ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / parisc / kernel / module.c
blob1c50093e2ebeef3ad832533dffa4edcd3a6b59a5
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kernel dynamically loadable module help for PARISC.
4 * The best reference for this stuff is probably the Processor-
5 * Specific ELF Supplement for PA-RISC:
6 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
8 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
10 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
12 * Notes:
13 * - PLT stub handling
14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
16 * fail to reach their PLT stub if we only create one big stub array for
17 * all sections at the beginning of the core or init section.
18 * Instead we now insert individual PLT stub entries directly in front of
19 * of the code sections where the stubs are actually called.
20 * This reduces the distance between the PCREL location and the stub entry
21 * so that the relocations can be fulfilled.
22 * While calculating the final layout of the kernel module in memory, the
23 * kernel module loader calls arch_mod_section_prepend() to request the
24 * to be reserved amount of memory in front of each individual section.
26 * - SEGREL32 handling
27 * We are not doing SEGREL32 handling correctly. According to the ABI, we
28 * should do a value offset, like this:
29 * if (in_init(me, (void *)val))
30 * val -= (uint32_t)me->init_layout.base;
31 * else
32 * val -= (uint32_t)me->core_layout.base;
33 * However, SEGREL32 is used only for PARISC unwind entries, and we want
34 * those entries to have an absolute address, and not just an offset.
36 * The unwind table mechanism has the ability to specify an offset for
37 * the unwind table; however, because we split off the init functions into
38 * a different piece of memory, it is not possible to do this using a
39 * single offset. Instead, we use the above hack for now.
42 #include <linux/moduleloader.h>
43 #include <linux/elf.h>
44 #include <linux/vmalloc.h>
45 #include <linux/fs.h>
46 #include <linux/ftrace.h>
47 #include <linux/string.h>
48 #include <linux/kernel.h>
49 #include <linux/bug.h>
50 #include <linux/mm.h>
51 #include <linux/slab.h>
53 #include <asm/pgtable.h>
54 #include <asm/unwind.h>
55 #include <asm/sections.h>
57 #define RELOC_REACHABLE(val, bits) \
58 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
59 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
60 0 : 1)
62 #define CHECK_RELOC(val, bits) \
63 if (!RELOC_REACHABLE(val, bits)) { \
64 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
65 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
66 return -ENOEXEC; \
69 /* Maximum number of GOT entries. We use a long displacement ldd from
70 * the bottom of the table, which has a maximum signed displacement of
71 * 0x3fff; however, since we're only going forward, this becomes
72 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
73 * at most 1023 entries.
74 * To overcome this 14bit displacement with some kernel modules, we'll
75 * use instead the unusal 16bit displacement method (see reassemble_16a)
76 * which gives us a maximum positive displacement of 0x7fff, and as such
77 * allows us to allocate up to 4095 GOT entries. */
78 #define MAX_GOTS 4095
80 /* three functions to determine where in the module core
81 * or init pieces the location is */
82 static inline int in_init(struct module *me, void *loc)
84 return (loc >= me->init_layout.base &&
85 loc <= (me->init_layout.base + me->init_layout.size));
88 static inline int in_core(struct module *me, void *loc)
90 return (loc >= me->core_layout.base &&
91 loc <= (me->core_layout.base + me->core_layout.size));
94 static inline int in_local(struct module *me, void *loc)
96 return in_init(me, loc) || in_core(me, loc);
99 #ifndef CONFIG_64BIT
100 struct got_entry {
101 Elf32_Addr addr;
104 struct stub_entry {
105 Elf32_Word insns[2]; /* each stub entry has two insns */
107 #else
108 struct got_entry {
109 Elf64_Addr addr;
112 struct stub_entry {
113 Elf64_Word insns[4]; /* each stub entry has four insns */
115 #endif
117 /* Field selection types defined by hppa */
118 #define rnd(x) (((x)+0x1000)&~0x1fff)
119 /* fsel: full 32 bits */
120 #define fsel(v,a) ((v)+(a))
121 /* lsel: select left 21 bits */
122 #define lsel(v,a) (((v)+(a))>>11)
123 /* rsel: select right 11 bits */
124 #define rsel(v,a) (((v)+(a))&0x7ff)
125 /* lrsel with rounding of addend to nearest 8k */
126 #define lrsel(v,a) (((v)+rnd(a))>>11)
127 /* rrsel with rounding of addend to nearest 8k */
128 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
130 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
133 /* The reassemble_* functions prepare an immediate value for
134 insertion into an opcode. pa-risc uses all sorts of weird bitfields
135 in the instruction to hold the value. */
136 static inline int sign_unext(int x, int len)
138 int len_ones;
140 len_ones = (1 << len) - 1;
141 return x & len_ones;
144 static inline int low_sign_unext(int x, int len)
146 int sign, temp;
148 sign = (x >> (len-1)) & 1;
149 temp = sign_unext(x, len-1);
150 return (temp << 1) | sign;
153 static inline int reassemble_14(int as14)
155 return (((as14 & 0x1fff) << 1) |
156 ((as14 & 0x2000) >> 13));
159 static inline int reassemble_16a(int as16)
161 int s, t;
163 /* Unusual 16-bit encoding, for wide mode only. */
164 t = (as16 << 1) & 0xffff;
165 s = (as16 & 0x8000);
166 return (t ^ s ^ (s >> 1)) | (s >> 15);
170 static inline int reassemble_17(int as17)
172 return (((as17 & 0x10000) >> 16) |
173 ((as17 & 0x0f800) << 5) |
174 ((as17 & 0x00400) >> 8) |
175 ((as17 & 0x003ff) << 3));
178 static inline int reassemble_21(int as21)
180 return (((as21 & 0x100000) >> 20) |
181 ((as21 & 0x0ffe00) >> 8) |
182 ((as21 & 0x000180) << 7) |
183 ((as21 & 0x00007c) << 14) |
184 ((as21 & 0x000003) << 12));
187 static inline int reassemble_22(int as22)
189 return (((as22 & 0x200000) >> 21) |
190 ((as22 & 0x1f0000) << 5) |
191 ((as22 & 0x00f800) << 5) |
192 ((as22 & 0x000400) >> 8) |
193 ((as22 & 0x0003ff) << 3));
196 void *module_alloc(unsigned long size)
198 /* using RWX means less protection for modules, but it's
199 * easier than trying to map the text, data, init_text and
200 * init_data correctly */
201 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
202 GFP_KERNEL,
203 PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
204 __builtin_return_address(0));
207 #ifndef CONFIG_64BIT
208 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
210 return 0;
213 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
215 return 0;
218 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
220 unsigned long cnt = 0;
222 for (; n > 0; n--, rela++)
224 switch (ELF32_R_TYPE(rela->r_info)) {
225 case R_PARISC_PCREL17F:
226 case R_PARISC_PCREL22F:
227 cnt++;
231 return cnt;
233 #else
234 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
236 unsigned long cnt = 0;
238 for (; n > 0; n--, rela++)
240 switch (ELF64_R_TYPE(rela->r_info)) {
241 case R_PARISC_LTOFF21L:
242 case R_PARISC_LTOFF14R:
243 case R_PARISC_PCREL22F:
244 cnt++;
248 return cnt;
251 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
253 unsigned long cnt = 0;
255 for (; n > 0; n--, rela++)
257 switch (ELF64_R_TYPE(rela->r_info)) {
258 case R_PARISC_FPTR64:
259 cnt++;
263 return cnt;
266 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
268 unsigned long cnt = 0;
270 for (; n > 0; n--, rela++)
272 switch (ELF64_R_TYPE(rela->r_info)) {
273 case R_PARISC_PCREL22F:
274 cnt++;
278 return cnt;
280 #endif
282 void module_arch_freeing_init(struct module *mod)
284 kfree(mod->arch.section);
285 mod->arch.section = NULL;
288 /* Additional bytes needed in front of individual sections */
289 unsigned int arch_mod_section_prepend(struct module *mod,
290 unsigned int section)
292 /* size needed for all stubs of this section (including
293 * one additional for correct alignment of the stubs) */
294 return (mod->arch.section[section].stub_entries + 1)
295 * sizeof(struct stub_entry);
298 #define CONST
299 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
300 CONST Elf_Shdr *sechdrs,
301 CONST char *secstrings,
302 struct module *me)
304 unsigned long gots = 0, fdescs = 0, len;
305 unsigned int i;
307 len = hdr->e_shnum * sizeof(me->arch.section[0]);
308 me->arch.section = kzalloc(len, GFP_KERNEL);
309 if (!me->arch.section)
310 return -ENOMEM;
312 for (i = 1; i < hdr->e_shnum; i++) {
313 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
314 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
315 unsigned int count, s;
317 if (strncmp(secstrings + sechdrs[i].sh_name,
318 ".PARISC.unwind", 14) == 0)
319 me->arch.unwind_section = i;
321 if (sechdrs[i].sh_type != SHT_RELA)
322 continue;
324 /* some of these are not relevant for 32-bit/64-bit
325 * we leave them here to make the code common. the
326 * compiler will do its thing and optimize out the
327 * stuff we don't need
329 gots += count_gots(rels, nrels);
330 fdescs += count_fdescs(rels, nrels);
332 /* XXX: By sorting the relocs and finding duplicate entries
333 * we could reduce the number of necessary stubs and save
334 * some memory. */
335 count = count_stubs(rels, nrels);
336 if (!count)
337 continue;
339 /* so we need relocation stubs. reserve necessary memory. */
340 /* sh_info gives the section for which we need to add stubs. */
341 s = sechdrs[i].sh_info;
343 /* each code section should only have one relocation section */
344 WARN_ON(me->arch.section[s].stub_entries);
346 /* store number of stubs we need for this section */
347 me->arch.section[s].stub_entries += count;
350 /* align things a bit */
351 me->core_layout.size = ALIGN(me->core_layout.size, 16);
352 me->arch.got_offset = me->core_layout.size;
353 me->core_layout.size += gots * sizeof(struct got_entry);
355 me->core_layout.size = ALIGN(me->core_layout.size, 16);
356 me->arch.fdesc_offset = me->core_layout.size;
357 me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
359 me->arch.got_max = gots;
360 me->arch.fdesc_max = fdescs;
362 return 0;
365 #ifdef CONFIG_64BIT
366 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
368 unsigned int i;
369 struct got_entry *got;
371 value += addend;
373 BUG_ON(value == 0);
375 got = me->core_layout.base + me->arch.got_offset;
376 for (i = 0; got[i].addr; i++)
377 if (got[i].addr == value)
378 goto out;
380 BUG_ON(++me->arch.got_count > me->arch.got_max);
382 got[i].addr = value;
383 out:
384 pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry),
385 value);
386 return i * sizeof(struct got_entry);
388 #endif /* CONFIG_64BIT */
390 #ifdef CONFIG_64BIT
391 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
393 Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
395 if (!value) {
396 printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
397 return 0;
400 /* Look for existing fdesc entry. */
401 while (fdesc->addr) {
402 if (fdesc->addr == value)
403 return (Elf_Addr)fdesc;
404 fdesc++;
407 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
409 /* Create new one */
410 fdesc->addr = value;
411 fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
412 return (Elf_Addr)fdesc;
414 #endif /* CONFIG_64BIT */
416 enum elf_stub_type {
417 ELF_STUB_GOT,
418 ELF_STUB_MILLI,
419 ELF_STUB_DIRECT,
422 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
423 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
425 struct stub_entry *stub;
426 int __maybe_unused d;
428 /* initialize stub_offset to point in front of the section */
429 if (!me->arch.section[targetsec].stub_offset) {
430 loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
431 sizeof(struct stub_entry);
432 /* get correct alignment for the stubs */
433 loc0 = ALIGN(loc0, sizeof(struct stub_entry));
434 me->arch.section[targetsec].stub_offset = loc0;
437 /* get address of stub entry */
438 stub = (void *) me->arch.section[targetsec].stub_offset;
439 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
441 /* do not write outside available stub area */
442 BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
445 #ifndef CONFIG_64BIT
446 /* for 32-bit the stub looks like this:
447 * ldil L'XXX,%r1
448 * be,n R'XXX(%sr4,%r1)
450 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
452 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */
453 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
455 stub->insns[0] |= reassemble_21(lrsel(value, addend));
456 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
458 #else
459 /* for 64-bit we have three kinds of stubs:
460 * for normal function calls:
461 * ldd 0(%dp),%dp
462 * ldd 10(%dp), %r1
463 * bve (%r1)
464 * ldd 18(%dp), %dp
466 * for millicode:
467 * ldil 0, %r1
468 * ldo 0(%r1), %r1
469 * ldd 10(%r1), %r1
470 * bve,n (%r1)
472 * for direct branches (jumps between different section of the
473 * same module):
474 * ldil 0, %r1
475 * ldo 0(%r1), %r1
476 * bve,n (%r1)
478 switch (stub_type) {
479 case ELF_STUB_GOT:
480 d = get_got(me, value, addend);
481 if (d <= 15) {
482 /* Format 5 */
483 stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
484 stub->insns[0] |= low_sign_unext(d, 5) << 16;
485 } else {
486 /* Format 3 */
487 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */
488 stub->insns[0] |= reassemble_16a(d);
490 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */
491 stub->insns[2] = 0xe820d000; /* bve (%r1) */
492 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */
493 break;
494 case ELF_STUB_MILLI:
495 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
496 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
497 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */
498 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */
500 stub->insns[0] |= reassemble_21(lrsel(value, addend));
501 stub->insns[1] |= reassemble_14(rrsel(value, addend));
502 break;
503 case ELF_STUB_DIRECT:
504 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
505 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
506 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */
508 stub->insns[0] |= reassemble_21(lrsel(value, addend));
509 stub->insns[1] |= reassemble_14(rrsel(value, addend));
510 break;
513 #endif
515 return (Elf_Addr)stub;
518 #ifndef CONFIG_64BIT
519 int apply_relocate_add(Elf_Shdr *sechdrs,
520 const char *strtab,
521 unsigned int symindex,
522 unsigned int relsec,
523 struct module *me)
525 int i;
526 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
527 Elf32_Sym *sym;
528 Elf32_Word *loc;
529 Elf32_Addr val;
530 Elf32_Sword addend;
531 Elf32_Addr dot;
532 Elf_Addr loc0;
533 unsigned int targetsec = sechdrs[relsec].sh_info;
534 //unsigned long dp = (unsigned long)$global$;
535 register unsigned long dp asm ("r27");
537 pr_debug("Applying relocate section %u to %u\n", relsec,
538 targetsec);
539 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
540 /* This is where to make the change */
541 loc = (void *)sechdrs[targetsec].sh_addr
542 + rel[i].r_offset;
543 /* This is the start of the target section */
544 loc0 = sechdrs[targetsec].sh_addr;
545 /* This is the symbol it is referring to */
546 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
547 + ELF32_R_SYM(rel[i].r_info);
548 if (!sym->st_value) {
549 printk(KERN_WARNING "%s: Unknown symbol %s\n",
550 me->name, strtab + sym->st_name);
551 return -ENOENT;
553 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
554 dot = (Elf32_Addr)loc & ~0x03;
556 val = sym->st_value;
557 addend = rel[i].r_addend;
559 #if 0
560 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
561 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
562 strtab + sym->st_name,
563 (uint32_t)loc, val, addend,
564 r(R_PARISC_PLABEL32)
565 r(R_PARISC_DIR32)
566 r(R_PARISC_DIR21L)
567 r(R_PARISC_DIR14R)
568 r(R_PARISC_SEGREL32)
569 r(R_PARISC_DPREL21L)
570 r(R_PARISC_DPREL14R)
571 r(R_PARISC_PCREL17F)
572 r(R_PARISC_PCREL22F)
573 "UNKNOWN");
574 #undef r
575 #endif
577 switch (ELF32_R_TYPE(rel[i].r_info)) {
578 case R_PARISC_PLABEL32:
579 /* 32-bit function address */
580 /* no function descriptors... */
581 *loc = fsel(val, addend);
582 break;
583 case R_PARISC_DIR32:
584 /* direct 32-bit ref */
585 *loc = fsel(val, addend);
586 break;
587 case R_PARISC_DIR21L:
588 /* left 21 bits of effective address */
589 val = lrsel(val, addend);
590 *loc = mask(*loc, 21) | reassemble_21(val);
591 break;
592 case R_PARISC_DIR14R:
593 /* right 14 bits of effective address */
594 val = rrsel(val, addend);
595 *loc = mask(*loc, 14) | reassemble_14(val);
596 break;
597 case R_PARISC_SEGREL32:
598 /* 32-bit segment relative address */
599 /* See note about special handling of SEGREL32 at
600 * the beginning of this file.
602 *loc = fsel(val, addend);
603 break;
604 case R_PARISC_SECREL32:
605 /* 32-bit section relative address. */
606 *loc = fsel(val, addend);
607 break;
608 case R_PARISC_DPREL21L:
609 /* left 21 bit of relative address */
610 val = lrsel(val - dp, addend);
611 *loc = mask(*loc, 21) | reassemble_21(val);
612 break;
613 case R_PARISC_DPREL14R:
614 /* right 14 bit of relative address */
615 val = rrsel(val - dp, addend);
616 *loc = mask(*loc, 14) | reassemble_14(val);
617 break;
618 case R_PARISC_PCREL17F:
619 /* 17-bit PC relative address */
620 /* calculate direct call offset */
621 val += addend;
622 val = (val - dot - 8)/4;
623 if (!RELOC_REACHABLE(val, 17)) {
624 /* direct distance too far, create
625 * stub entry instead */
626 val = get_stub(me, sym->st_value, addend,
627 ELF_STUB_DIRECT, loc0, targetsec);
628 val = (val - dot - 8)/4;
629 CHECK_RELOC(val, 17);
631 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
632 break;
633 case R_PARISC_PCREL22F:
634 /* 22-bit PC relative address; only defined for pa20 */
635 /* calculate direct call offset */
636 val += addend;
637 val = (val - dot - 8)/4;
638 if (!RELOC_REACHABLE(val, 22)) {
639 /* direct distance too far, create
640 * stub entry instead */
641 val = get_stub(me, sym->st_value, addend,
642 ELF_STUB_DIRECT, loc0, targetsec);
643 val = (val - dot - 8)/4;
644 CHECK_RELOC(val, 22);
646 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
647 break;
648 case R_PARISC_PCREL32:
649 /* 32-bit PC relative address */
650 *loc = val - dot - 8 + addend;
651 break;
653 default:
654 printk(KERN_ERR "module %s: Unknown relocation: %u\n",
655 me->name, ELF32_R_TYPE(rel[i].r_info));
656 return -ENOEXEC;
660 return 0;
663 #else
664 int apply_relocate_add(Elf_Shdr *sechdrs,
665 const char *strtab,
666 unsigned int symindex,
667 unsigned int relsec,
668 struct module *me)
670 int i;
671 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
672 Elf64_Sym *sym;
673 Elf64_Word *loc;
674 Elf64_Xword *loc64;
675 Elf64_Addr val;
676 Elf64_Sxword addend;
677 Elf64_Addr dot;
678 Elf_Addr loc0;
679 unsigned int targetsec = sechdrs[relsec].sh_info;
681 pr_debug("Applying relocate section %u to %u\n", relsec,
682 targetsec);
683 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
684 /* This is where to make the change */
685 loc = (void *)sechdrs[targetsec].sh_addr
686 + rel[i].r_offset;
687 /* This is the start of the target section */
688 loc0 = sechdrs[targetsec].sh_addr;
689 /* This is the symbol it is referring to */
690 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
691 + ELF64_R_SYM(rel[i].r_info);
692 if (!sym->st_value) {
693 printk(KERN_WARNING "%s: Unknown symbol %s\n",
694 me->name, strtab + sym->st_name);
695 return -ENOENT;
697 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
698 dot = (Elf64_Addr)loc & ~0x03;
699 loc64 = (Elf64_Xword *)loc;
701 val = sym->st_value;
702 addend = rel[i].r_addend;
704 #if 0
705 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
706 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
707 strtab + sym->st_name,
708 loc, val, addend,
709 r(R_PARISC_LTOFF14R)
710 r(R_PARISC_LTOFF21L)
711 r(R_PARISC_PCREL22F)
712 r(R_PARISC_DIR64)
713 r(R_PARISC_SEGREL32)
714 r(R_PARISC_FPTR64)
715 "UNKNOWN");
716 #undef r
717 #endif
719 switch (ELF64_R_TYPE(rel[i].r_info)) {
720 case R_PARISC_LTOFF21L:
721 /* LT-relative; left 21 bits */
722 val = get_got(me, val, addend);
723 pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
724 strtab + sym->st_name,
725 loc, val);
726 val = lrsel(val, 0);
727 *loc = mask(*loc, 21) | reassemble_21(val);
728 break;
729 case R_PARISC_LTOFF14R:
730 /* L(ltoff(val+addend)) */
731 /* LT-relative; right 14 bits */
732 val = get_got(me, val, addend);
733 val = rrsel(val, 0);
734 pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
735 strtab + sym->st_name,
736 loc, val);
737 *loc = mask(*loc, 14) | reassemble_14(val);
738 break;
739 case R_PARISC_PCREL22F:
740 /* PC-relative; 22 bits */
741 pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
742 strtab + sym->st_name,
743 loc, val);
744 val += addend;
745 /* can we reach it locally? */
746 if (in_local(me, (void *)val)) {
747 /* this is the case where the symbol is local
748 * to the module, but in a different section,
749 * so stub the jump in case it's more than 22
750 * bits away */
751 val = (val - dot - 8)/4;
752 if (!RELOC_REACHABLE(val, 22)) {
753 /* direct distance too far, create
754 * stub entry instead */
755 val = get_stub(me, sym->st_value,
756 addend, ELF_STUB_DIRECT,
757 loc0, targetsec);
758 } else {
759 /* Ok, we can reach it directly. */
760 val = sym->st_value;
761 val += addend;
763 } else {
764 val = sym->st_value;
765 if (strncmp(strtab + sym->st_name, "$$", 2)
766 == 0)
767 val = get_stub(me, val, addend, ELF_STUB_MILLI,
768 loc0, targetsec);
769 else
770 val = get_stub(me, val, addend, ELF_STUB_GOT,
771 loc0, targetsec);
773 pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
774 strtab + sym->st_name, loc, sym->st_value,
775 addend, val);
776 val = (val - dot - 8)/4;
777 CHECK_RELOC(val, 22);
778 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
779 break;
780 case R_PARISC_PCREL32:
781 /* 32-bit PC relative address */
782 *loc = val - dot - 8 + addend;
783 break;
784 case R_PARISC_PCREL64:
785 /* 64-bit PC relative address */
786 *loc64 = val - dot - 8 + addend;
787 break;
788 case R_PARISC_DIR64:
789 /* 64-bit effective address */
790 *loc64 = val + addend;
791 break;
792 case R_PARISC_SEGREL32:
793 /* 32-bit segment relative address */
794 /* See note about special handling of SEGREL32 at
795 * the beginning of this file.
797 *loc = fsel(val, addend);
798 break;
799 case R_PARISC_SECREL32:
800 /* 32-bit section relative address. */
801 *loc = fsel(val, addend);
802 break;
803 case R_PARISC_FPTR64:
804 /* 64-bit function address */
805 if(in_local(me, (void *)(val + addend))) {
806 *loc64 = get_fdesc(me, val+addend);
807 pr_debug("FDESC for %s at %llx points to %llx\n",
808 strtab + sym->st_name, *loc64,
809 ((Elf_Fdesc *)*loc64)->addr);
810 } else {
811 /* if the symbol is not local to this
812 * module then val+addend is a pointer
813 * to the function descriptor */
814 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
815 strtab + sym->st_name,
816 loc, val);
817 *loc64 = val + addend;
819 break;
821 default:
822 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
823 me->name, ELF64_R_TYPE(rel[i].r_info));
824 return -ENOEXEC;
827 return 0;
829 #endif
831 static void
832 register_unwind_table(struct module *me,
833 const Elf_Shdr *sechdrs)
835 unsigned char *table, *end;
836 unsigned long gp;
838 if (!me->arch.unwind_section)
839 return;
841 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
842 end = table + sechdrs[me->arch.unwind_section].sh_size;
843 gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
845 pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
846 me->arch.unwind_section, table, end, gp);
847 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
850 static void
851 deregister_unwind_table(struct module *me)
853 if (me->arch.unwind)
854 unwind_table_remove(me->arch.unwind);
857 int module_finalize(const Elf_Ehdr *hdr,
858 const Elf_Shdr *sechdrs,
859 struct module *me)
861 int i;
862 unsigned long nsyms;
863 const char *strtab = NULL;
864 const Elf_Shdr *s;
865 char *secstrings;
866 int symindex = -1;
867 Elf_Sym *newptr, *oldptr;
868 Elf_Shdr *symhdr = NULL;
869 #ifdef DEBUG
870 Elf_Fdesc *entry;
871 u32 *addr;
873 entry = (Elf_Fdesc *)me->init;
874 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
875 entry->gp, entry->addr);
876 addr = (u32 *)entry->addr;
877 printk("INSNS: %x %x %x %x\n",
878 addr[0], addr[1], addr[2], addr[3]);
879 printk("got entries used %ld, gots max %ld\n"
880 "fdescs used %ld, fdescs max %ld\n",
881 me->arch.got_count, me->arch.got_max,
882 me->arch.fdesc_count, me->arch.fdesc_max);
883 #endif
885 register_unwind_table(me, sechdrs);
887 /* haven't filled in me->symtab yet, so have to find it
888 * ourselves */
889 for (i = 1; i < hdr->e_shnum; i++) {
890 if(sechdrs[i].sh_type == SHT_SYMTAB
891 && (sechdrs[i].sh_flags & SHF_ALLOC)) {
892 int strindex = sechdrs[i].sh_link;
893 symindex = i;
894 /* FIXME: AWFUL HACK
895 * The cast is to drop the const from
896 * the sechdrs pointer */
897 symhdr = (Elf_Shdr *)&sechdrs[i];
898 strtab = (char *)sechdrs[strindex].sh_addr;
899 break;
903 pr_debug("module %s: strtab %p, symhdr %p\n",
904 me->name, strtab, symhdr);
906 if(me->arch.got_count > MAX_GOTS) {
907 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
908 me->name, me->arch.got_count, MAX_GOTS);
909 return -EINVAL;
912 kfree(me->arch.section);
913 me->arch.section = NULL;
915 /* no symbol table */
916 if(symhdr == NULL)
917 return 0;
919 oldptr = (void *)symhdr->sh_addr;
920 newptr = oldptr + 1; /* we start counting at 1 */
921 nsyms = symhdr->sh_size / sizeof(Elf_Sym);
922 pr_debug("OLD num_symtab %lu\n", nsyms);
924 for (i = 1; i < nsyms; i++) {
925 oldptr++; /* note, count starts at 1 so preincrement */
926 if(strncmp(strtab + oldptr->st_name,
927 ".L", 2) == 0)
928 continue;
930 if(newptr != oldptr)
931 *newptr++ = *oldptr;
932 else
933 newptr++;
936 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
937 pr_debug("NEW num_symtab %lu\n", nsyms);
938 symhdr->sh_size = nsyms * sizeof(Elf_Sym);
940 /* find .altinstructions section */
941 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
942 for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
943 void *aseg = (void *) s->sh_addr;
944 char *secname = secstrings + s->sh_name;
946 if (!strcmp(".altinstructions", secname))
947 /* patch .altinstructions */
948 apply_alternatives(aseg, aseg + s->sh_size, me->name);
950 #ifdef CONFIG_DYNAMIC_FTRACE
951 /* For 32 bit kernels we're compiling modules with
952 * -ffunction-sections so we must relocate the addresses in the
953 * ftrace callsite section.
955 if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
956 int err;
957 if (s->sh_type == SHT_REL)
958 err = apply_relocate((Elf_Shdr *)sechdrs,
959 strtab, symindex,
960 s - sechdrs, me);
961 else if (s->sh_type == SHT_RELA)
962 err = apply_relocate_add((Elf_Shdr *)sechdrs,
963 strtab, symindex,
964 s - sechdrs, me);
965 if (err)
966 return err;
968 #endif
970 return 0;
973 void module_arch_cleanup(struct module *mod)
975 deregister_unwind_table(mod);
978 #ifdef CONFIG_64BIT
979 void *dereference_module_function_descriptor(struct module *mod, void *ptr)
981 unsigned long start_opd = (Elf64_Addr)mod->core_layout.base +
982 mod->arch.fdesc_offset;
983 unsigned long end_opd = start_opd +
984 mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
986 if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
987 return ptr;
989 return dereference_function_descriptor(ptr);
991 #endif