1 /* SPDX-License-Identifier: GPL-2.0 */
5 * Copyright (C) 1991, 1992, 1993 Linus Torvalds
9 * head.S contains the 32-bit startup code.
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there. This is also
18 * useful for future device drivers that either access the BIOS via VM86
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
28 #include <linux/init.h>
29 #include <linux/linkage.h>
30 #include <asm/segment.h>
33 #include <asm/processor-flags.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/bootparam.h>
39 * Locally defined symbols should be marked hidden:
48 SYM_FUNC_START(startup_32)
50 * 32bit entry is 0 and it is ABI so immutable!
51 * If we come here directly from a bootloader,
52 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
53 * all need to be under the 4G limit.
57 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
58 * us to not reload segments
60 testb $KEEP_SEGMENTS, BP_loadflags(%esi)
64 movl $(__BOOT_DS), %eax
71 * Calculate the delta between where we were compiled to run
72 * at and where we were actually loaded at. This can only be done
73 * with a short local call on x86. Nothing else will tell us what
74 * address we are running at. The reserved chunk of the real-mode
75 * data at 0x1e4 (defined as a scratch field) are used as the stack
76 * for this calculation. Only 4 bytes are needed.
78 leal (BP_scratch+4)(%esi), %esp
83 /* setup a stack and make sure cpu supports long mode. */
84 movl $boot_stack_end, %eax
93 * Compute the delta between where we were compiled to run at
94 * and where the code will actually run at.
96 * %ebp contains the address we are loaded at by the boot loader and %ebx
97 * contains the address where we should move the kernel image temporarily
98 * for safe in-place decompression.
101 #ifdef CONFIG_RELOCATABLE
103 movl BP_kernel_alignment(%esi), %eax
108 cmpl $LOAD_PHYSICAL_ADDR, %ebx
111 movl $LOAD_PHYSICAL_ADDR, %ebx
114 /* Target address to relocate to for decompression */
115 movl BP_init_size(%esi), %eax
120 * Prepare for entering 64 bit mode
123 /* Load new GDT with the 64bit segments using 32bit descriptor */
124 addl %ebp, gdt+2(%ebp)
127 /* Enable PAE mode */
129 orl $X86_CR4_PAE, %eax
133 * Build early 4G boot pagetable
136 * If SEV is active then set the encryption mask in the page tables.
137 * This will insure that when the kernel is copied and decompressed
138 * it will be done so encrypted.
140 call get_sev_encryption_bit
144 subl $32, %eax /* Encryption bit is always above bit 31 */
145 bts %eax, %edx /* Set encryption mask for page tables */
148 /* Initialize Page tables to 0 */
149 leal pgtable(%ebx), %edi
151 movl $(BOOT_INIT_PGT_SIZE/4), %ecx
155 leal pgtable + 0(%ebx), %edi
156 leal 0x1007 (%edi), %eax
161 leal pgtable + 0x1000(%ebx), %edi
162 leal 0x1007(%edi), %eax
164 1: movl %eax, 0x00(%edi)
165 addl %edx, 0x04(%edi)
166 addl $0x00001000, %eax
172 leal pgtable + 0x2000(%ebx), %edi
173 movl $0x00000183, %eax
175 1: movl %eax, 0(%edi)
177 addl $0x00200000, %eax
182 /* Enable the boot page tables */
183 leal pgtable(%ebx), %eax
186 /* Enable Long mode in EFER (Extended Feature Enable Register) */
189 btsl $_EFER_LME, %eax
192 /* After gdt is loaded */
195 movl $__BOOT_TSS, %eax
199 * Setup for the jump to 64bit mode
201 * When the jump is performend we will be in long mode but
202 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
203 * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
204 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
205 * We place all of the values on our mini stack so lret can
206 * used to perform that far jump.
209 leal startup_64(%ebp), %eax
210 #ifdef CONFIG_EFI_MIXED
211 movl efi32_boot_args(%ebp), %edi
214 leal efi64_stub_entry(%ebp), %eax
216 movl efi32_boot_args+4(%ebp), %esi
221 /* Enter paged protected Mode, activating Long Mode */
222 movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
225 /* Jump from 32bit compatibility mode into 64bit mode. */
227 SYM_FUNC_END(startup_32)
229 #ifdef CONFIG_EFI_MIXED
231 SYM_FUNC_START(efi32_stub_entry)
232 add $0x4, %esp /* Discard return address */
241 movl %ecx, efi32_boot_args(%ebp)
242 movl %edx, efi32_boot_args+4(%ebp)
243 sgdtl efi32_boot_gdt(%ebp)
244 movb $0, efi_is64(%ebp)
248 btrl $X86_CR0_PG_BIT, %eax
252 SYM_FUNC_END(efi32_stub_entry)
257 SYM_CODE_START(startup_64)
259 * 64bit entry is 0x200 and it is ABI so immutable!
260 * We come here either from startup_32 or directly from a
262 * If we come here from a bootloader, kernel(text+data+bss+brk),
263 * ramdisk, zero_page, command line could be above 4G.
264 * We depend on an identity mapped page table being provided
265 * that maps our entire kernel(text+data+bss+brk), zero page
269 /* Setup data segments. */
278 * Compute the decompressed kernel start address. It is where
279 * we were loaded at aligned to a 2M boundary. %rbp contains the
280 * decompressed kernel start address.
282 * If it is a relocatable kernel then decompress and run the kernel
283 * from load address aligned to 2MB addr, otherwise decompress and
284 * run the kernel from LOAD_PHYSICAL_ADDR
286 * We cannot rely on the calculation done in 32-bit mode, since we
287 * may have been invoked via the 64-bit entry point.
290 /* Start with the delta to where the kernel will run at. */
291 #ifdef CONFIG_RELOCATABLE
292 leaq startup_32(%rip) /* - $startup_32 */, %rbp
293 movl BP_kernel_alignment(%rsi), %eax
298 cmpq $LOAD_PHYSICAL_ADDR, %rbp
301 movq $LOAD_PHYSICAL_ADDR, %rbp
304 /* Target address to relocate to for decompression */
305 movl BP_init_size(%rsi), %ebx
309 /* Set up the stack */
310 leaq boot_stack_end(%rbx), %rsp
313 * paging_prepare() and cleanup_trampoline() below can have GOT
314 * references. Adjust the table with address we are running at.
316 * Zero RAX for adjust_got: the GOT was not adjusted before;
317 * there's no adjustment to undo.
322 * Calculate the address the binary is loaded at and use it as
332 * At this point we are in long mode with 4-level paging enabled,
333 * but we might want to enable 5-level paging or vice versa.
335 * The problem is that we cannot do it directly. Setting or clearing
336 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
337 * long mode and paging first.
339 * We also need a trampoline in lower memory to switch over from
340 * 4- to 5-level paging for cases when the bootloader puts the kernel
341 * above 4G, but didn't enable 5-level paging for us.
343 * The same trampoline can be used to switch from 5- to 4-level paging
344 * mode, like when starting 4-level paging kernel via kexec() when
345 * original kernel worked in 5-level paging mode.
347 * For the trampoline, we need the top page table to reside in lower
348 * memory as we don't have a way to load 64-bit values into CR3 in
351 * We go though the trampoline even if we don't have to: if we're
352 * already in a desired paging mode. This way the trampoline code gets
353 * tested on every boot.
356 /* Make sure we have GDT with 32-bit code segment */
358 movq %rax, gdt64+2(%rip)
362 * paging_prepare() sets up the trampoline and checks if we need to
363 * enable 5-level paging.
365 * paging_prepare() returns a two-quadword structure which lands
367 * - Address of the trampoline is returned in RAX.
368 * - Non zero RDX means trampoline needs to enable 5-level
371 * RSI holds real mode data and needs to be preserved across
372 * this function call.
375 movq %rsi, %rdi /* real mode address */
379 /* Save the trampoline address in RCX */
383 * Load the address of trampoline_return() into RDI.
384 * It will be used by the trampoline to return to the main code.
386 leaq trampoline_return(%rip), %rdi
388 /* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
390 leaq TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
394 /* Restore the stack, the 32-bit trampoline uses its own stack */
395 leaq boot_stack_end(%rbx), %rsp
398 * cleanup_trampoline() would restore trampoline memory.
400 * RDI is address of the page table to use instead of page table
401 * in trampoline memory (if required).
403 * RSI holds real mode data and needs to be preserved across
404 * this function call.
407 leaq top_pgtable(%rbx), %rdi
408 call cleanup_trampoline
416 * Previously we've adjusted the GOT with address the binary was
417 * loaded at. Now we need to re-adjust for relocation address.
419 * Calculate the address the binary is loaded at, so that we can
420 * undo the previous GOT adjustment.
426 /* The new adjustment is the relocation address */
431 * Copy the compressed kernel to the end of our buffer
432 * where decompression in place becomes safe.
435 leaq (_bss-8)(%rip), %rsi
436 leaq (_bss-8)(%rbx), %rdi
437 movq $_bss /* - $startup_32 */, %rcx
445 * Jump to the relocated address.
447 leaq .Lrelocated(%rbx), %rax
449 SYM_CODE_END(startup_64)
451 #ifdef CONFIG_EFI_STUB
453 SYM_FUNC_START(efi64_stub_entry)
454 SYM_FUNC_START_ALIAS(efi_stub_entry)
455 and $~0xf, %rsp /* realign the stack */
458 movl BP_code32_start(%esi), %eax
459 leaq startup_64(%rax), %rax
461 SYM_FUNC_END(efi64_stub_entry)
462 SYM_FUNC_END_ALIAS(efi_stub_entry)
466 SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
469 * Clear BSS (stack is currently empty)
472 leaq _bss(%rip), %rdi
473 leaq _ebss(%rip), %rcx
479 * Do the extraction, and jump to the new kernel..
481 pushq %rsi /* Save the real mode argument */
482 movq %rsi, %rdi /* real mode address */
483 leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
484 leaq input_data(%rip), %rdx /* input_data */
485 movl $z_input_len, %ecx /* input_len */
486 movq %rbp, %r8 /* output target address */
487 movq $z_output_len, %r9 /* decompressed length, end of relocs */
488 call extract_kernel /* returns kernel location in %rax */
492 * Jump to the decompressed kernel.
495 SYM_FUNC_END(.Lrelocated)
498 * Adjust the global offset table
500 * RAX is the previous adjustment of the table to undo (use 0 if it's the
501 * first time we touch GOT).
502 * RDI is the new adjustment to apply.
505 /* Walk through the GOT adding the address to the entries */
506 leaq _got(%rip), %rdx
507 leaq _egot(%rip), %rcx
511 subq %rax, (%rdx) /* Undo previous adjustment */
512 addq %rdi, (%rdx) /* Apply the new adjustment */
520 * This is the 32-bit trampoline that will be copied over to low memory.
522 * RDI contains the return address (might be above 4G).
523 * ECX contains the base address of the trampoline memory.
524 * Non zero RDX means trampoline needs to enable 5-level paging.
526 SYM_CODE_START(trampoline_32bit_src)
527 /* Set up data and stack segments */
528 movl $__KERNEL_DS, %eax
532 /* Set up new stack */
533 leal TRAMPOLINE_32BIT_STACK_END(%ecx), %esp
537 btrl $X86_CR0_PG_BIT, %eax
540 /* Check what paging mode we want to be in after the trampoline */
544 /* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
546 testl $X86_CR4_LA57, %eax
550 /* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
552 testl $X86_CR4_LA57, %eax
555 /* Point CR3 to the trampoline's new top level page table */
556 leal TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
559 /* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
564 btsl $_EFER_LME, %eax
569 /* Enable PAE and LA57 (if required) paging modes */
570 movl $X86_CR4_PAE, %eax
573 orl $X86_CR4_LA57, %eax
577 /* Calculate address of paging_enabled() once we are executing in the trampoline */
578 leal .Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
580 /* Prepare the stack for far return to Long Mode */
584 /* Enable paging again */
585 movl $(X86_CR0_PG | X86_CR0_PE), %eax
589 SYM_CODE_END(trampoline_32bit_src)
592 SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
593 /* Return from the trampoline */
595 SYM_FUNC_END(.Lpaging_enabled)
598 * The trampoline code has a size limit.
599 * Make sure we fail to compile if the trampoline code grows
600 * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
602 .org trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
605 SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
606 /* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
610 SYM_FUNC_END(.Lno_longmode)
612 #include "../../kernel/verify_cpu.S"
615 SYM_DATA_START_LOCAL(gdt64)
620 SYM_DATA_START_LOCAL(gdt)
624 .quad 0x00cf9a000000ffff /* __KERNEL32_CS */
625 .quad 0x00af9a000000ffff /* __KERNEL_CS */
626 .quad 0x00cf92000000ffff /* __KERNEL_DS */
627 .quad 0x0080890000000000 /* TS descriptor */
628 .quad 0x0000000000000000 /* TS continued */
629 SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
631 #ifdef CONFIG_EFI_MIXED
632 SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0)
633 SYM_DATA(efi_is64, .byte 1)
637 * Stack and heap for uncompression
641 SYM_DATA_LOCAL(boot_heap, .fill BOOT_HEAP_SIZE, 1, 0)
643 SYM_DATA_START_LOCAL(boot_stack)
644 .fill BOOT_STACK_SIZE, 1, 0
645 SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
648 * Space for page tables (not in .bss so not zeroed)
650 .section ".pgtable","a",@nobits
652 SYM_DATA_LOCAL(pgtable, .fill BOOT_PGT_SIZE, 1, 0)
655 * The page table is going to be used instead of page table in the trampoline
658 SYM_DATA_LOCAL(top_pgtable, .fill PAGE_SIZE, 1, 0)