1875 * needed to map it.
1877 pal_vaddr = efi_get_pal_addr();
1878 if (!pal_vaddr)
1879 return;
1880 __this_cpu_write(ia64_mca_pal_base,
1881 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1882 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1883 PAGE_KERNEL)));
1886 static int ia64_mca_cpu_online(unsigned int cpu)
1888 unsigned long flags;
1890 local_irq_save(flags);
1891 if (!cmc_polling_enabled)
1892 ia64_mca_cmc_vector_enable(NULL);
1893 local_irq_restore(flags);
1894 return 0;
1898 * ia64_mca_init
1900 * Do all the system level mca specific initialization.
1902 * 1. Register spinloop and wakeup request interrupt vectors
1904 * 2. Register OS_MCA handler entry point
1906 * 3. Register OS_INIT handler entry point
1908 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1910 * Note that this initialization is done very early before some kernel
1911 * services are available.
1913 * Inputs : None
1915 * Outputs : None
1917 void __init
1918 ia64_mca_init(void)
1920 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1921 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1922 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1923 int i;
1924 long rc;
1925 struct ia64_sal_retval isrv;
1926 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1927 static struct notifier_block default_init_monarch_nb = {
1928 .notifier_call = default_monarch_init_process,
1929 .priority = 0/* we need to notified last */
1932 IA64_MCA_DEBUG("%s: begin\n", __func__);
1934 /* Clear the Rendez checkin flag for all cpus */
1935 for(i = 0 ; i < NR_CPUS; i++)
1936 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1939 * Register the rendezvous spinloop and wakeup mechanism with SAL
1942 /* Register the rendezvous interrupt vector with SAL */
1943 while (1) {
1944 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1945 SAL_MC_PARAM_MECHANISM_INT,
1946 IA64_MCA_RENDEZ_VECTOR,
1947 timeout,
1948 SAL_MC_PARAM_RZ_ALWAYS);
1949 rc = isrv.status;
1950 if (rc == 0)
1951 break;
1952 if (rc == -2) {
1953 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1954 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1955 timeout = isrv.v0;
1956 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1957 continue;
1959 printk(KERN_ERR "Failed to register rendezvous interrupt "
1960 "with SAL (status %ld)\n", rc);
1961 return;
1964 /* Register the wakeup interrupt vector with SAL */
1965 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1966 SAL_MC_PARAM_MECHANISM_INT,
1967 IA64_MCA_WAKEUP_VECTOR,
1968 0, 0);
1969 rc = isrv.status;
1970 if (rc) {
1971 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1972 "(status %ld)\n", rc);
1973 return;
1976 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1978 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1980 * XXX - disable SAL checksum by setting size to 0; should be
1981 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1983 ia64_mc_info.imi_mca_handler_size = 0;
1985 /* Register the os mca handler with SAL */
1986 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1987 ia64_mc_info.imi_mca_handler,
1988 ia64_tpa(mca_hldlr_ptr->gp),
1989 ia64_mc_info.imi_mca_handler_size,
1990 0, 0, 0)))
1992 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1993 "(status %ld)\n", rc);
1994 return;
1997 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1998 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2001 * XXX - disable SAL checksum by setting size to 0, should be
2002 * size of the actual init handler in mca_asm.S.
2004 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2005 ia64_mc_info.imi_monarch_init_handler_size = 0;
2006 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2007 ia64_mc_info.imi_slave_init_handler_size = 0;
2009 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2010 ia64_mc_info.imi_monarch_init_handler);
2012 /* Register the os init handler with SAL */
2013 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2014 ia64_mc_info.imi_monarch_init_handler,
2015 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2016 ia64_mc_info.imi_monarch_init_handler_size,
2017 ia64_mc_info.imi_slave_init_handler,
2018 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2019 ia64_mc_info.imi_slave_init_handler_size)))
2021 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2022 "(status %ld)\n", rc);
2023 return;
2025 if (register_die_notifier(&default_init_monarch_nb)) {
2026 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2027 return;
2030 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2032 /* Initialize the areas set aside by the OS to buffer the
2033 * platform/processor error states for MCA/INIT/CMC
2034 * handling.
2036 ia64_log_init(SAL_INFO_TYPE_MCA);
2037 ia64_log_init(SAL_INFO_TYPE_INIT);
2038 ia64_log_init(SAL_INFO_TYPE_CMC);
2039 ia64_log_init(SAL_INFO_TYPE_CPE);
2041 mca_init = 1;
2042 printk(KERN_INFO "MCA related initialization done\n");
2047 * These pieces cannot be done in ia64_mca_init() because it is called before
2048 * early_irq_init() which would wipe out our percpu irq registrations. But we
2049 * cannot leave them until ia64_mca_late_init() because by then all the other
2050 * processors have been brought online and have set their own CMC vectors to
2051 * point at a non-existant action. Called from arch_early_irq_init().
2053 void __init ia64_mca_irq_init(void)
2056 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2057 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2059 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2060 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2061 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2063 /* Setup the MCA rendezvous interrupt vector */
2064 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2066 /* Setup the MCA wakeup interrupt vector */
2067 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2069 /* Setup the CPEI/P handler */
2070 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2074 * ia64_mca_late_init
2076 * Opportunity to setup things that require initialization later
2077 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2078 * platform doesn't support an interrupt driven mechanism.
2080 * Inputs : None
2081 * Outputs : Status
2083 static int __init
2084 ia64_mca_late_init(void)
2086 if (!mca_init)
2087 return 0;
2089 /* Setup the CMCI/P vector and handler */
2090 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2092 /* Unmask/enable the vector */
2093 cmc_polling_enabled = 0;
2094 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2095 ia64_mca_cpu_online, NULL);
2096 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2098 /* Setup the CPEI/P vector and handler */
2099 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2100 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2103 unsigned int irq;
2105 if (cpe_vector >= 0) {
2106 /* If platform supports CPEI, enable the irq. */
2107 irq = local_vector_to_irq(cpe_vector);
2108 if (irq > 0) {
2109 cpe_poll_enabled = 0;
2110 irq_set_status_flags(irq, IRQ_PER_CPU);
2111 setup_irq(irq, &mca_cpe_irqaction);
2112 ia64_cpe_irq = irq;
2113 ia64_mca_register_cpev(cpe_vector);
2114 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2115 __func__);
2116 return 0;
2118 printk(KERN_ERR "%s: Failed to find irq for CPE "
2119 "interrupt handler, vector %d\n",
2120 __func__, cpe_vector);
2122 /* If platform doesn't support CPEI, get the timer going. */
2123 if (cpe_poll_enabled) {
2124 ia64_mca_cpe_poll(0UL);
2125 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2129 return 0;
2132 device_initcall(ia64_mca_late_init);