ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / mips / kernel / traps.c
blob31968cbd6464fe87ab272c980ad7914c57e5249e
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
109 static void show_raw_backtrace(unsigned long reg29)
111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 unsigned long addr;
114 printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 printk("\n");
117 #endif
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
123 break;
125 if (__kernel_text_address(addr))
126 print_ip_sym(addr);
128 printk("\n");
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
133 static int __init set_raw_show_trace(char *str)
135 raw_show_trace = 1;
136 return 1;
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
145 unsigned long pc = regs->cp0_epc;
147 if (!task)
148 task = current;
150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 show_raw_backtrace(sp);
152 return;
154 printk("Call Trace:\n");
155 do {
156 print_ip_sym(pc);
157 pc = unwind_stack(task, &sp, pc, &ra);
158 } while (pc);
159 pr_cont("\n");
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
166 static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
169 const int field = 2 * sizeof(unsigned long);
170 long stackdata;
171 int i;
172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 printk("Stack :");
175 i = 0;
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 if (i && ((i % (64 / field)) == 0)) {
178 pr_cont("\n");
179 printk(" ");
181 if (i > 39) {
182 pr_cont(" ...");
183 break;
186 if (__get_user(stackdata, sp++)) {
187 pr_cont(" (Bad stack address)");
188 break;
191 pr_cont(" %0*lx", field, stackdata);
192 i++;
194 pr_cont("\n");
195 show_backtrace(task, regs);
198 void show_stack(struct task_struct *task, unsigned long *sp)
200 struct pt_regs regs;
201 mm_segment_t old_fs = get_fs();
203 regs.cp0_status = KSU_KERNEL;
204 if (sp) {
205 regs.regs[29] = (unsigned long)sp;
206 regs.regs[31] = 0;
207 regs.cp0_epc = 0;
208 } else {
209 if (task && task != current) {
210 regs.regs[29] = task->thread.reg29;
211 regs.regs[31] = 0;
212 regs.cp0_epc = task->thread.reg31;
213 } else {
214 prepare_frametrace(&regs);
218 * show_stack() deals exclusively with kernel mode, so be sure to access
219 * the stack in the kernel (not user) address space.
221 set_fs(KERNEL_DS);
222 show_stacktrace(task, &regs);
223 set_fs(old_fs);
226 static void show_code(unsigned int __user *pc)
228 long i;
229 unsigned short __user *pc16 = NULL;
231 printk("Code:");
233 if ((unsigned long)pc & 1)
234 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
235 for(i = -3 ; i < 6 ; i++) {
236 unsigned int insn;
237 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
238 pr_cont(" (Bad address in epc)\n");
239 break;
241 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
243 pr_cont("\n");
246 static void __show_regs(const struct pt_regs *regs)
248 const int field = 2 * sizeof(unsigned long);
249 unsigned int cause = regs->cp0_cause;
250 unsigned int exccode;
251 int i;
253 show_regs_print_info(KERN_DEFAULT);
256 * Saved main processor registers
258 for (i = 0; i < 32; ) {
259 if ((i % 4) == 0)
260 printk("$%2d :", i);
261 if (i == 0)
262 pr_cont(" %0*lx", field, 0UL);
263 else if (i == 26 || i == 27)
264 pr_cont(" %*s", field, "");
265 else
266 pr_cont(" %0*lx", field, regs->regs[i]);
268 i++;
269 if ((i % 4) == 0)
270 pr_cont("\n");
273 #ifdef CONFIG_CPU_HAS_SMARTMIPS
274 printk("Acx : %0*lx\n", field, regs->acx);
275 #endif
276 if (MIPS_ISA_REV < 6) {
277 printk("Hi : %0*lx\n", field, regs->hi);
278 printk("Lo : %0*lx\n", field, regs->lo);
282 * Saved cp0 registers
284 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
285 (void *) regs->cp0_epc);
286 printk("ra : %0*lx %pS\n", field, regs->regs[31],
287 (void *) regs->regs[31]);
289 printk("Status: %08x ", (uint32_t) regs->cp0_status);
291 if (cpu_has_3kex) {
292 if (regs->cp0_status & ST0_KUO)
293 pr_cont("KUo ");
294 if (regs->cp0_status & ST0_IEO)
295 pr_cont("IEo ");
296 if (regs->cp0_status & ST0_KUP)
297 pr_cont("KUp ");
298 if (regs->cp0_status & ST0_IEP)
299 pr_cont("IEp ");
300 if (regs->cp0_status & ST0_KUC)
301 pr_cont("KUc ");
302 if (regs->cp0_status & ST0_IEC)
303 pr_cont("IEc ");
304 } else if (cpu_has_4kex) {
305 if (regs->cp0_status & ST0_KX)
306 pr_cont("KX ");
307 if (regs->cp0_status & ST0_SX)
308 pr_cont("SX ");
309 if (regs->cp0_status & ST0_UX)
310 pr_cont("UX ");
311 switch (regs->cp0_status & ST0_KSU) {
312 case KSU_USER:
313 pr_cont("USER ");
314 break;
315 case KSU_SUPERVISOR:
316 pr_cont("SUPERVISOR ");
317 break;
318 case KSU_KERNEL:
319 pr_cont("KERNEL ");
320 break;
321 default:
322 pr_cont("BAD_MODE ");
323 break;
325 if (regs->cp0_status & ST0_ERL)
326 pr_cont("ERL ");
327 if (regs->cp0_status & ST0_EXL)
328 pr_cont("EXL ");
329 if (regs->cp0_status & ST0_IE)
330 pr_cont("IE ");
332 pr_cont("\n");
334 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
335 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
337 if (1 <= exccode && exccode <= 5)
338 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
340 printk("PrId : %08x (%s)\n", read_c0_prid(),
341 cpu_name_string());
345 * FIXME: really the generic show_regs should take a const pointer argument.
347 void show_regs(struct pt_regs *regs)
349 __show_regs(regs);
350 dump_stack();
353 void show_registers(struct pt_regs *regs)
355 const int field = 2 * sizeof(unsigned long);
356 mm_segment_t old_fs = get_fs();
358 __show_regs(regs);
359 print_modules();
360 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 current->comm, current->pid, current_thread_info(), current,
362 field, current_thread_info()->tp_value);
363 if (cpu_has_userlocal) {
364 unsigned long tls;
366 tls = read_c0_userlocal();
367 if (tls != current_thread_info()->tp_value)
368 printk("*HwTLS: %0*lx\n", field, tls);
371 if (!user_mode(regs))
372 /* Necessary for getting the correct stack content */
373 set_fs(KERNEL_DS);
374 show_stacktrace(current, regs);
375 show_code((unsigned int __user *) regs->cp0_epc);
376 printk("\n");
377 set_fs(old_fs);
380 static DEFINE_RAW_SPINLOCK(die_lock);
382 void __noreturn die(const char *str, struct pt_regs *regs)
384 static int die_counter;
385 int sig = SIGSEGV;
387 oops_enter();
389 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
390 SIGSEGV) == NOTIFY_STOP)
391 sig = 0;
393 console_verbose();
394 raw_spin_lock_irq(&die_lock);
395 bust_spinlocks(1);
397 printk("%s[#%d]:\n", str, ++die_counter);
398 show_registers(regs);
399 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400 raw_spin_unlock_irq(&die_lock);
402 oops_exit();
404 if (in_interrupt())
405 panic("Fatal exception in interrupt");
407 if (panic_on_oops)
408 panic("Fatal exception");
410 if (regs && kexec_should_crash(current))
411 crash_kexec(regs);
413 do_exit(sig);
416 extern struct exception_table_entry __start___dbe_table[];
417 extern struct exception_table_entry __stop___dbe_table[];
419 __asm__(
420 " .section __dbe_table, \"a\"\n"
421 " .previous \n");
423 /* Given an address, look for it in the exception tables. */
424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
426 const struct exception_table_entry *e;
428 e = search_extable(__start___dbe_table,
429 __stop___dbe_table - __start___dbe_table, addr);
430 if (!e)
431 e = search_module_dbetables(addr);
432 return e;
435 asmlinkage void do_be(struct pt_regs *regs)
437 const int field = 2 * sizeof(unsigned long);
438 const struct exception_table_entry *fixup = NULL;
439 int data = regs->cp0_cause & 4;
440 int action = MIPS_BE_FATAL;
441 enum ctx_state prev_state;
443 prev_state = exception_enter();
444 /* XXX For now. Fixme, this searches the wrong table ... */
445 if (data && !user_mode(regs))
446 fixup = search_dbe_tables(exception_epc(regs));
448 if (fixup)
449 action = MIPS_BE_FIXUP;
451 if (board_be_handler)
452 action = board_be_handler(regs, fixup != NULL);
453 else
454 mips_cm_error_report();
456 switch (action) {
457 case MIPS_BE_DISCARD:
458 goto out;
459 case MIPS_BE_FIXUP:
460 if (fixup) {
461 regs->cp0_epc = fixup->nextinsn;
462 goto out;
464 break;
465 default:
466 break;
470 * Assume it would be too dangerous to continue ...
472 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
473 data ? "Data" : "Instruction",
474 field, regs->cp0_epc, field, regs->regs[31]);
475 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
476 SIGBUS) == NOTIFY_STOP)
477 goto out;
479 die_if_kernel("Oops", regs);
480 force_sig(SIGBUS);
482 out:
483 exception_exit(prev_state);
487 * ll/sc, rdhwr, sync emulation
490 #define OPCODE 0xfc000000
491 #define BASE 0x03e00000
492 #define RT 0x001f0000
493 #define OFFSET 0x0000ffff
494 #define LL 0xc0000000
495 #define SC 0xe0000000
496 #define SPEC0 0x00000000
497 #define SPEC3 0x7c000000
498 #define RD 0x0000f800
499 #define FUNC 0x0000003f
500 #define SYNC 0x0000000f
501 #define RDHWR 0x0000003b
503 /* microMIPS definitions */
504 #define MM_POOL32A_FUNC 0xfc00ffff
505 #define MM_RDHWR 0x00006b3c
506 #define MM_RS 0x001f0000
507 #define MM_RT 0x03e00000
510 * The ll_bit is cleared by r*_switch.S
513 unsigned int ll_bit;
514 struct task_struct *ll_task;
516 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
518 unsigned long value, __user *vaddr;
519 long offset;
522 * analyse the ll instruction that just caused a ri exception
523 * and put the referenced address to addr.
526 /* sign extend offset */
527 offset = opcode & OFFSET;
528 offset <<= 16;
529 offset >>= 16;
531 vaddr = (unsigned long __user *)
532 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
534 if ((unsigned long)vaddr & 3)
535 return SIGBUS;
536 if (get_user(value, vaddr))
537 return SIGSEGV;
539 preempt_disable();
541 if (ll_task == NULL || ll_task == current) {
542 ll_bit = 1;
543 } else {
544 ll_bit = 0;
546 ll_task = current;
548 preempt_enable();
550 regs->regs[(opcode & RT) >> 16] = value;
552 return 0;
555 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
557 unsigned long __user *vaddr;
558 unsigned long reg;
559 long offset;
562 * analyse the sc instruction that just caused a ri exception
563 * and put the referenced address to addr.
566 /* sign extend offset */
567 offset = opcode & OFFSET;
568 offset <<= 16;
569 offset >>= 16;
571 vaddr = (unsigned long __user *)
572 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
573 reg = (opcode & RT) >> 16;
575 if ((unsigned long)vaddr & 3)
576 return SIGBUS;
578 preempt_disable();
580 if (ll_bit == 0 || ll_task != current) {
581 regs->regs[reg] = 0;
582 preempt_enable();
583 return 0;
586 preempt_enable();
588 if (put_user(regs->regs[reg], vaddr))
589 return SIGSEGV;
591 regs->regs[reg] = 1;
593 return 0;
597 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
598 * opcodes are supposed to result in coprocessor unusable exceptions if
599 * executed on ll/sc-less processors. That's the theory. In practice a
600 * few processors such as NEC's VR4100 throw reserved instruction exceptions
601 * instead, so we're doing the emulation thing in both exception handlers.
603 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
605 if ((opcode & OPCODE) == LL) {
606 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 1, regs, 0);
608 return simulate_ll(regs, opcode);
610 if ((opcode & OPCODE) == SC) {
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 1, regs, 0);
613 return simulate_sc(regs, opcode);
616 return -1; /* Must be something else ... */
620 * Simulate trapping 'rdhwr' instructions to provide user accessible
621 * registers not implemented in hardware.
623 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
625 struct thread_info *ti = task_thread_info(current);
627 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
628 1, regs, 0);
629 switch (rd) {
630 case MIPS_HWR_CPUNUM: /* CPU number */
631 regs->regs[rt] = smp_processor_id();
632 return 0;
633 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
634 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
635 current_cpu_data.icache.linesz);
636 return 0;
637 case MIPS_HWR_CC: /* Read count register */
638 regs->regs[rt] = read_c0_count();
639 return 0;
640 case MIPS_HWR_CCRES: /* Count register resolution */
641 switch (current_cpu_type()) {
642 case CPU_20KC:
643 case CPU_25KF:
644 regs->regs[rt] = 1;
645 break;
646 default:
647 regs->regs[rt] = 2;
649 return 0;
650 case MIPS_HWR_ULR: /* Read UserLocal register */
651 regs->regs[rt] = ti->tp_value;
652 return 0;
653 default:
654 return -1;
658 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
660 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
661 int rd = (opcode & RD) >> 11;
662 int rt = (opcode & RT) >> 16;
664 simulate_rdhwr(regs, rd, rt);
665 return 0;
668 /* Not ours. */
669 return -1;
672 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
674 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
675 int rd = (opcode & MM_RS) >> 16;
676 int rt = (opcode & MM_RT) >> 21;
677 simulate_rdhwr(regs, rd, rt);
678 return 0;
681 /* Not ours. */
682 return -1;
685 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
687 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
688 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
689 1, regs, 0);
690 return 0;
693 return -1; /* Must be something else ... */
696 asmlinkage void do_ov(struct pt_regs *regs)
698 enum ctx_state prev_state;
700 prev_state = exception_enter();
701 die_if_kernel("Integer overflow", regs);
703 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
704 exception_exit(prev_state);
707 #ifdef CONFIG_MIPS_FP_SUPPORT
710 * Send SIGFPE according to FCSR Cause bits, which must have already
711 * been masked against Enable bits. This is impotant as Inexact can
712 * happen together with Overflow or Underflow, and `ptrace' can set
713 * any bits.
715 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
716 struct task_struct *tsk)
718 int si_code = FPE_FLTUNK;
720 if (fcr31 & FPU_CSR_INV_X)
721 si_code = FPE_FLTINV;
722 else if (fcr31 & FPU_CSR_DIV_X)
723 si_code = FPE_FLTDIV;
724 else if (fcr31 & FPU_CSR_OVF_X)
725 si_code = FPE_FLTOVF;
726 else if (fcr31 & FPU_CSR_UDF_X)
727 si_code = FPE_FLTUND;
728 else if (fcr31 & FPU_CSR_INE_X)
729 si_code = FPE_FLTRES;
731 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
734 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
736 int si_code;
737 struct vm_area_struct *vma;
739 switch (sig) {
740 case 0:
741 return 0;
743 case SIGFPE:
744 force_fcr31_sig(fcr31, fault_addr, current);
745 return 1;
747 case SIGBUS:
748 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
749 return 1;
751 case SIGSEGV:
752 down_read(&current->mm->mmap_sem);
753 vma = find_vma(current->mm, (unsigned long)fault_addr);
754 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
755 si_code = SEGV_ACCERR;
756 else
757 si_code = SEGV_MAPERR;
758 up_read(&current->mm->mmap_sem);
759 force_sig_fault(SIGSEGV, si_code, fault_addr);
760 return 1;
762 default:
763 force_sig(sig);
764 return 1;
768 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
769 unsigned long old_epc, unsigned long old_ra)
771 union mips_instruction inst = { .word = opcode };
772 void __user *fault_addr;
773 unsigned long fcr31;
774 int sig;
776 /* If it's obviously not an FP instruction, skip it */
777 switch (inst.i_format.opcode) {
778 case cop1_op:
779 case cop1x_op:
780 case lwc1_op:
781 case ldc1_op:
782 case swc1_op:
783 case sdc1_op:
784 break;
786 default:
787 return -1;
791 * do_ri skipped over the instruction via compute_return_epc, undo
792 * that for the FPU emulator.
794 regs->cp0_epc = old_epc;
795 regs->regs[31] = old_ra;
797 /* Run the emulator */
798 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
799 &fault_addr);
802 * We can't allow the emulated instruction to leave any
803 * enabled Cause bits set in $fcr31.
805 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
806 current->thread.fpu.fcr31 &= ~fcr31;
808 /* Restore the hardware register state */
809 own_fpu(1);
811 /* Send a signal if required. */
812 process_fpemu_return(sig, fault_addr, fcr31);
814 return 0;
818 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
820 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
822 enum ctx_state prev_state;
823 void __user *fault_addr;
824 int sig;
826 prev_state = exception_enter();
827 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
828 SIGFPE) == NOTIFY_STOP)
829 goto out;
831 /* Clear FCSR.Cause before enabling interrupts */
832 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
833 local_irq_enable();
835 die_if_kernel("FP exception in kernel code", regs);
837 if (fcr31 & FPU_CSR_UNI_X) {
839 * Unimplemented operation exception. If we've got the full
840 * software emulator on-board, let's use it...
842 * Force FPU to dump state into task/thread context. We're
843 * moving a lot of data here for what is probably a single
844 * instruction, but the alternative is to pre-decode the FP
845 * register operands before invoking the emulator, which seems
846 * a bit extreme for what should be an infrequent event.
849 /* Run the emulator */
850 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
851 &fault_addr);
854 * We can't allow the emulated instruction to leave any
855 * enabled Cause bits set in $fcr31.
857 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
858 current->thread.fpu.fcr31 &= ~fcr31;
860 /* Restore the hardware register state */
861 own_fpu(1); /* Using the FPU again. */
862 } else {
863 sig = SIGFPE;
864 fault_addr = (void __user *) regs->cp0_epc;
867 /* Send a signal if required. */
868 process_fpemu_return(sig, fault_addr, fcr31);
870 out:
871 exception_exit(prev_state);
875 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
876 * emulated more than some threshold number of instructions, force migration to
877 * a "CPU" that has FP support.
879 static void mt_ase_fp_affinity(void)
881 #ifdef CONFIG_MIPS_MT_FPAFF
882 if (mt_fpemul_threshold > 0 &&
883 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
885 * If there's no FPU present, or if the application has already
886 * restricted the allowed set to exclude any CPUs with FPUs,
887 * we'll skip the procedure.
889 if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
890 cpumask_t tmask;
892 current->thread.user_cpus_allowed
893 = current->cpus_mask;
894 cpumask_and(&tmask, &current->cpus_mask,
895 &mt_fpu_cpumask);
896 set_cpus_allowed_ptr(current, &tmask);
897 set_thread_flag(TIF_FPUBOUND);
900 #endif /* CONFIG_MIPS_MT_FPAFF */
903 #else /* !CONFIG_MIPS_FP_SUPPORT */
905 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
906 unsigned long old_epc, unsigned long old_ra)
908 return -1;
911 #endif /* !CONFIG_MIPS_FP_SUPPORT */
913 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
914 const char *str)
916 char b[40];
918 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
919 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
920 SIGTRAP) == NOTIFY_STOP)
921 return;
922 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
924 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925 SIGTRAP) == NOTIFY_STOP)
926 return;
929 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
930 * insns, even for trap and break codes that indicate arithmetic
931 * failures. Weird ...
932 * But should we continue the brokenness??? --macro
934 switch (code) {
935 case BRK_OVERFLOW:
936 case BRK_DIVZERO:
937 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
938 die_if_kernel(b, regs);
939 force_sig_fault(SIGFPE,
940 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
941 (void __user *) regs->cp0_epc);
942 break;
943 case BRK_BUG:
944 die_if_kernel("Kernel bug detected", regs);
945 force_sig(SIGTRAP);
946 break;
947 case BRK_MEMU:
949 * This breakpoint code is used by the FPU emulator to retake
950 * control of the CPU after executing the instruction from the
951 * delay slot of an emulated branch.
953 * Terminate if exception was recognized as a delay slot return
954 * otherwise handle as normal.
956 if (do_dsemulret(regs))
957 return;
959 die_if_kernel("Math emu break/trap", regs);
960 force_sig(SIGTRAP);
961 break;
962 default:
963 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
964 die_if_kernel(b, regs);
965 if (si_code) {
966 force_sig_fault(SIGTRAP, si_code, NULL);
967 } else {
968 force_sig(SIGTRAP);
973 asmlinkage void do_bp(struct pt_regs *regs)
975 unsigned long epc = msk_isa16_mode(exception_epc(regs));
976 unsigned int opcode, bcode;
977 enum ctx_state prev_state;
978 mm_segment_t seg;
980 seg = get_fs();
981 if (!user_mode(regs))
982 set_fs(KERNEL_DS);
984 prev_state = exception_enter();
985 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
986 if (get_isa16_mode(regs->cp0_epc)) {
987 u16 instr[2];
989 if (__get_user(instr[0], (u16 __user *)epc))
990 goto out_sigsegv;
992 if (!cpu_has_mmips) {
993 /* MIPS16e mode */
994 bcode = (instr[0] >> 5) & 0x3f;
995 } else if (mm_insn_16bit(instr[0])) {
996 /* 16-bit microMIPS BREAK */
997 bcode = instr[0] & 0xf;
998 } else {
999 /* 32-bit microMIPS BREAK */
1000 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1001 goto out_sigsegv;
1002 opcode = (instr[0] << 16) | instr[1];
1003 bcode = (opcode >> 6) & ((1 << 20) - 1);
1005 } else {
1006 if (__get_user(opcode, (unsigned int __user *)epc))
1007 goto out_sigsegv;
1008 bcode = (opcode >> 6) & ((1 << 20) - 1);
1012 * There is the ancient bug in the MIPS assemblers that the break
1013 * code starts left to bit 16 instead to bit 6 in the opcode.
1014 * Gas is bug-compatible, but not always, grrr...
1015 * We handle both cases with a simple heuristics. --macro
1017 if (bcode >= (1 << 10))
1018 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1021 * notify the kprobe handlers, if instruction is likely to
1022 * pertain to them.
1024 switch (bcode) {
1025 case BRK_UPROBE:
1026 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1027 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1028 goto out;
1029 else
1030 break;
1031 case BRK_UPROBE_XOL:
1032 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1033 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1034 goto out;
1035 else
1036 break;
1037 case BRK_KPROBE_BP:
1038 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1039 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1040 goto out;
1041 else
1042 break;
1043 case BRK_KPROBE_SSTEPBP:
1044 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1045 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1046 goto out;
1047 else
1048 break;
1049 default:
1050 break;
1053 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1055 out:
1056 set_fs(seg);
1057 exception_exit(prev_state);
1058 return;
1060 out_sigsegv:
1061 force_sig(SIGSEGV);
1062 goto out;
1065 asmlinkage void do_tr(struct pt_regs *regs)
1067 u32 opcode, tcode = 0;
1068 enum ctx_state prev_state;
1069 u16 instr[2];
1070 mm_segment_t seg;
1071 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1073 seg = get_fs();
1074 if (!user_mode(regs))
1075 set_fs(KERNEL_DS);
1077 prev_state = exception_enter();
1078 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1079 if (get_isa16_mode(regs->cp0_epc)) {
1080 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1081 __get_user(instr[1], (u16 __user *)(epc + 2)))
1082 goto out_sigsegv;
1083 opcode = (instr[0] << 16) | instr[1];
1084 /* Immediate versions don't provide a code. */
1085 if (!(opcode & OPCODE))
1086 tcode = (opcode >> 12) & ((1 << 4) - 1);
1087 } else {
1088 if (__get_user(opcode, (u32 __user *)epc))
1089 goto out_sigsegv;
1090 /* Immediate versions don't provide a code. */
1091 if (!(opcode & OPCODE))
1092 tcode = (opcode >> 6) & ((1 << 10) - 1);
1095 do_trap_or_bp(regs, tcode, 0, "Trap");
1097 out:
1098 set_fs(seg);
1099 exception_exit(prev_state);
1100 return;
1102 out_sigsegv:
1103 force_sig(SIGSEGV);
1104 goto out;
1107 asmlinkage void do_ri(struct pt_regs *regs)
1109 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1110 unsigned long old_epc = regs->cp0_epc;
1111 unsigned long old31 = regs->regs[31];
1112 enum ctx_state prev_state;
1113 unsigned int opcode = 0;
1114 int status = -1;
1117 * Avoid any kernel code. Just emulate the R2 instruction
1118 * as quickly as possible.
1120 if (mipsr2_emulation && cpu_has_mips_r6 &&
1121 likely(user_mode(regs)) &&
1122 likely(get_user(opcode, epc) >= 0)) {
1123 unsigned long fcr31 = 0;
1125 status = mipsr2_decoder(regs, opcode, &fcr31);
1126 switch (status) {
1127 case 0:
1128 case SIGEMT:
1129 return;
1130 case SIGILL:
1131 goto no_r2_instr;
1132 default:
1133 process_fpemu_return(status,
1134 &current->thread.cp0_baduaddr,
1135 fcr31);
1136 return;
1140 no_r2_instr:
1142 prev_state = exception_enter();
1143 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1145 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1146 SIGILL) == NOTIFY_STOP)
1147 goto out;
1149 die_if_kernel("Reserved instruction in kernel code", regs);
1151 if (unlikely(compute_return_epc(regs) < 0))
1152 goto out;
1154 if (!get_isa16_mode(regs->cp0_epc)) {
1155 if (unlikely(get_user(opcode, epc) < 0))
1156 status = SIGSEGV;
1158 if (!cpu_has_llsc && status < 0)
1159 status = simulate_llsc(regs, opcode);
1161 if (status < 0)
1162 status = simulate_rdhwr_normal(regs, opcode);
1164 if (status < 0)
1165 status = simulate_sync(regs, opcode);
1167 if (status < 0)
1168 status = simulate_fp(regs, opcode, old_epc, old31);
1169 } else if (cpu_has_mmips) {
1170 unsigned short mmop[2] = { 0 };
1172 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1173 status = SIGSEGV;
1174 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1175 status = SIGSEGV;
1176 opcode = mmop[0];
1177 opcode = (opcode << 16) | mmop[1];
1179 if (status < 0)
1180 status = simulate_rdhwr_mm(regs, opcode);
1183 if (status < 0)
1184 status = SIGILL;
1186 if (unlikely(status > 0)) {
1187 regs->cp0_epc = old_epc; /* Undo skip-over. */
1188 regs->regs[31] = old31;
1189 force_sig(status);
1192 out:
1193 exception_exit(prev_state);
1197 * No lock; only written during early bootup by CPU 0.
1199 static RAW_NOTIFIER_HEAD(cu2_chain);
1201 int __ref register_cu2_notifier(struct notifier_block *nb)
1203 return raw_notifier_chain_register(&cu2_chain, nb);
1206 int cu2_notifier_call_chain(unsigned long val, void *v)
1208 return raw_notifier_call_chain(&cu2_chain, val, v);
1211 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1212 void *data)
1214 struct pt_regs *regs = data;
1216 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1217 "instruction", regs);
1218 force_sig(SIGILL);
1220 return NOTIFY_OK;
1223 #ifdef CONFIG_MIPS_FP_SUPPORT
1225 static int enable_restore_fp_context(int msa)
1227 int err, was_fpu_owner, prior_msa;
1228 bool first_fp;
1230 /* Initialize context if it hasn't been used already */
1231 first_fp = init_fp_ctx(current);
1233 if (first_fp) {
1234 preempt_disable();
1235 err = own_fpu_inatomic(1);
1236 if (msa && !err) {
1237 enable_msa();
1238 set_thread_flag(TIF_USEDMSA);
1239 set_thread_flag(TIF_MSA_CTX_LIVE);
1241 preempt_enable();
1242 return err;
1246 * This task has formerly used the FP context.
1248 * If this thread has no live MSA vector context then we can simply
1249 * restore the scalar FP context. If it has live MSA vector context
1250 * (that is, it has or may have used MSA since last performing a
1251 * function call) then we'll need to restore the vector context. This
1252 * applies even if we're currently only executing a scalar FP
1253 * instruction. This is because if we were to later execute an MSA
1254 * instruction then we'd either have to:
1256 * - Restore the vector context & clobber any registers modified by
1257 * scalar FP instructions between now & then.
1259 * or
1261 * - Not restore the vector context & lose the most significant bits
1262 * of all vector registers.
1264 * Neither of those options is acceptable. We cannot restore the least
1265 * significant bits of the registers now & only restore the most
1266 * significant bits later because the most significant bits of any
1267 * vector registers whose aliased FP register is modified now will have
1268 * been zeroed. We'd have no way to know that when restoring the vector
1269 * context & thus may load an outdated value for the most significant
1270 * bits of a vector register.
1272 if (!msa && !thread_msa_context_live())
1273 return own_fpu(1);
1276 * This task is using or has previously used MSA. Thus we require
1277 * that Status.FR == 1.
1279 preempt_disable();
1280 was_fpu_owner = is_fpu_owner();
1281 err = own_fpu_inatomic(0);
1282 if (err)
1283 goto out;
1285 enable_msa();
1286 write_msa_csr(current->thread.fpu.msacsr);
1287 set_thread_flag(TIF_USEDMSA);
1290 * If this is the first time that the task is using MSA and it has
1291 * previously used scalar FP in this time slice then we already nave
1292 * FP context which we shouldn't clobber. We do however need to clear
1293 * the upper 64b of each vector register so that this task has no
1294 * opportunity to see data left behind by another.
1296 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1297 if (!prior_msa && was_fpu_owner) {
1298 init_msa_upper();
1300 goto out;
1303 if (!prior_msa) {
1305 * Restore the least significant 64b of each vector register
1306 * from the existing scalar FP context.
1308 _restore_fp(current);
1311 * The task has not formerly used MSA, so clear the upper 64b
1312 * of each vector register such that it cannot see data left
1313 * behind by another task.
1315 init_msa_upper();
1316 } else {
1317 /* We need to restore the vector context. */
1318 restore_msa(current);
1320 /* Restore the scalar FP control & status register */
1321 if (!was_fpu_owner)
1322 write_32bit_cp1_register(CP1_STATUS,
1323 current->thread.fpu.fcr31);
1326 out:
1327 preempt_enable();
1329 return 0;
1332 #else /* !CONFIG_MIPS_FP_SUPPORT */
1334 static int enable_restore_fp_context(int msa)
1336 return SIGILL;
1339 #endif /* CONFIG_MIPS_FP_SUPPORT */
1341 asmlinkage void do_cpu(struct pt_regs *regs)
1343 enum ctx_state prev_state;
1344 unsigned int __user *epc;
1345 unsigned long old_epc, old31;
1346 unsigned int opcode;
1347 unsigned int cpid;
1348 int status;
1350 prev_state = exception_enter();
1351 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1353 if (cpid != 2)
1354 die_if_kernel("do_cpu invoked from kernel context!", regs);
1356 switch (cpid) {
1357 case 0:
1358 epc = (unsigned int __user *)exception_epc(regs);
1359 old_epc = regs->cp0_epc;
1360 old31 = regs->regs[31];
1361 opcode = 0;
1362 status = -1;
1364 if (unlikely(compute_return_epc(regs) < 0))
1365 break;
1367 if (!get_isa16_mode(regs->cp0_epc)) {
1368 if (unlikely(get_user(opcode, epc) < 0))
1369 status = SIGSEGV;
1371 if (!cpu_has_llsc && status < 0)
1372 status = simulate_llsc(regs, opcode);
1375 if (status < 0)
1376 status = SIGILL;
1378 if (unlikely(status > 0)) {
1379 regs->cp0_epc = old_epc; /* Undo skip-over. */
1380 regs->regs[31] = old31;
1381 force_sig(status);
1384 break;
1386 #ifdef CONFIG_MIPS_FP_SUPPORT
1387 case 3:
1389 * The COP3 opcode space and consequently the CP0.Status.CU3
1390 * bit and the CP0.Cause.CE=3 encoding have been removed as
1391 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1392 * up the space has been reused for COP1X instructions, that
1393 * are enabled by the CP0.Status.CU1 bit and consequently
1394 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1395 * exceptions. Some FPU-less processors that implement one
1396 * of these ISAs however use this code erroneously for COP1X
1397 * instructions. Therefore we redirect this trap to the FP
1398 * emulator too.
1400 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1401 force_sig(SIGILL);
1402 break;
1404 /* Fall through. */
1406 case 1: {
1407 void __user *fault_addr;
1408 unsigned long fcr31;
1409 int err, sig;
1411 err = enable_restore_fp_context(0);
1413 if (raw_cpu_has_fpu && !err)
1414 break;
1416 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1417 &fault_addr);
1420 * We can't allow the emulated instruction to leave
1421 * any enabled Cause bits set in $fcr31.
1423 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1424 current->thread.fpu.fcr31 &= ~fcr31;
1426 /* Send a signal if required. */
1427 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1428 mt_ase_fp_affinity();
1430 break;
1432 #else /* CONFIG_MIPS_FP_SUPPORT */
1433 case 1:
1434 case 3:
1435 force_sig(SIGILL);
1436 break;
1437 #endif /* CONFIG_MIPS_FP_SUPPORT */
1439 case 2:
1440 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1441 break;
1444 exception_exit(prev_state);
1447 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1449 enum ctx_state prev_state;
1451 prev_state = exception_enter();
1452 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1453 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1454 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1455 goto out;
1457 /* Clear MSACSR.Cause before enabling interrupts */
1458 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1459 local_irq_enable();
1461 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1462 force_sig(SIGFPE);
1463 out:
1464 exception_exit(prev_state);
1467 asmlinkage void do_msa(struct pt_regs *regs)
1469 enum ctx_state prev_state;
1470 int err;
1472 prev_state = exception_enter();
1474 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1475 force_sig(SIGILL);
1476 goto out;
1479 die_if_kernel("do_msa invoked from kernel context!", regs);
1481 err = enable_restore_fp_context(1);
1482 if (err)
1483 force_sig(SIGILL);
1484 out:
1485 exception_exit(prev_state);
1488 asmlinkage void do_mdmx(struct pt_regs *regs)
1490 enum ctx_state prev_state;
1492 prev_state = exception_enter();
1493 force_sig(SIGILL);
1494 exception_exit(prev_state);
1498 * Called with interrupts disabled.
1500 asmlinkage void do_watch(struct pt_regs *regs)
1502 enum ctx_state prev_state;
1504 prev_state = exception_enter();
1506 * Clear WP (bit 22) bit of cause register so we don't loop
1507 * forever.
1509 clear_c0_cause(CAUSEF_WP);
1512 * If the current thread has the watch registers loaded, save
1513 * their values and send SIGTRAP. Otherwise another thread
1514 * left the registers set, clear them and continue.
1516 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1517 mips_read_watch_registers();
1518 local_irq_enable();
1519 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1520 } else {
1521 mips_clear_watch_registers();
1522 local_irq_enable();
1524 exception_exit(prev_state);
1527 asmlinkage void do_mcheck(struct pt_regs *regs)
1529 int multi_match = regs->cp0_status & ST0_TS;
1530 enum ctx_state prev_state;
1531 mm_segment_t old_fs = get_fs();
1533 prev_state = exception_enter();
1534 show_regs(regs);
1536 if (multi_match) {
1537 dump_tlb_regs();
1538 pr_info("\n");
1539 dump_tlb_all();
1542 if (!user_mode(regs))
1543 set_fs(KERNEL_DS);
1545 show_code((unsigned int __user *) regs->cp0_epc);
1547 set_fs(old_fs);
1550 * Some chips may have other causes of machine check (e.g. SB1
1551 * graduation timer)
1553 panic("Caught Machine Check exception - %scaused by multiple "
1554 "matching entries in the TLB.",
1555 (multi_match) ? "" : "not ");
1558 asmlinkage void do_mt(struct pt_regs *regs)
1560 int subcode;
1562 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1563 >> VPECONTROL_EXCPT_SHIFT;
1564 switch (subcode) {
1565 case 0:
1566 printk(KERN_DEBUG "Thread Underflow\n");
1567 break;
1568 case 1:
1569 printk(KERN_DEBUG "Thread Overflow\n");
1570 break;
1571 case 2:
1572 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1573 break;
1574 case 3:
1575 printk(KERN_DEBUG "Gating Storage Exception\n");
1576 break;
1577 case 4:
1578 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1579 break;
1580 case 5:
1581 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1582 break;
1583 default:
1584 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1585 subcode);
1586 break;
1588 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1590 force_sig(SIGILL);
1594 asmlinkage void do_dsp(struct pt_regs *regs)
1596 if (cpu_has_dsp)
1597 panic("Unexpected DSP exception");
1599 force_sig(SIGILL);
1602 asmlinkage void do_reserved(struct pt_regs *regs)
1605 * Game over - no way to handle this if it ever occurs. Most probably
1606 * caused by a new unknown cpu type or after another deadly
1607 * hard/software error.
1609 show_regs(regs);
1610 panic("Caught reserved exception %ld - should not happen.",
1611 (regs->cp0_cause & 0x7f) >> 2);
1614 static int __initdata l1parity = 1;
1615 static int __init nol1parity(char *s)
1617 l1parity = 0;
1618 return 1;
1620 __setup("nol1par", nol1parity);
1621 static int __initdata l2parity = 1;
1622 static int __init nol2parity(char *s)
1624 l2parity = 0;
1625 return 1;
1627 __setup("nol2par", nol2parity);
1630 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1631 * it different ways.
1633 static inline void parity_protection_init(void)
1635 #define ERRCTL_PE 0x80000000
1636 #define ERRCTL_L2P 0x00800000
1638 if (mips_cm_revision() >= CM_REV_CM3) {
1639 ulong gcr_ectl, cp0_ectl;
1642 * With CM3 systems we need to ensure that the L1 & L2
1643 * parity enables are set to the same value, since this
1644 * is presumed by the hardware engineers.
1646 * If the user disabled either of L1 or L2 ECC checking,
1647 * disable both.
1649 l1parity &= l2parity;
1650 l2parity &= l1parity;
1652 /* Probe L1 ECC support */
1653 cp0_ectl = read_c0_ecc();
1654 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1655 back_to_back_c0_hazard();
1656 cp0_ectl = read_c0_ecc();
1658 /* Probe L2 ECC support */
1659 gcr_ectl = read_gcr_err_control();
1661 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1662 !(cp0_ectl & ERRCTL_PE)) {
1664 * One of L1 or L2 ECC checking isn't supported,
1665 * so we cannot enable either.
1667 l1parity = l2parity = 0;
1670 /* Configure L1 ECC checking */
1671 if (l1parity)
1672 cp0_ectl |= ERRCTL_PE;
1673 else
1674 cp0_ectl &= ~ERRCTL_PE;
1675 write_c0_ecc(cp0_ectl);
1676 back_to_back_c0_hazard();
1677 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1679 /* Configure L2 ECC checking */
1680 if (l2parity)
1681 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1682 else
1683 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1684 write_gcr_err_control(gcr_ectl);
1685 gcr_ectl = read_gcr_err_control();
1686 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1687 WARN_ON(!!gcr_ectl != l2parity);
1689 pr_info("Cache parity protection %sabled\n",
1690 l1parity ? "en" : "dis");
1691 return;
1694 switch (current_cpu_type()) {
1695 case CPU_24K:
1696 case CPU_34K:
1697 case CPU_74K:
1698 case CPU_1004K:
1699 case CPU_1074K:
1700 case CPU_INTERAPTIV:
1701 case CPU_PROAPTIV:
1702 case CPU_P5600:
1703 case CPU_QEMU_GENERIC:
1704 case CPU_P6600:
1706 unsigned long errctl;
1707 unsigned int l1parity_present, l2parity_present;
1709 errctl = read_c0_ecc();
1710 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1712 /* probe L1 parity support */
1713 write_c0_ecc(errctl | ERRCTL_PE);
1714 back_to_back_c0_hazard();
1715 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1717 /* probe L2 parity support */
1718 write_c0_ecc(errctl|ERRCTL_L2P);
1719 back_to_back_c0_hazard();
1720 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1722 if (l1parity_present && l2parity_present) {
1723 if (l1parity)
1724 errctl |= ERRCTL_PE;
1725 if (l1parity ^ l2parity)
1726 errctl |= ERRCTL_L2P;
1727 } else if (l1parity_present) {
1728 if (l1parity)
1729 errctl |= ERRCTL_PE;
1730 } else if (l2parity_present) {
1731 if (l2parity)
1732 errctl |= ERRCTL_L2P;
1733 } else {
1734 /* No parity available */
1737 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1739 write_c0_ecc(errctl);
1740 back_to_back_c0_hazard();
1741 errctl = read_c0_ecc();
1742 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1744 if (l1parity_present)
1745 printk(KERN_INFO "Cache parity protection %sabled\n",
1746 (errctl & ERRCTL_PE) ? "en" : "dis");
1748 if (l2parity_present) {
1749 if (l1parity_present && l1parity)
1750 errctl ^= ERRCTL_L2P;
1751 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1752 (errctl & ERRCTL_L2P) ? "en" : "dis");
1755 break;
1757 case CPU_5KC:
1758 case CPU_5KE:
1759 case CPU_LOONGSON32:
1760 write_c0_ecc(0x80000000);
1761 back_to_back_c0_hazard();
1762 /* Set the PE bit (bit 31) in the c0_errctl register. */
1763 printk(KERN_INFO "Cache parity protection %sabled\n",
1764 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1765 break;
1766 case CPU_20KC:
1767 case CPU_25KF:
1768 /* Clear the DE bit (bit 16) in the c0_status register. */
1769 printk(KERN_INFO "Enable cache parity protection for "
1770 "MIPS 20KC/25KF CPUs.\n");
1771 clear_c0_status(ST0_DE);
1772 break;
1773 default:
1774 break;
1778 asmlinkage void cache_parity_error(void)
1780 const int field = 2 * sizeof(unsigned long);
1781 unsigned int reg_val;
1783 /* For the moment, report the problem and hang. */
1784 printk("Cache error exception:\n");
1785 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1786 reg_val = read_c0_cacheerr();
1787 printk("c0_cacheerr == %08x\n", reg_val);
1789 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1790 reg_val & (1<<30) ? "secondary" : "primary",
1791 reg_val & (1<<31) ? "data" : "insn");
1792 if ((cpu_has_mips_r2_r6) &&
1793 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1794 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1795 reg_val & (1<<29) ? "ED " : "",
1796 reg_val & (1<<28) ? "ET " : "",
1797 reg_val & (1<<27) ? "ES " : "",
1798 reg_val & (1<<26) ? "EE " : "",
1799 reg_val & (1<<25) ? "EB " : "",
1800 reg_val & (1<<24) ? "EI " : "",
1801 reg_val & (1<<23) ? "E1 " : "",
1802 reg_val & (1<<22) ? "E0 " : "");
1803 } else {
1804 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1805 reg_val & (1<<29) ? "ED " : "",
1806 reg_val & (1<<28) ? "ET " : "",
1807 reg_val & (1<<26) ? "EE " : "",
1808 reg_val & (1<<25) ? "EB " : "",
1809 reg_val & (1<<24) ? "EI " : "",
1810 reg_val & (1<<23) ? "E1 " : "",
1811 reg_val & (1<<22) ? "E0 " : "");
1813 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1815 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1816 if (reg_val & (1<<22))
1817 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1819 if (reg_val & (1<<23))
1820 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1821 #endif
1823 panic("Can't handle the cache error!");
1826 asmlinkage void do_ftlb(void)
1828 const int field = 2 * sizeof(unsigned long);
1829 unsigned int reg_val;
1831 /* For the moment, report the problem and hang. */
1832 if ((cpu_has_mips_r2_r6) &&
1833 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1834 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1835 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1836 read_c0_ecc());
1837 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1838 reg_val = read_c0_cacheerr();
1839 pr_err("c0_cacheerr == %08x\n", reg_val);
1841 if ((reg_val & 0xc0000000) == 0xc0000000) {
1842 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1843 } else {
1844 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845 reg_val & (1<<30) ? "secondary" : "primary",
1846 reg_val & (1<<31) ? "data" : "insn");
1848 } else {
1849 pr_err("FTLB error exception\n");
1851 /* Just print the cacheerr bits for now */
1852 cache_parity_error();
1856 * SDBBP EJTAG debug exception handler.
1857 * We skip the instruction and return to the next instruction.
1859 void ejtag_exception_handler(struct pt_regs *regs)
1861 const int field = 2 * sizeof(unsigned long);
1862 unsigned long depc, old_epc, old_ra;
1863 unsigned int debug;
1865 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1866 depc = read_c0_depc();
1867 debug = read_c0_debug();
1868 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1869 if (debug & 0x80000000) {
1871 * In branch delay slot.
1872 * We cheat a little bit here and use EPC to calculate the
1873 * debug return address (DEPC). EPC is restored after the
1874 * calculation.
1876 old_epc = regs->cp0_epc;
1877 old_ra = regs->regs[31];
1878 regs->cp0_epc = depc;
1879 compute_return_epc(regs);
1880 depc = regs->cp0_epc;
1881 regs->cp0_epc = old_epc;
1882 regs->regs[31] = old_ra;
1883 } else
1884 depc += 4;
1885 write_c0_depc(depc);
1887 #if 0
1888 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1889 write_c0_debug(debug | 0x100);
1890 #endif
1894 * NMI exception handler.
1895 * No lock; only written during early bootup by CPU 0.
1897 static RAW_NOTIFIER_HEAD(nmi_chain);
1899 int register_nmi_notifier(struct notifier_block *nb)
1901 return raw_notifier_chain_register(&nmi_chain, nb);
1904 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1906 char str[100];
1908 nmi_enter();
1909 raw_notifier_call_chain(&nmi_chain, 0, regs);
1910 bust_spinlocks(1);
1911 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1912 smp_processor_id(), regs->cp0_epc);
1913 regs->cp0_epc = read_c0_errorepc();
1914 die(str, regs);
1915 nmi_exit();
1918 #define VECTORSPACING 0x100 /* for EI/VI mode */
1920 unsigned long ebase;
1921 EXPORT_SYMBOL_GPL(ebase);
1922 unsigned long exception_handlers[32];
1923 unsigned long vi_handlers[64];
1925 void __init *set_except_vector(int n, void *addr)
1927 unsigned long handler = (unsigned long) addr;
1928 unsigned long old_handler;
1930 #ifdef CONFIG_CPU_MICROMIPS
1932 * Only the TLB handlers are cache aligned with an even
1933 * address. All other handlers are on an odd address and
1934 * require no modification. Otherwise, MIPS32 mode will
1935 * be entered when handling any TLB exceptions. That
1936 * would be bad...since we must stay in microMIPS mode.
1938 if (!(handler & 0x1))
1939 handler |= 1;
1940 #endif
1941 old_handler = xchg(&exception_handlers[n], handler);
1943 if (n == 0 && cpu_has_divec) {
1944 #ifdef CONFIG_CPU_MICROMIPS
1945 unsigned long jump_mask = ~((1 << 27) - 1);
1946 #else
1947 unsigned long jump_mask = ~((1 << 28) - 1);
1948 #endif
1949 u32 *buf = (u32 *)(ebase + 0x200);
1950 unsigned int k0 = 26;
1951 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1952 uasm_i_j(&buf, handler & ~jump_mask);
1953 uasm_i_nop(&buf);
1954 } else {
1955 UASM_i_LA(&buf, k0, handler);
1956 uasm_i_jr(&buf, k0);
1957 uasm_i_nop(&buf);
1959 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1961 return (void *)old_handler;
1964 static void do_default_vi(void)
1966 show_regs(get_irq_regs());
1967 panic("Caught unexpected vectored interrupt.");
1970 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1972 unsigned long handler;
1973 unsigned long old_handler = vi_handlers[n];
1974 int srssets = current_cpu_data.srsets;
1975 u16 *h;
1976 unsigned char *b;
1978 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1980 if (addr == NULL) {
1981 handler = (unsigned long) do_default_vi;
1982 srs = 0;
1983 } else
1984 handler = (unsigned long) addr;
1985 vi_handlers[n] = handler;
1987 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1989 if (srs >= srssets)
1990 panic("Shadow register set %d not supported", srs);
1992 if (cpu_has_veic) {
1993 if (board_bind_eic_interrupt)
1994 board_bind_eic_interrupt(n, srs);
1995 } else if (cpu_has_vint) {
1996 /* SRSMap is only defined if shadow sets are implemented */
1997 if (srssets > 1)
1998 change_c0_srsmap(0xf << n*4, srs << n*4);
2001 if (srs == 0) {
2003 * If no shadow set is selected then use the default handler
2004 * that does normal register saving and standard interrupt exit
2006 extern char except_vec_vi, except_vec_vi_lui;
2007 extern char except_vec_vi_ori, except_vec_vi_end;
2008 extern char rollback_except_vec_vi;
2009 char *vec_start = using_rollback_handler() ?
2010 &rollback_except_vec_vi : &except_vec_vi;
2011 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2012 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2013 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2014 #else
2015 const int lui_offset = &except_vec_vi_lui - vec_start;
2016 const int ori_offset = &except_vec_vi_ori - vec_start;
2017 #endif
2018 const int handler_len = &except_vec_vi_end - vec_start;
2020 if (handler_len > VECTORSPACING) {
2022 * Sigh... panicing won't help as the console
2023 * is probably not configured :(
2025 panic("VECTORSPACING too small");
2028 set_handler(((unsigned long)b - ebase), vec_start,
2029 #ifdef CONFIG_CPU_MICROMIPS
2030 (handler_len - 1));
2031 #else
2032 handler_len);
2033 #endif
2034 h = (u16 *)(b + lui_offset);
2035 *h = (handler >> 16) & 0xffff;
2036 h = (u16 *)(b + ori_offset);
2037 *h = (handler & 0xffff);
2038 local_flush_icache_range((unsigned long)b,
2039 (unsigned long)(b+handler_len));
2041 else {
2043 * In other cases jump directly to the interrupt handler. It
2044 * is the handler's responsibility to save registers if required
2045 * (eg hi/lo) and return from the exception using "eret".
2047 u32 insn;
2049 h = (u16 *)b;
2050 /* j handler */
2051 #ifdef CONFIG_CPU_MICROMIPS
2052 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2053 #else
2054 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2055 #endif
2056 h[0] = (insn >> 16) & 0xffff;
2057 h[1] = insn & 0xffff;
2058 h[2] = 0;
2059 h[3] = 0;
2060 local_flush_icache_range((unsigned long)b,
2061 (unsigned long)(b+8));
2064 return (void *)old_handler;
2067 void *set_vi_handler(int n, vi_handler_t addr)
2069 return set_vi_srs_handler(n, addr, 0);
2072 extern void tlb_init(void);
2075 * Timer interrupt
2077 int cp0_compare_irq;
2078 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2079 int cp0_compare_irq_shift;
2082 * Performance counter IRQ or -1 if shared with timer
2084 int cp0_perfcount_irq;
2085 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2088 * Fast debug channel IRQ or -1 if not present
2090 int cp0_fdc_irq;
2091 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2093 static int noulri;
2095 static int __init ulri_disable(char *s)
2097 pr_info("Disabling ulri\n");
2098 noulri = 1;
2100 return 1;
2102 __setup("noulri", ulri_disable);
2104 /* configure STATUS register */
2105 static void configure_status(void)
2108 * Disable coprocessors and select 32-bit or 64-bit addressing
2109 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2110 * flag that some firmware may have left set and the TS bit (for
2111 * IP27). Set XX for ISA IV code to work.
2113 unsigned int status_set = ST0_CU0;
2114 #ifdef CONFIG_64BIT
2115 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2116 #endif
2117 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2118 status_set |= ST0_XX;
2119 if (cpu_has_dsp)
2120 status_set |= ST0_MX;
2122 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2123 status_set);
2126 unsigned int hwrena;
2127 EXPORT_SYMBOL_GPL(hwrena);
2129 /* configure HWRENA register */
2130 static void configure_hwrena(void)
2132 hwrena = cpu_hwrena_impl_bits;
2134 if (cpu_has_mips_r2_r6)
2135 hwrena |= MIPS_HWRENA_CPUNUM |
2136 MIPS_HWRENA_SYNCISTEP |
2137 MIPS_HWRENA_CC |
2138 MIPS_HWRENA_CCRES;
2140 if (!noulri && cpu_has_userlocal)
2141 hwrena |= MIPS_HWRENA_ULR;
2143 if (hwrena)
2144 write_c0_hwrena(hwrena);
2147 static void configure_exception_vector(void)
2149 if (cpu_has_mips_r2_r6) {
2150 unsigned long sr = set_c0_status(ST0_BEV);
2151 /* If available, use WG to set top bits of EBASE */
2152 if (cpu_has_ebase_wg) {
2153 #ifdef CONFIG_64BIT
2154 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2155 #else
2156 write_c0_ebase(ebase | MIPS_EBASE_WG);
2157 #endif
2159 write_c0_ebase(ebase);
2160 write_c0_status(sr);
2162 if (cpu_has_veic || cpu_has_vint) {
2163 /* Setting vector spacing enables EI/VI mode */
2164 change_c0_intctl(0x3e0, VECTORSPACING);
2166 if (cpu_has_divec) {
2167 if (cpu_has_mipsmt) {
2168 unsigned int vpflags = dvpe();
2169 set_c0_cause(CAUSEF_IV);
2170 evpe(vpflags);
2171 } else
2172 set_c0_cause(CAUSEF_IV);
2176 void per_cpu_trap_init(bool is_boot_cpu)
2178 unsigned int cpu = smp_processor_id();
2180 configure_status();
2181 configure_hwrena();
2183 configure_exception_vector();
2186 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2188 * o read IntCtl.IPTI to determine the timer interrupt
2189 * o read IntCtl.IPPCI to determine the performance counter interrupt
2190 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2192 if (cpu_has_mips_r2_r6) {
2193 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2194 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2195 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2196 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2197 if (!cp0_fdc_irq)
2198 cp0_fdc_irq = -1;
2200 } else {
2201 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2202 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2203 cp0_perfcount_irq = -1;
2204 cp0_fdc_irq = -1;
2207 if (cpu_has_mmid)
2208 cpu_data[cpu].asid_cache = 0;
2209 else if (!cpu_data[cpu].asid_cache)
2210 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2212 mmgrab(&init_mm);
2213 current->active_mm = &init_mm;
2214 BUG_ON(current->mm);
2215 enter_lazy_tlb(&init_mm, current);
2217 /* Boot CPU's cache setup in setup_arch(). */
2218 if (!is_boot_cpu)
2219 cpu_cache_init();
2220 tlb_init();
2221 TLBMISS_HANDLER_SETUP();
2224 /* Install CPU exception handler */
2225 void set_handler(unsigned long offset, void *addr, unsigned long size)
2227 #ifdef CONFIG_CPU_MICROMIPS
2228 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2229 #else
2230 memcpy((void *)(ebase + offset), addr, size);
2231 #endif
2232 local_flush_icache_range(ebase + offset, ebase + offset + size);
2235 static const char panic_null_cerr[] =
2236 "Trying to set NULL cache error exception handler\n";
2239 * Install uncached CPU exception handler.
2240 * This is suitable only for the cache error exception which is the only
2241 * exception handler that is being run uncached.
2243 void set_uncached_handler(unsigned long offset, void *addr,
2244 unsigned long size)
2246 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2248 if (!addr)
2249 panic(panic_null_cerr);
2251 memcpy((void *)(uncached_ebase + offset), addr, size);
2254 static int __initdata rdhwr_noopt;
2255 static int __init set_rdhwr_noopt(char *str)
2257 rdhwr_noopt = 1;
2258 return 1;
2261 __setup("rdhwr_noopt", set_rdhwr_noopt);
2263 void __init trap_init(void)
2265 extern char except_vec3_generic;
2266 extern char except_vec4;
2267 extern char except_vec3_r4000;
2268 unsigned long i, vec_size;
2269 phys_addr_t ebase_pa;
2271 check_wait();
2273 if (!cpu_has_mips_r2_r6) {
2274 ebase = CAC_BASE;
2275 ebase_pa = virt_to_phys((void *)ebase);
2276 vec_size = 0x400;
2278 memblock_reserve(ebase_pa, vec_size);
2279 } else {
2280 if (cpu_has_veic || cpu_has_vint)
2281 vec_size = 0x200 + VECTORSPACING*64;
2282 else
2283 vec_size = PAGE_SIZE;
2285 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2286 if (!ebase_pa)
2287 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2288 __func__, vec_size, 1 << fls(vec_size));
2291 * Try to ensure ebase resides in KSeg0 if possible.
2293 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2294 * hitting a poorly defined exception base for Cache Errors.
2295 * The allocation is likely to be in the low 512MB of physical,
2296 * in which case we should be able to convert to KSeg0.
2298 * EVA is special though as it allows segments to be rearranged
2299 * and to become uncached during cache error handling.
2301 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2302 ebase = CKSEG0ADDR(ebase_pa);
2303 else
2304 ebase = (unsigned long)phys_to_virt(ebase_pa);
2307 if (cpu_has_mmips) {
2308 unsigned int config3 = read_c0_config3();
2310 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2311 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2312 else
2313 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2316 if (board_ebase_setup)
2317 board_ebase_setup();
2318 per_cpu_trap_init(true);
2319 memblock_set_bottom_up(false);
2322 * Copy the generic exception handlers to their final destination.
2323 * This will be overridden later as suitable for a particular
2324 * configuration.
2326 set_handler(0x180, &except_vec3_generic, 0x80);
2329 * Setup default vectors
2331 for (i = 0; i <= 31; i++)
2332 set_except_vector(i, handle_reserved);
2335 * Copy the EJTAG debug exception vector handler code to it's final
2336 * destination.
2338 if (cpu_has_ejtag && board_ejtag_handler_setup)
2339 board_ejtag_handler_setup();
2342 * Only some CPUs have the watch exceptions.
2344 if (cpu_has_watch)
2345 set_except_vector(EXCCODE_WATCH, handle_watch);
2348 * Initialise interrupt handlers
2350 if (cpu_has_veic || cpu_has_vint) {
2351 int nvec = cpu_has_veic ? 64 : 8;
2352 for (i = 0; i < nvec; i++)
2353 set_vi_handler(i, NULL);
2355 else if (cpu_has_divec)
2356 set_handler(0x200, &except_vec4, 0x8);
2359 * Some CPUs can enable/disable for cache parity detection, but does
2360 * it different ways.
2362 parity_protection_init();
2365 * The Data Bus Errors / Instruction Bus Errors are signaled
2366 * by external hardware. Therefore these two exceptions
2367 * may have board specific handlers.
2369 if (board_be_init)
2370 board_be_init();
2372 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2373 rollback_handle_int : handle_int);
2374 set_except_vector(EXCCODE_MOD, handle_tlbm);
2375 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2376 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2378 set_except_vector(EXCCODE_ADEL, handle_adel);
2379 set_except_vector(EXCCODE_ADES, handle_ades);
2381 set_except_vector(EXCCODE_IBE, handle_ibe);
2382 set_except_vector(EXCCODE_DBE, handle_dbe);
2384 set_except_vector(EXCCODE_SYS, handle_sys);
2385 set_except_vector(EXCCODE_BP, handle_bp);
2387 if (rdhwr_noopt)
2388 set_except_vector(EXCCODE_RI, handle_ri);
2389 else {
2390 if (cpu_has_vtag_icache)
2391 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2392 else if (current_cpu_type() == CPU_LOONGSON64)
2393 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2394 else
2395 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2398 set_except_vector(EXCCODE_CPU, handle_cpu);
2399 set_except_vector(EXCCODE_OV, handle_ov);
2400 set_except_vector(EXCCODE_TR, handle_tr);
2401 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2403 if (board_nmi_handler_setup)
2404 board_nmi_handler_setup();
2406 if (cpu_has_fpu && !cpu_has_nofpuex)
2407 set_except_vector(EXCCODE_FPE, handle_fpe);
2409 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2411 if (cpu_has_rixiex) {
2412 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2413 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2416 set_except_vector(EXCCODE_MSADIS, handle_msa);
2417 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2419 if (cpu_has_mcheck)
2420 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2422 if (cpu_has_mipsmt)
2423 set_except_vector(EXCCODE_THREAD, handle_mt);
2425 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2427 if (board_cache_error_setup)
2428 board_cache_error_setup();
2430 if (cpu_has_vce)
2431 /* Special exception: R4[04]00 uses also the divec space. */
2432 set_handler(0x180, &except_vec3_r4000, 0x100);
2433 else if (cpu_has_4kex)
2434 set_handler(0x180, &except_vec3_generic, 0x80);
2435 else
2436 set_handler(0x080, &except_vec3_generic, 0x80);
2438 local_flush_icache_range(ebase, ebase + vec_size);
2440 sort_extable(__start___dbe_table, __stop___dbe_table);
2442 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2445 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2446 void *v)
2448 switch (cmd) {
2449 case CPU_PM_ENTER_FAILED:
2450 case CPU_PM_EXIT:
2451 configure_status();
2452 configure_hwrena();
2453 configure_exception_vector();
2455 /* Restore register with CPU number for TLB handlers */
2456 TLBMISS_HANDLER_RESTORE();
2458 break;
2461 return NOTIFY_OK;
2464 static struct notifier_block trap_pm_notifier_block = {
2465 .notifier_call = trap_pm_notifier,
2468 static int __init trap_pm_init(void)
2470 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2472 arch_initcall(trap_pm_init);