ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / mips / kernel / kprobes.c
blob6cfae2411c044de5c3ee48a4b74a63167323d5fc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel Probes (KProbes)
4 * arch/mips/kernel/kprobes.c
6 * Copyright 2006 Sony Corp.
7 * Copyright 2010 Cavium Networks
9 * Some portions copied from the powerpc version.
11 * Copyright (C) IBM Corporation, 2002, 2004
14 #include <linux/kprobes.h>
15 #include <linux/preempt.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/slab.h>
20 #include <asm/ptrace.h>
21 #include <asm/branch.h>
22 #include <asm/break.h>
24 #include "probes-common.h"
26 static const union mips_instruction breakpoint_insn = {
27 .b_format = {
28 .opcode = spec_op,
29 .code = BRK_KPROBE_BP,
30 .func = break_op
34 static const union mips_instruction breakpoint2_insn = {
35 .b_format = {
36 .opcode = spec_op,
37 .code = BRK_KPROBE_SSTEPBP,
38 .func = break_op
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45 static int __kprobes insn_has_delayslot(union mips_instruction insn)
47 return __insn_has_delay_slot(insn);
51 * insn_has_ll_or_sc function checks whether instruction is ll or sc
52 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
53 * so we need to prevent it and refuse kprobes insertion for such
54 * instructions; cannot do much about breakpoint in the middle of
55 * ll/sc pair; it is upto user to avoid those places
57 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
59 int ret = 0;
61 switch (insn.i_format.opcode) {
62 case ll_op:
63 case lld_op:
64 case sc_op:
65 case scd_op:
66 ret = 1;
67 break;
68 default:
69 break;
71 return ret;
74 int __kprobes arch_prepare_kprobe(struct kprobe *p)
76 union mips_instruction insn;
77 union mips_instruction prev_insn;
78 int ret = 0;
80 insn = p->addr[0];
82 if (insn_has_ll_or_sc(insn)) {
83 pr_notice("Kprobes for ll and sc instructions are not"
84 "supported\n");
85 ret = -EINVAL;
86 goto out;
89 if ((probe_kernel_read(&prev_insn, p->addr - 1,
90 sizeof(mips_instruction)) == 0) &&
91 insn_has_delayslot(prev_insn)) {
92 pr_notice("Kprobes for branch delayslot are not supported\n");
93 ret = -EINVAL;
94 goto out;
97 if (__insn_is_compact_branch(insn)) {
98 pr_notice("Kprobes for compact branches are not supported\n");
99 ret = -EINVAL;
100 goto out;
103 /* insn: must be on special executable page on mips. */
104 p->ainsn.insn = get_insn_slot();
105 if (!p->ainsn.insn) {
106 ret = -ENOMEM;
107 goto out;
111 * In the kprobe->ainsn.insn[] array we store the original
112 * instruction at index zero and a break trap instruction at
113 * index one.
115 * On MIPS arch if the instruction at probed address is a
116 * branch instruction, we need to execute the instruction at
117 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
118 * doesn't have single stepping support, the BD instruction can
119 * not be executed in-line and it would be executed on SSOL slot
120 * using a normal breakpoint instruction in the next slot.
121 * So, read the instruction and save it for later execution.
123 if (insn_has_delayslot(insn))
124 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
125 else
126 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
128 p->ainsn.insn[1] = breakpoint2_insn;
129 p->opcode = *p->addr;
131 out:
132 return ret;
135 void __kprobes arch_arm_kprobe(struct kprobe *p)
137 *p->addr = breakpoint_insn;
138 flush_insn_slot(p);
141 void __kprobes arch_disarm_kprobe(struct kprobe *p)
143 *p->addr = p->opcode;
144 flush_insn_slot(p);
147 void __kprobes arch_remove_kprobe(struct kprobe *p)
149 if (p->ainsn.insn) {
150 free_insn_slot(p->ainsn.insn, 0);
151 p->ainsn.insn = NULL;
155 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
157 kcb->prev_kprobe.kp = kprobe_running();
158 kcb->prev_kprobe.status = kcb->kprobe_status;
159 kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
160 kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
161 kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
164 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
166 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
167 kcb->kprobe_status = kcb->prev_kprobe.status;
168 kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
169 kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
170 kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
173 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
174 struct kprobe_ctlblk *kcb)
176 __this_cpu_write(current_kprobe, p);
177 kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
178 kcb->kprobe_saved_epc = regs->cp0_epc;
182 * evaluate_branch_instrucion -
184 * Evaluate the branch instruction at probed address during probe hit. The
185 * result of evaluation would be the updated epc. The insturction in delayslot
186 * would actually be single stepped using a normal breakpoint) on SSOL slot.
188 * The result is also saved in the kprobe control block for later use,
189 * in case we need to execute the delayslot instruction. The latter will be
190 * false for NOP instruction in dealyslot and the branch-likely instructions
191 * when the branch is taken. And for those cases we set a flag as
192 * SKIP_DELAYSLOT in the kprobe control block
194 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
195 struct kprobe_ctlblk *kcb)
197 union mips_instruction insn = p->opcode;
198 long epc;
199 int ret = 0;
201 epc = regs->cp0_epc;
202 if (epc & 3)
203 goto unaligned;
205 if (p->ainsn.insn->word == 0)
206 kcb->flags |= SKIP_DELAYSLOT;
207 else
208 kcb->flags &= ~SKIP_DELAYSLOT;
210 ret = __compute_return_epc_for_insn(regs, insn);
211 if (ret < 0)
212 return ret;
214 if (ret == BRANCH_LIKELY_TAKEN)
215 kcb->flags |= SKIP_DELAYSLOT;
217 kcb->target_epc = regs->cp0_epc;
219 return 0;
221 unaligned:
222 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
223 force_sig(SIGBUS);
224 return -EFAULT;
228 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
229 struct kprobe_ctlblk *kcb)
231 int ret = 0;
233 regs->cp0_status &= ~ST0_IE;
235 /* single step inline if the instruction is a break */
236 if (p->opcode.word == breakpoint_insn.word ||
237 p->opcode.word == breakpoint2_insn.word)
238 regs->cp0_epc = (unsigned long)p->addr;
239 else if (insn_has_delayslot(p->opcode)) {
240 ret = evaluate_branch_instruction(p, regs, kcb);
241 if (ret < 0) {
242 pr_notice("Kprobes: Error in evaluating branch\n");
243 return;
246 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
250 * Called after single-stepping. p->addr is the address of the
251 * instruction whose first byte has been replaced by the "break 0"
252 * instruction. To avoid the SMP problems that can occur when we
253 * temporarily put back the original opcode to single-step, we
254 * single-stepped a copy of the instruction. The address of this
255 * copy is p->ainsn.insn.
257 * This function prepares to return from the post-single-step
258 * breakpoint trap. In case of branch instructions, the target
259 * epc to be restored.
261 static void __kprobes resume_execution(struct kprobe *p,
262 struct pt_regs *regs,
263 struct kprobe_ctlblk *kcb)
265 if (insn_has_delayslot(p->opcode))
266 regs->cp0_epc = kcb->target_epc;
267 else {
268 unsigned long orig_epc = kcb->kprobe_saved_epc;
269 regs->cp0_epc = orig_epc + 4;
273 static int __kprobes kprobe_handler(struct pt_regs *regs)
275 struct kprobe *p;
276 int ret = 0;
277 kprobe_opcode_t *addr;
278 struct kprobe_ctlblk *kcb;
280 addr = (kprobe_opcode_t *) regs->cp0_epc;
283 * We don't want to be preempted for the entire
284 * duration of kprobe processing
286 preempt_disable();
287 kcb = get_kprobe_ctlblk();
289 /* Check we're not actually recursing */
290 if (kprobe_running()) {
291 p = get_kprobe(addr);
292 if (p) {
293 if (kcb->kprobe_status == KPROBE_HIT_SS &&
294 p->ainsn.insn->word == breakpoint_insn.word) {
295 regs->cp0_status &= ~ST0_IE;
296 regs->cp0_status |= kcb->kprobe_saved_SR;
297 goto no_kprobe;
300 * We have reentered the kprobe_handler(), since
301 * another probe was hit while within the handler.
302 * We here save the original kprobes variables and
303 * just single step on the instruction of the new probe
304 * without calling any user handlers.
306 save_previous_kprobe(kcb);
307 set_current_kprobe(p, regs, kcb);
308 kprobes_inc_nmissed_count(p);
309 prepare_singlestep(p, regs, kcb);
310 kcb->kprobe_status = KPROBE_REENTER;
311 if (kcb->flags & SKIP_DELAYSLOT) {
312 resume_execution(p, regs, kcb);
313 restore_previous_kprobe(kcb);
314 preempt_enable_no_resched();
316 return 1;
317 } else if (addr->word != breakpoint_insn.word) {
319 * The breakpoint instruction was removed by
320 * another cpu right after we hit, no further
321 * handling of this interrupt is appropriate
323 ret = 1;
325 goto no_kprobe;
328 p = get_kprobe(addr);
329 if (!p) {
330 if (addr->word != breakpoint_insn.word) {
332 * The breakpoint instruction was removed right
333 * after we hit it. Another cpu has removed
334 * either a probepoint or a debugger breakpoint
335 * at this address. In either case, no further
336 * handling of this interrupt is appropriate.
338 ret = 1;
340 /* Not one of ours: let kernel handle it */
341 goto no_kprobe;
344 set_current_kprobe(p, regs, kcb);
345 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
347 if (p->pre_handler && p->pre_handler(p, regs)) {
348 /* handler has already set things up, so skip ss setup */
349 reset_current_kprobe();
350 preempt_enable_no_resched();
351 return 1;
354 prepare_singlestep(p, regs, kcb);
355 if (kcb->flags & SKIP_DELAYSLOT) {
356 kcb->kprobe_status = KPROBE_HIT_SSDONE;
357 if (p->post_handler)
358 p->post_handler(p, regs, 0);
359 resume_execution(p, regs, kcb);
360 preempt_enable_no_resched();
361 } else
362 kcb->kprobe_status = KPROBE_HIT_SS;
364 return 1;
366 no_kprobe:
367 preempt_enable_no_resched();
368 return ret;
372 static inline int post_kprobe_handler(struct pt_regs *regs)
374 struct kprobe *cur = kprobe_running();
375 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
377 if (!cur)
378 return 0;
380 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
381 kcb->kprobe_status = KPROBE_HIT_SSDONE;
382 cur->post_handler(cur, regs, 0);
385 resume_execution(cur, regs, kcb);
387 regs->cp0_status |= kcb->kprobe_saved_SR;
389 /* Restore back the original saved kprobes variables and continue. */
390 if (kcb->kprobe_status == KPROBE_REENTER) {
391 restore_previous_kprobe(kcb);
392 goto out;
394 reset_current_kprobe();
395 out:
396 preempt_enable_no_resched();
398 return 1;
401 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
403 struct kprobe *cur = kprobe_running();
404 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
406 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
407 return 1;
409 if (kcb->kprobe_status & KPROBE_HIT_SS) {
410 resume_execution(cur, regs, kcb);
411 regs->cp0_status |= kcb->kprobe_old_SR;
413 reset_current_kprobe();
414 preempt_enable_no_resched();
416 return 0;
420 * Wrapper routine for handling exceptions.
422 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
423 unsigned long val, void *data)
426 struct die_args *args = (struct die_args *)data;
427 int ret = NOTIFY_DONE;
429 switch (val) {
430 case DIE_BREAK:
431 if (kprobe_handler(args->regs))
432 ret = NOTIFY_STOP;
433 break;
434 case DIE_SSTEPBP:
435 if (post_kprobe_handler(args->regs))
436 ret = NOTIFY_STOP;
437 break;
439 case DIE_PAGE_FAULT:
440 /* kprobe_running() needs smp_processor_id() */
441 preempt_disable();
443 if (kprobe_running()
444 && kprobe_fault_handler(args->regs, args->trapnr))
445 ret = NOTIFY_STOP;
446 preempt_enable();
447 break;
448 default:
449 break;
451 return ret;
455 * Function return probe trampoline:
456 * - init_kprobes() establishes a probepoint here
457 * - When the probed function returns, this probe causes the
458 * handlers to fire
460 static void __used kretprobe_trampoline_holder(void)
462 asm volatile(
463 ".set push\n\t"
464 /* Keep the assembler from reordering and placing JR here. */
465 ".set noreorder\n\t"
466 "nop\n\t"
467 ".global kretprobe_trampoline\n"
468 "kretprobe_trampoline:\n\t"
469 "nop\n\t"
470 ".set pop"
471 : : : "memory");
474 void kretprobe_trampoline(void);
476 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
477 struct pt_regs *regs)
479 ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
481 /* Replace the return addr with trampoline addr */
482 regs->regs[31] = (unsigned long)kretprobe_trampoline;
486 * Called when the probe at kretprobe trampoline is hit
488 static int __kprobes trampoline_probe_handler(struct kprobe *p,
489 struct pt_regs *regs)
491 struct kretprobe_instance *ri = NULL;
492 struct hlist_head *head, empty_rp;
493 struct hlist_node *tmp;
494 unsigned long flags, orig_ret_address = 0;
495 unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
497 INIT_HLIST_HEAD(&empty_rp);
498 kretprobe_hash_lock(current, &head, &flags);
501 * It is possible to have multiple instances associated with a given
502 * task either because an multiple functions in the call path
503 * have a return probe installed on them, and/or more than one return
504 * return probe was registered for a target function.
506 * We can handle this because:
507 * - instances are always inserted at the head of the list
508 * - when multiple return probes are registered for the same
509 * function, the first instance's ret_addr will point to the
510 * real return address, and all the rest will point to
511 * kretprobe_trampoline
513 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
514 if (ri->task != current)
515 /* another task is sharing our hash bucket */
516 continue;
518 if (ri->rp && ri->rp->handler)
519 ri->rp->handler(ri, regs);
521 orig_ret_address = (unsigned long)ri->ret_addr;
522 recycle_rp_inst(ri, &empty_rp);
524 if (orig_ret_address != trampoline_address)
526 * This is the real return address. Any other
527 * instances associated with this task are for
528 * other calls deeper on the call stack
530 break;
533 kretprobe_assert(ri, orig_ret_address, trampoline_address);
534 instruction_pointer(regs) = orig_ret_address;
536 kretprobe_hash_unlock(current, &flags);
538 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
539 hlist_del(&ri->hlist);
540 kfree(ri);
543 * By returning a non-zero value, we are telling
544 * kprobe_handler() that we don't want the post_handler
545 * to run (and have re-enabled preemption)
547 return 1;
550 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
552 if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
553 return 1;
555 return 0;
558 static struct kprobe trampoline_p = {
559 .addr = (kprobe_opcode_t *)kretprobe_trampoline,
560 .pre_handler = trampoline_probe_handler
563 int __init arch_init_kprobes(void)
565 return register_kprobe(&trampoline_p);